

AA MMOODDEELL FFOORR VVUULLNNEERRAABBIILLIITTYY FFOORREECCAASSTTIINNGG

BY

HEIN S. VENTER

AA MMOODDEELL FFOORR VVUULLNNEERRAABBIILLIITTYY FFOORREECCAASSTTIINNGG

by

HEIN S. VENTER

THESIS

submitted in fulfilment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

in the subject

COMPUTER SCIENCE

in the

FACULTY OF NATURAL SCIENCES

of the

RAND AFRIKAANS UNIVERSITY

PROMOTER: PROFESSOR JAN H. P. ELOFF

MAY 2003

 v

AABBSSTTRRAACCTT

Internet and network security forms an interesting and topical, yet challenging and

developing research domain. In this domain, a taxonomy of information security

technologies is identified. This taxonomy is divided into two mainline entities,

namely proactive and reactive information security technologies. This thesis is

specifically concerned with proactive information security technologies, the focus

being on a specific proactive information security technology – vulnerability

scanning.

Vulnerability scanning is implemented by vulnerability scanner (VS) products. VS

products are used proactively to conduct vulnerability scans to identify vulnerabilities

so that they can be rectified before they can be exploited by hackers. However, there

are currently many problems with state-of-the-art VS products. For example, a

vulnerability scan is time-consuming and a vast number of system resources are

occupied, leading to the degradation of network and system performance.

Furthermore, VS products lack the intelligence that is required to deal with new

vulnerabilities that appear like clockwork. Current VS products also differ

extensively in the way that they can detect vulnerabilities, as well as in the number of

vulnerabilities that they can detect.

These problems motivated the researcher to create a model for vulnerability

forecasting (VF). The uniqueness of the VF model lies in its holistic approach to

addressing these problems while maintaining its end goal – that of being able to do a

vulnerability forecast of how vulnerabilities will occur in the near future. Such a

vulnerability forecast would, therefore, enable an organisation to use it proactively as

part of a risk management scheme.

Furthermore, in order to demonstrate the feasibility of implementing the proposed

model, a report on the development of a prototype for vulnerability forecasting is

included. Rather than reinventing the wheel, the prototype incorporates the use of

current state-of-the-art VS products in its VF process. This is advantageous in the

sense that the prototype is independent of a specific VS product. It is because of the

ABSTRACT

vi

latter that a standardisation technique had to be used to refer to vulnerabilities in the

same way since different VS products do not refer to and detect similar vulnerabilities

in the same way. This standardisation technique introduced in this thesis is known as

harmonising vulnerability categories.

This thesis contributes to the understanding of vulnerability scanning techniques and

how vulnerability scanning can be utilised more effectively by doing vulnerability

forecasting. The thesis also paves the way for numerous potential future research

projects in the domain of Internet and network security.

 vii

AAFFRRIIKKAAAANNSSEE OOOORRSSIIGG

Internet- en netwerksekuriteit vorm ’n interessante en aktuele, dog uitdagende en

ontwikkelende navorsingsgebied. Op hierdie gebied word ’n taksonomie van

inligtingsekuriteitstegnologieë geïdentifiseer. Hierdie taksonomie word in twee

hooflynentiteite verdeel, naamlik proaktiewe en reaktiewe inligtingsekuriteits -

tegnologieë. Hierdie proefskrif handel spesifiek oor proaktiewe sekuriteitstegnologieë

en die fokus is op ’n spesifieke proaktiewe inligtingsekuriteitstegnologie –

kwesbaarheidsaftasting.

Kwesbaarheidsaftasting word deur kwesbaarheidsaftas - (VS-) produkte

geïmplementeer. VS-produkte word proaktief gebruik om kwesbaarheidsaftastings uit

te voer om kwesbaarhede te identifiseer sodat hulle reggestel kan word voordat hulle

deur krakers uitgebuit word. Tans is daar egter baie probleme met die nuutste VS -

produkte. ’n Kwesbaarheidsaftasting is byvoorbeeld tydrowend en ’n groot

hoeveelheid stelselhulpbronne word in beslag geneem, wat tot die verlaging van

netwerk- en stelselprestasie lei. Verder beskik VS-produkte nie oor die nodige

intelligensie om nuwe kwesbaarhede wat klokslag verskyn, te hanteer nie. Huidige

VS-produkte verskil ook hemelsbreed wat betref die manier waarop hulle

kwesbaarhede opspoor sowel as die getal kwesbaarhede wat hulle kan opspoor.

Hierdie probleme het die navorser gemotiveer om ’n model vir kwesbaarheids -

voorspelling (VF) te skep. Die uniekheid van die VF -model lê in sy holistiese

benadering tot die aanspreek van hierdie probleme terwyl die einddoel – om te kan

voorspel hoe kwesbaarhede in die nabye toekoms sal voorkom – gehandhaaf word.

So ’n kwesbaarheidsvoorspelling sal ’n organisasie dus in staat stel om dit proaktief te

gebruik as deel van ’n risikobestuursplan.

Verder, om die uitvoerbaarheid van die implementering van die voorgestelde model

aan te toon, word ’n verslag oor die ontwikkeling van ’n prototipe vir

kwesbaarheidsvoorspelling ingesluit. In plaas daarvan om weer die wiel uit te vind,

inkorporeer die prototipe die gebruik van die heel nuutste VS-produkte in sy VF-

proses. Dit is voordelig in dié sin dat die prototipe onafhanklik is van ’n spesifieke

AFRIKAANSE OORSIG

viii

VS-produk. Vanweë laasgenoemde moes ’n standaardiseringstegniek gebruik word

om op dieselfde manier na kwesbaarhede te verwys, aangesien verskillende VS-

produkte nie op dieselfde manier na kwesbaarhede verwys of hulle op dieselfde

manier opspoor nie. Hierdie standaardiseringstegniek wat in die proefskrif bekend

gestel word, staan bekend as die harmoniëring van kwesbaarheidskategorieë.

Hierdie proefskrif dra by tot die begrip van kwesbaarheidsaftastegnieke en hoe

kwesbaarheidsaftasting meer effektief benut kan word deur kwesbaarheids -

voorspellings te doen. Hierdie proefskrif baan ook die weg vir talle potensiële

toekomstige navorsingsprojekte op die gebied van Internet- en netwerksekuriteit.

 ix

AACCKKNNOOWWLLEEDDGGEEMMEENNTTSS

“Life is a journey, enjoy the ride” is a philosophy that many people live by. This

philosophy is applicable to the essence of this thesis as well. In the journey of the

thesis, the ride was sometimes bumpy, sometimes flat, and sometimes , alas…

completely off-road! Like all journeys, this one has also come to an end. The journey

would not have been possible without an excellent vehicle, and that vehicle would

embody everyone who made it possible for this research project to be completed . It is

therefore appropriate and absolutely crucial to convey my sincere appreciation to all

who made the journey possible. Without your support, guidance and encouragement,

it would have been impossible.

A special word of thanks to:

• God, my Anchor and my Reason for being, for the talents and energy He gave

me to complete this research.

• My fiancée, René, for her undivided love, support and encouragement amidst

difficult times.

• My parents, for their continuous support and for affording me a proper

education in financially challenging times.

• My promoter, Professor Jan Eloff, for his peerless guidance and continuous

encouragement.

• All my friends, who continuously encouraged me and for believing in me. A

special word of thanks to Damian Cholewka, Keith Snyman and Gert van

Rensburg for listening to my frustrations.

• Pierre Visser, for his contribution to the development of the vulnerability

forecasting prototype.

• My colleagues at the University of Pretoria, for assisting me wherever

possible. A special word of thanks to Madel Morkel for always being eager to

help with the administration regarding the thesis.

• My former colleagues at the Rand Afrikaans University for their support

through the years. A special word of thanks to Mrs Ina Erasmus and Mrs

Naomi Strijdom for always being friendly and available to help with all the

administration regarding the thesis.

ACKNOWLEDGEMENTS

x

• Glenda Buncombe, for editing the thesis professionally and promptly.

• The National Research Foundation for financial assistance.

• Anyone else who contributed – even if in the faintest manner – to the

completion of this research, I thank you all.

 xi

CCOONNTTEENNTTSS

AABBSS TTRRAACCTT v

AAFFRRIIKK AAAANNSS EE OOOO RRSS IIGG vii

AACCKKNNOO WWLLEEDDGGEEMM EENNTTSS ix

11 IINNTTRROODDUUCCTTIIOONN 11

 1.1 INTRODUCTION .. 1

 1.2 MOTIVATION FOR THIS STUDY... 1

 1.3 PROBLEM STATEMENT .. 5

 1.4 TERMINOLOGY USED IN THIS THESIS.. 8

 1.4.1 Information security... 8

 1.4.2 Intrusion detection .. 9

 1.4.3 Vulnerability scanning ... 9

 1.4.4 Risk management ..10

 1.5 THESIS LAY-OUT ..10

22.. AA TTAAXXOO NNOO MMYY FFOO RR IINNFFOO RRMMAATTIIOO NN SSEECCUURRIITTYY TT EECCHHNNOO LLOO GGIIEESS 1133

 2.1 INTRODUCTION ..13

 2.2 A TAXONOMY FOR INFORMAT ION SECURITY TECHNOLOGIES....................13

 2.2.1 Proactive information security technologies..................................16

 2.2.1.1 Cryptography ...16

 2.2.1.2 Digital signatures ...17

 2.2.1.3 Digital certificates ..17

 2.2.1.4 Virtual private networks...18

 2.2.1.5 Vulnerability scanners..18

 2.2.1.6 Anti-virus scanners..19

 2.2.1.7 Security protocols ..19

 2.2.1.8 Security hardware..20

CONTENTS

xii

 2.2.1.9 Security SDKs..20

 2.2.2 Reactive information security technologies21

 2.2.2.1 Firewalls ..21

 2.2.2.2 Access control..22

 2.2.2.3 Passwords..22

 2.2.2.4 Biometrics..23

 2.2.2.5 Intrusion detection systems..23

 2.2.2.6 Logging..24

 2.2.2.7 Remote accessing...24

 2.3 CONCLUSION ..25

33.. SSTTAATTEE--OO FF--TTHH EE--AARRTT IINNTTRRUUSS IIOO NN DDEETTEECCTTIIOO NN AANNDD VVUULLNN EERRAABBIILLIITT YY

 SSCCAANNNNIINNGG 2277

 3.1 INTRODUCTION ..27

 3.2 INTRUSION DETECTION ...28

 3.2.1 What is intrusion detection? ...28

 3.2.2 The architecture of IDSs..28

 3.2.2.1 Pattern-matching IDS architecture ...30

 3.2.2.2 Anomaly detection IDS architecture ..32

 3.2.3 Other approaches to IDS architectures ..33

 3.2.3.1 IDML-based intrusion detection ..33

 3.2.3.2 An IDS architecture for detecting TCP SYN flooding35

 3.2.4 Commercially available IDSs..37

 3.2.5 The problems with IDSs...37

 3.3 VULNERABILITY SCANNING ...37

 3.3.1 What is vulnerability scanning?...37

 3.3.2 The architecture of VSs..38

 3.3.3 Another approach to VS architectures ...42

 3.3.4 Commercially available VSs ...43

 3.3.5 The problems with VSs..44

 3.4 CONCLUSION ..45

44.. HHAARRMMOO NNIISS IINNGG VVUULLNNEERRAABB IILLIITT YY CCAATTEEGGOO RRIIEESS 4477

 4.1 INTRODUCTION ..47

 CONTENTS

 xiii

 4.2 METHOD OF IDENTIFYING CATEGORIES...47

 4.3 HARMONISED VULNERABILITY CATEGORIES ..48

 4.3.1. Password cracking and sniffing..49

 4.3.2 Network and system information gathering50

 4.3.3 User enumeration and information gathering50

 4.3.4 Backdoors, Trojans and remote controlling51

 4.3.5 Unauthorised access to remote connections and services52

 4.3.6 Privilege and user escalation...52

 4.3.7 Spoofing or masquerading ..53

 4.3.8 Misconfigurations..54

 4.3.9 Denial-of-services (DoS) and buffer overflows54

 4.3.10 Viruses and worms ..55

 4.3.11 Hardware specific..55

 4.3.12 Software specific and updates ...56

 4.3.13 Security policy violations ...57

 4.4 STANDARDISATION OF VULNERABILITIES ..58

 4.5 CONCLUSION ..58

55.. VVUULLNN EERRAABBIILLIITT YY SSCCAANNNNEERR PP RROO DDUUCCTTSS 6611

 5.1 INTRODUCTION ..61

 5.2 VS PRODUCTS...61

 5.2.1 VS products overview...62

 5.2.2 CyberCop Scanner..62

 5.2.2.1 Practical experience with the CyberCop Scanner.......................62

 5.2.2.2 CyberCop Scanner vulnerability database..................................63

 5.2.3 Cisco Secure Scanner..63

 5.2.3.1 Practical experience with the Cisco Secure Scanner64

 5.2.3.2 Cisco Secure Scanner vulnerability database.............................65

 5.2.4 SAINT ..66

 5.2.4.1 Practical experience with the SAINT...66

 5.2.4.2 SAINT vulnerability database..66

 5.2.5 Internet Security Scanner (ISS)...66

 5.2.5.1 Practical experience with the ISS...67

 5.2.5.2 ISS vulnerability database..68

CONTENTS

xiv

 5.2.6 Nessus Security Scanner..69

 5.2.6.1 Practical experience with the Nessus Security Scanner..............69

 5.2.6.2 Nessus Security Scanner vulnerability database.........................70

 5.3 SUMMARY OF CURRENT VS PRODUCTS ..71

 5.3.1 Mapping onto harmonised vulnerability categories72

 5.3.2 Differences in VS products ..73

 5.3.2.1 2: Network and system information gathering73

 5.3.2.2 4: Backdoors, Trojans and remote controlling............................74

 5.3.2.3 8: Misconfigurations..75

 5.3.2.4 9: Denial-of-service (DoS) and buffer overflows.......................76

 5.3.2.5 13: Security policy violations...78

 5.4 CONCLUSION ..79

66.. VVUULLNN EERRAABBIILLIITT YY FFOO RREECCAASS TTIINNGG –– AA CCOO NNCCEEPPTTUUAALL MM OO DDEELL 8811

 6.1 INTRODUCTION ..81

 6.2 PROBLEMS WITH STATE-OF-THE-ART VSS ..81

 6.3 CONCEPT OF VULNERABILITY FORCASTING ..84

 6.3.1 Defining the term “vulnerability forecasting”84

 6.3.2 A conceptual model for VF..84

 6.3.2.1 Level 1 of the conceptual VF model ..85

 6.3.2.2 Level 2 of the conceptual model ..85

 6.3.2.2.1 VS technology (current) ...86

 6.3.2.2.2 Vulnerability harmonisation...92

 6.3.2.2.3 Vulnerability forecasting..98

 6.3.2.2.4 Merging the subcomponents for the conceptual VF model102

 6.4 CONCLUSION ..103

77.. TTHHEE VVUULLNNEERRAABB IILLIITT YY FFOO RREECCAASS TT EENNGGIINNEE 110055

 7.1 INTRODUCTION ..105

 7.2 INPUT TO THE VF ENGINE ..105

 7.3 EXPLANATION OF THE VF TECHNIQUE ..107

 7.3.1 Using FEIs for VF...108

 7.3.1.1 Step 1: Determine fuzzy groups for a vulnerability forecast109

 7.3.1.2 Step 2: Defuzzify “fuzzy” vulnerabilities110

 7.3.1.3 Step 3: Define and calculate the membership function.............112

 CONTENTS

 xv

 7.3.1.4 Step 4: Defuzzify “fuzzy” scans...113

 7.3.1.5 Step 5: Calculate the maximum over the minima and the FEI..114

 7.3.2 FEI for each harmonised vulnerability category........................115

 7.4 CONCLUSION ..116

88.. AA PPRROO TTOOTTYYPPEE FFOO RR VVUULLNNEERRAABB IILLIITTYY FFOO RREECCAASS TTIINNGG 111177

 8.1 INTRODUCTION ..117

 8.1.1 The aim of the prototype ..117

 8.1.2 The VF model and the prototype ...118

 8.2 DEVELOPMENT OF THE VF PROTOTYPE..120

 8.3 INSTALLATION OF THE VF PROTOTYPE...121

 8.4 OPERATION OF THE VF PROTOTYPE..121

 8.4.1 Background to the VF Prototype ...121

 8.4.2 The scan scenario..123

 8.4.2.1 The platform..123

 8.4.2.2 The scenario...123

 8.4.3 Setting up the VF Prototype parameters......................................125

 8.4.3.1 Setting up the Adjective List..127

 8.4.3.2 Setting up the Harmonised Vulnerability Categories128

 8.4.3.3 Setting up the VS product used..129

 8.4.3.3.1 Specifying the VS product name.................................. 129

 8.4.3.3.2 Specifying the vulnerability database path 129

 8.4.3.3.3 Specifying the tables used... 129

 8.4.3.3.4 Specifying the software package categories.................. 130

 8.4.3.3.5 Specifying the vulnerability mapping........................... 131

 8.4.3.3.6 Specifying the format of the history scan data............... 132

 8.4.4 Using the VF Prototype software ...133

 8.4.4.1 Analysing the history scan data..134

 8.4.4.2 Performing a vulnerability forecast ..136

 8.4.4.2.1 Compiling the fuzzy groups... 138

 8.4.4.2.2 Compiling the mapping table...................................... 140

 8.4.4.2.3 Compiling the membership function 141

 8.4.4.2.4 Viewing calculations.. 142

 8.4.4.3 Validating a vulnerability forecast ...145

 8.5 CONCLUSION ..147

CONTENTS

xvi

99.. CCOONNCCLLUUSS IIOONN 114499

 9.1 INTRODUCTION ..149

 9.2 REVISITING THE PROBLE M STATETMENT ..149

 9.3 FUTURE RESEARCH..152

 9.4 EPILOGUE ...153

AAPPPPEENNDDIICCEESS

 A INSTALLING THE VF PROTOTYPE SOFTWARE AND ADDITIONAL

 SOFTWARE COMPONENTS ..155

 B SOURCE CODE OF THE VF PROTOTYPE ...161

 C CYBERCOP SCANNER REPORT ..299

 D THE CYBERCOP SCANNER VULNERABILITY DATABASE309

 E VULNERABILITY HISTORY DATA ..395

 F PAPERS PUBLISHED...421

 xvii

LLIISSTT OOFF FF IIGGUURREESS

.

2.1 A taxonomy of information security technologies ..14

3.1 The typical location of an IDS in a network...29

3.2 Pattern -matching IDS architecture ..31

3.3 Anomaly detection IDS architecture ...32

3.4 An architecture for intrusion detection bas ed on IDML...................................33

3.5 A typical finite intrusion pattern state machine ...35

3.6 An intrusion detection architecture for detecting TCP SYN flooding36

3.7 The location of a VS in a network...38

3.8 An architecture for a VS ...41

3.9 A distributed architecture for vulnerability scanning..42

5.1 An extract from the CyberCop Scanner report ...63

5.2 An extract from the Cisco Secure Scanner report..65

5.3 An extract from the ISS report...68

5.4 Vulnerability mapping of different VS products onto the harmonised

 vulnerability categories...72

5.5 Number of vulnerabilities scanned for by different VS products for

 harmonised vulnerability category 2: network and system information

 gathering...73

5.6 Number of vulnerabilities scanned for by different VS products for

 harmonised vulnerability category 4: backdoors, Trojans, and remote

 controlling..75

5.7 Number of vulnerabilities scanned for by different VS products for

 harmonised vulnerability category 8: misconfigurations76

5.8 Number of vulnerabilities scanned for by different VS products for

 harmonised vulnerability category 9: denial-of-services (DoS) and buffer

 overflows ..77

5.9 Number of vulnerabilities scanned for by different VS products for

 harmonised vulnerability category 13: security policy violations78

LIST OF FIGURES

xviii

6.1 Level 1 – A conceptual model for vulnerability forecasting85

6.2 The VS technology (current) component..86

6.3 VF logical database part 1: vulnerability data..87

6.4 Vulnerability data report...88

6.5 VF logical database part 2 added: scan data...89

6.6 Scan data report for scan 1 ...90

6.7 The scan result report: vulnerabilities found on different hosts on a

 network during a specific scan...92

6.9 VF logical database part 3 added: harmonised vulnerability category data....94

6.10 VS product vulnerabilities mapped on to the harmonised vulnerability

 categories..95

6.11 Scan result report with vulnerabilities mapped onto the harmonised

 vulnerability categories...96

6.12 VF logical database part 4 added: harmonised history data97

6.13 The vulnerability forecast component...98

6.14 VF logical database part 5 added: forecast history data....................................99

6.15 A vulnerability forecast result report for vulnerability forecasts 1 to n101

6.16 The conceptual model for vulnerability forecasting ..103

7.1 The harmonised history data for m scans ...106

7.2 The 5 steps fo r determining the FEI for each harmonised vulnerability

 category ..109

7.3 Membership function..112

8.1 The VF Prototype’s scope in terms of the VF model as indicated by the

 dark black line..118

8.2 The VF Prototype’s scope in terms of the VF model as indicated by the

 dark black line..119

8.3 Relational schema of the database implementation in the VF Prototype120

8.4 CyberCop Scanner network scan scenario ...124

8.5 Vulnerabilities uncovered by CyberCop Scanner during scan 1 for each

 CyberCop Scanner vulnerability category..124

8.6 Running the VF Prototype software ..125

8.7 The Vulnerability Forecasting (VF) Prototype main window........................126

 LIST OF FIGURES

 xix

8.8 The VF Prototype – Options window...127

8.9 The Adding Adjective input box...127

8.10 The VF Prototype – Software Package Setup window...................................128

8.11 Software Package Setup window: Harmonised mapping130

8.12 Specifying the scan data file structure of CyberCop Scanner........................132

8.13 The VF Prototype – Options window filled in ...133

8.14 Loading the history scan data...134

8.15 The history scan data loaded and mapped..135

8.16 Graph showing information about Scan 15 ..136

8.17 Showing the mapped data for the harmonised vulnerability categories137

8.18 The first three steps for doing a vulnerability forecast for category 8...........137

8.19 Graph showing information about harmonised vulnerability category 8138

8.20 The first three steps for doing a vulnerability forecast in the VF Prototype

 completed ...141

8.21 Step 4 for doing a vulnerability forecast in the VF Prototype........................142

8.22 Calculations for the fourth µ-value as displayed in figure 8.21143

8.23 Step 5 and the final vulnerability forecast result for harmonised vulnerability

category 8...143

8.24 Graph showing information about harmonised vulnerability category 8144

8.25 The completed VF Prototype main window..145

8.26 Comparing a vulnerability forecast with an actual scan – Scan 16146

8.27 Comparing a vulnerability forecast with an actual scan for a

 significant time interval increase of 45 days between scans instead of

 every day ..147

A.1 Entering the command to run the VF installation software............................157

A.2 Specifying the destination folder for installing the VF Prototype software..157

A.3 The VF Prototype files being installed by the installation software158

A.4 Running the register command..159

A.5 Successful component registra tion..159

B.1 Project layout of the VF Prototype ..161

B.2 The “frmCalculations” form ..162

LIST OF FIGURES

xx

B.3 The “frmGraphics” form ..163

B.4 The “frmHelp” form..164

B.5 The “frmMain” form...170

B.6 The “frmOptions” form..195

B.7 The “frmSaveLoad” form...204

B.8 The “frmSelectCats” form..213

B.9 The “frmSetup” form..217

B.10 The “frmSetupNames” form..239

B.11 The “frmSWSetup” form..247

E.1 Vulnerability history scan data – scan 1...395

E.2 Vulnerability history scan data – scan 2...396

E.3 Vulnerability history scan data – scan 3...396

E.4 Vulnerability history scan data – scan 4...397

E.5 Vulnerability history scan data – scan 5...397

E.6 Vulnerability history scan data – scan 6...398

E.7 Vulnerability history scan data – scan 7...398

E.8 Vulnerability history scan data – scan 8...399

E.9 Vulnerability history scan data – scan 9...399

E.10 Vulnerability history scan data – scan 10...400

E.11 Vulnerability history scan data – scan 11...400

E.12 Vulnerability history scan data – scan 12...401

E.13 Vulnerability history scan data – scan 13...401

E.14 Vulnerability history scan data – scan 14...402

E.15 Vulnerability history scan data – scan 15...402

E.16 Vulnerability history scan data – scan 16...403

E.17 Scan results over the 16 scans for CyberCop vulnerability category 1404

E.18 Scan results over the 16 scans for CyberCop vulnerability category 2.........404

E.19 Scan results over the 16 scans for CyberCop vulnerability category 3.........405

E.20 Scan results over the 16 scans for CyberCop vulnerability category 4.........405

E.21 Scan results over the 16 scans for CyberCop vulnerability category 5.........406

E.22 Scan results over the 16 scans for CyberCop vulnerability category 6.........406

E.23 Scan results over the 16 scans for CyberCop vulnerability category 7.........407

E.24 Scan results over the 16 scans for CyberCop vulnerability category 8.........407

 LIST OF FIGURES

 xxi

E.25 Scan results over the 16 scans for CyberCop vulnerability category 9.........408

E.26 Scan results over the 16 scans for CyberCop vulnerability category 10.......408

E.27 Scan results over the 16 scans for CyberCop vulnerability category 11.......409

E.28 Scan results over the 16 scans for CyberCop vulnerability category 12.......409

E.29 Scan results over the 16 scans for CyberCop vulnerability category 13.......410

E.30 Scan results over the 16 scans for CyberCop vulnerability category 14.......410

E.31 Scan results over the 16 scans for CyberCop vulnerability category 15.......411

E.32 Scan results over the 16 scans for CyberCop vulnerability category 16.......411

E.33 Scan results over the 16 scans for CyberCop vulnerability category 17.......412

E.34 Scan results over the 16 scans for CyberCop vulnerability category 18.......412

E.35 Scan results over the 16 scans for CyberCop vulnerability category 19.......413

E.36 Scan results over the 16 scans for CyberCop vulnerability category 20413

E.37 Scan results over the 16 scans for CyberCop vulnerability category 21414

E.38 Scan results over the 16 scans for CyberCop vulnerability category 22414

E.39 Scan results over the 16 scans for CyberCop vulnerability category 23415

E.40 Scan results over the 16 scans for CyberCop vulnerability category 24415

E.41 Scan results over the 16 scans for CyberCop vulnerability category 25416

E.42 Scan results over the 16 scans for CyberCop vulnerability category 26416

E.43 Scan results over the 16 scans for CyberCop vulnerability category 27417

E.44 Scan results over the 16 scans for CyberCop vulnerability category 28.......417

E.45 Scan results over the 16 scans for CyberCop vulnerability category 29418

E.46 Scan results over the 16 scans for CyberCop vulnerability category 30418

E.47 Scan results over the 16 scans for CyberCop vulnerability category 31.......419

LIST OF FIGURES

xxii

 xxiii

LLIISSTT OOFF TTAABB LLEESS

.

2.1 Resources covering the information security technologies15

2.2 The information security technologies ..16

4.1 Summary of the harmonised vulnerability categories49

5.1 State-of-the-art VS products ..62

5.2 Harmonised vulnerability categories covered by CyberCop Scanner.............64

5.3 Harmonised vulnerability categories covered by Cisco Secure Scanner........65

5.4 Harmonised vulnerability categories covered by SAINT67

5.5 Harmonised vulnerability categories covered by ISS69

5.6 Harmonised vulnerability categories covered by Nessus Security Scanner...71

5.7 Important network and system information gathering vulnerabilities74

5.8 Important backdoors, Trojans, and remote controlling vulnerabilities............75

5.9 Important misconfiguration vulnerabilities ..76

5.10 Important denial-of-service (DoS) and buffer overflow vulnerabilities..........77

5.11 Important security policy violations vulnerabilities ..78

6.1 Problems identified and addressed regarding state-of-the-art VS products....84

6.2 Summary of the harmonised vulnerability categories93

7.1 The fuzzy groups formed for harmonised vulnerability category K..............110

7.2 Mapping table ..110

7.3 Distribution of scans and defuzzified ranges ..112

7.4 Transforming the defuzzified values using the membership function χ(x) ..113

7.5 Results for the µ’s and χ’s..114

7.6 An example FEI calculated for each harmonised vulnerability sorted

 in order of highest to lowest priority...115

8.1 Example of a vulnerability uncovered during a scan122

8.2 CyberCop vulnerability categories ..122

LIST OF TABLES

xxiv

8.3 Problems identified and addressed regarding state-of-the-art VS

 products ..148

A.1 Typefaces employed to indicate special text ..156

D.1 The CyberCop Scanner vulnerability database..309

 Page 1

CCHHAAPPTTEERR 11

IINNTTRROODDUUCCTTIIOONN
__

11..11 IINNTTRROODD UUCC TTIIOO NN

The Internet potentially is an invaluable and inexhaustible resource, accessible to each

and every person. Almost any conventional publishing media, such as books, journals

and magazines, can all be located on the Internet in electronic form these days. The

Internet has made life easier in many ways – it has become part of our lives. But,

alas, like human nature, it also harbours a dark side, providing − at best − the perfect

tool for innocuous pranks such as amateurish attempts at hacking and − at worst − the

perfect breeding ground for pernicious cyber-crime schemes and vicious security

attacks.

One should accept that there are always pranksters, better known as hackers

[CRMC 01], who want to steal information for unethical purposes, or simply

jeopardise the organisation by making their system resources unavailable. It is for

these reasons that a new research field has evolved over the past

decade – information security [INFO 02].

The application of information security enabled businesses to start conducting

business over the Internet. Given enough time and resources, however, any

information security application can be cracked. This introduces new and challenging

problems manifested in the field of information security. This study was, therefore,

primarily motivated by the need for better information security applications, specially

those in the realm of network security.

11..22 MMOOTTIIVVAA TTIIOONN FFOORR TTHHIISS SSTTUUDDYY

The research undertaken for this study was motivated by a number of realisations.

These realisations are discussed in the sections that follow.

CHAPTER 1

Page 2

Open environment of the Internet

The Internet is a public network. This means that anyone can possibly intercept

messages that travel along the Internet in a bid to spy or steal information. The

Internet being a public network, however, does not mean that no private information

can be sent across the Internet. There are, in fact, numerous information security

services [INFO 02] which are used to implement security measures over the Internet.

One such service that is particularly used to keep messages sent over the Internet

private is referred to as confidentiality. The specific mechanism used to implement

confidentiality is referred to as cryptology [PHLE 03].

Currently the Internet is working on a specific protocol referred to as the Internet

Protocol (IP) version 4 [IPFA 03]. IP version 4 has been employed since the late

1980s. This version of IP, however, has some design flaws [IPVE 03] in that it was

initially developed by the American Department of Defence as a private network.

Hence, it was not initially designed to incorporate security features and, therefore,

security features had to be added onto the application lay er of the Internet ISO model

[GOLL 99] when the Internet became a public network. Currently a new version of

IP – IP version 6 [IPV6 03] – is being developed and will probably replace IP version

4 in the future. IP version 6 is specifically being designed to incorporate security

features.

The fact that the Internet is an open environment led to the second realisation.

Rapidly changing environment of the Internet

Probably one of the biggest drawbacks of products, applications and the Internet itself

is that they advance so rapidly that information security products struggle to keep up

with the pace [SCHU 03]. Naturally, services and applications are being developed

and implemented on the Internet – some applications with built -in security features

and others without any security features. The reason for some services and

applications not having security features built in initially, or having security features

built in but not exhaustively, is one of business processes: it is often more important

for an organisation to get the business up and running than to wait a while longer and

have exhaustive security features implemented. Whether security has been

 INTRODUCTION

 Page 3

implemented in the services and applications or not, only after installation and

functioning of such services and applications are security holes – referred to as

vulnerabilities – found, most of the time, by hackers [SCHN 00].

If hackers find vulnerabilities first, they will exploit them, which could result in the

theft, loss or corruption of data. If security experts find vulnerabilities first, they will

create additional code, referred to as a security patch, to rectify the vulnerability.

Software vulnerabilities are found and exploited like clockwork by hackers. In

response, software patches become available too, but often organisations are the

victims of hacker attacks because of this rapidly changing of the Internet environment.

The rapidly changing environment of the Internet led to the next realisation.

A legion of security products available

Because of the rapidly changing environment of the Internet, the number of security

products available on the software market today is legion. For almost any security

risk that is currently known, security applications have already been developed for it.

Some security products implement information security technologies that have been

known to people for ages, for example the Caesar cipher [PHLE 03] named after

Julius Caesar. Most recent security products, however, implement information

security technologies that have been known to people for only the past decade as a

result of the advent of the Internet, for example intrusion detection and vulnerability

scanner information security technologies.

Although the implementation of older information security technologies has been

perfected to a reasonable extent, current information security products still need to be

perfected. These current information security products fall short in many ways,

because they are still very new. Considerable room for perfecting these information

security products is therefore possible. Too many false alarms, responses that are not

prompt, too much redundant work and the huge reports generated [SCHN 00] are just

some of the areas of information security products that sorely need attention.

CHAPTER 1

Page 4

Although the information security products need attention in the areas described

above, the researcher also realised that there are many implementations by different

vendors of the same information security technology, as the following realisation

confirms.

Disparity in similar security products

There are often different vendors that create security products for the same security

service or application. For example, in the application of cryptology, the following

are a few examples of cryptology products and standards created by different vendors,

which, in essence, perform the same functions – that of encryption and

decryption: Privacy Master [WEBR 03], Pretty Good Privacy (PGP) [PGPI 03], Data

Encryption Standard (DES) [WEBD 03] and Advanced Encryption Standard (AES)

[WEBA 03].

The products mentioned here are all similar in terms of their application, but they are

disparate in the way they are implemented. For example, Privacy Master uses

symmetric key encryption [WEBS 03], while PGP uses asymmetric key encryption

[WEBP 03]. Even more finely disparate, DES uses a key length of 56 bits, while AES

uses a key length of 128 bits. This disparity in security products often harbours

confusion amongst the users and potential users of the different s ecurity products in

terms of which product is better to use, or which product is the right one to use

according to the needs of the user or organisation.

The disparity in similar security products is one realisation. However, some of these

security products require a colossal effort from an administrator’s point of view to

manage, which led to the next realisation.

Huge administrative burden regarding vulnerability scanner
products

The nature of security products often involves a huge administrative burden. For

example, an information security product known as a vulnerability scanner can

reveal vulnerabilities by scanning for them on computers connected to a network.

Depending on the number of computers that are scanned during a vulnerability scan,

 INTRODUCTION

 Page 5

often thousands of vulnerabilities are detected, which results in the generation of a

colossal report consisting of hundreds or even thousands of pages. It is left to the

responsible administrator to analyse such a report in a bid to rectify the vulnerabilities

found. The administrative burden to do this, therefore, is huge. The result is often

that, because of this huge administrative load, security cannot be applied as

anticipated due to a shortage of human resources and, therefore, security is often

neglected.

The above realisations strengthened the researcher’s resolve to develop a model

specifically aimed at vulnerability scanning, which would facilitate the job of an

administrator and render current vulnerability scanners more effective.

11..33 PPRROOBBLLEEMM SS TTAA TTEEMMEENNTT

This research recognises the importance of information security and specifically that

of current information security technologies. It is aimed principally at making a

contribution to enhancing risk management by forecasting the extent to which

vulnerabilities will occur in the future. A model for vulnerability forecasting is,

therefore, proposed that follows a fresh approach to vulnerability assessment.

The problem area can be addressed by considering the following research questions:

What is the state of current proactive and reactive information
security technologies?

State-of-the-art information security technologies each implement one or more of the

five information security services: authentication, confidentiality, integrity,

availability and non-repudiation. In doing so, information is secured by the

information security technologies either on a proactive basis by securing information

before it can be compromised, or on a reactive basis by securing information as soon

as an attempt is made to compromise the information.

The investigation of this research question, therefore, will involve a detailed analysis

of state-of-the-art information security technologies with the aim of categorising them

into proactive and reactive technologies. Furthermore, it should be investigated

CHAPTER 1

Page 6

whether proactive or reactive information security technologies will be used as the

platform to conduct this research project. In order to accomplish this, a detailed study

will be conducted on one proactive and one reac tive information security technology.

What can be done to improve the vulnerability scanning process?

State-of-the-art vulnerability scanners scan for vulnerabilities and report on their

findings after a scan is complete. It is difficult and time -consuming, however, to

effectively attend to the vulnerabilities reported after such a vulnerability scan,

because such reports are often very long and left entirely up to human resources to

rectify, leaving them with an immense administrative burden.

The investigation of this research question would therefore involve finding techniques

in order to ease the administrative burden on human resources.

How can the impact of current vulnerability scanners on system
resources be minimised?

Current vulnerability scanners detect vulnerabilities by scanning for signatures of

known vulnerabilities and attack patterns. The modus operandi of a vulnerability

scanner is often to simulate attacks that would attack system resources of a computer

or network of computers to test whether the system resources have been secured

sufficiently and, if not, how these computers would react to genuine attacks. This

way of detecting vulnerabilities often has the same effect of genuine attacks and,

therefore, could deny the services of system resources significantly or entirely.

The impact that current vulnerability scanners have on system resources, therefore,

may result in the inability of normal business processes to continue due to the

interruption of system resources by a vulnerability scan. The investigation of this

research question will involve alternative scanning strategies of current vulnerability

scanners.

 INTRODUCTION

 Page 7

How can the disparity be addressed in the kinds of vulnerabilities
that different vulnerability scanner products can detect?

There is a disparity in current vulnerability scanners in the way that they detect

vulnerabilities. An example of a specific area of disparity is vulnerability scanner X

being able to scan for specific vulnerabilities, whereas vulnerability scanner Y

scanning for different kinds of vulnerabilities.

The investigation of this research question will therefore involve finding techniques in

order to standardise the kinds of known vulnerabilities so that, ultimately, it is

possible to know which subset of standardised vulnerabilities a specific vulnerability

scanner can detect from a potentially exhaustive set of standardised vulnerabilities.

How should vulnerability scanner products provide more intelligent
results so that they will aid risk management?

Current vulnerability scanners are lacking in the sense that they are not able to supply

management of an organisation with sufficient results that would enable them to

engage in risk management of their information more effectively. An example of

“more intelligent results” is that a vulnerability scanner is able to predict the

vulnerability trends the organisation can expect in the near future.

This research question, in a way, summarises the research questions stated above,

since solving those questions would enable the researcher to gather sufficient

knowledge about proactive information security technologies so that more intelligent

techniques can be applied to solve this research question.

Although risk management is a component that is included in the model proposed in

this thesis, it is not the aim of this thesis to present a full-blown discussion on risk

management. However, the outcome of this thesis would assist human resources

when engaging in risk management and, at the heart of being able to provid e this

outcome, techniques which employ fuzzy logic are used [BOBO 95, SMIT 00,

YAZA 92, ZADE 65].

CHAPTER 1

Page 8

11..44 TTEERR MMIINNOOLLOO GGYY UUSS EEDD IINN TTHHIISS TTHHEESSIISS

It is important to correctly interpret the terminology used in this thesis to avoid

misunderstanding. Detailed terminology will be defined when encountered

throughout the thesis. However, to ensure that the main terms are well defined, the

researcher will now provide a brief delineation of what is meant by the terms

information security, intrusion detection, vulnerability scanning , and risk

management.

1.4.1 Information security
Information, like other important business assets, is an asset that has value to an

organisation and consequently needs to be protected [BSIB 03]. Assets, in this

context, may include knowledge, facts, data or capabilities. Capabilities can refer to

an event that involves the handling of information, for example sending a message.

Information security can be defined as measures adopted to prevent the unauthorised

use, misuse, modification or denial of the use of assets [MAIW 03]. Furthermore, the

objective of information security is not to protect assets, but it is the name given to the

preventative measures that can be taken to safeguard assets [IFAC 98].

The measures that information security employs in order to prevent the unauthorised

use, misuse, modification or denial of the use of assets are known as the five

information security services as described below [GOLL 99, ISOR 89]:

• Authentication is concerned with a process or method to identify and prove

the identity of a party who attempts to send a message or access data.

• Confidentiality is concerned with the protection of information against

disclosure to an unauthorised party.

• Integrity is concerned with the protection of information against being

changed by an unauthorised party.

• Availability is concerned with information being made available to authorised

parties when requested.

• Non-repudiation is concerned with providing proof of the origin such that the

sender cannot deny sending a specific message, and the recipient cannot deny

receiving that message.

 INTRODUCTION

 Page 9

Any security product that is developed implements the five information security

services to a certain extent by means of technologies, be they hardware or software

technologies. Technology refers to “the application of science, especially to

industrial or commercial objectives” [LEXI 02]. Information security technology

refers to the application of all possible state-of-the-art security technologies to all

possible information [INFO 02].

This thesis ascribes to two specific information security technologies, namely

intrusion detection and vulnerability scanning. The following two sections define

these two terms.

1.4.2 Intrusion detection
An intrusion is any set of actions that attempt to compromise the integrity,

confidentiality or availability of a resource. Intrusion detection is the process of

monitoring the events that occur in a computer system or network and analysing them

for signs of intrusions [BACE 00]. Intrusion detection is considered a reactive

information security technology, because only after the event of an intrusion occurred

will there be a reaction to the event. An intrusion detection system (IDS) is a

software product or hardware technology that automates the monitoring process

[KIDO 01].

The counter technology for intrusion detection is known as vulnerability scanning ,

which is defined in the next section.

1.4.3 Vulnerability scanning
A vulnerability is a state of being exposed to attack, injury, rid icule or litigation

[LEXI 03]. In the context of this thesis, a vulnerability is a known weakness in a

computer system that is exposed to attack, which can be exploited by a hacker. To

scan means “to examine closely” [LEXI 03] and a vulnerability scanner (VS) is an

automated scanning program that closely examines or scans a computer or a network

of computers to proactively detect known vulnerabilities [SCHN 00]. Vulnerability

scanning , therefore, is an information security technology implemented by a VS

information security product. Vulnerability scanning is often alternatively referred to

CHAPTER 1

Page 10

as vulnerability assessment, but the terms vulnerability scanning and vulnerability

scanner are preferred and will be used throughout this thesis.

The proactive concept refers to those information security technologies that attempt to

deal with information security issues before any attempt can be made by an attacker to

break into or harm a system. Proactive information security technologies may assist

with risk management, because risk management can also be considered as a

proactive process where risks are identified before they can occur. Risk management

is defined in the section that follows.

1.4.4 Risk management
The term “risk” means “the possibility of suffering harm or loss” [LEXI 03]. Risk

management, in the context of this thesis, therefore, is the process that allows one to

identify threats and risks and then eliminate those that can be eliminated and minimise

the rest [BACE 00]. The threats and risks refer to vulnerabilities in terms of this

thesis.

The rest of the thesis is laid out as discussed in the section that follows.

11..55 LLAAYYOOUUTT OOFF TTHHEESSIISS

This thesis consists of nine chapters. The current chapter, chapter 1, provides an

introduction to the res earch problem. In chapter 2, the reader is provided with a

taxonomy for information security technologies. Special reference is made in this

chapter to the two main aspects of this taxonomy, namely proactive and reactive

information security technologies .

In the next chapter, chapter 3, two specific information security technologies are

discussed – one reactive and one proactive information security technology. The

reactive information security technology discussed is intrusion detection , while

vulnerability scanning is the proactive information security technology discussed. For

each of these technologies, an overview is provided, followed by an architectural

description of the technology itself as well as alternative architectures. After that, the

 INTRODUCTION

 Page 11

problems of the particular information security technology are discussed, followed by

some examples of commercially available information security products for the

particular information security technology.

One of the major problems, as identified in chapter 1 and discussed in chapter 3, is

tackled in chapter 4 – standardising vulnerability categories so that harmonised

vulnerability categories are formed. The chapter describes the method used to

compile such harmonised vulnerability categories, and then discusses each of the

categories in detail.

In order to see how the harmonised vulnerability categories can be applied, chapter 5

provides an overview of current VS products and then discusses the impact of the

harmonised vulnerability categories on the VS products. In addition, the researcher

describes how each VS product was practically experienced and provides comments

on the vulnerability database of each. Thereafter, specific differences in these VS

products are pointed out using the harmonised vulne rability categories.

Chapter 6 continues to address the rest of the problems as stated in the problem

statement by introducing the concept of vulnerability forecasting. In this chapter, a

conceptual model for doing vulnerability forecasting is proposed. The design of the

model is discussed in detail while specific reference is made to the design of the

database used for vulnerability forecasting.

One of the components that forms the heart of the vulnerability forecasting model, the

vulnerability forecast engine, is discussed in detail in chapter 7. This chapter

explains the input that the vulnerability forecast engine receives, and how the input is

transformed using five sophisticated steps and fuzzy logic techniques in order to

produce as output the vulnerability forecast.

The thesis culminates in chapter 8 when the model for vulnerability forecasting is

tested using a prototype for vulnerability forecasting. This chapter first explains the

extent to which the prototype was developed and implemented according to the

vulnerability forecasting model. It then explains how the prototype can be installed

CHAPTER 1

Page 12

and executed. Furthermore, the chapter demonstrates the operation of the prototype in

detail and reports on the findings of the prototype.

The thesis summarises the research undertaken in chapter 9 and explains the extent to

which the research problem has been solved. The thesis concludes with a reflection

on possible areas for future research.

Finally, appendices are given, followed by a bibliography of resources consulted for

this research.

 Page 13

CCHHAAPPTTEERR 22

AA TTAAXXOONNOOMMYY FFOORR IINNFFOORRMMAATTIIOONN

SSEECCUURRIITTYY TTEECCHHNNOOLLOOGGIIEESS
__

22..11 IINNTTRROODD UUCC TTIIOO NN

As the Internet took the world by storm in the mid -1990s, so did security problems .

Unfortunately, hackers developed their own software which enabled them, for

example, to sniff a password being sent over the Internet . In another example, a

hacker might send malicious data over the Internet so that servers connected to the

Internet will not be able to handle such malicious data and the servers will simply fail.

Fortunately, intensive research in computer and Internet security has proved to deliver

countermeasure technologies , better known as information security technologies, over

the past decade for the majority of these and other security problems . This chapter

provides a taxonomy of information security technologies available today.

The sections that follow will give a taxonomy of the information security technologies

available today, after which each technology is briefly explained.

22..22 AA TTAAXXOO NNOO MMYY FFOORR IINNFFOORR MMAA TTIIOO NN SS EECC UURRIITTYY
TTEECCHHNNOO LLOOGGII EESS

What is information security technology? Information security involves the

protection of information [MASI 02] and minimises the risk of exposing information

to unauthorised parties [KIDO 01]. According to Dictionary.com, technology is “the

application of science, especially to industrial or commercial objectives” [LEXI 02].

Information security technology thus refers to the application of all possible

state-of-the-art security technologies to all possible information [INFO 02].

CHAPTER 2

Page 14

Figure 2.1 shows a taxonomy of information security technologies . A taxonomy is

the classification of objects in an ordered list or hierarchy of terms that indicates

natural relationships [COSL 02, LEXI 02]. This taxonomy is based primarily on two

characteristics:

1. The specific point in time, namely proactive or reactive, when the technology

interacts with data.

2. Whether the technology interacts at network, host, or application level.

Figure 2.1: A taxonomy of information security technologies

Proactive means that preventative measures have been taken by the specific

information security technology in a bid to secure data or resources b efore a security

breach can occur. Reactive means that curing measures are being taken by the

specific information security technology in a bid to secure data or resources as soon as

a security breach is detected. Both proactive and reactive information security

technologies can apply to network , host, or application level. Information security

technologies at network level attempt to secure data or resources being transmitted

over a system of computers interconnected by telephone wires or other means in order

to share information. Information security technologies at host level attempt to secure

data or resources that reside on a single computer. Information security technologies

at application level attempt to secure data or resources that specifically relate to a

single computer program on a host.

Information security technologies

Proactive Reactive

Network
level

Host
level

Application
level

Network
level

Host
level

Application
level

Security
hardware
Anti-virus
scanners

Security
SDKs

Vulnerability
scanners

Access
control

Passwords
Intrusion
detection

Firewalls

Access
control

Access
control

Passwords

Biometrics
Logging

Anti-virus
scanners

Cryptography
Security

SDKs
Digital

signatures
Digital

certificates

Security
hardware

Virtual private
networks
Security
protocols
Security

SDKs
Cryptography

Biometrics Biometrics

Security
protocols

Logging Logging

Passwords
Intrusion
detection

Firewalls

Remote
accessing

 INFORMATION SECURITY TECHNOLOGIES

 Page 15

A comprehensive literature study was conducted to identify the state-of-the-art

information security technologies available . This is indicated in table 2.1. A

distinction was made between journals and books. The objective was to firstly

identify which technologies are addressed by the different resources and secondly the

degree to which these technologies are addressed . Whenever a specific information

security technology was addressed by a specific resource, it was taken into account.

A tick mark shown in table 2.1 appears only when the specific technology is

addressed comprehensively by a specific resource.

Table 2.1: Resources covering the information security technologies

Resource A
cc

es
s

co
nt

ro
l

B
io

m
et

ri
cs

R
em

ot
e

ac
ce

ss

P
as

sw
or

ds

C
ry

pt
og

ra
ph

y

D
ig

ita
l s

ig
na

tu
re

s

D
ig

ita
l c

er
tif

ic
at

es

F
ir

ew
al

ls

V
ir

tu
al

 p
ri

va
te

 n
et

w
or

ks

In
tr

us
io

n
de

te
ct

io
n

sy
st

em
s

V
ul

ne
ra

bi
lit

y
sc

an
ne

rs

A
n

ti-
vi

ru
s

sc
an

ne
rs

S
ec

ur
ity

 S
D

K
s

Lo
gg

in
g

S
ec

ur
ity

 p
ro

to
co

ls

S
ec

ur
ity

 h
ar

dw
ar

e

 Journals
Computers & Security [COMP 02] ü ü ü ü ü
Computer Fraud & Security [FRAU 02] ü ü ü ü ü ü ü ü ü ü
Network Security [NETW 02] ü ü ü ü ü ü ü ü ü ü ü ü ü ü
 Books
Internet & TCP/IP Network Security [PAGU 96] ü ü ü ü
Secure Communicating Systems [HUTH 01] ü
Computer Security Policies [WACA 98] ü ü ü ü
Windows 2000 Security [MCLE 00] ü ü ü ü ü ü ü ü ü ü
Hackers Beware [COLE 02] ü ü ü
Computer Security [CARR 96] ü ü ü ü ü
Hacking Exposed [MCSK 02] ü ü ü ü ü ü ü ü
Intrusion Detection [BACE 00] ü ü ü ü
Network Intrusion Detection [NONM 01] ü ü ü ü
Access Denied [CRMC 01] ü ü ü ü ü ü ü
Internet & Intranet Security [OPPL 98] ü ü ü ü
Secrets & Lies [SCHN 00] ü ü ü ü ü ü
Security Architecture [KIDO 01] ü ü ü ü ü ü ü ü ü ü
Security in Computing [PHLE 03] ü ü ü ü ü ü
Computer Security [GOLL 99] ü ü ü ü ü
Information Security Architecture [TUDO 00] ü ü ü ü ü ü ü
Web Security [STEI 98] ü ü ü ü ü ü ü ü ü
Web Security [TIWA 99] ü ü ü ü ü ü

The information security technologies are listed in table 2.2 and a brief description of

each of these technologies is given in the sections that follow.

CHAPTER 2

Page 16

2.2.1 Proactive information security technologies
Proactive information security technologies take preventative measures by securing

data or resources before a security breach can occur. The sections that follow sets out

to describe each proactive information security technology listed in table 2.2.

Table 2.2: The information security technologies
2.1 Proactive information security technologies
2.1.1 Cryptography
2.1.2 Digital signatures
2.1.3 Digital certificates
2.1.4 Virtual private networks
2.1.5 Vulnerability scanners
2.1.6 Anti-virus scanners
2.1.7 Security protocols
2.1.8 Security hardware
2.1.9 Security SDKs
2.2 Reactive information security technologies
2.2.1 Firewalls
2.2.2 Access control
2.2.3 Passwords
2.2.4 Biometrics
2.2.5 Intrusion detection systems
2.2.6 Logging
2.2.7 Remote accessing

2.2.1.1 Cryptography
Cryptography, in simple terms, means “hidden writing”. It is the science of protecting

data confidentiality and integrity [MCSK 02]. Encryption is the process of

transforming or scrambling a cleartext message so that it becomes a ciphertext

message. Synonyms for encryption are encode and encipher. The reverse process of

encryption is called decryption, which is the process of rearranging the ciphertext so

that a ciphertext message is transformed into a cleartext message . Synonyms for

decryption are decode and decipher.

Cryptography is a proactive information security technology because it safeguards

data before a potential threat can materialise by encrypting the data. This is done to

prevent an intruder from tapping a network wire and sniffing sensitive information

from the network. Furthermore, cryptography is performed at various levels as

indicated by the taxonomy:

 INFORMATION SECURITY TECHNOLOGIES

 Page 17

• At application level: A specific application performs the encryption process

before an intruder is able to intercept sensitive data.

• At network level: Hardware rather than software encryption can take place

where hardware encryption modules can be placed at network level.

2.2.1.2 Digital signatures
A digital signature can be thought of as the equivalent of a handwrit ten signature with

the same goal: associating a mark that is unique to an individual with a body of text

[PHLE 03]. In the same way as a handwritten signature, a digital signature must not

be forgeable, in other words only the legitimate sender o f a message should be able to

create the digital signature [KIDO 01]. Digital signatures are created using

cryptographic algorithms.

A digital signature is a proactive information security technology because the digital

signature is created before any dispute can arise that a specific sender of a message is

not really the intended sender. Creating a digital signature thus indicates beforehand

that a specific sender of a message is the sole creator of that message. Furthermore, a

digital signature is created at the following level as indicated by the taxonomy:

• At application level: The digital signature is created by a specific application

before it is sent off to a specific receiver.

2.2.1.3 Digital certificates
Digital certificates attempt to solve the problem of trust on the Internet. They are

issued by trusted third parties, also referred to as certificate authorities (CAs)

[TIWA 99]. CAs are commercial enterprises that vouch for the identities of people or

organisations on the Web [STEI 98]. A network of trust is thus established amongst

Web users . In simple terms the concept of “trust” or “vouching for” can be stated as

“someone I trust – the CA – trusts this other person, so I will trust him as well”

[PHLE 03].

A digital certificate is a proactive information security technology because the

certificate is used to distribute the public key of a communicating party to another

communicating party. In this way trust is also established before any communication

CHAPTER 2

Page 18

between parties takes place. Furthermore, a digital certificate is implemented at the

following level as indicated by the taxonomy:

• At application level: A specific application, for example a Web browser,

verifies that it can trust a specific party before communication commences.

2.2.1.4 Virtual private networks
Virtual private network (VPN) technology encrypts network traffic and therefore the

technology is closely related to cryptography . A VPN allows an organisation with

multiple sites to connect these sites over a public network, i.e. the Internet, with the

advantages that all data packets that travel between the sites are encrypted and secure

[COME 99]. In addition, the packets are restricted by the VPN technology to only

travel between the organisation’s sites . The difference in functionality between

normal encryption and VPNs, however, is that the data is encrypted only when it is

transmitted over a public network – the data that travels between the originating host

and the VPN host is not encrypted. In addition, data will only be encrypted by the

VPN if it originates from an authenticated host.

A VPN is a proactive information security technology because it safeguards data

before it is transmitted over a public network by encrypting it so that only legitimate

persons are able to read the information. Furthermore, VPNs work at the following

level as indicated by the taxonomy:

• At network level: The encryption process is done between two VPN hosts

sitting on the points -of-entry in a network before the encrypted data is sent

over a network.

2.2.1.5 Vulnerability scanners
Vulnerability scanners (VSs) use signatures for the vulnerabilities they can identify .

Therefore, a VS is an information security technology which is but a special case of

intrusion detection [BACE 00]. Vulnerability scanning is also referred to as interval-

based scanning, because hosts on a network are scanned at certain intervals and not

continuously. When a VS has completed a scan and sampled the data into a report, it

is referred to as a snapshot.

 INFORMATION SECURITY TECHNOLOGIES

 Page 19

A VS is a proactive information security technology because it attempts to identify

vulnerabilities before they can be exploited by intruders or malicious applications .

Furthermore, VSs work at the following level as indicated by the taxonomy:

• At host level: A VS scans for vulnerabilities across an entire host in a bid to

identify vulnerabilities in all the software applications and the hardware of the

specific host.

2.2.1.6 Anti-virus scanners
Computer viruses have caused havoc on the Internet over the past decade . A

computer virus is a piece of malicious software which has the ability to reproduce

itself across the Internet, once activated [MCSK 02]. Therefore anti-virus scanners

have been developed to counteract computer viruses.

Anti-virus scanners attempt to scan for viruses and functions before they can cause

havoc, much in the same way as VSs in that they also “know” what a specific virus’s

signature looks like. Anti-virus software is therefore also a proactive information

security technology. Furthermore, anti-virus scanning is performed at various levels

as indicated by the taxonomy:

• At application level: A specific application scans for known virus signatures in

an effort to detect them before they can cause havoc. Viruses at application

level tend to be Trojan horses , because they are hidden in an application and

only activates once that application is executed ; they do not reproduce

themselves .

• At host level: Viruses that have the ability to reproduce themselves by using e-

mail applications, for example, can cause malicious activity almost anywhere

on a host. Such viruses need to be scanned for across the entire host before

they can start their malicious activity.

2.2.1.7 Security protocols
There are different protocols, for example Internet Protocol Security (IPSec) and

Kerberos, that can be classified as information security technologies . These protocols

are technologies that use a standard procedure for regulating data transmission

between computers or applications to safeguard sensitive information before such

information can be intercepted by in truders.

CHAPTER 2

Page 20

Security protocols are proactive information security technologies because they

attempt to safeguard sensitive information using a specific security protocol before

such information can be intercepted by intruders . Furthermore, security protocols

work at various levels as indicated by the taxonomy:

• At application level: A security protocol, for example Kerberos, is a mutual

authentication protocol which handles authentication at application level.

• At network level: A security protocol also relies on a network infrastructure to

perform its security task, whether it is to encrypt data or simply to encapsulate

a network packet in an effort to hide the packet’s identity for security

purposes.

2.2.1.8 Security hardware
Security hardware refers to physical hardware devices used to perform security tasks,

for example hardware encryption modules or hardware routers.

Security hardware is a proactive information security technology because it

safeguards data before a potential threat can materialise by, for example, encrypting

data. This is done to prevent an intruder from changing or modifying the hardware

device, since security hardware consists of physical devices that are tamper-proof.

Furthermore, security hardware is implemented at various levels as indicated by the

taxonomy:

• At host level: A hardware device can be attached to a specific host to perform

its security function, for example a hardware key could be inserted into a

specific port of a host to authenticate a specific user before the user is able to

log on to the host.

• At network level: Hardware encryption modules can be placed on the network,

which provides a tamper-proof solution, and can be physically secured.

2.2.1.9 Security SDKs
Security software development kits (SDKs) are programming tools used to create

security programs . The Java security manager and Microsoft .NET SDKs are

examples of software that can be used to build security applications such as Web-

based authentication programs.

 INFORMATION SECURITY TECHNOLOGIES

 Page 21

Security SDKs are proactive information security technologies because they are used

to develop various software security applications that safeguard data before a potential

threat can materialise. Furthermore, security SDKs are used to develop security

software at various levels as indicated by the taxonomy:

• At application level: A specific software application can be developed to

safeguard data by encrypting data on disk, for example.

• At host level: A specific software application can be developed to authenticate

a user or a pro cess to a host.

• At network level: A specific software application can be developed to

safeguard data by encrypting it before sending it over a network, for example.

2.2.2 Reactive information security technologies
Reactive information security technologies take curing measures by securing data or

resources as soon as a security breach is detected or after such a security breach has

occurred. The sections that follow sets out to describe each reactive information

security technology listed in table 2.2.

2.2.2.1 Firewalls
An Internet firewall is a software tool installed on a specially configured computer

that serves as a blockade, filter, or bottleneck between an organisation’s internal or

trusted network and the untrusted network or Internet [TIWA 99]. The purpose of a

firewall is to prevent unauthorised communications into or out of the organisation’s

internal network or host [OPPL 98]. Firewalls are considered as the first line of

defence in keeping intruders out [PAGU 96]. Personal firewalls are new to the

security arena. Unlike traditional firewalls, personal firewalls are installed on a

normal workstation and attempt to only protect that specific workstation from the rest

of the hosts on the network or the Internet.

Firewalls are reactive information security technologies because they are used to act

against specific security incidents as soon as they occur. Furthermore, firewalls are

implemented at various levels as indicated by the taxonomy:

• At host level: A personal firewall can be installed on a host that attempts to

block or allow certain data flow to and from that specific host only.

CHAPTER 2

Page 22

• At network level: A network firewall can be installed on a host that is acting as

the gateway to a private network. A network firewall attempts to block or

allow certain data flow to and from all the hosts situated behind the network

firewall.

2.2.2.2 Access control
The goal of access control is to ensure that a subject has sufficient rights to perform

certain actions on a system [KIDO 01]. A subject may be a user, a group of users, a

service, or an application. Subjects have different levels of access to certain objects in

a system. An object may be a file, a directory, a printer, or a process.

Access control is a reactive information security technology because it is used to

allow or deny access to a system as soon as an access request is made. Furthermore,

access control is implemented at various levels as indicated by the taxonomy:

• At application level: Access is allowed or denied to subjects on access

requests to specific objects using access control lists in an application.

• At host level: Access is allowed or denied to a host when a user attempts to

log on to the host.

• At network level: Access is allowed or denied to the network when a user

attempts to log on to the network through a host or process.

2.2.2.3 Passwords
A password is a secret word, phrase, or sequence of characters that one must input to

gain admittance or access to information such as a file, application, or computer

system [LEXI 02]. Passwords, however, should be considered as a technology on its

own since the literature, as presented in table 2.1, does so.

Passwords are reactive information security technologies because they are used to

allow or deny access to a system as soon as a person or a process wants to log on to an

application, host, or network. Furthermore, passwords are implemented at various

levels as indicated by the taxonomy:

• At application level: A person or process is allowed or denied access to a

specific application, depending on whether the person or process provides the

correct password.

 INFORMATION SECURITY TECHNOLOGIES

 Page 23

• At host level: A person or process is allowed or denied access to a specific

host, depending on whether the person or process provides the correct

password.

• At network level: A person or process is allowed or denied access to a

network, depending on whether the person or process provides the correct

password.

2.2.2.4 Biometrics

Biometrics uses the geometry of a specific part of a human body to authenticate a

person. There are many different implementations of biometrics, for example hand,

fingerprint, retina and voice recognition biometrics.

Biometrics is a reactive information security technology because it is used to allow or

deny access to a system as soon as a person wants to log on to an application, host, or

network using the geometry of a part of his/her human body . Furthermore, biometrics

is implemented at various levels as indicated by the taxonomy:

• At application level: A person is allowed or denied access to a specific

application, depending on whether the person provides his/her own biometric

characteristic. For example, a user might be requested to place a finger on a

fingerprint reader in order to open a top secret file.

• At host level: A person is allowed or denied access to a specific host,

depending on whether the person provides his/her own biometric

characteristic. For example, a user might be requested to place a finger on a

fingerprint reader in order to log onto a workstation.

• At network level: A person is allowed or denied access to a network,

depending on whether the person provides his/her own biometric

characteristic. For example, a user might be requested to place a finger on a

fingerprint reader in order to access other hosts or resources across a network

domain.

2.2.2.5 Intrusion detection systems
An intrusion detection system (IDS) is a software or hardware technology that , once

activated, constantly monitors a computer system for intrusions [BACE 00,

KIDO 01].

CHAPTER 2

Page 24

IDSs are reactive information security technologies because they are used to monitor

hosts on a network and to act on an intrusion as soon as it occurs . Furthermore, IDSs

are implemented at various levels as indicated by the taxonomy:

• At host level: An IDS monitors a specific host to detect intrusions on that

specific host. It runs on an individual host and continually reviews the host’s

audit log, looking for possible indications of an intrusion [COLE 02].

• At network level: An IDS node can be placed in a network which attempts to

detect and react on intrusions caused by multiple hosts, for example a

distributed denial-of-service attack.

2.2.2.6 Logging
Logging is an information security technology that attempts to gather information on

certain events that take place. The goal of logging is to supply audit trails which can

be traced after a security incident has taken place.

Logging is a reactive information security technology because it is used to trace

security incidents after they have taken place. Furthermore, logging is implemented

at various levels as indicated by the taxonomy:

• At application level: A specific software application monitors other software

applications and records the events caused by those software applications.

• At host level: A specific software application monitors the processes that are

run by the operating system and records the events caused by those processes.

• At network level: A specific hardware or software application can monitor

network traffic as it moves past the network monitor at a specific point in a

network.

2.2.2.7 Remote accessing
Remote accessing is an information security technology that allows people or

processes to access remote services . However, access to remote services is not always

controlled because it is possible to access a remote service anonymously . In this case,

accessing remote services anonymously poses a threat . For example, some systems

may be wrongly configured to allow anonymous connections by default, when

anonymous connections should not actually be allowed according to an organisation's

security policy.

 INFORMATION SECURITY TECHNOLOGIES

 Page 25

Remote accessing is a reactive information security technology because it enables a

user or process to connect to a remote service according to their access privileges .

Furthermore, remote accessing is implemented at the following level as indicated by

the taxonomy:

• At host level: A specific host runs a service that enables a remote user or

process to connect to it for reasons such as doing remote administration on that

host, or legitimately accessing resources on the host.

22..33 CCOONNCC LLUUSSIIOONN

The taxonomy for information security technologies discussed in this chapter provides

an overview of the state-of-the-art information security technologies . It is important

for an organisation to know which information security technologies are available.

Furthermore, having such a taxonomy of information security technologies will also

stimulate new research. For example, intrusion detection systems are not yet

intelligent enough – a human still needs to interact too much in setting up and

maintaining intrusion detection systems . In another example, vulnerability scanners

take up too many resources and too much time to be effective enough since regular

scans need to be conducted for such a technology to be effective.

New initiatives might also be researched, such as combining various information

security technologies to form more intelligent ones . For example, it might be possible

in the near future to combine firewalls, intrusion detection systems, and anti-virus

scanner technologies to form a robust information security technology.

The next chapter will discuss two specific information security technologies in more

detail. These two technologies are intrusion detection and vulnerability scanning .

CHAPTER 2

Page 26

 Page 27

CCHHAAPPTTEERR 33

SSTTAATTEE--OOFF--TTHHEE--AARRTT IINNTTRRUUSSIIOONN

DDEETTEECCTTIIOONN AANNDD VVUULLNNEERRAABBIILLIITTYY
SSCCAANNNNIINNGG
__

33..11 IINNTTRROODD UUCC TTIIOO NN

These days, there are so many reports of security incidents, for example a hacker that

has compromised millions of credit ca rd numbers [HILL 02], or yet another lethal

computer virus that has caused the loss of extraordinary amounts of money

[PALM 01]. This indicates that computer security is without a doubt a major

problem. There are many reasons for this, but, in general, applying computer security

in an organisation in the twenty-first century has become a much more difficult task

than it was perhaps a decade ago. This is because the Internet expanded much faster

than anyone anticipated. The Internet was not initially designed to act as a carrier of

public as well as private information and therefore security is a feature that was added

only later.

The question is: how secure is the information that resides on a single computer or

that travels over a public network? There are many ways in which information can be

secured by using information security technologies [VEE1 03], and these were

discussed in the previous chapter.

This chapter will address reactive and proactive security me asures by using two

specific information security technologies: intrusion detection as a reactive

information security technology, and vulnerability scanning as a proactive

information security technology. Although intrusion detection and vulnerability

scanning are seen as two different security technologies, there are also similarities

between them. The chapter concludes with final remarks on intrusion detection and

vulnerability scanning.

CHAPTER 3

Page 28

33..22 IINNTTRR UUSSIIOONN DD EETTEECC TTIIOONN

3.2.1 What is intrusion detection?
Intrusion detection is the process of monitoring the events that occur in a computer

system or network and analysing them for signs of intrusions [BACE 00]. An

intrusion is any set of actions that attempt to compromise the integrity,

confidentiality, or availability of a resource. An intrusion detection system (IDS) is a

software or hardware technology that automates this monitoring and analysis process

[KIDO 01, GENG 02].

IDSs are reactive information security technologies because they attempt to detect an

intrusion as soon as it occurs or after it has occurred. Therefore IDSs are sometimes

also referred to as monitors [BACE 00].

Other systems that are analogous to IDSs are burglar alarms and video surveillance

systems . Both these systems and IDSs have one thing in common: attempting to

trigger some sort of alarm when an intruder crosses a prohibited boundary.

There are several architectures that are used to build different IDSs . Architecture in

this context refers to the overall design, construction, and orderly arrangement of

components – specifically of an IDS [LEXI 03]. The reason for the different

architectures being employed is a result of the evolving intrusion detection needs over

the past years . These architectures are discussed in the next section.

3.2.2 The architecture of IDSs
There are some aspects that play an important role in the architecture of IDSs . These

aspects include the following:

• The location of the IDS in a network.

• The data source that s erves as input to the IDS.

• The analysis engine that forms the heart of the IDS.

• An intrusion template database that contains known templates of intrusions.

• The way in which IDSs report their findings.

 STATE-OF-THE-ART INTRUSION DETECTION AND VULNERABILITY SCANNING

 Page 29

The above aspects are discussed in detail throughout this section. The data source,

analysis engine, database, and report aspects of IDSs also form part of the main

components of an IDS.

The typical location of an IDS is shown in figure 3.1. IDSs can detect intrusions that

occur from a remote or outside network, as well as from an inside, or protected,

network.

Figure 3.1: The typical location of an IDS in a network

A very important aspect of IDSs is that they require a data source, such as

applications, hosts , and networks, to collect logged data or network traffic which will

be interpreted by the IDS in a bid to detect intrusions . An IDS can monitor for such

data at different sources at different levels, as depicted by figure 3.1. However, the

data being captured during monitoring is collected by a separate module, referred to

as the IDS host. The different levels of data sources that an IDS may monitor are

referred to as the targets. The following are the different targets that an IDS can

monitor [COLE 02]:

• Network -based targets: The target here is an internal or external network where the

IDS sniffs all network traffic crossing over a specified section of a network. While

looking at the packets that it sniffs, an IDS looks for signatures that indicate

possible intrusions.

Internet

Router

Firewall IDS host

Target
hosts

Detecting intrusions
from an outside network

at network level

Detecting intrusions from
a protected network at

network, host or
application level

Target

Target

Firewall

CHAPTER 3

Page 30

• Host-based targets: The target here is an individual host. The IDS continually

reviews the host’s audit log, typically at operating system level, looking for

possible indications of an intrusion. Host-based IDSs are operating system-

specific.

• Application-based targets: The target here is one or more specific applications that

are running on a target host. The IDS continually reviews an audit log for the

specific application, looking for possible indications of an intrusion.

• Target-based targets: The target here is somewhat different from the previous

targets in the sense that target-based IDSs generate their own data . This is done,

for example, by using cryptographic hash functions to detect alterations to system

objects and then, by comparing the alterations to a predefined policy, the IDS can

possibly detect an intrusion.

The analysis engine is used by the IDS to process the source data. The analysis

engine takes the information gathered from the data source and analyses it for signs of

intrusion. The modus operandi of the analysis process is to match each piece of data

from the data source with a specific template stored in an intrusion template

database. This database contains different templates of known intrusion techniques .

An intrusion is therefore detected as soon as a piece of the source data matches a

template intrusion in the intrusion template database. At the same time that an

intrusion is detected, it is logged in the form of a detailed IDS report of the possible

intrusions detected and some IDSs additionally sound an alarm so that a person can

interact and deal with the intrusion.

Most IDS approaches include two distinctive architectures: pattern matching and

anomaly detection [DENN 87, COLE 02, ASTI 99]. Both these distinctive

architectures, however, contain an analysis engine component. The analysis engine

forms the heart of any IDS and it is this component that is of particular importance in

this research. These two distinctive architectures are discussed in the next two

sections.

3.2.2.1 Pattern-matching IDS architecture

Figure 3.2 shows a typical pattern-matching IDS architecture [BACE 00].

 STATE-OF-THE-ART INTRUSION DETECTION AND VULNERABILITY SCANNING

 Page 31

Figure 3.2: Pattern-matching IDS architecture

Pattern-matching IDSs, sometimes referred to as misuse detection IDSs [SCHN 00],

include the following specific components:

• The data source that serves as input to the pattern -matching IDS.

• The analysis engine in the architecture, which consists of the following

components:

o The pattern matcher, which attempts to detect intrusions by identifying certain

patterns of intrusion.

o A signature database that contains known patterns of intrusions.

• The report generator for reporting on the intrusions detected.

The data source includes anything from operating system audit trails and log files to

raw network packets, depending on how the specific pattern -matching IDS is set up to

collect source data. Each piece of source data is carefully analysed by the pattern

matcher and then compared to known intrusion patterns referred to as signatures .

These signatures are stored in a signature database. The signature database needs to

be regularly updated with new intrusion signatures as new intrusion techniques are

discovered. When the pattern matcher finds activity that matches a specific signature

in its signature database, a report generator component compiles a report of the

intrusions each time an intrusion is detected . As part of the report generator, alarms

may als o be sounded for a human to interact on a specific intrusion in progress.

Data
source

Report
generator

IDS host

Profile
database

Pattern
matcher

Analysis engine

CHAPTER 3

Page 32

3.2.2.2 Anomaly detection IDS architecture
Figure 3.3 shows a typical anomaly detection IDS architecture [BACE 00].

Figure 3.3: Anomaly detection IDS architecture

The data source and report generator components for the anomaly detection

architecture are the same as for the pattern -matching architecture. The anomaly

detection architecture, however, has the following components that differ from

pattern-matching architecture:

• The analysis engine in the architecture, which consists of the following

components:

o The profile engine .

o The anomaly detector.

• A signature database that contains known patterns of normal user or system

behaviour.

Each piece of source data is carefully grouped by the profile engine to form sets of

related user or system behaviour. Such a set of behaviour is referred to as a profile.

A signature database contains profiles of normal user or system behaviour. The

signature database can either be set up manually by a human expert to define profiles,

or a computer can be used to compile profiles by using statistical techniques, which

can be updated automatically by the computer. The anomaly detector then compares

each profile compiled from the source data by the profile engine to the normal user

Data
source

Report
generator

IDS host

Profile
database

Profile engine

Analysis engine

Anomaly detector

 STATE-OF-THE-ART INTRUSION DETECTION AND VULNERABILITY SCANNING

 Page 33

and system behaviour profiles from the signature database. When the anomaly

detector finds a profile that appears to be abnormal or unusual compared to a specific

user and system profile in the signature database, such behaviour is labelled as

intrusive.

Anomaly detection IDSs, however, are difficult to implement, because what is seen as

“normal behaviour” for one organisation is not necessarily the same for another. For

this reason, most IDSs are based on pattern -matching technology [GRAH 00].

3.2.3 Other approaches to IDS architectures
The sections that follow will take a closer look at IDS architectures that are variations

of the distinct IDS architecture approaches . In the literature there are many other

approaches to IDS architectures [JAHN 02, KUSP 95, DAVI 01, TRIU 02]. Most of

these architectures closely relate to the pattern -matching and anomaly detection

architectures . However, the architectures discussed in this section have specifically

been selected for discussion because they incorporate the use of interesting

techniques .

3.2.3.1 IDML-based intrusion detection
Figure 3.4 displays an architecture for intrusion detection based on intrusion detection

markup language (IDML) [LITS 01].

Figure 3.4: An architecture for intrusion detection based on IDML

IDML
authoring

tool

Construction

Intrusion
pattern IDML

IDML
parser

IDML
DTD

Intrusion
pattern
state

machine

Network and
other event

sources

Detection

Packet event
converter

System event
converter

Intrusion eve nt
information converter

User

identification

IDML-based
intrusion
detection
module

Detection
result

CHAPTER 3

Page 34

The main components of the architecture in figure 3.4 are [LITS 01]:

• The construction component.

• The detection component.

The construction component merely uses an XML-based protocol, referred to as

IDML, to express intrusion patterns in a compute r-processable format. The process

for the construction component involves human experts that use an IDML authoring

tool to write intrusion pattern IDML documents . The IDML parser is used to validate

the intrusion pattern document using the corresponding intrusion pattern, which is

stored in a specific format referred to as a document type definition (DTD). If the

pattern is valid, the intrusion pattern will be translated into finite intrusion pattern

state machines for further use in the detection process.

Almost all intrusion patterns can be transformed into sequences of intrusion actions –

an intrusion seldom happens from a single action . Intrusions, therefore, can be

represented using a finite intrusion pattern state machine . Various intrusion actions

will cause the intrusion process to change from one state to the next, where the state is

used to keep track of the current status of the intrusion process . A typical finite

intrusion pattern state machine is shown in figure 3.5.

Figure 3.5: A typical finite intrusion pattern state machine

The detection component, on the other hand, incorporates one of the distinctive

intrusion detection approaches: pattern matching . It uses network and other event

sources, which are converted to packet or system events by an intrusion event

Intrusion
pattern
state

machine

State

Other
events

Intrusion
event

State

Other
events

Intrusion
event

State

State

Intrusion
event

Final
state

Final
state

Initial
state

 STATE-OF-THE-ART INTRUSION DETECTION AND VULNERABILITY SCANNING

 Page 35

information converter. These events are caused by a specific user account and

therefore an attempt is made to retrieve a user’s identification on each event in a bid

to trace the intrusion to a specific user. This information in conjunction with the

IDML-based state information is then used by the IDML-based intrusion detection

module to identify and act on intrusions.

IDML-based intrusion detection has some positive and negative sides . On the

positive side it attempts to detect intrusions not only by using conventional data

sources, for example network traffic and event logs, but also an IDML-based

approach which makes the intrusion detection process more successful with fewer

false alarms . On the negative side, the number of false alarms is still quite high. In an

experiment that was carried out for testing the IDML-based intrusion detection

architecture, 25% of all intrusions detected were still false alarms [LITS 01].

Furthermore, IDML-based intrusion detection poses a bigger and more complex

processing overhead due to the large number of states that must be tracked by the

IDML-based IDS and thus requires additional memory space . This, however, is not

too much of a concern since the cost of memory space for a large organisation is not

difficult to bridge. Cost, however, is never a factor to be ignored. In addition,

attempting to trace intrusions back to a certain user is done by using metadata

collected from the data sources, which might only reveal the specific user account

being used to launch the intrusion. This may prove to be insignificant information

since most of the time an intrusion is launched by using a hacked user account. The

IDS, thus, may not b e intelligent enough to discover the ID of the real perpetrator.

3.2.3.2 An IDS architecture for detecting TCP SYN flooding
Figure 3.6 displays an intrusion detection architecture for detecting transmission

control protocol (TCP) synchronisation (SYN) flooding intrusions [KASA 00].

CHAPTER 3

Page 36

Figure 3.6: An intrusion detection architecture for detecting TCP SYN flooding

The architecture in figure 3.6 is a network-based intrusion detection architecture

designed specifically to detect TCP SYN flooding intrusions. This specific intrusion

is referred to as a denial-of-service (DoS) intrusion. The intrusion is launched by

using TCP to send an excess of SYN data packets over a network to specific systems

in an effort to exhaust the network and system resources . The architecture consists

mainly of three components:

• The feature selector (FS).

• The pre-detector (PD).

• The fuzzy-based decision engine (DE).

The FS captures packets from the network and extracts certain fields – so-called

features – from the data packets . The specific features extracted by the FS may not all

have exactly the same properties, for example some fields may have different lengths .

The PD checks that the selected fields are sorted and all the selected features hav e the

same properties before the DE can detect a possible TCP SYN flooding intrusion.

The positive side of this architecture is that it employs the use of rule -based fuzzy

logic when detecting intrusions . Fuzzy logic [YAZA 92] provides a way of creating

Feature
selector

(FS)

…

Network packets

Pre-detector
(PD)

…
Features

Simple rules

Anomalous
patterns

Fuzzy-based
decision engine

(DE)

…

Detection rules
Behaviour statistic

Network information

Intrusion possibility

 STATE-OF-THE-ART INTRUSION DETECTION AND VULNERABILITY SCANNING

 Page 37

more intelligent IDSs. The negative side of this architecture is that it can detect only

one specific intrusion. However, there is room for expanding the architecture to be

able to detect more intrusions.

These architectures help a lot in finding better IDSs. There are, however, still many

problems with IDSs, which are addressed after the following section.

3.2.4 Commercially available IDSs
Examples of IDSs that are commercially available either as freeware or for a price

include Snort [SNOR 02], ISS RealSecure [REAL 03], eTrust Intrusion Detection

[COMP 03], Network Flight Recorder [NFRS 03], and Cisco IDS [CIDS 03]. Some

of these IDSs are able to detect intrusions over multiple operating system platforms,

while others can detect intrusions only on specific operating system platforms.

3.2.5 The problems with IDSs
State-of-the-art IDSs, however, fall short in many dimensions [SCHN 00] . They

create too many false alarms . If they cry wolf too much, one will stop listening to

them. Another problem is that IDSs do not respond to intrusions promptly enough.

The main reason for this problem is that they do not have sufficient intelligence to

decide in good time what an intrusion is . Furthermore, they fail to intelligently

counteract intrusions in an effort to neutralise the intrusion – they normally merely

notify and report the intrusion, and then wait for a person to counteract it.

Perhaps the biggest problem with an IDS is the fact that it is a reactive information

security technology – it does not take preventative measures, but rather attempts to

detect an intrusion as soon as it occurs or after it has occurred. Proactive information

security technologies thus attempt to smother the problem or prevent an intrusion –

before it can occur. One such proactive approach is known as vulnerability scanning

and is discussed below.

33..33 VVUULLNNEERRAABBIILLII TTYY SSCCAANNNNII NNGG

3.3.1 What is vulnerability scanning?

CHAPTER 3

Page 38

The concept of vulnerability scanning is having an automated scanning program,

referred to as a vulnerability scanner (VS), that scans a computer or a network of

computers for a list of known weaknesses, referred to as vulnerabilities [SCHN 00].

In other words, a VS analyses the security state of a system on the basis of

information collected at intervals . After a scan is completed, the VS creates a report

of the vulnerabilities found and leaves it up to a person to fix them. Vulnerability

scanning is also commonly referred to as vulnerability analysis in the industry

[BACE 00].

A VS can be seen as a proactive information security technology, because it attempts

to search for known vulnerabilities before the vulnerabilities can be exploited by an

intruder. This is done in a very similar way to IDSs, because VSs also use signatures

for the vulnerabilities they can identify . Therefore, a VS is an information security

technology that is but a special case of intrusion detection [BACE 00] . In addition, an

IDS is seen as a dynamic information security technology, whereas a VS is seen as a

static information security technology.

The architecture of VSs is discussed in detail in the sections that follow.

3.3.2 The architecture of VSs
There are some aspects that play an important role in the architecture of VSs . These

include the following:

• The location of the VS in a network.

• The scan policy that specifies the VS setup.

• Data source that serves as input to the VS.

• Analysis engine that identifies vulnerabilities.

• The report that a VS creates.

Some of the above aspects are discussed in detail throughout this section. The scan

policy, data source, analysis engine and report aspects of VSs also form part of the

main components of a VS. The typical location of a VS is shown in figure 3.7 and is

essentially the same as for an IDS, except that a VS scans from only one fixed

location in the network, and not from multiple locations as an IDS can.

 STATE-OF-THE-ART INTRUSION DETECTION AND VULNERABILITY SCANNING

 Page 39

Figure 3.7: The location of a VS in a network

A VS is dependent on a scan policy that contains information on how the VS is set up

to scan for vulnerabilities . This scan policy is usually reconfigured for each specific

scan. In contrast, an IDS continually monitors data sources for all possible intrusions

that it is able to detect . For example, a VS’s scan policy may be set up to scan only

selected hosts on a network. In addition, it may also be set up to scan for only

specific types of vulnerabilities logically grouped into specific categories of

vulnerabilities. The reason for scanning only for certain categories of vulnerabilities

is to save network and system resources when these resources are critically depended

on for purposes other than vulnerability scanning , because VSs can sometimes

exhaust these resources when scanning and testing for denial-of-service vulnerabilities

[MCSK 02], for example. On the other hand, IDSs need to monitor for all possible

intrusions in real time, and therefore should not detect only a subset of intrusions . If

the detection of some intrusions is omitted, the IDS might miss the detection of a

possible intrusion and this will defeat the purpose of an IDS.

VSs also collect source data which will be interpreted by a dedicated VS host in a bid

to find vulnerabilities. There are two different levels at which a VS can scan for

vulnerabilities, namely host level or application level. The different levels of data

sources that a VS can scan are referred to as the targets. IDSs detect intrusions on

four different types of targets, as discussed earlier in this chapter, namely network-

based targets , host-based targets , application-based targets , and target-based targets .

Internet

Router

Firewall

Scanning for
vulnerabilities on the

target hosts connected
to the network from a
single, central location

VS
host

Target
hosts

 Target
hosts

CHAPTER 3

Page 40

VSs, however, only scan for vulnerabilities on two of those four targets . The

following are the types of targets that a VS can scan for vulnerabilities [COLE 02]:

• Host-based targets: The target here is an individual host. The VS scans the host’s

configuration settings, typically at operating system level, looking for

vulnerabilities.

• Application-based targets: The target here is one or more specific applications that

are running on a target host. The VS scans the configuration settings for the

specific application, looking for vulnerabilities.

The analysis engine compares the source data with a predefined known set of data

configurations. The analysis engine is also commonly referred to as a vulnerability

matcher in VS terminology. If the source data contains a specific data string that is

also found in the known set of data configurations, then a vulnerability is found or

matched. A detailed report is produced after the entire scan process is complete.

The architecture on which VSs are based is derived from IDSs . Vulnerability

scanning is a special case of intrusion detection . This means that VSs partly employ

one of the two distinctive architectures of IDSs, namely pattern matching . The only

difference here, however, is that IDSs attempt to match a set of actions, which

occurred in a specific sequence, to a pattern to find an intrusion. VSs, on the other

hand, attempt to match only a specific string of data to a known signature of data to

find a vulnerability. An architecture for VSs is shown in figure 3.8 [BACE 00].

 STATE-OF-THE-ART INTRUSION DETECTION AND VULNERABILITY SCANNING

 Page 41

Figure 3.8: An architecture for a VS

The architecture of VSs consists of the following components:

• The scan policy component contains the following two sub-components:

o Policy engine : Loads or stores the scan configuration as the user set it up.

o Configuration file: Contains the scan configuration, i.e. settings and options of

the VSs as specified by a user. An example of such a setting is the IP address

range of systems to be scanned.

• The source data component contains the following three sub-components:

o Target acquisition engine: Searches for the specific target hosts to determine

whether a host is online or not.

o Data acquisition engine: Samples the systems’ attributes and configuration and

stores them in the snapshot database.

o Snapshot database: Contains the target hosts’ characteristics and configurat ion

as collected by the data acquisition engine.

• The analysis engine component contains the following two sub-components:

o Inference engine: Controls the target and data acquisition engines, and matches

the snapshot database with the vulnerability database to detect which

vulnerabilities are apparent in the systems that were scanned.

Target
acquisition

engine
Snapshot
database

Configuration
file

Policy
engine

Data
acquisition

engine

Inference
engine

Vulnerability
database

VS

Scan
policy

Source
data

Analysis
engine

Report
generator

Report

CHAPTER 3

Page 42

o Vulnerability database: Contains the signatures of all known weaknesses in

software or hardware.

• The report generator of the VS creates a report that contains a detailed

description of the signatures that matched between the snapshot database and the

vulnerability database, which are the vulnerabilities detected by the VS . A VS

report usually also contains more information on how and where to fix the

vulnerabilities that were found.

Apart from the architecture of VSs as discussed above, there are other approaches in

the literature. One such other approach is discussed in the section that follows.

3.3.3 Another approach to VS architectures
There are currently not many approaches to VS architectures other than the one

discussed in the previous section. However, the following is a VS architecture that

follows a more decentralised approach.

Figure 3.9 displays an architecture for distributed vulnerability scanning

[LOPY 01].

Figure 3.9: A distributed architecture for vulnerability scanning

Local
management

console

Network zone 1

Remote
scanning

agent
To other

computers

Local
management

console

Network zone 2

Remote
scanning

agent
To other

computers

To network
zone n

Security management zone

Central
management

console

Central
management

server

 STATE-OF-THE-ART INTRUSION DETECTION AND VULNERABILITY SCANNING

 Page 43

The architecture in figure 3.9 shows a network that contains a security management

zone and subnet zones with the following main components:

• Security management zone containing:

o The central management server.

o The central management console.

• Different subnet zones, each containing:

o A local management console.

o A remote scanning agent.

A central management server and a central management console form the security

management zone. The central management console is used as a front-end manager

to the central management server. The central management server conducts all

control operations, schedules scanning tasks, maintains the security policy, updates

scanning modules, and delivers them to a remote agent on demand or by schedule .

Each subnet zone has a remote scanning agent and a local management console.

The remote scanning agent receives commands, procedures, and schedules from the

central management server to scan the specific network. These commands,

procedures, and schedules can also be received from the local management console

for performing certain decentralised actions.

The workload that VSs create when conducting a scan is normally very high and a

multitude of system resources are occupied. The positive side of this architecture,

however, is that it has multiple scanning agents, each situated in its own subnet . The

workload in the case of having a single server that has to scan all subnets can drain the

entire network resources significantly . Having multiple scanning agents thus reduces

the utilisation of system resources significantly . The negative side of this architecture

is that it is much more expensive. In addition, this architecture of vulnerability

scanning offers no intelligent scanning techniques.

3.3.4 Commercially available VSs
Examples of VSs that are commercially available either as freeware or commercial

software include CyberCop Scanner [CYBE 03], Cisco Secure Scanner [CSSC 03],

Nessus [DERA 03], Internet Scanner® [ISSC 03], SAINT [SAIN 03], and NetRecon

[NETR 02].

CHAPTER 3

Page 44

3.3.5 The problems with VSs
VSs work in a strange and unorthodox way: they perform a scan by attempting to

break through the current security features on a computer. The question could be

asked why one would use a VS if it damages the security on the computer. However,

this is not exactly true: the VS does not really damage the security on a computer, but

simulates and generates “watered-down” or “fake” attacks on the security of a

computer to find out if a computer might be flawed in such an attack if the attack were

launched by a hacker. It is exactly these “simulated” attacks that can drain the

network resources, forcing the network to its knees, or completely killing a network.

In the light of the above fake attacks, VSs sometimes have to make assumptions on

the way a specific computer reacted to a fake attack, since launching a full-fledged

attack might cause real damage to a computer and/or the network. Making such

assumptions can be very dangerous since it may be difficult to tell whether a full-

fledged attack was successful or not . It is for this reason that some VSs today indeed

launch full-fledged attacks, but – as just mentioned – it might cause damage to a

computer. Therefore, backups should be made before the scan is conducted and it

should be remembered that conducting a scan takes up valuable time and system

resources.

VSs all utilise some sort of database with the same goal: to store the signatures of the

vulnerabilities they can detect when they scan for the vulnerabilities . A major

problem with these VS databases, however, is that they are disparate in the specific

way that the vulnerabilities are named and organised in the vulnerability database of

each different VS. This disparity is caused mainly by the difference in structure of

almost any VS’s vulnerability database.

For example, some VSs store hundreds of vulnerabilities in their vulnerability

databases simply sorted from vulnerability 1 to vulnerability n . The problem with this

database structure is that the vulnerabilities are not organis ed, for example, related

vulnerabilities are not grouped together. In addition, different VSs that employ this

database structure may name to the same vulnerability in different ways . For

example, one VS might call a particular vulnerability as “a Trojan horse”, while

 STATE-OF-THE-ART INTRUSION DETECTION AND VULNERABILITY SCANNING

 Page 45

another might refer to the same vulnerability as “a backdoor”, and yet another might

refer to it as “a virus” where these names have the same meaning.

VSs group certain vulnerabilities together to form different vulnerability categories .

A vulnerability category refers to the grouping of specifically the same types of

vulnerabilities, in other words vulnerabilities with the same genre of characteristics .

Another database structure disparity example is that different VSs address different

vulnerability categories . In other words, vulnerabilities that are grouped in a

particular vulnerability category by a specific VS might be grouped in a different

vulnerability category by another VS. One VS might group a vulnerability, for

example “a remote share was found without any password defined”, in the password

guessing and grinding vulnerability category, while another VS might group this

vulnerability in the remote access & services vulnerability category .

What is more, some VSs define a small number of vulnerability categories, while

other VSs define many vulnerability categories . Different VSs might even address the

same kind of vulnerability in a different way, for example one VS might audit

passwords by using a dictionary-attack technique, whereas another might do so by

using a brute-force-attack technique. Disparity in the database structure is a major

problem, especially when choosing a specific VS to use in an organisation.

33..44 CCOONNCC LLUUSSIIOONN

IDSs and VSs are both information security technologies that enhance the security on

a computer and network in that they detect and prevent intrusions and attacks from

happening, respectively, with a relatively good success rate . IDSs and VSs, however,

still produce many problems and challenges for future research . There is a good

possibility that hybrid systems might be seen in the future – that is, programs that

incorporate IDS and VS technologies in one system [MOHA 01]. One should refrain,

however, from running an IDS tool and a VS tool in parallel in the same environment

because when a VS attempts to cast a “simulated attack” on designated hosts, an IDS

running in the same environment will identify such a simulated attack as a real

intrusion and will increase the false alarm rate of the IDS in due course.

CHAPTER 3

Page 46

Although the cost difference between IDSs and VSs is not a predominant factor, it is

interesting to note that the overall cost of implementing and maintaining VSs is higher

than that of IDSs [ESCI 02].

It is generally better, though, to follow a proactive approach than a reactive approach

because prevention is better than cure . It is for these reasons that VSs will be used

rather than IDSs as part of the model for vulnerability forecasting intro duced later in

this thesis . The problem, however, is that VSs are different software products, which

scan for different types or categories of vulnerabilities . There is a need, thus, to create

a “standardised” set of vulnerability categories which will enable the vulnerability

forecasting model to use any VS, or even a multiple of VSs . This method of

standardising vulnerability categories is referred to as harmonised vulnerability

categories , which is discussed in the next chapter.

 Page 47

CCHHAAPPTTEERR 44

HHAARRMMOONNIISSIINNGG VVUULLNNEERRAABBIILLIITTYY

CCAATTEEGGOORRIIEESS
__

44..11 IINNTTRROODD UUCC TTIIOO NN

A major problem with VS databases, as discussed in the previous chapter, is that they

are disparate in the specific way that the vulnerabilities are named and organised in

the vulnerability database of each different VS . This problem might be resolved by

having harmonised vulnerability categories . These categories should cover the full

scope of potential vulnerabilities . The aim of having harmonised vulnerability

categories is to have a measure onto which the vulnerability categories of any VS can

be mapped to determine the level of vulnerability category competence for each

specific VS. This specific problem is addressed in this chapter.

In the remainder of this chapter, the concept of harmonising different sets of

vulnerabilities into harmonised vulnerability categories is introduced, followed by a

discussion of each category with examples to demonstrate the usefulness of the

proposed categories .

44..22 MMEETTHHOODD OOFF IIDDEENNTTII FFYYIINNGG CCAA TTEEGGOORRII EESS

A major problem with VS tools is that they sometimes attempt to address an

excessively wide variety of vulnerabilities . As mentioned in the previous chapter, the

specific vulnerabilities that VS tools check for, however, differ significantly from tool

to tool. Using only one specific VS tool may prove to be insufficient in scanning for

certain types of vulnerabilities . For example, CyberCop Scanner [CYBE 02] scans

extensively for vulnerabilities of the type misconfigurations, whereas Cisco Secure

Scanner [CSSC 00] gives minimum attention to misconfiguration vulnerabilities .

Furthermore, different VS tools sometimes refer differently to the same vulnerability.

For example, CyberCop Scanner refers to mail transfer and Cisco Secure Scanner to

CHAPTER 4

Page 48

SMTP, which is, in essence, the same set of vulnerabilities . How will the results of a

vulnerability scan done by a specific tool, e.g. CyberCop Scanner, compare with those

of another, e.g. Cisco Secure Scanner? To answer this question, a common set of

vulnerabilities is required. The researcher proposes such a common set of

vulnerabilities, which was determined by evaluating a number of different sets of

vulnerabilities. This common set of vulnerabilities will be referred to as a

“harmonised” set of vulnerability categories.

The harmonised vulnerability categories were identified by analysing the Internet

security vulnerabilities as found in literature [NOCF 01] [BACE 00] [SCMK 01]

[GREE 02] [NORT 01] [KEOS 01], as well as those used by popular VS tools such as

CyberCop Scanner and Cisco Secure Scanner. The criteria for identifying the

harmonised vulnerability categories were based on the following [BISH 99]:

• Vulnerabilities of a similar nature should be grouped together.

• Classification should not be based on the social cause of the vulnerability. This

includes issues such as motive, intent, and malicious or accidental cause.

The researcher identified 13 harmonised vulnerability categories . These categories

are discussed in the sect ion that follows.

44..33 HHAARRMMOO NNIISSEEDD VV UULLNNEERR AABBIILLIITTYY CCAA TTEEGGOORRII EESS

A harmonised vulnerability category represents a certain group or class of

vulnerabilities, which have the same genre of vulnerability characteristics . For

example, all vulnerabilities related to compromising passwords, such as “a password

is a dictionary word” or “a password is shorter than 8 characters” or “a password is

sent in clear text”, can form a harmonised vulnerability category called password

cracking and sniffing. It is well known that VS tools in the industry represent

solutions for rectifying vulnerabilities as well. It should be mentioned that the

rectification of vulnerabilities is beyond the scope of this chapter. In other words, the

purpose of this chapter is to identify harmonised vulnerability categories only, and not

to present solutions for various vulnerabilities . Before discussing each harmonised

vulnerability category in detail, a summary of the categories is given in table 4.1.

 HARMONISING VULNERABILITY CATEGORIES

 Page 49

Table 4.1: Summary of the harmonised vulnerability categories
Harmonised vulnerability category Brief description

1

Password cracking and sniffing Vulnerabilities with a root cause of having accounts with
weak or no passwords

2

Network and system
information gathering

Vulnerabilities concerned with scanning a network to
discover a map of available hosts and vulnerable services

3

User enumeration and
information gathering

Vulnerabilities concerned with retrieving information of user
accounts from a specific system

4

Backdoors, Trojans and remote
controlling

Vulnerabilities concerned with having hidden access
mechanisms installed on a system

5
Unauthorised access to remote
connections & services

Vulnerabilities concerned with the risk that an unauthorised
person has the ability to connect to and misuse a system

6

Privilege and user escalation Vulnerabilities concerned with the risk that the access rights
of an existing user account can be upgraded by an
unauthorised user, granting more privileges to the user

7

Spoofing or masquerading Vulnerabilities concerned with the risk that an intruder can
fake an IP address in a bid to act as another person

8
Misconfigurations Vulnerabilities concerned with the risk that applications have

been incorrectly configured

9

Denial-of-services (DoS) and
buffer overflows

Vulnerabilities concerned with the risk of one or more
intruders launching an attack designed to disrupt or deny
legitimate users’ or applications’ ability to access resources

10

Viruses and worms Vulnerabilities concerned with malicious programs

11

Hardware specific Vulnerabilities concerned with having hardware peripherals

that execute ROM-based or firmware-based programs

12

Software specific and updates Vulnerabilities concerned with the risk that specific software
applications contain specific, well-known bugs

13

Security policy violations Vulnerabilities concerned with the risk that an Internet

security policy has been violated

4.3.1 Password cracking and sniffing
This category involves vulnerabilities with a root cause of having accounts with weak

or no passwords. Tools are readily available on the Internet that can be used to

intercept passwords from any transmission over the Internet. These kinds of tools are

better known as sniffers.

On some systems, passwords are stored in cleartext, or transmitted in cleartext over

the Internet. If an attacker manages to intercept cleartext passwords, the passwords do

not even need to be cracked. To solve this problem, passwords are transmitted or

stored on a system in encrypted format. Still, it is possible to sniff these encrypted

passwords from the Internet and then use password-cracking tools, for example L0pht

Crack [LOPH 02], to crack the passwords . Given that a user has administrative

access, L0pht Crack can also retrieve the stored encrypted passwords on a system in

an attempt to crack them.

CHAPTER 4

Page 50

Examples of vulnerabilities belonging to this category are the following:

• If the FTP service is enabled, anyone can try to guess passwords to connect to

the FTP service.

• A malicious user could remotely retrieve the system’s password file . This can

lead to further system access, including administrator access.

4.3.2 Network and system information gathering
This category involves vulnerabilities concerned with scanning a network to discover

a map of the available hosts, as well as to detect vulnerable services on the hosts and

the network. Furthermore, these vulnerabilities get information on the hosts found on

the network to determine the specific hardware or software applications used.

Having a map of a network and information on which software applications are used

in an organisation may help an intruder to gain sufficient information on the target

and to determine which specific hacking techniques to use. Footprinting , network

mapping , target acquisition, and network reconnaissance are synonyms found in the

literature [SCMK 01] [NORT 01] for network and system information gathering.

Examples of vulnerabilities belonging to this category are the following:

• The routing table could be retrieved, which reveals information of the physical

network setup.

• Using the FTP SYST command, attackers can discover operating system

version information. This can lead to administrator access and malicious

activity.

4.3.3 User enumeration and information gathering
This category involves vulnerabilities concerned with retrieving information of user

accounts from a specific system, for example the user account name (e.g. bretl) and

the user details (e.g. Bret Lee, General Manager, Office 227, Accounts Department).

An attacker can use this information typically to identify that Bret Lee is a general

manager, whose computer could contain more sensitive information than a normal

employee’s computer, making the manager’s computer a more sought-after target.

Furthermore, as soon as an intruder has retrieved a list of the user account names

 HARMONISING VULNERABILITY CATEGORIES

 Page 51

registered on a specific system, it is often only a matter of time before he/she obtains

the password by using a password -cracking program, for example L0pht Crack

[LOPH 02]. After all, the user account names have to be obtained before any attempt

can be made to crack passwords.

Examples of vulnerabilities belonging to this category are the following:

• Using the “finger” command on a specific system will retrieve a list of all the

user account names on that system.

• Null session connections can be used by an attacker to list sensitive user

account information, such as revealing the identity of a user on the system.

4.3.4 Backdoors, Trojans and remote controlling
This category involves vulnerabilities concerned with having access mechanisms

installed on a system which are almost hidden and not obvious. In other words, a

covert channel is created.

Often a backdoor is installed with the aim of controlling a system remotely . The

backdoor becomes a hidden entry point where the intruder can connect to the system

unnoticed at any given time. Most of the time, the “vehicle” for establishing such

backdoors is called a “Trojan horse” or a “Trojan” [SCMK 01]. A Trojan is a

software application that operates under the impression that it is intended for a

specific purpose, but actually performs hidden operations as well. For example, most

of the time Trojans are sent to someone as an e-mail attachment in the form of, for

example, a game. As soon as the person opens that attachment, the game can be

played successfully while a backdoor is unknowingly created in the background by

the game.

Examples of vulnerabilities belonging to this category are the following:

• Back Orifice [BACK 02] or Netbus (recently called Spector) [NETB 02] are

Trojan horse programs that, as soon as they are installed on a system, create

backdoors, enabling remote controlling of the system.

• Remote controlling software is installed on the system, but it is not password -

protected, allowing anyone to remotely connect and take over the system.

CHAPTER 4

Page 52

4.3.5 Unauthorised access to remote connections and
 services
This category involves vulnerabilities concerned with the risk that an unauthorised

person has the ability to remotely connect to a system via a specific port with the aim

of misusing the system.

Gaining access to remote connections and services is often used in an attempt to

exploit more vulnerabilities, since gaining this access will “open more doors” to other

vulnerabilities. For example, if the TELNET service is running, anyone can attempt

to connect to, for example, a guest account. Connecting to the TELNET service itself

can do no harm. An attacker, however, can now gain information on the particular

operating system that runs the TELNET service. This could lead to additional

malicious activity b y the attacker.

Examples of vulnerabilities belonging to this category are the following:

• An attacker could use an anonymous FTP server to launch exploits against

another system to gain special access . An attacker could use this special

access to possibly bypass firewalls.

• After anonymous access to the FTP server has been gained, the attacker can

try to exploit further vulnerabilities in the FTP service, for example to see if

the FTP root directory is write-enabled in a bid to store unauthorised data or

information.

4.3.6 Privilege and user escalation
This category involves vulnerabilities concerned with the risk that the authorisation

properties of an existing (probably compromised) system account can be changed so

that this user account has more privileges or more powerful access rights allocated to

it than was initially intended.

More privileges and more powerful access rights will allow a specific user account to

access data or system resources in an effort to access specific data or information that

was previously inaccessible to the user account. For example, an account with

 HARMONISING VULNERABILITY CATEGORIES

 Page 53

standard user rights might have been escalated to an account with administrative

rights.

Examples of vulnerabilities belonging to this category are the following:

• An attacker could execute arbitrary commands remotely as the user who is

running the HTTP server. If the owner of the HTTP server has administrative

access, the attacker can remotely execute commands as an administrator.

• Some registry entries on a Windows system may be remotely accessible,

allowing the modification of the permissions of these registry entries.

4.3.7 Spoofing or masquerading
This category involves vulnerabilities concerned with the risk that an IP packet’s

source address can be faked to hide an intruder’s identity or activity amongst a storm

of other network traffic.

For example, assume network A is protected by a firewall that only allows IP

addresses with source addresses in the subnet mask of 123.213.44.0. Assume an

attacker is sitting in network B with a subnet mask of 211.143.2.0. The attacker could

now create a packet in network B, which will have a source address of, for example,

211.143.2.67. By using the appropriate spoofing tool, the attacker can now easily

change this source address to, for example, 123.312.44.67. The firewall in network A

will now allow the packet created by the attacker through into network A.

Examples of vulnerabilities belonging to this category are the following:

• If a poorly configured firewall is installed, attackers can launch attacks using

the identity of the firewall server, thus masking their true identity . If any hosts

or networks allow special access to this server, then the attacker has the same

access.

• IP forwarding is found to be enabled, allowing the host to act as a router so

that other hosts can forward packets through this host. If this host is running a

firewall, then the firewall can be bypassed using IP forwarding.

CHAPTER 4

Page 54

4.3.8 Misconfigurations
This category involves vulnerabilities concerned with the risk that applications have

been incorrectly configured, leaving these applications vulnerable to several of the

other harmonised vulnerability categories mentioned here.

Misconfiguration vulnerabilities mostly tend to occur after the installation of new

software, because new software is always installed with default configuration settings.

It is of the utmost importance that newly installed software be reconfigured

immediately after installation. In addition, the new configurations must be tested to

make sure that they are correct and not misconfigured.

Examples of vulnerabilities belonging to this category are the following:

• If anonymous FTP is not configured securely, an attacker may be able to

perform reconnaissance, delete or modify files, or use anonymous FTP as a

distribution mechanism for unwanted files, such as pornography or pirated

software.

• If permissions are incorrectly set in the Windows registry to “Everyone”, an

attacker could gain access to the registry and commence with arbitrary attacks.

4.3.9 Denial-of-services (DoS) and buffer overflows
This category involves vulnerabilities concerned with the risk of one or more

intruders launching an attack designed to disrupt or completely deny legitimate users’

access to networks, servers, services, or other resources.

DoS vulnerabilities are not concerned with stealing information or changing data, but

simply with downgrading the performance of the computer and/or network resources

to such a level that services are disrupted significantly or completely. Consider an

online shop that is completely reliant on the Internet to conduct business . Suppose an

attacker manages to fill up the storage space of the online shop’s servers by uploading

junk data to it . This can potentially cause the servers to crash. It could take hours or

perhaps days to sort out and restore the servers again, causing the online shop to lose

so much money that it might have to close down.

 HARMONISING VULNERABILITY CATEGORIES

 Page 55

Examples of vulnerabilities belonging to this category are the following:

• An attacker can create files on the hard disk of the Web server and fill it up,

leaving the service of the hard disk interrupted and unavailable.

• An out-of-band data attack can consume all memory and cause a system to

reboot. This attack could also cause a system to be unable to handle network

traffic. The only way to recover is to either reset or reboot the system.

4.3.10 Viruses and worms
Viruses and worms are different types of software applications, but with the same

goal of spreading from one system to another to conduct malicious activity.

Viruses and worms can be considered as some of the most active and malicious

vulnerabilities that can be found on a system. Unfortunately, this is the vulnerability

category that is often completely neglected by IDSs . Almost any new virus that

appears on the Internet scene these days causes havoc all over the world in a matter of

hours. The reason is that they all spread through the Internet, be it through e-mail

messages, or through vulnerabilities exploited in networking services . For example, if

an IDS could also detect for viruses and worms, the famous Code Red and Code Blue

worms [HANC 01] would never have caused such havoc around the world in such a

short time – they infected systems around the world in less th an a day by spreading

through an exploit in well-known Web servers all over the world . It should be

mentioned that it becomes evident that this problem is addressed in the latest reactive

IDSs.

Examples of vulnerabilities belonging to this category are the following:

• An e-mail attachment is opened without it first being scanned by a virus

detection program. This might allow a virus to infect the system.

• Certain updates or patches are not installed for the Web server, making the

server susceptible to a denial-of-service attack.

4.3.11 Hardware specific
This category involves vulnerabilities concerned with having hardware peripherals

which do not run software applications, but which rather run ROM -based or

CHAPTER 4

Page 56

firmware-based programs . These peripherals also contain exploits that cannot be

easily updated, patched or corrected, except if the hardware is physically replaced or

the firmware is updated.

Examples of such hardware peripherals are network switches, routers and terminals .

The main reason why updating the firmware of these hardware peripherals is often

neglected is that the peripherals do not have dedicated owners as opposed to a

computer workstation which has one or more specific dedicated owners . Often the

system administrator alone has to see to all of these peripherals in a network.

Chances are better for an attacker to discover and exploit vulnerabilities on these

peripherals before the administrator will discover that irregularities are happening on

them.

Examples of vulnerabilities belonging to this category are the following:

• An attacker can cause a router or switch device to crash and reload . Possible

loss of configuration information may result as a consequence of this attack.

• A shared printer may be found on the network without having any

authentication enabled on it, leaving it open to a variety of possible attacks .

For example, some modern printers host a complete operating system on them.

A network printer is often considered as highly trusted and trust relationships

are set up accordingly as “wide open”. If access to the operating system of

such a printer is gained, an attacker can gain access to all those systems

connected to the printer.

4.3.12 Software specific and updates
This category involves vulnerabilities concerned with the risk that specific software

applications contain specific, well -known bugs. Because these bugs or exploits are

published widely on the Internet [BUGT 02], anyone, including an attacker, is able to

access the Internet and collect information about these bugs to try and exploit them.

Software applications must be updated to patch their exploitations in an effort to fix

security bugs or loopholes to avoid successful future attacks on them. For example,

recently there have been enormous denial-of-service attacks on Microsoft’s Internet

 HARMONISING VULNERABILITY CATEGORIES

 Page 57

Information Server by the very famous Code Red and Code Blue worms [SECF 02].

Therefore, Microsoft had to make software patches available to fix the vulnerabilities

that were exploited so lustily by these Internet worms.

Examples of vulnerabilities belonging to this category are the following:

• A service pack installed is outdated . Vulnerabilities discovered after the

specific service pack was installed on this system leave a potential threat

unless they are patched by the latest service pack.

• An insecure logon method is allowed for a Web server, causing a threat that a

user name and password may be sniffed through this method.

4.3.13 Security policy violations
This category involves vulnerabilities concerned with the risk that an Internet security

policy has been violated . An Internet security policy is a set of security rules created

internally by an organisation . It can specify how systems in the organisation should

be configured to be on a security level that is accep table for the organisation. One of

the policy statements might specify, for example, that the user’s password will expire

every 30 days.

When a security policy violation is found, it means that a different configuration

setting on the system was detected and thus violates the prescribed policy setting. It is

of the utmost importance, though, that management specify the security policy

correctly before it is implemented electronically . The policy might be implemented

correctly according to the policy document, but if the document specification is

wrong, its electronic implementation will also be wrong!

Examples of vulnerabilities belonging to this category are the following:

• The system’s event or security log is not restricted according to the system’s

security policy. Anyone will thus be able to alter or delete the logs.

• The system’s screensaver lockout is not enabled according to the system’s

security policy and will not automatically lock the system if the owner of the

system neglected to lock the sys tem himself/herself.

CHAPTER 4

Page 58

44..44 SSTTAA NNDDAARRDDIISSAA TTIIOONN OOFF VVUULLNNEERRAABBIILLII TTIIEESS

After this research was initiated, a similar initiative evolved on the Web in which a

common standard for the naming of vulnerabilities was introduced . This standard is

referred to as the common vulnerabilities and exposures (CVE) standard [MITR 03].

CVE is a list or dictionary that provides common names for publicly known

information security vulnerabilities and exposures . Using a common name makes it

easier to share data across separate VS databases . While CVE may make it easier to

search for common vulnerabilities, it should not be considered as a vulnerability

database on its own merit, because it is only a common reference to the same

vulnerabilities addressed by different VSs and may not necessarily be an exhaustive

list of all possible vulnerabilities.

In addition, CVE does not provide for harmonised vulnerability categories as

discussed in this chapter. CVE provides a method of referencing the same

vulnerabilities in different VSs only . Harmonised vulnerability categories, however,

attempt to provide a method of referencing the same categories of vulnerabilities for

different VSs. In other words, where CVE attempts to standardise the naming of

vulnerabilities across different VSs, harmonised vulnerability categories attempt to

standardise the categorisation of the same vulnerability categories across different

VSs.

44..55 CCOONNCC LLUUSSIIOONN

The harmonised vulnerability categories can serve as a useful management tool.

These categories reflect all vulnerabilities in state-of-the-art VSs today as well as

those vulnerabilities found in current literature . The 13 harmonised categories will

serve as generic categories for categorising vulnerabilities found in state -of-the-art VS

tools . They will exp and and evolve along with the evolution of information

technology and its applications.

Be that as it may, such a construction of harmonised vulnerability categories will

contribute significantly to safer and better managed Internet information security in

 HARMONISING VULNERABILITY CATEGORIES

 Page 59

terms of providing a mechanism that can be used as a measure for identifying how

different VS products comply with “standardised” vulnerability categories referred to

as harmonised vulnerability categories . The next chapter will demonstrate how

harmonis ed vulnerability categories can be used in order to find a way in which to

refer to the same vulnerability categories across different VS products.

CHAPTER 4

Page 60

 Page 61

CCHHAAPPTTEERR 55

VVUULLNNEERRAABBIILLIITTYY SSCCAANNNNEERR PPRROODDUUCCTTSS
__

55..11 IINNTTRROODD UUCC TTIIOO NN

Due to the increasing awareness of the public of security issues on the Internet, there

are a myriad of security products available on the software market today and this

number is increasing. Hence the dilemma when choosing the right security product

for a particular organisation’s security needs.

The focus of this chapter is to develop a better understanding of state-of-the-art VS

products . There are many VS products available on the software market. As was

pointed out in previous chapters, they often refer to the same vulnerability in a

different way and this makes it very difficult to see exactly which vulnerabilities are

scanned for by the different VS products . This dilemma can be solved by using the

framework of harmonised vulnerability categories [VEE2 03] as shown in the

previous chapter in table 4.1. Other aspects of VS products are also considered in this

chapter, for example the specific database structure of a VS, in an attempt to shed

more light on the problems that the different VS products pose.

The sections that follow will discuss VS products in more detail. An overview of the

state-of-the-art VS products is given. Some of these products are discussed in detail,

with the emphasis on the databases that they employ.

55..22 VVSS PPRROODD UUCC TTSS

It is important to be aware of the different VS products available on the software

market before studying some of them in more detail. There are freeware as well as

commercial versions of VS products available and some products differ extensively

from others . The section that follows lists some of the major role players in VS

CHAPTER 5

Page 62

technology and attempts to place the different aspects of the products in perspective to

each other.

5.2.1 VS product overview
The VS products discussed in this chapter are the best-known VS products available

on the software market today. Table 5.1 shows a list of some of these VS products.

Table 5.1: State-of-the-art VS products
VS product Commercial or freeware Reference

bv-Control Commercial [BIND 03]
Cisco Secure Scanner Commercial [CSSC 03]
CyberCop Scanner 5.5 Commercial [NETW 03]
Internet Security Scanner (ISS) 6.2.1 Commercial [ISSN 03]
Nessus Security Scanner Freeware [DERA 03]
NetRecon 3.5 Commercial [SYMA 03]
Nmap 2.5 Freeware [INSE 03]
Retina 4.7 Commercial [EEYE 03]
Security Administrator’s Integrated Network Tool
(SAINT) 4.0 Commercial [SAIN 03]

Security Analyzer 5.1 Commercial [NETI 03]
STAT Scanner Professional Commercial [HARR 03]

The CyberCop Scanner, the Cisco Secure Scanner, the SAINT, the ISS, and the

Nessus Security Scanner will be discussed in more detail in the following five

sections. The focus of the discussion of these products will not be to evaluate and

compare them with each other, but rather to comment on the practical experience

encountered by the researcher while working with the products. This is followed by

elaborative discussions on each product’s vulnerability database in terms of

differences.

5.2.2 CyberCop Scanner
The CyberCop Scanner version 5.5 is discussed because it is well known and widely

used for vulnerability scanning today . The creators of the CyberCop Scanner recently

decided to replace their CyberCop Scanner VS product with a Web-based product

known as the CyberCop ASAP [MCAF 03]. A trial version of the current CyberCop

Scanner software is still available for evaluation purposes.

5.2.2.1 Practical experience with the CyberCop Scanner
The CyberCop Scanner was installed on a Windows workstation and then set up to

scan workstations, servers, hubs and switches connected to the network for the

vulnerabilities as specified in its vulnerability database. Depending on the size of the

 VULNERABILITY SCANNER PRODUCTS

 Page 63

network, the CyberCop Scanner scans the network for sev eral hours before the scan is

complete. It then generates a report of several hundred pages . Figure 5.1 shows an

extract of one of the vulnerabilities in this report.

Vulnerability ID 30006

Description
Remote Access Service (RAS) detected on the host. RAS lets remote
users use a telephone line and a modem to dial into a RAS server and
use the resources of its network.

Security
concerns

A person could be using RAS to gain access to a network from a remote
location. This essentially creates a “backdoor” into a network which can
bypass the network’s firewall, for example.

Rectification
procedures

Investigate this host to identify if it is indeed an approved RAS host. If it
is an approved RAS host, there may be ways to further secure the host.
E.g., RA S can be configured to establish a connection only by
automatically calling a user back. This ensures the telephone number of
the user that is gaining access via this RAS host is known by the RAS
server.

Figure 5.1: An extract from the CyberCop Scanner report

An advantage of the CyberCop Scanner report is that it contains good and detailed

description and rectification procedures . However, this report has some

disadvantages . It is too long and will take days to study. It is also very technical and

requires skilled human resources to rectify the vulnerabilities . The report also does

not prioritise the vulnerabilities detected. Another disadvantage is that the CyberCop

Scanner is not CVE-referenced.

5.2.2.2 CyberCop Scanner vulnerability database
Of the 13 harmonised vulnerability categories, categories 3, 4, 7, 10 and 11 are

covered in very little detail, if at all, by the CyberCop Scanner’s vulnerability

database, as shown in table 5.2.

5.2.3 Cisco Secure Scanner
The Cisco Secure Scanner version 2.0 [CSSC 03] is discussed because this scanner is

probably the most renowned and established networking hardware manufacturer

today. The creators of the Cisco Secure Scanner, however, recently announced that

this product had reached end-of-life status [CEOS 03] and would no longer be

available for sale. Nevertheless, the Cisco Secure Scanner was still chosen for

discussion since it can run on multiple operating systems, scan for vulnerabilities on

multiple operating systems and will still be supported by the Cisco Secure Scanner for

a limited period.

CHAPTER 5

Page 64

Table 5.2: Harmonised vulnerability categories covered by CyberCop Scanner

Harmonised vulnerability category CyberCop
Scanner

1

Password cracking and sniffing ü
2

Network and system
information gathering ü

3

User enumeration and
information gathering û

4

Backdoors, Trojans and remote
controlling û

5
Unauthorised access to remote
connections & services ü

6

Privilege and user escalation
ü

7

Spoofing or masquerading û
8

Misconfigurations ü
9

Denial-of-services (DoS) and
buffer overflows ü

10

Viruses and worms
û

11

Hardware specific û

12

Software specific and updates ü

13

Security policy violations ü

5.2.3.1 Practical experience with the Cisco Secure Scanner
The Cisco Secure Scanner was installed on a Windows workstation and then set up to

scan workstations and servers connected to the network for the vulnerabilities as

specified in its vulnerability database. The Cisco Secure Scanner can run on

Windows as well as on UNIX operating systems . Depending on the size of the

network, the Cisco Secure Scanner scans the network for several hours before the

scan completes and a large report is generated. Figure 5.2 shows an extract of one of

the vulnerabilities in this report.

One advantage of the Cisco Secure Scanner report is that it contains good and detailed

description, consequences, and countermeasure procedures. The disadvantage of this

report is that it requires effort to work through because of its size. Another

disadvantage is that the Cisco Secure Scanner is not CVE-referenced.

 VULNERABILITY SCANNER PRODUCTS

 Page 65

Figure 5.2: An extract from the Cisco Secure Scanner report

5.2.3.2 Cisco Secure Scanner vulnerability database
Of the 13 harmonised vulnerability categories, categories 3, 4, 7, 8, 10, 11, 12 and 13

are covered in very little detail, if at all, by the Cisco Secure Scanner’s vulnerability

database, as shown in table 5.3.

Table 5.3: Harmonised vulnerability categories covered by Cisco Secure Scanner

Harmonised vulnerability category
Cisco
Secure
Scanner

1

Password cracking and sniffing ü

2

Network and system
information gathering ü

3

User enumeration and
information gathering û

4

Backdoors, Trojans and remote
controlling û

5
Unauthorised access to remote
connections & services ü

6

Privilege and user escalation
ü

7

Spoofing or masquerading û
8

Misconfigurations û
9

Denial-of-services (DoS) and
buffer overflows ü

10

Viruses and worms
û

11

Hardware specific û

12

Software specific and updates û

13

Security policy violations û

FTP Directory and File Permissions
Description

File Transfer Protocol (FTP) is one protocol by which files can be transferred to and
from remote computer systems. The user transferring a file usually needs authority to login
and access files on the remote system.

Consequences
A remote attacker may be able to perform reconnaissance, delete or modify files, or use

the FTP server as a distribution mechanism for unwanted files, such as pornography or
pirated software. The ability to write to the file system may be used to enable these attacks.

Countermeasure
Root should own all files in the FTP directory tree and the permissions should be set to

444. Executable files in the /bin directory should have the permissions set to 111. If you
need to allow a user to upload files, the files should be set to be unreadable until they are
reviewed. It is advisable that only one otherwise empty directory should be made writeable
for so that users may uploaded files into it.

CHAPTER 5

Page 66

5.2.4 SAINT
The Security Administrator’s Integrated Network Tool (SAINT) [SAIN 03] is

discussed because it was freely available until recently and supports the use of CVE.

The SAINT can run on UNIX and LINUX operating systems and also scans for

vulnerabilities on multiple operating systems . The SAINT is also available in an

online version.

5.2.4.1 Practical experience with the SAINT
Because the SAINT incorporates CVE into its vulnerability database, standard

vulnerability names are used. In addition, CVE’s web site also has more information

available on how to fix the detected vulnerabilities. This is a major advantage of the

SAINT. The disadvantage of the SAINT is that it categorises its vulnerabilities into

177 categories, which makes it difficult to work with. It is better to have fewer

vulnerability categories that are more manageable, as the harmonised vulnerability

categories suggest.

5.2.4.2 SAINT vulnerability database
Of the 13 harmonised vulnerability categories, categories 1, 3, 4, 7, 10, 11 and 13 are

covered in very little detail, if at all, by the SAINT’s vulnerability database, as shown

in table 5.4.

5.2.5 Internet Security Scanner (ISS)
The ISS version 6.2.1 is discussed because the ISS was one of the first VS products

available on the software market. It is established and widely used in the industry

today. There is an ISS version [ISSN 03] that can be downloaded from the Internet

free of charge with full functionality, but it is limited to scan only the host on which it

is installed.

The ISS supports the CVE standard to enable users to easily determine whether issues

with different names are the same, and to allow for efficient sharing of security

information. A CVE reference, however, may not exist for every vulnerability check

used in the ISS and because of this CVE is only partially supported by the ISS.

 VULNERABILITY SCANNER PRODUCTS

 Page 67

Table 5.4: Harmonised vulnerability categories covered by SAINT
Harmonised vulnerability category SAINT

1

Password cracking and sniffing û
2

Network and system
information gathering ü

3

User enumeration and
information gathering û

4

Backdoors, Trojans and remote
controlling û

5
Unauthorised access to remote
connections & services ü

6

Privilege and user escalation
ü

7

Spoofing or masquerading û
8

Misconfigurations ü
9

Denial-of-services (DoS) and
buffer overflows ü

10

Viruses and worms
û

11

Hardware specific û

12

Software specific and updates ü

13

Security policy violations û

5.2.5.1 Practical experience with the ISS
The ISS was installed on a Windows workstation and then set up to scan workstations

and servers connected to the network for the vulnerabilities as specified in its

vulnerability database. The ISS runs on Windows and has a very good user interface,

but it can also scan for vulnerabilities on other operating systems such as UNIX.

Depending on the size of the network and the specific scan policy that is set up before

the scan can commence, the ISS scans the network for vulnerabilities and is relatively

fast. A scan on a Windows workstation was completed in just over four minutes

before a report was generated. Figure 5.3 shows an extract of one of the

vulnerabilities in this report.

CHAPTER 5

Page 68

Modem detected and active (Active Modem)

Risk Level: Medium

Platforms: Windows NT, Windows 95, Windows 98, Windows 2000, Windows ME

Description: An active modem driver was detected . This situation only occurs when the
modem is in use, or when the modem driver program is active. Modems can
be a sign of an unauthorized channel around your firewall. Attackers could
use a modem within the network to circumvent network security.

Remedy: The modem must not be active while the computer is attached to the network.
You may want to minimize the impact of a security breach caused by an
unauthorized modem use by limiting which systems trust the computer using
the modem.

If using a modem on the network is required, configure all Remote Access
Setup ports so that the port usage can dial-out only. Verify that your dial-out
network configuration protocols match exactly the protocols you need to
access the remote network. Review share permissions and account security
to verify that the file system is not accessible from a remote location.

References: ISS X-Force
Modem detected and active
http://xforce.iss.net/static/1292.php

Figure 5.3: An extract from the ISS report

The advantages of the ISS report are that it contains good and detailed descriptions

and remedy procedures . In addition, a reference to additional information for the

specific vulnerability detected is provided, as well as information on which operating

system platforms the particular vulnerability can occur. Another major advantage is

that the ISS classifies the particular vulnerability into a low-, medium-, or high-risk

factor so that the rectification of vulnerabilities can be prioritised . The disadvantage

of this report is that it requires effort to work through because of its large size.

5.2.5.2 ISS vulnerability database
Of the 13 harmonised vulnerability categories, categories 3, 6, 7, 8 and 10 are covered

in very little detail, if at all, by the ISS’s vulnerability database, as shown in table 5.5

below.

 VULNERABILITY SCANNER PRODUCTS

 Page 69

Table 5.5: Harmonised vulnerability categories covered by ISS
Harmonised vulnerability category ISS

1

Password cracking and sniffing ü
2

Network and system
information gathering ü

3

User enumeration and
information gathering û

4

Backdoors, Trojans and remote
controlling ü

5
Unauthorised access to remote
connections & services ü

6

Privilege and user escalation
û

7

Spoofing or masquerading û
8

Misconfigurations û
9

Denial-of-services (DoS) and
buffer overflows ü

10

Viruses and worms
û

11

Hardware specific ü

12

Software specific and updates ü

13

Security policy violations ü

5.2.6 Nessus Security Scanner
The Nessus Security Scanner is discussed because it is a widely known freeware

product [TALI 00]. The Nessus Security Scanner executes mainly on UNIX-based

platforms, but it can scan for vulnerabilities on multiple operating system platforms .

The Nessus Security Scanner is built upon client -server architecture where the server

works on a UNIX-based platform. Different clients are available that can run on a

UNIX or Windows operating system platform. The Nessus Security Scanner also

supports CVE references.

5.2.6.1 Practical experience with the Nessus Security Scanner
The Nessus Security Scanner works on the concept of plug -in architecture. This

means that there is a plug-in for each vulnerability that the Nessus Security Scanner

can check for. This way, it is easy to add new vulnerability signatures as extern al

plug-ins when they become available . These can simply be downloaded from the

Nessus Security Scanner web site [DERA 03] via FTP.

CHAPTER 5

Page 70

It is also possible to add customised vulnerability signatures . To be able to do this,

the Nessus Security Scanner includes the Nessus Attack Scripting Language (NASL),

which is a language designed to write customised vulnerability signatures easily and

quickly. These plug-ins then also constitute the vulnerability database for the Nessus

Security Scanner.

The main advantage of the Nessus Security Scanner is that it is very fast. The

vulnerability tests performed by the Nessus Security Scanner co -operate so that

nothing is done that is not necessary . For example, if an FTP server is found not to

offer anonymous logins, then anonymous-related vulnerability checks will not be

attempted or performed for anonymous FTP vulnerabilities, which saves time . Some

VS products will attempt to scan for anonymous FTP vulnerabilities, if their scan

policies were set up to do that, even if no anonymous FTP vulnerabilities are present.

This causes those VS products to waste valuable time since they will not continue to

scan for the next vulnerability, as defined by their scan policy, until scanning for

anonymous FTP vulnerabilities has timed out. Another advantage of the Nessus

Security Scanner is that it categorises the risk level of each vulnerability from low to

very high in the report that it generates, enabling the prioritisation of the urgency of

fixing the vulnerabilities found. The disadvantage of this report, however, is that it

requires effort to work through because of its large size.

5.2.6.2 Nessus Security Scanner vulnerability database
Of the 13 harmonised vulnerability categories, categories 1, 3, 7, 8, 10, 11 and 13 are

covered in very little detail, if at all, by the Nessus Security Scanner’s vulnerability

database, as shown in table 5.6.

 VULNERABILITY SCANNER PRODUCTS

 Page 71

Table 5.6: Harmonised vulnerability categories covered by Nessus Security Scanner

Harmonised vulnerability category
Nessus
Security
Scanner

1
Password cracking and sniffing û

2

Network and system
information gathering ü

3

User enumeration and
information gathering û

4

Backdoors, Trojans and remote
controlling ü

5
Unauthorised access to remote
connections & services ü

6

Privilege and user escalation
ü

7

Spoofing or masquerading û
8

Misconfigurations û
9

Denial-of-services (DoS) and
buffer overflows ü

10

Viruses and worms
û

11

Hardware specific û

12

Software specific and updates ü

13

Security policy violations û

55..33 SSUUMMMMAARRYY OOFF CCUURRRR EENNTT VVSS PPRROODD UUCC TTSS

In the previous sections different VS products were discussed. In essence, all these

products have one main goal: identifying vulnerabilities. However, the way in which

these VS products go about accomplishing this goal often differs extensively from one

VS product to another. In addition, these different VS products do not all scan for

exactly the same types of vulnerabilit ies. Fortunately, by making use of harmonised

vulnerability categories [VEE2 03], a measure is available to identify how the

different VS products comply with harmonised vulnerability categories.

Figure 5.4 shows a mapping, compiled during this research project, of the

vulnerabilities found for each of the five VS products discussed in the previous

sections onto the harmonised vulnerability categories . The mapping process was done

for each individual VS product. The vulnerability database of a specific VS product

was carefully dissected by studying each vulnerability as defined in the vulnerability

CHAPTER 5

Page 72

database. A particular vulnerability was then allocated to one of the 13 harmonised

vulnerability categories.

5.3.1 Mapping onto harmonised vulnerability categories

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13

Harmonised vulnerability category number

N
u

m
b

er
 o

f v
u

ln
er

ab
ili

tie
s

sc
an

n
ed

 fo
r

CyberCop Scanner Cisco Secure Scanner SAINT Internet Security Scanner Nessus Security Scanner

Figure 5.4: Vulnerability mapping of different VS products onto the harmonised
vulnerability categories

From figure 5.4 it is clear that the different VS products comply differently with the

13 harmonised vulnerability categories . For example, the Nessus Security Scanner

can detect far more network and system information gathering (category 2)

vulnerabilities than all the other VS products . The CyberCop Scanner, on the other

hand, outperforms all the other VS products when detecting misconfiguration

(category 8) vulnerabilities . In addition, only one VS product, namely the Nessus

Security Scanner, scans for viruses and worms (category 10) and only for a very

limited number of viruses and worms . In almost all the harmonised vulnerability

categories, the ISS scans for more vulnerabilities than the other VS products . The

ISS, therefore, seems to be the VS product with the highest number of vulnerabilities

that it can scan for across the harmonised vulnerability categories.

In figure 5.4, significant differences can be noticed in some harmonised vulnerability

categories between the number of vulnerabilities that can be scanned for by the

 VULNERABILITY SCANNER PRODUCTS

 Page 73

different VS products . The following section will elaborate on and discuss the

significance of these differences.

5.3.2 Differences in VS products
More might be read into the data displayed in figure 5.4. The harmonised

vulnerability categories 2, 4, 8, 9 and 13, as shown in figure 5.4, will be discussed in

more detail to examine why there are such major differences in the number of

vulnerabilities that each of the VS products can scan for. These five harmonised

vulnerability categories were specifically chosen because there is a considerable

difference in the number of vulnerabilities that can be scanned for by the particular

VS that is able to scan for the highest number of vulnerabilities, and the VS that is

able to scan for the second highest number of vulnerabilities for each specific

category.

The sections that follow will briefly look at these differences and discuss the

significance of each.

5.3.2.1 2: Network and system information gathering
An extract from figure 5.4 of harmonised vulnerability category 2, network and

system information gathering , is shown in figure 5.5.

Network and system information gathering

0 50 100 150 200 250 300

Nessus Security Scanner

Internet Security Scanner

SAINT

Cisco Secure Scanner

CyberCop Scanner

Number of vulnerabilities scanned for

Figure 5.5: Number of vulnerabilities scanned for by different VS products for
harmonised vulnerability category 2: network and system information gathering

The Nessus Security Scanner scans for the highest number of network and system

information gathering vulnerabilities (294), while the ISS scans for the second highest

CHAPTER 5

Page 74

(119) in this harmonised vulnerability category . To ascertain whether this difference

is really that significant, examples of the most important network and system

information gathering vulnerabilities for each of these two VS products are given in

table 5.7.

Table 5.7: Important network and system information gathering vulnerabilities
Nessus Security Scanner ISS
Gathering information about the common
gateway interface (CGI) of a Web server

Gathering information about the users
registered on a system

Gathering information about remote
procedure call (RPC) services

Gathering information about different services
installed on a system

Gathering information about the file transfer
protocol (FTP) service

Gathering information about the physical
route that can be traced to a system

Gathering information about users as performed by the ISS is perhaps a more

important vulnerability than the gathering of CGI information by the Nessus Security

Scanner. Gathering information about users should therefore be given higher priority.

As clearly shown in figure 5.5, the ISS detects far fewer network and system

information gathering vulnerabilities than the Nessus Security Scanner. The Nessus

Security Scanner scans for more vulnerabilities than the ISS over all the harmonised

vulnerability categories in total. In this case the major difference in the number of

network and system information gathering vulnerabilities that these two VS products

are able to detect is not significant.

5.3.2.2 4: Backdoors, Trojans and remote controlling
An extract from figure 5.4 of harmonised vulnerability category 4, backdoors, Trojans

and remote controlling , is shown in figure 5.6.

The ISS scans for the highest number of backdoors, Trojans and remote controlling

vulnerabilities (122), while the Nessus Security Scanner scans for the second highest

(78) in this harmonised vulnerability category. To ascertain whether this difference is

significant, examples of the most important backdoors, Trojans and remote

controlling vulnerabilities for each of these two VS products are given in table 5.8.

 VULNERABILITY SCANNER PRODUCTS

 Page 75

Backdoors, Trojans and remote controlling

0 50 100 150 200 250 300

Nessus Security Scanner

Internet Security Scanner

SAINT

Cisco Secure Scanner

CyberCop Scanner

Number of vulnerabilities scanned for

Figure 5.6: Number of vulnerabilities scanned for by different VS products for
harmonised vulnerability category 4: backdoors, Trojans, and remote controlling

Table 5.8: Important backdoors, Trojans, and remote controlling vulnerabilities
ISS Nessus Security Scanner
Back Orifice backdoor found Back Orifice backdoor found
Netbus backdoor found Netbus backdoor found
Windows NT remote access service (RAS)
enabled

PC Anywhere remote administration tool
found

Both the ISS and the Nessus Security Scanner are able to detect more or less the same

important backdoors, Trojans, and remote controlling vulnerabilities. Figure 5.6,

however, shows that the Nessus Security Scanner detects fewer backdoors, Trojans,

and remote controlling vulnerabilities than the ISS. In this case the difference in the

number of backdoors, Trojans, and remote controlling vulnerabilities that these two

VS products are able to detect is definitely significant, with the ISS being the best.

The difference in the number of vulnerabilities is very large.

5.3.2.3 8: Misconfigurations
An extract from figure 5.4 of harmonised vulnerability category 4, misconfigurations,

is shown in figure 5.7.

The CyberCop Scanner scans for the highest number of misconfiguration

vulnerabilities (255), while the Nessus Security Scanner scans for the second highest

(41) in this harmonised vulnerability category. To ascertain whether t his difference is

significant, examples of the most important misconfiguration vulnerabilities for each

of these two VS products are given in table 5.9.

CHAPTER 5

Page 76

Misconfigurations

0 50 100 150 200 250 300

Nessus Security Scanner

Internet Security Scanner

SAINT

Cisco Secure Scanner

CyberCop Scanner

Number of vulnerabilities scanned for

Figure 5.7: Number of vulnerabilities scanned for by different VS products for
harmonised vulnerabil ity category 8: misconfigurations

Table 5.9: Important misconfiguration vulnerabilities
CyberCop Scanner Nessus Security Scanner
Default passwords, usernames and/or
settings were found for different applications

Default passwords, usernames and/or
settings were found for different applications

Internet Control Message Protocol (ICMP)
enabled

Some ICMP settings enabled

NetBIOS shares found on the system with
world-readable permissions found

SMB shares found on the system with world-
readable permissions f ound

Both the CyberCop Scanner and the Nessus Security Scanner are able to detect more

or less the same important misconfiguration vulnerabilities. As clearly shown in

figure 5.7, however, the Nessus Security Scanner detects far fewer misconfiguration

vulnerabilities than the CyberCop Scanner. The big difference in the number of

misconfiguration vulnerabilities that these two VS products can detect, is attributed to

the fact that the entire vulnerability database of the CyberCop Scanner contain so

much more vulnerability signatures than that of the Nessus Security Scanner. In this

case the major difference in the number of misconfiguration vulnerabilities that these

two VS products are able to detect is definitely significant and favours the CyberCop

Scanner.

5.3.2.4 9: Denial-of-services (DoS) and buffer overflows
An extract from figure 5.4 of harmonised vulnerability category 4, denial-of-services

(DoS) and buffer overflows, is shown in figure 5.8.

 VULNERABILITY SCANNER PRODUCTS

 Page 77

Denial-of-services (DoS) and buffer overflows

0 50 100 150 200 250 300

Nessus Security Scanner

Internet Security Scanner

SAINT

Cisco Secure Scanner

CyberCop Scanner

Number of vulnerabilities scanned for

Figure 5.8: Number of vulnerabilities scanned for by different VS products for
harmonised vulnerability category 9: denial -of-services (DoS) and buffer overflows

The Nessus Security Scanner scans for the highest number of denial-of-service (DoS)

and buffer overflow vulnerabilities (192), while the SAINT scans for the second

highest (110) in this harmonised vulnerability category . To ascertain whether this

difference is significant, examples of the most important denial-of-service (DoS) and

buffer overflow vulnerabilities for each of these two VS products are given in

table 5.10.

Table 5.10: Important denial-of-service (DoS) and buffer overflow vulnerabilities
Nessus Security Scanner SAINT
Microsoft Internet Information Server (IIS)
and other HTTP-based DoS vulnerabilities
found

Different hardware application buffer overflow
vulnerabilities found

Berkley Internet Name Domain (BIND) and
domain name service (DNS) DoS
vulnerabilities found

DNS DoS vulnerabilities found

Different Web service DoS vulnerabilities
found

Different database application and SQL
buffer overflow vulnerabilities found

The Nessus Security Scanner can detect Microsoft IIS and BIND DoS vulnerabilities,

which have more serious consequences than the hardware buffer overflow

vulnerabilities detected by the SAINT. Detecting Microsoft IIS and BIND DoS

vulnerabilities should therefore be given a higher priority. Figure 5.8 clearly shows

that the SAINT detects far fewer denial-of-service (DoS) and buffer overflow

vulnerabilities than the Nessus Security Scanner. The SAINT’s vulnerability database

is almost three times smaller than that of the Nessus Security Scanner in terms of the

total number of vulnerabilities it can detect over all harmonised vulnerability

CHAPTER 5

Page 78

categories . In this case the difference in the number of denial-of-service (DoS) and

buffer overflow vulnerabilities that these two VS products are able to detect is

definitely significant, with the Nessus Security Scanner being the best. It should also

be mentioned that because the SAINT’s vulnerability database is significantly smaller

than that of the Nessus Security Scanner, it can be argued that the Nessus Security

Scanner detects more denial-of-service (DoS) and buffer overflow vulnerabilities that

are not as important, in the researcher’s opinion.

5.3.2.5 13: Security po licy violations
An extract from figure 5.4 of harmonised vulnerability category 4, security policy

violations, is shown in figure 5.9.

Security policy violations

0 50 100 150 200 250 300

Nessus Security Scanner

Internet Security Scanner

SAINT

Cisco Secure Scanner

CyberCop Scanner

Number of vulnerabilities scanned for

Figure 5.9: Number of vulnerabilities scanned for by different VS products for
harmonised vulnerability category 13: security policy violations

The ISS scans for the highest number of security policy violations vulnerabilities

(104), while the CyberCop Scanner scans for the second highest (59) in this

harmonised vulnerability category . To ascertain whether this difference is significant,

examples of the most important security policy violations vulnerabilities for each of

these two VS products are given in table 5.11 below.

Table 5.11: Important security policy violations vulnerabilities
ISS CyberCop Scanner
Password policy not sufficient Password policy not sufficient
System auditing policy not set up System event log or auditing policy not set up
Hardware access policy too lenient Account access policy too lenient

 VULNERABILITY SCANNER PRODUCTS

 Page 79

Both the ISS and the CyberCop Scanner are able to detect more or less the same

important security policy violations vulnerabilities. As shown in figure 5.9, the

CyberCop Scanner detects fewer security policy violations vulnerabilities than the

ISS. In this case the difference in the number of security policy violations

vulnerabilities that these two VS products are able to detect is definitely significant,

with the ISS performing the best.

55..44 CCOONNCC LLUUSSIIOONN

This chapter discussed different VS products and looked at how each product differs

in the way that it can scan for vulnerabilities . A useful means of dealing with the

different ways in which vulnerabilities are scanned for is to find a common way of

referring to vulnerabilities amongst different VS products . This can be accomplished

by using CVE. CVE, however, still does not solve the problem of knowing which

vulnerabilities different VS products scan for, because CVE does not categorise

vulnerabilities. This problem can be solved by using harmonised vulnerability

categories.

A mapping from a specific VS product’s vulnerability database onto the harmonised

vulnerability categories is a process that needs to be carried out for each VS product

considered for implementation by an organisation. Harmonised vulnerability

categories prove to be a supporting mechanism for reviewing different VS products to

determine how a specific VS product addresses the scope of vulnerabilities as defined

by the harmonised vulnerability categories.

VS products can differ extensively from each other in terms of the number of

vulnerabilities that each VS is able to detect. This is mainly due to the fact that some

VS products employ a vulnerability database containing many vulnerability signatures

while other VS products employ a small vulnerability database. Although a specific

VS product may contain a large vulnerability database, however, many of its

vulnerability signatures may be outdated or not so important. The importance factor

of vulnerabilities in the harmonised vulnerability categories is addressed in the current

research project by priority levels, which will be discussed in the next chapter.

CHAPTER 5

Page 80

 Page 81

CCHHAAPPTTEERR 66

VVUULLNNEERRAABBIILLIITTYY FFOORREECCAASSTTIINNGG ––
AA CCOONNCCEEPPTTUUAALL MMOODDEELL
__

66..11 IINNTTRROODD UUCC TTIIOO NN

The previous chapters discussed different state-of-the-art information security

technologies that can be used to secure computer systems and networks, such as

intrusion detection systems (IDSs) and vulnerability scanners (VSs). These specific

information security technologies were discussed because they have contributed

significantly to the field of information security in recent times and they are the latest

developments in information security . It was VSs, however, that attracted the

attention of the researcher because they follow a proactive approach to finding and

minimising vulnerabilities, whereas IDSs follow a reactive approach.

The proactive approach to finding and minimising vulnerabilities is considered to be a

better approach, because it is based on the principle of prevention being better than

cure. Although the proactive behaviour of VSs is a positive point, t here are still many

problems with state-of-the-art VSs. This chapter will identify these problems and

suggest which of them will be addressed in this research. A conceptual model is then

introduced that will address some of these problems and a functional discussion of

what the conceptual model is trying to achieve is given.

66..22 PPRROOBBLLEEMMSS WWIITTHH SSTTAA TTEE--OOFF-- TTHHEE--AARR TT VVSSSS

Despite their many shortcomings, VSs have proven successful in combating most

vulnerabilities. One of their biggest drawbacks, however, is the fact that they have to

“recognise” a vulnerability before they can detect it, and for a VS to “recognise” a

vulnerability, it must have access to a list featuring the “signature” of the vulnerability

in question. This list is commonly referred to as a vulnerability database. If a

CHAPTER 6

Page 82

completely new vulnerability is identified, the vulnerability database has to be

updated with the signature of the said new vulnerability. After adding the signature of

the new vulnerability to the vulnerability database, the network needs to be scanned

again to ensure that it does not contain the newly identified vulnerability, especially

since new vulnerabilities appear like clockwork. For this reason, the network of an

organisation needs to be scanned on a daily basis − failing which, its VS would be

rendered obsolete.

When conducting a scan, a VS generally occupies a vast number of network and

system resources. For this reason, a scanning exercise not only becomes too costly to

undertake every day, but also too time-consuming, especially in view of the fact that a

single scan conducted on a relatively small network could last for hours. In this way,

the network utilisation may, on occasion, come to an abrupt halt when checking for

denial-of-service vulnerabilities. To make matters worse, it is considered critical for

distributed applications, such as online reservation systems, to utilise all of their

available network bandwidth, as insufficient bandwidth could cause such applications

to fail. In addition, when scanning for password vulnerabilities, the processing ability

of a system may be impeded to the extent of compromising the processing capacity

required for mission-critical tasks.

VSs also lack intelligence [SCHN 00] in the sense that they are unable to

automatically identify new vulnerabilities and automatically update the vulnerability

database accordingly. In addition, specialised skills are required to interpret and

productively apply the results of a scan conducted by a VS.

The model and structure of specific VS products differ extensively. For example,

Nessus Security Scanner [DERA 03] is a VS product that includes the Nessus Attack

Scripting Language (NASL), which is a language designed to write custo mised

vulnerability signatures easily and quickly . Each such signature is then added as a

plug-in to Nessus Security Scanner. These plug-ins also comprise the vulnerability

database for Nessus Security Scanner. This is in contrast to other VS products, for

example Internet Security Scanner (ISS) [ISSN 03], which has a conventional

database, i.e. in the Microsoft Access Database format, in which its vulnerabilities are

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 83

stored. As new vulnerabilities emerge, this conventional database is updated or

replaced rather than new signature plug-ins simply being added as they become

available, as in the case of Nessus Security Scanner. This poses compatibility

problems when vulnerabilities from one VS product need to be compared to those of

another.

In theory, scans should be conducted at regular intervals. In practice, however, this is

not always possible. Scans may be conducted at irregular intervals when, for

example, a scheduled scan has to be postponed or even abandoned in favour of a

mission-critical event such as an unscheduled backup.

There will always be an administrative overhead in updating the vulnerability

database of a specific VS product at regular intervals, the best time being before a

scan is conducted. This practice is not always followed, however, and may result in

new vulnerabilities not being detected when a vulnerability scan is conducted.

The rectification procedures provided in a scan report may be such that attempting to

automate the rectification procedure is current ly unfeasible. Skilled human resources,

therefore, are still needed to do the job.

Since the rectification procedures, which most VS products offer on the

vulnerabilities they might uncover, are left entirely to skilled human resources, no

automated high-level risk management procedures are suggested by VS products.

However, the scan report that a VS product generates can be seen as some kind of

low-level risk management since, after a scan report has been created, it provides

some rectification procedures providing human resources with specific steps on how

to fix the vulnerabilities that were uncovered during the scan. The high-level risk

management required for this purpose, thus, refers to a higher level that incorporates

the combined use of harmonised vulnerability categories and intelligent techniques in

a bid to provide information that would enable an organisation to proactively act on

vulnerabilities.

In summary, table 6.1 lists the problems identified with state-of-the-art VS products.

The current research project will, however, be dedicated to the improvement of

CHAPTER 6

Page 84

existing VS products and VS technology by concentrating on specific problems in

particular, as indicated by table 6.1.

Table 6.1 : Problems identified and addressed regarding state-of-the-art VS products

Problems identified Problems
addressed

1. Conducting vulnerability scans is too time-consuming. ü
2. A VS product generally occupies a vast number of network and system

resources, leading to the degradation of system performance while
vulnerability scans are being conducted.

ü

3. VS products lack intelligence because they are unable to learn about new
vulnerabilities automatically. ü

4. The vulnerability database structure differs extensively from one VS
product to another. ü

5. The types of vulnerabilities being scanned for differ extensively from one
VS product to another.

ü

6. Scans may not always be conducted at regular intervals due to unforeseen
circumstances, for example when critical maintenance on servers and the
network is carried out.

ü

7. The vulnerability database should be updated before a scan is conducted,
otherwise the scan result may not be accurate enough.

8. Most rectification procedures cannot be automated and still require the
expertise of qualified personnel.

9. VS products do not provide adequate and sufficient information that would
aid high-level risk management.

ü

In order to minimise the impact of the problems outlined above, the researcher would

like to introduce the concept of vulnerability forecasting .

66..33 CCOONNCC EEPPTT OOFF VV UULLNNEERRAA BBIILLIITTYY FFOORR EECCAASS TTII NNGG

6.3.1 Defining the term “vulnerability forecasting”
The term “vulnerability forecasting” (VF) can be defined as “that attempt to identify

potential vulnerable areas on hosts across a network and to what extent such areas on

hosts across a network will be vulnerable over a specific period in the near future”.

The principal aim of VF is, therefore, to predict trends or patterns in which potential

vulnerabilities could occur. Knowing what such a vulnerability forecast is means that

proactive action can be taken in a bid to minimise the risks that such vulnerabilities

may pose.

6.3.2 A conceptual model for VF
The conceptual VF model will be presented over two levels: level 1, which is a high-

level design, and level 2, which is a low-level design of the conceptual model.

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 85

6.3.2.1 Level 1 of the conceptual VF model
The high-level design of the conceptual VF model comprises three main components

and is depicted in figure 6.1 below:

Figure 6.1: Level 1 – A conceptual model for vulnerability forecasting

A brief description of the main components in figure 6.1 follows:

1. VS technology (current)

• This component constitutes one or more state-of-the-art VS products that

are used for collecting the data needed for VF.

2. Vulnerability harmonisation

• This component serves as a coupler between the VS technology and the

vulnerability forecasting components in a bid to “standardise” the VS

product’s output into a harmo nised form.

3. Vulnerability forecasting

• This component does the actual intelligent vulnerability forecast.

6.3.2.2 Level 2 of the conceptual VF model
Each of the main components of the conceptual VF model, as introduced in the

previous section, contains subcomponents . As an integral part of the VF model, most

of these subcomponents include a variety of databases . These databases are all

integrated into the VF model and will be referred as the VF logical database for the

purposes of this model. This logical database is built up as the chapter progresses by

systematically adding components to it whilst discussing the components . The

subcomponents are discussed in the sections that follow on the second level – a more

detailed level – of the conceptual VF model.

�
VS technology

(current)

�
Vulnerability
forecasting

�
Vulnerability

harmonisation

CHAPTER 6

Page 86

6.3.2.2.1 VS technology (current)

Figure 6.2: The VS technology (current) component

Figure 6.2 represents the VS technology (current) component of the conceptual VF

model introduced in the previous section. The reason for using current VS technology

in the VF model enables the use of existing technology rather than attempting to

design yet another module in the VF model. In addition, any current VS product can

be used in the conceptual VF model, rendering the conceptual VF model more

flexible. None of the subcomponents in figure 6.2 are, therefore, revolutionary or new

to the conceptual VF model, but they are sta te-of-the-art technology used as an

integral part of the proposed conceptual VF model. In summary, a VS product

analyses the security state of a network of hosts on the basis of information collected,

referred to as scans, at different intervals . After a scan is completed, the VS product

generates scan results in the form of a report that states all the vulnerabilities found

during the scan and leaves it up to a person to rectify these vulnerabilities.

Network and hosts

The network and hosts component constitutes all computer systems interconnected in

a network or subnetwork. This can also refer to multiple networks spread across the

Internet. The hosts interconnected to the network constitute not only personal

computers and servers, but may also include hardware devices, for example routers,

switches, hubs and network printers . All of these systems may contain vulnerabilities

in some form, which can be detected by VS products.

Vulnerability database

VS

product Network
and hosts

Vulnerability
rectification

Scan
result �

Vulnerability data

�

Scan data

Other data

�

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 87

VS product

The VS product component constitutes a state-of-the-art VS product that is used to

conduct vulnerability scans on hosts across a network. It is also possible to employ

more than one VS product to get more accurate results, because not all VS products

scan for exactly the same vulnerabilitie s. In other words, employing more than one

VS product may improve the chances of identifying more vulnerabilities.

The vulnerability database actually forms part of a VS product. However, this

component will be discussed separately from the VS produ ct since the vulnerability

database is an important component in the conceptual VF model.

Vulnerability database

The vulnerability database is a database linked to the VS product. The vulnerability

database model and structure can differ considerably from one VS product to another.

Different VS products were therefore evaluated whilst conducting this research in a

bid to reproduce a generalised view of the vulnerability database as implemented by

many state-of-the-art VS products.

The vulnerability database is subdivided into two main parts: vulnerability data and

scan data. Vulnerability data constitutes the first part of the VF logical database and

includes the signatures of all known weaknesses in software or hardware as found in

the network and hosts connected to the network. The vulnerability data can be

generalised into an entity-relationship diagram as depicted in figure 6.3. The

relationship in figure 6.3 is represented as “one-to-many” – also denoted as 1 to M.

Figure 6.3: VF logical database part 1: vulnerability data

Vulnerability
category

Vulnerability

Contains

1

M

CHAPTER 6

Page 88

The vulnerability data of the VF logical database consists of the following two

entities:

• Vulnerability category

o This entity contains the specific categories into which vulnerabilities

are classified by the specific VS product. This classification of

vulnerabilities is done by the VS product vendor. The minimum fields

in this entity include a category number and a category description.

• Vulnerability

o This entity contains each specific vulnerability signature that is

checked for when a scan is conducted by the specific VS product. The

minimum fields in this entity include a vulnerability number, a

vulnerability description , a vulnerability priority , a rectification

procedure recommended for the specific vulnerability, a common

vulnerabilities and exposures (CVE) number and a category number

used as the link to the vulnerability category entity .

Figure 6.4 represents a typical vulnerability data report generated from the

vulnerability data by a VS product.

V
ul

ne
ra

bi
lit

y

V
ul

ne
ra

bi
lit

y
d

es
cr

ip
ti

o
n

V
u

ln
er

ab
ili

ty

ca
te

go
ry

 #

V
ul

ne
ra

bi
lit

y
ca

te
go

ry

d
es

cr
ip

ti
o

n

1 Anonymous FTP enabled 1
2 FTP root directory write-enabled 1

FTP vulnerabilities

3 Password file not shadowed 2
4 Unpassworded Laser Jet printer 2

Password vulnerabilities

5 IRC server present 3
6 Can trace route to host 3

Information gathering
vulnerabilities

7 ICMP backdoor found 4 Backdoor vulnerabilities
8 Sendmail syslog buffer overflow 5
9 Mail forgery 5
10 Sendmail relaying allowed 5

E-mail vulnerabilities

Figure 6.4: Vulnerability data report

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 89

Scan data constitutes the second part of the VF logical database. It contains data

such as the specific vulnerability scan ID, the specific host on which the scan was

conducted and the detailed result of each scan . The scan data can be generalised into

an entity-relationship diagram as depicted in figure 6.5.

Figure 6.5: VF logical database part 2 added: scan data

The scan data of the VF logical database consists of the following three entities:

• Event

o This entity contains each specific vulnerability that was found by the

specific VS product whilst conducting a scan. The minimum fields in

this entity include an event number, a vulnerability number, a date &

time when the vulnerability was found, a host number used as the link

to the host entity in order to know where the vulnerability was found , a

scan number in order to link the specific event to a specific

vulnerability scan that was conducted and a harmonised vulnerability

category number in order to link the specific event to a harmonised

vulnerability category, which will be discussed later in the chapter. The

event entity refers only to the data of the very last scan conducted.

Before a new scan is conducted, thus, the content of the event entity is

first archived to a history entity, after which the event entity is cleared

Vulnerability
category

Vulnerability

Contains

1

M

Legend
µ Vulnerability data

u Scan data

Event Causes

Host

Found
on

1 M

M

1

Scan Contains
M 1

µ u

CHAPTER 6

Page 90

in order to store the data of the new scan to be conducted . The history

entity will be discussed later in this chapter.

• Host

o This entity contains each specific host that is scanned by the VS

product in the network. The minimum fields in this entity include a

host number, i.e. the host’s IP address, and a host description.

• Scan

o This entity contains each specific scan that was conducted by the VS

product. The minimum fields in this entity include a scan number, and

a date in order to know when a specific scan was conducted.

Figure 6.6 represents a typical scan data report generated for one specific vulnerability

scan that was conducted by a VS product.

E
ve

n
t #

D
at

e
&

 ti
m

e

V
ul

ne
ra

bi
lit

y

H
o

st
 #

S
ca

n

1 2003-04-15, 10:55:23 1
2 2003-04-15, 10:55:42 3
3 2003-04-15, 11:01:13 51

192.168.1.2

4 2003-04-15, 11:13:21 21
5 2003-04-15, 11:13:25 42

192.168.1.3

6 2003-04-15, 11:42:47 4
7 2003-04-15, 12:58:51 5
8 2003-04-15, 12:59:58 38
9 2003-04-15, 13:00:14 71

192.168.1.7

10 2003-04-15, 13:06:38 23 192.168.1.8

1

Figure 6.6: Scan data report for scan 1

Scan result

After a scan has been conducted, the scan result report is generated by the VS product

containing the scan result for one vulnerability scan. The scan result report contains

all the information as shown in the scan data report in figure 6.6, but some additional

fields are given as well. This report is normally archived by the VS product and

stored in the vulnerability database. The scan result report usually contains the

following information for each vulnerability found:

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 91

• The event number that uniquely identifies each event that occurred each time a

vulnerability was found on a particular host.

• The host number – typically an IP address – on which the vulnerability was

found.

• The date and time when the vulnerability was found.

• The vulnerability number and description of the specific vulnerability found.

• The rectification priority for the specific vulnerability found.

• The appropriate CVE number for the specific vulnerability found.

An example of a scan result report is shown in figure 6.7. Each vulnerability that is

scanned for causes an event to occur, which is recorded in the scan result report . As

soon as all vulnerabilities have been scanned for on one particular host, the VS

product moves on to the next host until all hosts in the specific network have been

scanned. Each time a vulnerability is found, it is added to the scan result report for

the particular scan. Note that most VS products are able to scan various hosts in

parallel and not necessarily in a specific order. However, for the sake of simplicity,

figure 6.7 shows the scan result report as if hosts were scanned one-by-one in host

order.

Vulnerability rectification

The vulnerabilities that were detected by a vulnerability scan procedure need to be

rectified. The vulnerability rectification procedure is a manual process, in other

words it requires skilled human resources to work through the generated vulnerability

report to rectify the vulnerabilities. The fact that this is a manual process is a concern

for vulnerability scanning, since it may take days for human resources to manually

rectify vulnerabilities.

CHAPTER 6

Page 92

E
ve

n
t #

H

o
st

 #

D
at

e
&

 ti
m

e

V
ul

ne
ra

bi
lit

y

V
ul

ne
ra

bi
lit

y
d

es
cr

ip
ti

o
n

P
ri

or
ity

R
ec

tif
ic

at
io

n
pr

oc
ed

ur
e

C
V

E

1 2003-04-15,
10:55:23 1 Anonymous FTP

enabled M Go to the FTP settings of the FTP
server. Disable anonymous FTP. 19990456

2 2003-04-15,
10:55:42 3 Password file not

shadowed H Set the “shadow” attribute of the
password file to “true”. 20021024

6

19
2.

16
8.

1.
2

2003-04-15,
11:42:47 4 FTP root directory

write-enabled L Go to the FTP settings of the FTP
server. Disable “write-enabled”. 19982300

7 2003-04-15,
12:58:51

2 IRC server
present

L Stop/uninstall the IRC server. See
http://www.abcd.com for more info.

20023410

8 2003-04-15,
12:59:58 3 Password file not

shadowed H Set the “shadow” attribute of the
password file to “true”. 20021024

14

19
2.

16
8.

1.
7

2003-04-14,
13:09:45

4 FTP root directory
write-enabled

L Go to the FTP settings of the FTP
server. Disable “write-enabled”.

19982300

56 2003-04-14,
15:41:12 1 Anonymous FTP

enabled M Go to the FTP settings of the FTP
server. Disable anonymous FTP. 19990456

57 2003-04-14,
15:48:00 2 IRC server

present L Stop/uninstall the IRC server . See
http://www.abcd.com for more info. 20023410

58 2003-04-14,
15:56:04 5 Can trace route to

host L Disable route tracing on your
system. 20000343

 19
2.

16
8.

1.
41

Figure 6.7: The scan result report: vulnerabilities found on different hosts on a
network during a specific scan

6.3.2.2.2 Vulnerability harmonisation

Figure 6.8: The vulnerability harmonisation component

Figure 6.8 represents the vulnerability harmonisation component of the conceptual VF

model. This component does not do the actual vulnerability forecasting yet, but

serves as an in-between process where the data it received from component 1 of the

conceptual VF model is transformed in such a way that it is “harmonised” and, thus,

prepared to be “understood” by component 3 of the conceptual VF model. In

summary, the output of the VS product in component 1 of the conceptual VF model as

�
Harmonised

history
database Harmonised

vulnerability
category
database

�

Vulnerability
mapper

�

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 93

shown in figure 6.1, namely the scan result, serves as input to the vulnerability

mapper in component 2 of the conceptual VF model. The vulnerability mapper maps

the vulnerabilities found by the VS product onto the harmonised vulnerability

categories and stores the result in the harmonised history database. This process is

repeated each time a vulnerability scan is conducted.

Harmonised vulnerability category database

The harmonised vulnerability categories are rather static. They are stored in a

database which is not updated unless a new breed of vulnerabilities evolves, leading

to the creation or modification of an addit ional harmonised vulnerability category .

The harmonised vulnerability categories are shown in table 6.2 below and are

discussed in detail in chapter 4.

Table 6.2 : Summary of the harmonised vulnerability categories
Harmonised vulnerability category

number, icon, and name Harmonised vulnerability category description

1
Password cracking and sniffing Vulnerabilities with a root cause of having

accounts with weak or no passwords

2

Network and system
information gathering

Vulnerabilities concerned with scanning a network
to discover a map of available hosts and
vulnerable services

3

User enumeration and
information gathering

Vulnerabilities concerned with retrieving
information of user accounts on a specific system

4

Backdoors, Trojans and remote
controlling

Vulnerabilities concerned with having hidden
access mechanisms installed on a system

5
Unauthorised access to remote
connections & services

Vulnerabilities concerned with the risk that an
unauthorised person has the ability to connect to
and misuse a system

6

Privilege and user escalation Vulnerabilities concerned with the risk that the
access rights of an existing user account can be
upgraded by an unauthorised user, granting more
privileges to the user

7

Spoofing or masquerading Vulnerabilities concerned with the risk that an
intruder can fake an IP address in a bid to act as
another person

8
Misconfigurations Vulnerabilities concerned with the risk that

applications have been incorrectly configured

9

Denial-of-services (DoS) and
buffer overflows

Vulnerabilities concerned with the risk of one or
more intruders launching an attack designed to
disrupt or deny legitimate users’ or applications’
ability to access resources

10

Viruses and worms Vulnerabilities concerned with malicious programs

11

Hardware specific Vulnerabilities concerned with having hardware

peripherals that execute ROM-based or firmware-
based programs

12

Software specific and updates Vulnerabilities concerned with the risk that specific

applications contain specific, well-known bugs

CHAPTER 6

Page 94

13

Security policy violations Vulnerabilities concerned with the risk that an

Internet security policy has been violated
The harmonised vulnerability category database contains the harmonised vulnerability

category entity, as shown in figure 6.9, in context with the generalised vulnerability

database. There is only one entity in the harmonised vulnerability category databas e:

• Harmonised vulnerability category

o This entity contains the harmonised vulnerability categories, as defined

in this research, into which all current vulnerabilities are classified.

This classification of vulnerabilities was done by the researcher. The

minimum fields in this entity include a harmonised vulnerability

category number, a harmonised vulnerability category icon, a

harmonised vulnerability category name, and a harmonised

vulnerability category description.

Figure 6.9: VF logical database part 3 added: harmonised vulnerability category
data

Vulnerability mapper

Harmonised
vulnerability

category

Maps
onto

N

Event Vulnerability

Contains

Causes

Host

Found
on

1

M

1 M

M

1

Scan Contains
M

M

1

Legend
µ Vulnerability data

u Scan data

v Harmonised vulnerability category data

v

u

µ

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 95

The vulnerability mapper serves as a “translator” in the sense that, for the

vulnerabilities found by any VS product, it “translates” those vulnerabilities into the

harmonised vulnerability categories so that the vulnerability forecast engine in

component 3 of the conceptual VF model is independent of the specific VS product(s)

employed in component 1 of the conceptual VF model.

The specific way in which the vulnerabilities found by a specific VS product are

mapped onto the harmonised vulnerability categories is a manual procedure . This

means that, before the vulnerability mapper can do anything, a person needs to take

the vulnerability database of the specific VS product involved and manually map all

vulnerabilities of that specific VS product onto the harmonised vulnerability

categories . Fortunately, this is a once-off procedure, because every time a scan is

conducted by the same VS product after the manual mapping procedure has been

done, the vulnerability mapper “knows” how to map the specific VS product’s

vulnerabilities found onto the harmonised vulnerability categories.

VS product vulnerability ID
and description Mapping

Harmonised vulnerability category
number, icon, and name

 1

Password cracking and
sniffing

41
Can trace the route to
the host

 2

Network and system
information gathering

 3

User enumeration and
information gathering

62 Unpassworded Laser
Jet printer found

 4

Backdoors, Trojans and
remote controlling

 5
Unauthorised access to
remote connections & services

65 ICMP backdoor found
 6 Privilege and user escalation

 7

Spoofing or masquerading
90

Sendmail syslog buffer
overflow

 8 Misconfigurations

 9 Denial-of-services (DoS) and
buffer overflows

106 Mail forgery
 10 Viruses and worms

 11 Hardware specific
110

Sendmail relaying
allowed

 12 Software specific and updates

 13

Security policy violations

CHAPTER 6

Page 96

Figure 6.10: VS product vulnerabilities mapped onto the harmonised vulnerability
categories

In addition, the manual mapping procedure is done either by 1-to-1 mapping or by 1-

to-M mapping. 1-to-1 mapping is done by mapping one specific vulnerability in the

VS database of a specific VS product onto one harmonised vulnerability category. It

is also possible, however, that a specific vulnerability of a specific VS product can be

mapped to many harmonised vulnerability categories. This is referred to as 1-to-M

mapping. Figure 6.10 illustrates this idea with examples. From figure 6.10 it is clear

that vulnerabilities 41, 65 and 106 constitute a 1-to-1 mapping onto the harmonised

vulnerability categories. Likewise, vulnerabilities 62, 90 and 110 constitute a 1-to-M

mapping onto the harmonised vulnerability categories.

E
ve

n
t #

H

o
st

 #

D
at

e
&

 ti
m

e

V
u

ln
er

ab
ili

ty
 #

V
ul

ne
ra

bi
lit

y
d

es
cr

ip
ti

o
n

H
ar

m
on

is
ed

vu

ln
er

ab
ili

ty

ca
te

go
ry

 #
 a

n
d

 ic
o

n

1
2003-04-15,
10:55:23 1 Anonymous FTP

enabled
4

2
2003-04-15,
10:55:42 3

Password file not
shadowed 9

6

19
2.

16
8.

1.
2

2003-04-15,
11:42:47 4 FTP root directory

write-enabled 8

7 2003-04-15,
12:58:51 2 IRC server

present 2

8
2003-04-15,
12:59:58 3

Password file not
shadowed 9

14

19
2.

16
8.

1.
7

2003-04-14,
13:09:45 4 FTP root directory

write-enabled 8

56
2003-04-14,
15:41:12 1 Anonymous FTP

enabled
4

57 2003-04-14,

15:48:00 2 IRC server
present 2

58 2003-04-14,

15:56:04
5 Can trace route to

host
2

19
2.

16
8.

1.
41

Figure 6.11: Scan result report with vul nerabilities mapped onto the harmonised
vulnerability categories

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 97

Figure 6.11 shows the scan result report with the vulnerability mapping onto the

harmonised vulnerability categories. A vulnerability of a VS product is only mapped

when it is found on a particular host. For example, vulnerability number 1 found on

host number 1, as shown in figure 6.11, is mapped onto harmonised vulnerability

category 4.

Harmonised history database

The harmonised history database is the output created by the vulnerability mapper, in

other words it is a database that contains the results of multiple scans conducted by

the specific VS product already mapped into the harmonised vulnerability category

format. Each time a vulnerability scan is conducted, a new set of harmonised

vulnerability data is also created by the vulnerability mapper, and is referred to as the

harmonised history database. The harmonised history database contains the entity

shown in figure 6.12.

Figure 6.12: VF logical database part 4 added: harmonised history data

There is only one entity in the harmonised history database:

Harmonised
vulnerability

category

Maps
onto

N

1

Legend
µ Vulnerability data

u Scan data

v Harmonised vulnerability category data

z Harmonised history data

History M N

Produces

1

M

Maps
onto

Vulnerability
category

Event Vulnerability

Contains

Causes

Host

Found
on

1

M

1 M

M

1

Scan Contains
M 1

v

u

z
µ

CHAPTER 6

Page 98

• History

o This entity contains the history data for all the scans already

conducted, mapped onto the harmonised vulnerability categories.

The history entity refers to the data of all previous scans conducted.

The history entity, therefore, contains the same structure as for the

event entity. Each time a scan is conducted, thus, the information of

the event entity is copied to the history entity, after which the event

entity is cleared in order to store new scan data for the next scan to be

conducted.

6.3.2.2.3 Vulnerability forecasting

Figure 6.13: The vulnerability forecast component

Figure 6.13 represents the vulnerability forecast component of the conceptual VF

model. This main component does the actual vulnerability forecasting . In summary,

the output of the vulnerability mapper in component 2 of the conceptual VF model as

shown in figure 6.1, namely the harmonised history database, serves as input to the

vulnerability forecast engine in component 3 of the conceptual VF model. The

vulnerability forecast engine attempts to predict trends or patterns, in terms of

harmonised vulnerability categories, in which potential vulnerabilities could occur.

Vulnerability forecast engine

The vulnerability forecast engine constitutes the heart of the conceptual VF model.

Intelligent techniques are used in conjunction with history scan data and history

forecast data to forecast which harmonised vulnerability category or categories would

potentially pose vulnerability problems in the near future. This technique will attempt

to solve the addressed problems with state -of-the-art VS products as given in table

6.1. The vulnerability forecast engine will be discussed in detail in the next chapter.

Vulnerability
forecast
engine

Forecast
history

database

�

Forecast
result �

Risk
management

�

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 99

Forecast history database

The forecast result is stored in the forecast history database along with previous

forecasts carried out. The latest vulnerability forecast can be reviewed and proactive

vulnerability rectification procedures can be carried out according to the vulnerability

forecast. The main purpose of the forecast history database, thus, is the same as that

of the harmonised history database: to serve as a repository for storing history data

about vulnerability forecasts that will be used as input for the next time a vulnerability

forecast is made. The forecast history database contains the entity shown in figure

6.14. The relationships in figure 6.14 denoted as M to N represent “many-to-many”

relationships.

Figure 6.14: VF logical database part 5 added: forecast history data

There is only one entity in the forecast history database:

• Forecast

Harmonised
vulnerability

category

Maps
onto

N

1

Legend

µ

Vulnerability data
u Scan data
v Harmonised vulnerability category data
z Harmonised history data
¬ Forecast history data

History M N

Produces

1

M

v

Maps
onto

Vulnerability
category

Event Vulnerability

Contains

Causes

Host

Found
on

1

M

1 M

M

1

Scan Contains
M 1

Forecast

Produced
from

M

M N

¬

Do
forecast

N

u

z
µ

CHAPTER 6

Page 100

o This entity is initially empty, because no forecast has been made by

then. Only from the second vulnerability forecast onwards, this entity

will contain the vulnerability forecast history of all previous

vulnerability forecasts that have been made. This entity contains the

history data for all the forecasts already made for each harmonised

vulnerability category. The forecast entity, thus, contains information

of the last forecast that was made, as well as information of all

previous forecasts made. The minimum fields in this entity include the

forecast ID that serves as the primary key, the forecast number, and the

forecast result.

Forecast result

A vulnerability forecast result is created for a specific vulnerability forecast that has

been done. The goal of the report is to indicate to what extent each harmonised

vulnerability category poses potential future threats to the network of hosts scanned.

This enables one to take proactive action, in other words, to rectify vulnerabilities in a

bid to minimise their occurrence in a future scan. The forecast result is normally

archived and stored in the forecast entity in the forecast history database. The forecast

result report usually contains the following information for each harmonised

vulnerability category, as shown in figure 6.15:

• The vulnerability forecast number.

• The date and time when the vulnerability forecast was made.

• The harmonised vulnerability category number and description of each

specific harmonised vulnerability category.

• The vulnerability forecast result for each harmonised vulnerability category.

Figure 6.15 shows vulnerability forecasts number 1 to n. Note that vulnerability

forecasts 1 to n – 1 are considered as history forecasts and are used merely as input by

the vulnerability forecast engine to effect the latest vulnerability forecast – that of

forecast n. For each vulnerability forecast, i.e. vulnerability forecast number n, a

vulnerability forecast result is calculated, which indicates the suggested priority of

which harmonised vulnerability category should be attended to first. For example, the

vulnerability forecast result for vulnerability category 8 in vulnerability forecast n

suggests that misconfiguration vulnerabilities should receive the highest priority

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 101

where “1” indicates the highest priority and “p” indicates the lowest priority. In other

words, the vulnerability forecast for the misconfigurations harmonised vulnerability

category predicts that, if the next time a vulnerability scan is conducted and no

preventative action has been taken by then, misconfiguration vulnerabilities might

occur to such an extent that the most fatal consequences for this harmonised

vulnerability category can be anticipated, compared to the consequences that might be

anticipated for vulnerabilities of all the other harmonised vulnerability categories.

Having this information will enable one to do risk management for the specific

vulnerability forecast to rectify the vulnerabilities that are forecast for each

harmonised vulnerability category.

V
ul

ne
ra

bi
lit

y
fo

re
ca

st
 #

D
at

e
&

 ti
m

e

H
ar

m
on

is
ed

vu

ln
er

ab
ili

ty

ca
te

go
ry

 #
,

ic
o

n
, a

n
d

 n
am

e

V
ul

ne
ra

bi
lit

y
fo

re
ca

st
 r

es
u

lt

9
Denial-of-services (DoS) and buffer
overflows 1

2

Network and system information
gathering 2

8 Misconfigurations 3

1 2002-11-16, 13:25:40

11

Hardware specific p

8 Misconfigurations 1

7

Spoofing or masquerading 2

1

Password cracking and sniffing 3

N 2003-04-15, 10:33:12

10 Viruses and worms p

Figure 6.15: A vulnerability forecast result report for vulnerability forecasts 1 to n

Risk management

The risk management component is not an automatic step, but rather an interactive

step taken by human resources, which includes some decision -making on which and

how vulnerabilities will be rectified. From figure 15 it is clear that high-risk

harmonised vulnerability categories constitute those categories that were forecast with

the highest expected priority. For example, harmo nised vulnerability categories 8, 7,

CHAPTER 6

Page 102

and 1, as shown in vulnerability forecast number n in figure 6.15, may be considered

high-risk harmonised vulnerability categories. On the other hand, harmonised

vulnerability category 10, as shown in vulnerability forecast number n in figure 6.15,

may be considered a low-risk harmonised vulnerability category.

This would enable human resources to do risk management by providing them with

more efficient information, for example on how to know where to start rectification

procedures . Human resources might not necessarily decide, however, to tackle the

harmonised vulnerability categories in the exact order as suggested by the

vulnerability forecast. For example, vulnerability forecast number n suggests that

harmonised vulnerability categories 8, 7, and 1 be attended to in that specific order.

Human resources might decide, however, that, although harmonised vulnerability

categories 8 and 7 are seen as high-risk categories, harmonised vulnerability category

1 might pose a higher risk to the organisation according to the organisation’s needs .

Harmonised vulnerability category 1, therefore, may be attended to first. To further

clarify this example, suppose the organisation recently experienced devastating effects

from vulnerability exp loits concerned with harmonised vulnerability category 1 –

password cracking and sniffing. Although harmonised vulnerability categories 8 and

7 are forecast to cause more vulnerability exploits to occur when the next

vulnerability scan is conducted, password cracking and sniffing might be attended to

first by human resources.

In order to get a complete picture of the conceptual VF model, all the subcomponents

of the model are merged into and shown in the following section.

6.3.2.2.4 Merging the subcomponents for the conceptual VF model

The previous three sections discussed the three main components of the conceptual

VF model in detail. These three components, when merged, comprise the conceptual

VF model as shown in figure 6.16.

 VULNERABILITY FORECASTING - A CONCEPTUAL MODEL

 Page 103

Figure 6.16: The conceptual model for vulnerability forecasting

66..44 CCOONNCC LLUUSSIIOONN

Far from rendering existing VS products obsolete, VF is used proactively to co-

ordinate output from existing VS products with that gleaned from in telligent

techniques and history data.

The concept of vulnerability forecasting has many advantages . It saves considerable

time, because instead of scans being conducted all the time to detect and rectify

vulnerabilities, scans can now be conducted le ss frequently. Having vulnerability

forecasts, vulnerability problem areas – in the form of harmonised vulnerability

categories – can be attended to before they can erupt . In due course, system resources

are occupied less often due to fewer scans that need to be conducted.

Using harmonised vulnerability categories along with vulnerability forecasting

renders the process of doing vulnerability forecasting VS product independent. The

difference in the types of vulnerability categories that various VS products scan for is

therefore bridged by the use of harmonised vulnerability categories . In addition,

adequate and sufficient risk management can be done due to the fact that, each time a

Current

vulnerability
scanner

Network
and hosts

Vulnerability
forecast
engine

Vulnerability
rectification

Harmonised
history

database

Forecast
history

database

Harmonised
vulnerability
categories
database

Vulnerability
mapper

� Current technology � Vulnerability forecasting

� Vulnerability harmonisation

Forecast
result

Scan
result

Vulnerability database

Vulnerability data

Scan data

Other data

Risk
manage -

ment

CHAPTER 6

Page 104

vulnerability forecast is done, vulnerability forecasts are made available for each

harmo nised vulnerability category.

In the next chapter, the researcher will elaborate on the heart of the VF model – the

vulnerability forecasting engine –to demonstrate how harmonised vulnerability

categories, intelligent techniques, and history data can be utilised in vulnerability

forecasting.

 Page 105

CCHHAAPPTTEERR 77

TTHHEE VVUULLNNEERRAABBIILLIITTYY FFOORREECCAASSTT EENNGGIINNEE
__

77..11 IINNTTRROODD UUCC TTIIOO NN

The previous chapter introduced the conceptual model for vulnerability forecasting

(VF). It is necessary, however, to understand the technique that the VF model

employs in more detail.

The goal of this chapter, therefore, is to discuss how the VF engine works in detail.

This chapter will discuss specific steps and procedures that are used to do VF. At

first, the input used to do a vulnerability forecast is discussed, followed by an

explanation to show, with examples, how the VF technique works in detail.

77..22 IINNPPUUTT TTOO TTHHEE VVFF EENNGGIINNEE

An integral part of being able to do VF is the fact that VF makes extensive use of

history data. A number of scan data sets , therefore, must be available before a

vulnerability forecast can be made. These sets of scan data, however, should be in the

form of harmonised history data. The scan data of a particular VS is first converted to

harmonised history data, and then stored in the harmonised history database until

enough harmonised history data is available to do a vulnerability forecast.

The previous chapter indicated how harmonised history data can be obtained, albeit

only for one scan. Clearly, from the above, m scans need to be conducted before

enough harmonised history data becomes available. Figure 7.1 illustrates harmonised

history data for m scans, which serves as input to the VF engine.

CHAPTER 7

Page 106

S
ca

n

E
ve

n
t #

H

o
st

 #

D
at

e
&

 ti
m

e

V
ul

ne
ra

bi
lit

y

V
ul

ne
ra

bi
lit

y
d

es
cr

ip
ti

o
n

H
ar

m
o

n
is

ed

vu
ln

er
ab

ili
ty

ca

te
go

ry
 #

1
2003-04-15,
10:55:23 1 Anonymous FTP

enabled
4

2
2003-04-15,
10:55:42 3

Password file not
shadowed 9

6

19
2.

16
8.

1.
2

2003-04-15,
11:42:47 4 FTP root directory

write-enabled 8

7 2003-04-15,
12:58:51 2 IRC server

present 2

8
2003-04-15,
12:59:58 3

Password file not
shadowed 9

14

19
2.

16
8.

1.
7

2003-04-14,
13:09:45 4 FTP root directory

write-enabled 8

56
2003-04-14,
15:41:12 1 Anonymous FTP

enabled 4

57 2003-04-14,
15:48:00 2 IRC server

present 2

S
ca

n
m

58 19
2.

16
8.

1.
41

2003-04-14,
15:56:04 5 Can trace route to

host 2

H
ar

m
on

is
ed

 s
ca

n
da

ta
 fo

r
sc

an
 m

Figure 7.1: The harmonised history data for m scans

1
2003-04-15,
10:55:23 1 Anonymous FTP

enabled
4

2
2003-04-15,
10:55:42 3

Password file not
shadowed 9

6

19
2.

16
8.

1.
2

2003-04-15,
11:42:47 4 FTP root directory

write-enabled 8

7 2003-04-15,
12:58:51 2 IRC server

present 2

8
2003-04-15,
12:59:58 3

Password file not
shadowed 9

14

19
2.

16
8.

1.
7

2003-04-14,
13:09:45 4 FTP root directory

write-enabled 8

56
2003-04-14,
15:41:12 1 Anonymous FTP

enabled 4

57 2003-04-14,
15:48:00 2 IRC server

present 2

S
ca

n
1

58 19
2.

16
8.

1.
41

2003-04-14,
15:56:04

5 Can trace route to
host

2

H
ar

m
o

n
is

ed
 d

at
a

fo
r

sc
an

 1

H
ar

m
on

is
ed

 h
is

to
ry

 d
at

a
–

th
e

in
p

u
t t

o
 th

e
V

F
 e

n
g

in
e

 VULNERABILITY FORECAST ENGINE

 Page 107

The m sets of harmonised history data will be used to do a vulnerability forecast. To

illustrate this, the next section provides a detailed discussion on how the VF technique

works.

77..33 EEXXPPLLAA NNAA TTIIOO NN OOFF TTHHEE VVFF TTEECC HHNNIIQQUUEE

A typical forecast for a specific harmonised vulnerability category entitled network

and system information gathering, may read as follows: “It is expected that a range of

between x and y network and system information gathering vulnerabilities will be

detected when the next scan is conducted.” A decision can then be made, as indicated

by the risk management component in the VF model, as to whether or not x to y

vulnerabilities for the said harmonised vulnerability category pose a significant threat

to an organisation. VF can be used to compare all vulnerability categories by using

intelligent techniques . Consider, for example, the forecasts for the following two

vulnerability categories:

• “It is expected that a range of between 30 and 40 privilege and user

escalation vulnerabilities will be detected when the next scan is conducted.”

• “It is expected that a range of between 5 and 9 network and system

information gathering vulnerabilities will be detected when the next scan is

conducted.”

On comparing the above vulnerability categories, it may become evident that the

forecast for the privilege and user escalation harmonised vulnerability category

warrants more urgent attention than that for the network and system information

gathering harmonised vulnerability category, as the former poses an expected threat

of “between 30 and 40” vulnerabilities − a considerably bigger threat than the

vulnerability range of “between 5 and 9” forecas t for the network and system

information gathering harmonised vulnerability category.

This manner of VF can be facilitated by using a Fuzzy Expected Interval (FEI)

[KAND 92] [SCHN 88], which forms a subset of fuzzy logic. An FEI for a specific

harmonised vulnerability category represents a narrow range of typical values. This

range of typical values best describes the possible number of vulnerabilities for a

specific harmonised vulnerability category that can be expected to occur when a

CHAPTER 7

Page 108

future scan is conducted. An FEI for the above example “x to y” will be quoted as

being range [x, y].

The reasons why the researcher opted to employ an FEI include its ability to

compensate for and deal with incomplete data. Incomplete data may, for instance, be

generated when effecting software and hardware installations and removals. For

reasons of comparison, imagine a network that contains 10 hosts. Next, assume that a

new e-mail software package has been installed on 5 of the said 10 hosts and that this

specific software package has been reported to contain many privilege and user

escalation vulnerabilities. The vulnerability count for the privilege and user

escalation harmonised vulnerability category will increase significantly after the

installation. Assume, too, that the specific software package is removed at a later

stage, resulting in a drop in the vulnerability count on the occasion of the very next

vulnerability scan. In addition, there will always be hosts in the network that are

either off-line or simply switched off, which also contributes to variations in the

vulnerability count for each vulnerability scan.

In view of such fluctuations, as well as incomplete data, it would be much more

prudent to forecast that the vulnerabilities expected for a specific harmonised

vulnerability category belong to a specific vulnerability range, such as [p, r], rather

than making bold to forecast that the vulnerabilities expected for a specific

harmonised vulnerability category will be equal to, say, q. For the remainder of this

paper, a range such as [p, r] will be referred to as a vulnerability range.

To explain the technique of VF, Fuzzy Expected Intervals (FEIs), which are used in

the process of doing VF, will be discussed in the next section.

7.3.1 Using FEIs for VF
An FEI is calculated for each harmonised vulnerability category . Consider that m

scans have been conducted to obtain harmonised history data . Also consider only one

specific harmonised vulnerability category K over the m scans for now. Calculating

the FEI for harmonised vulnerability category K, and subsequently for all other

harmonised vulnerability categories, requires the steps depicted in figure 7.2. These

steps are based on work done by Schneider [SCHN 88].

 VULNERABILITY FORECAST ENGINE

 Page 109

Figure 7.2 : The 5 steps for determining the FEI for each harmonised vulnerability
category

Each of the steps mentioned in figure 7.2 is discussed in detail in the sections that

follow.

7.3.1.1 Step 1: Determine fuzzy groups for a vulnerability
forecast

As a starting point, and before any calculations can be done, it is critical to know how

the population is distributed across the harmonised history data obtained. In other

words, the population is distributed into certain fuzzy groups. The term “population”

is used to refer to the entire range of all possible values in the harmonised history

data.

Determining these fuzzy groups is an intuitive exercise and can be effected, for

example, by examining the history data for harmonised vulnerability category K over

Step 1: Determine fuzzy groups for a vulnerability forecast
Group the data for a specific harmonised vulnerability category into fuzzy groups to
summarise and transform this data into smaller, workable units.

Step 2: Defuzzify “fuzzy” vulnerabilities
Transform the “fuzzy” adjectives describing the vulnerabilities in a fuzzy group, for
example more than or much more than, into some logical range of values on which
calculations can be performed.

Step 3: Define and calculate the membership function
Map the ranges obtained from step 2 each to a range between 0 and 1 to normalise
these ranges all to a comparable level; it is determined how ‘strongly’ each harmonised
vulnerability category belongs to the entire harmonised vulnerability population.

Step 4: Defuzzify “fuzzy” scans
Transform the “fuzzy” adjectives describing the scans in a fuzzy group, for example
more than, almost, more or less, or much more than, into some logical range of values
on which calculations can be performed.

Step 5: Calculate the maximum over the minima and the FEI
Calculate the final range of vulnerabilities that is expected to be uncovered when a next
scan is conducted. The defuzzified ranges produced by steps 2 and 4 are compared: if
there were 4 fuzzy groups as defined by step 1, for example, then steps 2 and 4 would
each have produced 4 ranges – one for each fuzzy group. Each range from step 2 and
4 is compared to each other and the smallest range of the two is selected, whereupon
the largest range of these results is selected to yield the FEI.

CHAPTER 7

Page 110

m scans. The specific number of fuzzy groups to be determined is also arrived at

intuitively – it depends on how closely the data is related. Each of the m scans must

be allocated to a specific fuzzy group. The idea is to group together the harmonised

history data of those scans that closely relate to one another, for harmonised

vulnerability category K. In this way, the data in the m scans is summarised and

lumped into fuzzy groups [KAND 82]. Table 7.1 shows examples of fuzzy groups.

Table 7.1 : The fuzzy groups formed for harmonised vulnerability category K
Fuzzy group Fuzzy group description

A In 3 scans, 20 to 25 vulnerabilities were found.
B In 3 to 5 scans, more or less 20 vulnerabilities were found.
C In 4 to 5 scans, almost 80 vulnerabilities were found.

Note that the scans grouped together in fuzzy group A fall exactly within the [20, 25]

range. There is, in other words, nothing “fuzzy” about this range. Fuzzy groups B

and C, on the other hand, contain the adjectives more or less and almost respectively,

which render these ranges fuzzy, and not crisp.

7.3.1.2 Step 2: Defuzzify “fuzzy” vulnerabilities
In the process of calculating an FEI, working with fuzzy values is precluded, as the

calculations in question can only be effected through crisp logic. The adjectives more

or less and almost need to be converted into ranges – they need to be defuzzified.

What exactly, for instance, does “more or less 20” mean in fuzzy group B? In fuzzy

group A, an exact range is given, namely [20, 25]. The adjective “more or less 20”

can be converted to such an exact range by converting it to a specific value. This

process of converting adjectives into a range with a lower and an upper bound can be

effected by means of a mapping table [SCHN 88], as shown in table 7.2.

Table 7.2 : Mapping table

Adjective Lower bound Upper bound

Almost x – 15% x – 3

More or less x – 2 x + 10%

How exactly are the formulae for the lower and upper bounds determined for each of

the adjectives listed in table 7.2? As with creating the fuzzy groups, the mapping

table is also constructed intuitively by studying the harmonised history data gleaned

 VULNERABILITY FORECAST ENGINE

 Page 111

from the m scans as follows: As far as the adjective almost is concerned, the term

“almost” implies that neither the lower nor the upper bound reaches the specific value

that is being quoted. Consider again, for example, fuzzy group C: “In 4 to 5 scans,

almost 80 vulnerabilities were found.” When looking at specific scans out of the m

scans, 4 to 5 scans might happen to fall in the vulnerability range [40, 50], as an

example. The lower bound of these scans is 40, and 40 ˜ 50 – 10%. Consider this

calculation, 50 – 10%, and substitute “50” for “x”. Having done so, the “lower-bound

formula” for “almost” in the mapping table yields x – 15% . The maximum (upper

bound) is calculated in the same way. Similarly, the remainder of the mapping table

is constructed for the adjective more or less .

The mapping table is applied in the following way. The data in fuzzy group A from

table 7.1 is already in a range format, with a lower and an upper bound, namely

[20, 25]. “More or less” 20 in fuzzy group B, however, still needs to be converted,

using the mapping table provided in table 7.2. If the adjective “more or less” cou ld be

ignored for the moment, “20” could, in range format, be written as [20, 20], indicating

that both the lower and upper bounds of the range are 20, so that 20 = [20, 20]. The

formula (according to the mapping table) to “remove” the “more or less” section in

fuzzy group B is x – 2 for the lower bound and x + 10% for the upper bound of the

range. This, in turn, means that x simply needs to be substituted for the range [20, 20]

(lower and upper bounds respectively) in order to calculate the “converted” lower and

upper bounds. In this way, the “converted” range for fuzzy group B becomes

[20 – 2, 20 + 10%] = [18, 22]. After having effected the latter defuzzification process,

fuzzy group B actually reads as follows: “In 3 to 4 scans, 18 to 22 vulnerabilities were

found.” In the same way, all the adjectives of the other fuzzy groups can be converted

into ranges.

To sum up, table 7.3 below indicates the distribution of the scans as they were

allocated to each fuzzy group, as well as the defuzzified ranges for the current

example.

CHAPTER 7

Page 112

Table 7.3 : Distribution of scans and defuzzified ranges

Fuzzy group Distribution of scans
Vulnerabilities found

(defuzzified)

A 3 scans become [3, 3] [20, 25]

B 3 to 5 scans become [3, 5] [18, 22]

C 4 to 5 scans become [4, 5] [68, 77]

These defuzzified ranges now need to be converted again, using a membership

function. The latter conversion is necessary in order to obtain a normalised view of

all the vulnerability ranges. This process will be discussed in the next section.

7.3.1.3 Step 3: Define and calculate the membership function
The membership function simply expresses each of these defuzzified vulnerability

ranges as a range between 0 and 1. In other words, the membership function

expresses the grade of membership [KABY 78] for each defuzzified vulnerability

range compared with the entire population. Traditionally, the grade of membership 1

is assigned if the vulnerability range completely and fully belongs to the entire

population, whilst 0 is assigned to a vulnerability range that does not belong to the

entire population at all. The greater the degree to which a vulnerability range belongs

to the entire population, the closer it is to a grade of membership to the entire

population.

The membership function for this example would be constructed as shown in figure

7.3. As in the case of the fuzzy groups and the mapping table, the membership

function is created intuitively. Assume that it is evident from the harmonised history

data that not one of the m scans ever uncovered more than 90 vulnerabilities. This

membership function, therefore, indicates that 90 is the absolute maximum that will

ever be reached for harmonised vulnerability category K.

 0 if x <= 0

χ(x)= x / 90 if (0 < x < 90)

 1 if x >= 90
Figure 7.3: Membership function

The result of this membership function for each fuzzy group will be referred to as χ’s,

as shown in table 7.4. For example, the χ range for the range [20, 25] is calculated

 VULNERABILITY FORECAST ENGINE

 Page 113

first for the lower bound and then for the upper bound. This culminates in the χ range

[0.222, 0.278] for fuzzy group A, as shown in table 7.4. The latter process is repeated

for the rest of the fuzzy groups.

Table 7.4 : Transforming the defuzzified values using the membership function χ(x)

Fuzzy group Distribution of scans χ's

A [3, 3] [0.222, 0.278]

B [3, 5] [0.2, 0.244]

C [4, 5] [0.756, 0.889]

The distribution of scans must now also be defuzzified to a fuzzy measure between 0

and 1. In other words, finding the fuzzy measure for each χ range implies

determining the degree to which a specific range of vulnerabilities belongs to the

entire population. This process will be discussed in the next section.

7.3.1.4 Step 4: Defuzzify “fuzzy” scans
The method of calculating fuzzy measures over a certain distribution of the population

is described by Schneider [SCHN 88]. As in the previous step, a fuzzy measure for

the scan distribution of each fuzzy group will be calculated. These results will be

referred to as µ’s. Schneider [SCHN 88] uses equations 1 and 2, below, to calculate

the µ’s for each fuzzy group, where n is the number of fuzzy groups identified and j is

the current fuzzy group in the calculation of LBj (the µ for the lower bound of fuzzy

group j) and UBj (the µ for the upper bound of fuzzy group j).

 n
 Σ MIN [pi1, pi2]

 I=j Equation 1: LB j =
 n j-1

 Σ MIN [pi1, pi2] + Σ MAX [pi1, pi2]
 i=j i=1

 n
 Σ MAX [pi1, pi2]

 I=j Equation 2: UB j =
 n j-1

 Σ MAX [pi1, pi2] + Σ MIN [pi1, pi2]
 i=j i=1

CHAPTER 7

Page 114

Having used these two equations to calculate each of the µ’s for each fuzzy group, the

results are as shown in table 7.5 below:

Table 7.5 : Results for the µ’s and χ’s
Fuzzy group µ’s χ's

A [1.0, 1.0] [0.222, 0.278]

B [0.7, 0.769] [0.2, 0.244]

C [0.333, 0.455] [0.756, 0.889]

The µ’s and χ's in table 7.5 above can be explained as follows, for example, for

groups A and C:

• For fuzzy group A, the defuzzified vulnerability range [0.222, 0.278] belongs

to the entire scan population, since [1.0, 1.0] is exactly 1, and since 1 belongs

to the entire scan population. The defuzzified vulnerability range

[0.222, 0.278], thus, is included in all of the scans owning to its membership

of exactly 1 to the entire population.

• For fuzzy group C, the defuzzified vulnerability range [0.756, 0.889] belongs

[0.333, 0.455] to the scan population, and [0.333, 0.455], in a range between

0 and 1, means that this vulnerability range inclu des only [0.333, 0.455] times

the entire scan population. The defuzzified vulnerability range [0.756, 0.889],

thus, is included in very few of the m scans, owing to its membership of

[0.333, 0.455] to the entire population of m scans.

The ultimate aim is to find a single range that would serve as the FEI for this specific

harmonised vulnerability category . To find one specific range from table 7.5, the

median of all those ranges must be calculated [SCHN 88]. This is done by calculating

the maximum over the minima of all the ranges shown in table 7.5. This also

constitutes the final step in the process, to be discussed in the next section.

7.3.1.5 Step 5: Calculate the maximum over the minima and the
FEI

For the final step in this process, the MAX(MIN(µi, χ i)) is calculated, using theorems

of Schneider [SCHN 88]. The result for this example would yield [0.333, 0.455].

The latter value should be multiplied by 90 to express the range [0.333, 0.455] in

“number of vulnerabilities”. Bear in mind that the number 90 was used in this

 VULNERABILITY FORECAST ENGINE

 Page 115

example to express the population as the absolute maximum number of vulnerabilities

anticipated and reflected in the membership function. This will yield an FEI of

[30, 41], which, in turn, serves to forecast that the next time the specific VS used in

this example is used to conduct a scan, it will uncover 30 to 41 vulnerabilities for

harmonised vulnerability category K.

7.3.2 FEI for each harmonised vulnerability category
The above vulnerability forecast was effected for harmonised vulnerability category K

only. It can, however, also be effected for the remainder of the harmonised

vulnerability categories, which will each yield an FEI . Table 7.6 depicts such an

example of the vulnerability forecasts for harmonised vulnerability categories 1 to 13.

Table 7.6: An example FEI calculated for each harmonised vulnerability sorted in
order of highest to lowest priority

Harmonised vulnerability category number, icon, and name Vulnerability
forecast result

9

Denial-of-services (DoS) and buffer overflows [20, 31]

3

User enumeration and information gathering [23, 27]

8
Misconfigurations [8, 24]

4

Backdoors, Trojans and remote controlling
[19, 22]

5 Unauthorised access to remote connections & services [10, 21]

1

Password cracking and sniffing [14, 19]

6

Privilege and user escalation
[0, 7]

2

Network and system information gathering [5, 5]

12

Software specific and updates

[4, 5]

7

Spoofing or masquerading [2, 6]

11

Hardware specific [4, 4]

13

Security policy violations [3, 5]

10

Viruses and worms
[0, 4]

CHAPTER 7

Page 116

77..44 CCOONNCC LLUUSSIIOONN

The question could be asked: What do we stand to gain from obtaining such forecast

results? The answer to this question is that forecast results could give us an indication

of the number of potential vulnerabilities an organisation could expect to have

uncovered for each of its vulnerability categories during future scans. In this way, an

organisation could perform risk management to better prioritise its vulnerability

problem categories.

The problem areas of particular interest to the researcher of this research project

included the duration of vulnerability scans, as well as the possible degradation of

system performance during such scans. How can VF be used to minimise the impact

of these problems? VF helps to reduce the number of vulnerability scans required

over time by increasing the intervals between successive scans. Instead of having to

conduct scans on a daily basis , for instance, scans may now be required on a weekly

basis only. This reduction in the number of scans can, moreover, be accomplished

without forfeiting anything as far as the exposure or rectifying of vulnerabilities is

concerned. In this way, not only the overall number of scans required for efficiency is

reduced, but, consequently, also the threat of system degradation during scans.

The next chapter will demonstrate the working of VF by means of actual scan data

and a prototype implementation.

 Page 117

CCHHAAPPTTEERR 88

AA PPRROOTTOOTTYYPPEE FFOORR VVUULLNNEERRAABBIILLIITTYY

FFOORREECCAASSTTIINNGG
__

88..11 IINNTTRROODD UUCC TTIIOO NN

The thesis culminates in this chapter through a demonstration of the deployment of

the VF model in a prototype implementation called the VF Prototype . The VF

Prototype is not a complete implementation of the VF model. However, it

implements the biggest part of the VF model that is essential to demonstrate that the

VF model works. The sections that follow will state the aim of the VF Prototype as

well as what part of the VF model is implemented by the prototype.

8.1.1 The aim of the prototype

The VF Prototype has as its primary aim to demonstrate that, by having gathered

sufficient vulnerability history data, a forecast can be made about how and to what

extent vulnerabilities will occur in the future. The VF Prototype can therefore be used

as part of a risk management programme that would provide human resources with

sufficient information, enabling them to deal more successfully with vulnerabilities

which will occur when a vulnerability scan is conducted in the future. The prototype

is specifically concerned with producing a vulnerability forecast range for each

specific harmonised vulnerability category.

Although the vulnerabilities of a specific VS product should be classified into the

harmonised vulnerability categories – ultimately by the VF Prototype itself – the

current version of the prototype relies on the input of human resources as a once-off

classification exercise for each VS product that is used by the VF model. In addition,

the VF Prototype will use only one specific VS product for doing vulnerability

forecasting.

CHAPTER 8

Page 118

8.1.2 The VF model and the prototype

The scope of implementation of the VF Prototype in terms of the VF model is

graphically depicted in figure 8.1 by the dark black line as being mostly concerned

with the vulnerability forecasting process itself, and not with the gathering of history

data. The vulnerability rectification, risk management, and current VS components

have been specifically left out of the scope of implementation of the VF Prototype.

Figure 8.1: The VF Prototype’s scope in terms of the VF model as indicated by the
dark black line

In addition, the dark black line in figure 8.2 shows th e scope of implementation of the

VF Prototype in terms of the database structure of the VF model as defined in chapter

6. The database implemented in the VF Prototype, thus, differs somewhat from that

specified for the VF model. For one, it does not contain a history entity as shown in

figure 8.2. However, vulnerability scans that are conducted accumulate in the event

entity rather than in a separate history entity as shown for the VF model. The VF

Prototype also refers differently to some of the entities and attributes as discussed in

chapter 6. The reason for this is that, for the purpose of demonstrating the VF

Prototype, a specific VS product – CyberCop Scanner – has been used.

Current

vulnerability
scanner

Network
and hosts

Vulnerability
forecast
engine

Vulnerability
rectification

Harmonised
history

database

Forecast
history

database

Harmonised
vulnerability
categories
database

Vulnerability
mapper

� Current technology � Vulnerability forecasting

� Vulnerability harmonisation

Forecast
result

Scan
result

Vulnerability database

Vulnerability data

Scan data

Other data

Risk
manage -

ment

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 119

Figure 8.2: The VF Prototype’s scope in terms of the VF model as indicated by the
dark black line

Figure 8.3 shows a screenshot of the relational database schema as defined in the VF

Prototype.

The next section explains the development of the VF Prototype. A discussion of the

choice of tools will start the explanation of the prototype. Thereafter the functional

requirements that were set out will be explained and an architectural overview of the

prototype will be given. A word on installing the VF Prototype will then be given,

but the detailed installation procedure is given in Appendix A. This is followed by a

section on the operation of the VF Prototype with discussions on the specific scan

scenario in which the prototype was tested, setting up parameters of the prototype

before it can execute, and a detailed discussion on using the prototype software.

Finally, the chapter will conclude with remarks and findings regarding the VF

Prototype.

Harmonised
vulnerability

category

Maps
onto

N

1

Legend

µ

Vulnerability data
u Scan data
v Harmonised vulnerability category data
z Harmonised history data
¬

Forecast history data

History M N

Produces

1

M

v

Maps
onto

Vulnerability
category

Event Vulnerability

Contains

Causes

Host

Found
on

1

M

1 M

M

1

Scan Contains
M 1

Forecast

Produced
from

M

M N

¬

Do
forecast

N

u

z
µ

CHAPTER 8

Page 120

Figure 8.3: Relational schema of the database implementation in the VF Prototype

88..22 DDEEVV EELLOO PPMMEENNTT OOFF TTHHEE VVFF PPRROOTTOOTTYYPPEE

In order to achieve the aim of the VF Prototype, the researcher followed a combined

approach by using existing VS products as tools and integrating them in the

development of the VF Prototype.

The development tools used for des igning the VF Prototype consequently need to be

considered. The development of the VF Prototype was strongly supported by a

number of tools. The development took place in two phases: a design phase and an

implementation phase. During the design phase, M icrosoft Access was used to study

the database structure of current VS products, as well as to design the database

structure of the VF Prototype. Microsoft Excel in conjunction with Visual Basic for

Applications were also used in this design phase to draw graphs and develop

preliminary results.

During the implementation phase, the VF Prototype was created. This phase was

developed using Microsoft Visual Basic. The source code for the VF Prototype is

given in Appendix B.

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 121

88..33 IINNSS TTAALLLLAA TTIIOO NN OOFF TTHHEE VVFF PPRROOTTOO TTYY PPEE

For installing the VF Prototype software and additional software components needed

for the prototype to run, refer to Appendix A. Note that Appendix A also contains

important information about conventions used in this chapter.

After the VF Prototype software has been installed successfully, it is ready to run as

described in the next section.

88..44 OOPPEERRAA TTIIOO NN OOFF TTHHEE VVFF PPRROOTTOO TTYYPPEE

Before the operation of the VF Prototype software is discussed in detail, a background

to the VF Prototype is given, followed by a description of a scan scenario, which was

staged specifically for testing the VF Prototype software.

8.4.1 Background to the VF Prototype

The researcher used the output of current VS products, i.e. that of CyberCop Scanner,

as input to the VF Prototype. On completion of a vulnerability scan, the typical

output of a VS product such as CyberCop Scanner is produced in the form of a report.

Such reports often also contain extensive information on how to rectify the

vulnerabilities that were uncovered. Typ ical information to be contained in a scan

report would be the host IP address, a unique vulnerability ID, a vulnerability

description, security concerns, rectification procedures and the vulnerability category

to which the specific vulnerability belongs. An example of one such vulnerability

report produced after a scan is depicted in table 8.1. After a number of scans have

been conducted, a history of scan data is generated. A detailed CyberCop Scanner

report of one such scan is shown in Appendix C.

Some VS products, i.e. CyberCop Scanner, additionally categorise the vulnerabilities

that they can scan for into vulnerability categories. Table 8.2 shows the 31

vulnerability categories that CyberCop Scanner specifically defines. CyberCop

Scanner uses a vulnerability database containing signatures for approximately 700

vulnerabilities. See Appendix D for a detailed layout of the vulnerabilities found in

the vulnerability database of CyberCop Scanner.

CHAPTER 8

Page 122

Table 8.1: Example of a vulnerability uncovered during a scan
Host IP address 192.168.1.12
Vulnerability ID 30006

Description
Remote Access Service (RAS) detected on the host. The RAS lets
remote users use a telephone line and a modem to dial into an RAS
server and tap the resources of its network.

Security
concerns

A person could be using an RAS to gain access to a network from a
remote location. This essentially creates a “backdoor” into a network,
which can, for example, bypass the firewall of that network.

Rectification
procedures

Investigate this host to identify if it is indeed an approved RAS host. If
so, there may be ways in which further to secure the host, for example,
the RAS can be configured to establish a connection by merely calling
back a user automatically, thereby ensuring that the user’s telephone
number which is used to gain access via this RAS host is known to the
RAS server.

Vulnerability
category

Remote connections and services.

Table 8.2: CyberCop vulnerability categories
Vulnerability
category No. CyberCop vulnerability category name

1 Information gathering and reconciliation
2 File-transfer protocols
3 Hardware peripherals
4 Backdoors and misconfigurations
5 SMTP and mail transfer
6 Remote procedure call services
7 Networked file systems
8 Denial-of-service attacks
9 Password guessing/grinding

10 World Wide Web, HTTP and CGI
11 Network protocol spoofing
12 Packet filter verification tests
13 Firewalls, filters and proxies
14 Authentication mechanisms
15 General remote services
16 SMB/NetBIOS resource sharing
17 Domain name system and BIND
18 Windows NT − network vulnerabilities
19 Not used
20 SNMP/network management
21 Network port scanning
22 Windows NT − browser zone policy
23 Windows NT − privilege enumeration
24 Windows NT − local system policy
25 Windows NT − auditing and password policy
26 Windows NT − information gathering
27 Intrusion-detection system verification
28 Windows NT − service packs (SPs) and hot fixes (HFs)
29 Windows NT − third-party software
30 Windows NT − services
31 Windows NT − remote access server

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 123

In the sections that follow, it will become evident how the VF Prototype maps

CyberCop Scanner’s 31 vulnerability categories onto the harmonised vulnerability

categories. The following section, however, shows a specific scan scenario where

CyberCop Scanner was used to gather history scan data that would serve as input to

the VF Prototype.

8.4.2 The scan scenario

First, the specific platform for staging the scan scenario is discussed . Then a

discussion on the scenario itself is g iven.

8.4.2.1 The platform
The VF Prototype software was tested on the following platform specifications:

• Hardware

o Intel Pentium III 750 MHz.

o 128MB main memory (primary storage).

o 10GB hard disk drive (secondary storage).

o 3COM network interface card (NIC) connected to a local area network

(LAN).

• Software

o Microsoft Windows 2000 Professional Service Pack 2.

o CyberCop Scanner 5.5 [CYBE 03].

o The VF Prototype [VENT 03, VISS 03].

8.4.2.2 The scenario
CyberCop Scanner was connected to a staged network scan scenario as an experiment.

The network used for the experiment consisted of 59 workstations in a multi-platform

environment, as depicted in figure 8.4.

In order to collect sufficient history data for the experiment, 15 scans were conducted

over regular time intervals, i.e. on a daily basis. Each scan conducted for this network

scenario lasted several hours.

The steps taken for this experiment were as follows: CyberCop Scanner was

configured to scan the 59 workstations. The scan process was then initiated on the

CHAPTER 8

Page 124

CyberCop Scanner computer. CyberCop Scanner then scanned the first host, by

testing all 700 vulnerability signatures in its vulnerability database in a bid to report

which vulnerability signatures were found to match on this host. The latter process

was repeated on the remaining 58 hosts. In total, approximately 41 300 vulnerabilities

were checked for – 700 vulnerabilities for each of the 59 hosts. Lastly, a report was

generated, listing all matched vulnerabilities – see Appendix C.

Figure 8.5 indicates the number of matched vulnerabilities uncovered for each of the

CyberCop Scanner vulnerability categories during scan 1 over the 59 hosts. Appendix

E shows the graphs of all 15 scans.

Figure 8.4: CyberCop Scanner network scan scenario

Vulnerabilities for Scan 1

41

0 0 0 0 0 0

16

1
3

0 0
2

0 0

25

2

44

0

19

52

0
2

16
19

79

0

26

0
4

0
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Categories

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
tie

s
o

ve
r

A
ll

59
 H

o
st

s

Figure 8.5: Vulnerabilities uncovered by CyberCop Scanner during scan 1 for each
CyberCop Scanner vulnerability category

CyberCop
Scanner
computer

1
• 24 workstations containing Microsoft

Windows NT 4.0, service pack 6

• 20 workstations containing Microsoft Windows
2000 Professional and Advanced Server

• 5 workstations containing
Microsoft Windows 98

• 8 workstations containing Red Hat Linux 7

• 1 workstation containing Sun Solaris 5.2

• 1 workstation containing HP LaserJet OS

24

25 44

45 49

51 58

50

59

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 125

In the sections that follow, the VF Prototype is executed. Before the VF Prototype

can deliver any results, however, it has to be set up – this is shown in the next section.

8.4.3 Setting up the VF Prototype parameters

In order to run the VF Prototype software, click Start à Run in Windows. Type the

command C:\VF\VFPrototype.exe into the Open field of the Run window as

shown in figure 8.6.

Figure 8.6: Running the VF Prototype software

The Vulnerability Forecasting (VF) Prototype main window should appear as

shown in figure 8.7 without any data entered initially. From this window, all of the

setup parameters and fo recasting functions are accessible. In the Specify the

directory that contains all the scanning databases box, enter C:\VF\Scans to

specify where the history data resides that was produced by CyberCop Scanner. In

this scan scenario, the history data comp rises the 15 scans conducted by CyberCop

Scanner over a period.

CHAPTER 8

Page 126

Figure 8.7: The Vulnerability Forecasting (VF) Prototype main window

Now click on the options button to the right of the Software package used for

vulnerability scan box in order to specify the VF Prototype options. Note that the

term “software package” denotes the specific “VS product” used by the VF Prototype.

The VS Prototype is able to use data from more than one different VS product. For

the purpose of this scenario, only one VS p roduct has been used – CyberCop Scanner.

After clicking on the options button , the VF Prototype – Options window should

appear as shown in figure 8.8 – initially empty.

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 127

Figure 8.8: The VF Prototype – Options window

8.4.3.1 Setting up the Adjective List
The Adjective List is a list that constitutes a measure of fuzziness, for example

“almost”, “more or less”, or “more than”, as described in chapter 7. To add the

adjective “almost” to the adjective list, click on the Add Adjective button and

enter the new adjective in the Adding Adjective input box as shown in figure 8.9.

Figure 8.9: The Adding Adjective input box

CHAPTER 8

Page 128

After entering the description of an adjective, i.e. Almost, click on OK. Repeat this

process for all adjectives that must be added. If an adjective needs to be deleted, click

on the adjective in the Adjective List and click on the Delete Adjective button . If

an existing adjective needs to be edited, click on the adjective in the Adjective List

and click on the Edit Adjective button .

8.4.3.2 Setting up the Harmonised Vulnerability Categories
In the Harmonised Vulnerability Categories list, as shown in figure 8.8, the

harmonised vulnerability categories as discussed in chapter 4 are entered. This is

done in the same way as explained for the Adjective List. The Default Categories

button simply serves as a shortcut to enter hard -coded harmonised vulnerability

categories. It can be ignored for the purpose of this explanation.

Figure 8.10: The VF Prototype – Software Package Setup window

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 129

8.4.3.3 Setting up the VS product used
The Vulnerability Scanning Software Information frame, as shown in figure 8.8,

allows the user to set up a specific VS product that is used to conduct VS scans –

CyberCop Scanner in this scenario. Click on the Add New button to set up

CyberCop Scanner for use by the VF Prototype. Clicking on this button should open

the VF Prototype – Software Package Setup window, as shown in figure 8.10.

8.4.3.3.1 Specifying the VS product name
In the Software Package Name box, as shown in figure 8.10, enter a name, e.g.

CyberCop. The software package or VS product used will be referred to as the

CyberCop Scanner from here onwards.

8.4.3.3.2 Specifying the vulnerability database path
In the Software package database box, enter the path containing the vulnerability

database of the CyberCop Scanner, e.g. C:\VF\VS_DB\CCSVulnDB.mdb .

8.4.3.3.3 Specifying the tables used
Click on the load tables button in order to load all the tables from the

CCSVulnDB.mdb database to be populated into the drop-down list next to this

button. Note that, as the form is being filled in, more buttons and boxes become

available. The specific table containing the vulnerability data of the CyberCop

Scanner is the VulnData table. A Table data exampl e is loaded to show the user

what the data in the VulnData table looks like for each field in the table. Not all the

fields in such a table will be used by the VF Prototype – only a vulnerability ID field

and a vulnerability description field is necessary . A user, therefore, will now be able

to easily make a choice between the latter two fields in this table to be selected in the

Select Category ID Field drop-down list and the Select Category Description Field

drop-down list, respectively. In this scenario, ID and VulDesS are the two fields to

be selected as the vulnerability ID and the vulnerability description fields,

respectively.

Once the two fields have been selected, click on the Load Category Data button in

figure 8.10 to display lists that would enable the user to specify firstly the categories

CHAPTER 8

Page 130

as defined by the CyberCop Scanner, and secondly how the vulnerabilities of the

CyberCop Scanner are mapped onto the harmonised vulnerability categories.

8.4.3.3.4 Specifying the software package categories
The CyberCop Scanner’s categories are stored in the same table as the vulnerabilities.

A category or a vulnerability, thus, is seen as the same object – a so-called software

package module – in the CyberCop Scanner vulnerability database. The way in which

a category is differentiated from a vulnerability, however, is by the ID Number.

Unfortunately, CyberCop Scanner does not store its vulnerability data and scan data in

a relational database. Instead, vulnerabilities and vulnerability categories are stored in

a single table. CyberCop Scanner, therefore, uses the following scheme to distinguish

between a vulnerability and a vulnerability category: an ID Number, where the

Number is a multiple of 1 000, is a vulnerability category and the rest are

Figure 8.11: Software Package Setup window: Harmonised mapping

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 131

vulnerabilities. To indicate specifically to the VF Prototype which are the categories,

all the software package modules that appear with an ID Number as a multiple of

1 000 should, therefore, be selected and moved over to the Software Package

Categories on the right-hand side of the form using the button.

8.4.3.3.5 Specifying the vulnerability mapping
Once the 31 CyberCop Scanner vulnerability categories have been specified, the

mapping of all ID Numbers that are not multiples of 1 000 should be mapped onto

the harmonised vulnerability categories. This might be a tedious process and may

take a fair amount of time, but it is a once-off process for the specific software

package, e.g. CyberCop Scanner, since this mapping pattern will be saved and used

each time a vulnerability forecast is done. The mapping onto the 13 harmonised

vulnerability categories for CyberCop Scanner is shown in figure 8.11.

Only the mapping onto harmonised vulnerability categories 7 to 13 is visible in figure

8.11, but scrolling up in the Harmonised Mapping tab will reveal the mapping onto

harmonised vulnerability categories 1 to 6. Note how the mapping format is done for

each harmonised vulnerability category: the ID Number of the specific Software

Package Module that should be mapped onto the particular harmonised vulnerability

category is entered. Each ID Number is separated by a comma. Because it is

possible for many sequential ID Numbers to be mapped onto a specific harmonised

vulnerability category, such numbers can be optimised by clicking on the Optimize

button. For example, consider harmonised vulnerability category 13: initially the ID

Numbers 27001, 27002, … , 27025 followed by the rest of the ID Numbers were

entered in line 13. The ID Numbers 27001, 27002, … , 27025 can be optimised by

the VF Prototype, however, by only showing the first and the last number in this

range, separated by a hyphen, i.e. 27001-27025.

As soon as the mapping numbers are entered , clicking on the Accept button as shown

in figure 8.11 returns the user to the VF Prototype – Options window shown in

figure 8.8.

CHAPTER 8

Page 132

8.4.3.3.6 Specifying the format of the history scan data
Back at the window in figure 8.8, click on the browse button , in the Vulnerability

Scanning Software Information frame, to load the Vulnerability Prototype – Set

Up Names window shown in figure 8.12. The goal of this window is to tell the VF

Prototype what the format of the history scan data will look like.

Figure 8.12: Specifying the scan data file structure of CyberCop Scanner

In the scan scenario with CyberCop Scanner, there are 15 databases available as

history scan data – one database for each vulnerability scan that was conducted. The

VF Prototype only needs an example of such a database to determine its format. In

the first box of figure 8.12, enter the path to any one of these history scan databases,

i.e. C:\VF\Scans\Scan01.mdb. Click on the Load Tables button to load all

the tables from the Scan01.mdb database to be populated into the drop-down list next

to this button. The specific table with the desired history scan data for CyberCop

Scanner is 98AEF331_3E31_11D3_8CB7_ 00C04F78C8DC_05050000_2.

Likewise, the specific field containing the vulnerabilit y ID is selected in the last drop-

down box as VulnID. Click on the Accept button to return to the VF Prototype –

Options window shown in figure 8.13.

Back at this window, click on OK to return to the main VF Prototype window as

shown in figure 8.7. Note, however, that the Software package used for

vulnerability scan box should now have the CyberCop entry selected.

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 133

Figure 8.13: The VF Prototype – Options window filled in

Now that the initial setup procedure for the VF Prototype is complete, the prototype

can start working on the history scan data.

8.4.4 Using the VF Prototype software

During this part of the VF Prototype software explanation, the history scan data is

read and analysed by the prototype. A vulnerability forecast can then be made and its

accuracy can be validated against an actual future scan.

CHAPTER 8

Page 134

8.4.4.1 Analysing the history scan data

Figure 8.14: Loading the history scan data

At this stage, the history scan data is ready to be loaded by the VF Prototype in order

to do a vulnerability forecast. In the main VF Prototype window, make sure that the

Map data to harmonised vulnerability categories option is selected. When this

option is not selected, no mapping of vulnerabilities onto the harmonised vulnerability

categories is done, but the 31 vulnerability categories as defined by CyberCop

Scanner will be used by the VF Prototype. The goal of mapping onto harmonised

vulnerability categories, however, is to render the vulnerability forecast being made

independent of specific VS products since the harmonised vulnerability categories act

as a vulnerability “standard”. For the purposes of this scan scenario, however,

mapping to the harmonised vulnerability categories is already done. Click on the

Load Data button as shown in figure 8.14 to start loading the history scan data. This

might take a minute or two, depending on the speed of the computer. After the data

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 135

has been loaded, the data for each of the 15 scans is shown under the History Scan

Data tab. By double-clicking on a specific history scan database, i.e. Scan15.mdb, a

graph for Scan 15 is shown, which indicates the number of vulnerabilities found for

each harmonised vulnerability category. This graph is displayed in figure 8.16.

Figure 8.15: The history scan data loaded and mapped

CHAPTER 8

Page 136

Figure 8.16: Graph showing information about Scan 15

8.4.4.2 Performing a vulnerability forecast
By clicking on the Vulnerability Category tab in figure 8.15, harmonised

vulnerability category information will be displayed, as shown in figure 8.17. A

vulnerability forecast can now be made for each of the harmonised vulnerability

categories shown in figure 8.17. The five steps for doing a vulnerability forecast as

explained in chapter 7 are applied and implemented in this part of the VF Prototype.

These steps for doing a vulnerability forecast are the same for each harmonised

vulnerability category. Therefore, only one harmonised vulnerability category – that

of misconfigurations – will be discussed as an example.

Double-click on Category 8 in the Vulnerability Category Information frame of

figure 8.17. The VF Prototype – Setup Information window is displayed, as shown

in figure 8.18. The Mapping Table, Fuzzy Groups, and the Membership Function

are set up here for this specific harmonised vu lnerability category. In the top right

corner of figure 8.18, a miniature graph is shown, which displays the number of

vulnerabilities found during each of the 15 history data scans for harmonised

vulnerability category 8. Click on this miniature graph to enlarge it, as shown in

figure 8.19.

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 137

Figure 8.17: Showing the mapped data for the harmonised vulnerability categories

Figure 8.18: The first three steps for doing a vulnerability forecast for category 8

CHAPTER 8

Page 138

Figure 8.19: Graph showing information about harmonised vulnerability category 8

The graph displayed in figure 8.19 is specifically used by the user to fill in the

window in figure 8.18. This graph is specifically used to compile the Fuzzy Groups ,

Mapping Table, and the Membership Function. The following three sections will

explain how this is done for harmonised vulnerability category 8. Note, however, that

these three sections correspond with steps 1 to 3 as explained in chapter 7 and input is

required from the user during these three steps. During steps 4 and 5, however, the

VF Prototype is able to calculate on its own.

8.4.4.2.1 Compiling the fuzzy groups
Determining the fuzzy groups is effected by examining the history data for

harmonised vulnerability category 8, for example, over 15 histo ry scans. Each of the

15 scans must be allocated to a specific fuzzy group. It is also possible for a scan to

be allocated to more than one fuzzy group. The idea is to group together the

harmonised history data of those scans in figure 8.19 that closely relate to one

another.

Consider scans 3 and 14. Since these two scans revealed that their results are close to

each other, they will be grouped into fuzzy group 1. Therefore, it can be said about

fuzzy group 1 that for exactly 2 vulnerability scans, the vulnerability range is exactly

[79, 85] . What exactly is meant by “close to each other”? In this context it means

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 139

that a fuzzy group normally comprises all scans that result within a range of 10

vulnerabilities from each other, for example the range between scan 3 and scan 14 for

fuzzy group 1 is 7 (from 79 to 85). No other scan result is near this range, and

therefore only these two scans are grouped together. The range of 10, therefore, is a

suitable measure for this example to construct the fuzzy groups.

In the same way, scan 13 is the only scan that falls into a range between 120 and 130

and is the only scan that will be added to fuzzy group 2. Therefore, it can be said

about fuzzy group 2 that for exactly 1 vulnerability scan, the vulnerabilit y range is

exactly [124, 124] , or simply 124.

The vulnerability scans grouped for the first two fuzzy groups were exact, in other

words there was nothing “fuzzy” about them. Now consider scans 1, 2, and 8, which

form fuzzy group 3. For all three of these scans, the almost reaches 135. In addition,

scan 11 might also be included in this fuzzy group because it would fit well into a

group range of 10. However, it could also fit in with fuzzy group 4, which will be

discussed in the next paragraph. Therefo re, it will be allowed for fuzzy group 3 to

have between 3 and 4 scans included. For fuzzy group 3, therefore, it can be said that

[3, 4] vulnerability scans delivered a vulnerability range of almost [135, 135] . The

adjective here is considered to be “fu zzy”, because “almost” is not a clear-cut value.

The last fuzzy group for this example includes the remainder of the scans. Fuzzy

group 4, therefore, consists of scans 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, and 15. The

distribution of the scan results in this fuzzy group constitutes more or less 145

vulnerabilities found. Following the same approach as stated in the paragraph above,

however, scan 11 could either be included in this fuzzy group or in fuzzy group 3.

Therefore, it can be said about fuzzy group 4 that for [10, 11] vulnerability scans, the

vulnerability range is more or less [145, 145] . The adjective here is considered to be

“fuzzy”, because “more or less” is not a clear-cut value.

The four fuzzy groups identified in this exercise are entered into the Fuzzy Groups

frame in figure 8.18.

CHAPTER 8

Page 140

8.4.4.2.2 Compiling the mapping table
In the previous section, the adjectives “almost” and “more or less” were encountered.

These are fuzzy values. A computer, unfortunately, does not know what “almost” and

“more or less” mean, unless it is “clarified” by the mapping table.

Setting up the mapping table, however, requires a careful analysis of the vulnerability

scan data in terms of each of the above adjectives. “Almost 135” referred to

vulnerability scans 1, 2, and 8. The goal is to study these three scans in figure 8.19 to

see exactly what something fuzzy, i.e. “almost”, means in terms of some crisp value

range. This value range appears to be [132, 134] from the graph, where 132 was the

smallest and 134 was the largest possible value delivered by the three scans. When

one thinks logically about “almost”, it means that a value was never reached, although

it came close. This logic, however, must now be applied to [132, 134]. The value

132, thus, came close to 135, but never reached it. In other words, the value came as

close as 2% (135-132)/135*100 short to 135. In the same way, the value 134 came

even closer to 135 – only 1% short. Therefore, the mapping table formula for

representing the lower bound of “almost” x is x – 2%, and the upper bound of

“almost” is x – 1%. Enter these values next to Almost in the mapping table.

Likewise, the data is studied in figure 8.19 for vulnerability scans 1, 2, 4, 5, 6, 7, 9,

10, 11, 12, and 15 to get a mapping table entry for “more or less” 145. The value

range for these vulnerability scans appears to be [137, 151] from the graph. When

one thinks logically about “more or less” 145, it means that a value was slightly less

than 145, or it was slightly more than 145. This logic, however, must now be applied

to [137, 151]. The value 137, thus, is 6% (145-137)/145*100 less than 145. In the

same way, the value 151 is 4% more than 145. Therefore, the mapping table formula

for representing the lower bound of “more or less” x is x – 6%, and the upper bound of

“almost” is x + 4%. Enter these values next to More or less in the mapping table.

Any mapping table values for More than and Much more than can be entered in this

demonstration, since they are not used for harmonised vulnerability category 8 in this

example.

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 141

8.4.4.2.3 Compiling the membership function
The membership function simply indicates what the absolute maximum number of

vulnerabilities will be according to the current history data for the current example. In

this case, not one of the 15 scans ever showed more than 170 vulnerabilities found in

harmonised vulnerability category 8. Enter 170 into both textboxes in the

Membership Function frame.

Click on OK to dismiss the graph of figure 8.19. After the form in figure 8.18 is

filled in, it should look like figure 8.20.

Figure 8.20: The first three steps for doing a vulnerability forecast in the VF
Prototype completed

CHAPTER 8

Page 142

8.4.4.2.4 Viewing calculations
In order to complete step 4 and view the calculations of how the values up to step 4

have been constructed, click on the Translation tab. A window with all the

calculations of values up to step 4 is shown in figure 8.21. The detailed calculations

of the µ-values can be viewed by clicking on one of the View Calculations buttons

. The calculations for calculating the third µ-value are shown in figure 8.22.

Figure 8.21: Step 4 for doing a vulnerability forecast in the VF Prototype

Click on OK to dismiss the Calculations window. Step 5 and the final vulnerability

forecast result is shown in the Forecast tab of figure 21. Clicking on this tab opens

the window shown in figure 8.23.

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 143

Figure 8.22: Calculations for the fourth µ-value as displayed in figure 8.21

Figure 8.23: Step 5 and the final vulnerability fo recast result for harmonised
vulnerability category 8

CHAPTER 8

Page 144

The final vulnerability forecast result for harmonised vulnerability category 8 states

that, by the next time a vulnerability scan, i.e. Scan 16, is conducted, it is forecast that

between 136 and 147 misconfiguration vulnerabilities will be detected by CyberCop

Scanner. By selecting the Display result on graph option, this forecast range is also

indicated by the red lines in the graph in the top right corner of figure 8.23. Once

again, this graph can be enlarged by clicking on it, and is shown in figure 8.24. Click

on OK to dismiss the graph. Likewise, the vulnerability forecasts for each of the

other harmonised vulnerability categories can be obtained using the VF Prototype.

Click on Finish to dismiss the VF Prototype – Setup Information window.

Figure 8.24: Graph showing information about harmonised vulnerability category 8

A red tick mark should appear next to harmonised vulnerability category 8 to indicate

that a vulnerability forecast for this harmonised vulnerability category has been done.

The main VF Prototype window therefore should look like figure 8.25 when

vulnerability forecasts for all harmonised vulnerability categories have been done.

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 145

Figure 8.25: The completed VF Prototype ma in window

The next section will demonstrate how these vulnerability forecasts can be validated.

8.4.4.3 Validating a vulnerability forecast
In order to see the accuracy of the vulnerability forecasts, they can be compared with

an actual scan. In other words, a 16th vulnerability scan was conducted so that the

forecasting results can be compared with it. Figure 8.26 shows a comparison of an

actual scan – Scan 16 – and the vulnerability forecast. Note that the scan interval

between Scan 15 and Scan 16 was one day, which was the same between all the other

15 scans.

CHAPTER 8

Page 146

Figure 8.26: Comparing a vulnerability forecast with an actual scan – Scan 16

The black bars in figure 8.26 denote Scan 16 while the blue blocks indicate the

vulnerability forecast range for each harmonised vulnerability category. The results

of the vulnerability forecast compared to the actual scan are 92% accurate because the

vulnerability occurrences for 12 of the 13 harmonised vulnerability categories fell

precisely into the forecast vulnerability ranges. The only misforecast harmonised

vulnerability category turned out to be category 7, but this vulnerability forecast was

not that far out anyway.

The accuracy of the vulnerability forecast was so high because vulnerability scans 1 to

16 were conducted at regular one-day intervals. If the time interval between Scan 16

and a next scan is significantly increased by a 45-day interval, however, the

vulnerability forecast is not far out, as shown in figure 8.27. This result, therefore,

proves that, by significantly increasing the time interval between scans, the

vulnerability forecast still gives a very good indication of how vulnerabilities will

occur in the future.

 A PROTOTYPE FOR VULNERABILITY FORECASTING

 Page 147

Figure 8.27: Comparing a vulnerability forecast with an actual scan for a
significant time interval increase of 45 days between scans instead of every day

88..55 CCOONNCC LLUUSSIIOONN

This chapter demonstrated how vulnerability forecasting can be implemented in a

prototype. The prototype also assisted in demonstrating how some of the des ired

features for vulnerability forecasting can be attained.

The main conclusion about the VF Prototype is that it clearly shows that increasing

the time intervals between successive vulnerability scans results in fewer vulnerability

scans having to be conducted. This is a major improvement in working with VS

products, because fewer scans having to be conducted means that less system

resources and time will be occupied by the vulnerability scanner in the future. In

addition, the VF Prototype shows that vulnerability scans need not be conducted at

regular time intervals as long as enough history scans are available, because whether

the scan interval between vulnerability scans is 1 day or 45 days, as in this test

scenario, the vulnerability forecast proves not to be far out.

This research culminates at this stage of the thesis and the specific problems with VS

products as identified in chapter 6 are revisited in table 8.3, which indicates that the

VF Prototype has indeed addressed the selected problems.

CHAPTER 8

Page 148

Table 8.3: Problems identified and addressed regarding state-of-the-art VS products

Problems identified Problem
addressed Remark

1. Conducting vulnerability scans
is too time-consuming. ü

Vulnerability scans are still time-
consuming, but having to conduct
few er scans means that less time
will be consumed in retrospect.

2. A VS product generally
occupies a vast number of
network and system resources,
leading to the degradation of
system performance while
vulnerability scans are being
conducted.

ü

VS products are still occupying a
vast number of network and system
resources while scanning, but
having to conduct fewer scans
means that less of these resources
will be occupied in retrospect.

3. VS products lack intelligence
because they are unable to
learn about new vulnerabilities
automatically.

ü
Fuzzy logic was implemented in the
VF Prototype to improve the
utilisation of harmonised
vulnerability categories.

4. The vulnerability database
structure differs extensively
from one VS product to another.

ü
A standardised relational database
has been created in order to store
and manage vulnerabilities in a
harmonised manner.

5. The types of vulnerabilities
being scanned for differ
extensively from one VS
product to another.

ü

Using harmonised vulnerability
categories “harmonised” the
vulnerabilities of different VS
products and hence such
vulnerabilities are viewed as a
“standard”.

6. Scans may not always be
conducted at regular intervals
due to unforeseen
circumstances, for example
when critical maintenance on
servers and the netw ork is
carried out.

ü

It was proven that scans can be
conducted at irregular time intervals
with very little difference in the
vulnerability forecast outcomes.

7. The vulnerability database
should be updated before a
scan is conducted, otherwise
the scan res ult may not be
accurate enough.

 Not implemented.

8. Most rectification procedures
cannot be automated and still
require the expertise of qualified
personnel.

 Not implemented.

9. VS products do not provide
adequate and sufficient
information that would aid risk
management.

ü
Having a vulnerability forecast
would aid in risk management of
vulnerabilities in the future.

The next chapter will conclude with the final remarks about the VF model, the VF

Prototype implementation, and future work.

 Page 149

CCHHAAPPTTEERR 99

CCOONNCCLLUUSSIIOONN
__

99..11 IINNTTRROODD UUCC TTIIOO NN

This thesis represented the model for vulnerability forecasting (VF) – a model that

enhances security in the domain of networks and the Internet. In this chapter, the

researcher will evaluate the extent to which the objectives of this research study have

been achieved. Finally, the researcher will conclude the thesis with further research

suggested and an epilogue.

99..22 RREEVVIISSIITTIINNGG TTHHEE PPRROOBBLLEEMM SS TTAA TTEEMMEENNTT

The principal aim of this research study was to make a contribution to proactive

information security technologies, i.e. vulnerability scanning, in the Internet and

network security domain. To do so, the researcher set out to develop a model for VF

that would be specifically tailored to this domain.

The problems that were to be addressed in the study, as stated in chapter 1 in the form

of research questions, will be re-examined in the sections that follow with a view to

ascertaining the extent to which this had been accomplished.

What is the state of current proactive and reactive information
security technologies?

A taxonomy for state-of-the-art information security technologies was introduced in

chapter 2. The two mainline information security technologies included proactive and

reactive information security technologies. Each of the proactive and reactive

information security technologies was subdivided into network-, host- and

application-level information security technologies.

CHAPTER 9

Page 150

A number of resources were identified and the ext ent to which the information

security technologies were covered in those resources was indicated. It seems that

these technologies are covered more extensively in journals than in books.

Chapter 3 investigated a reactive information security technology – intrusion

detection – and a proactive information security technology – vulnerability scanning.

The architectures of both these technologies were investigated extensively and, after

considering a number of problems of both, it was decided to select vulnerability

scanning as the information security technology on which the remainder of the thesis

would be based.

State-of-the-art proactive and reactive information security technologies, therefore,

form the enablers to a wide range of information security products available on the

security software market today. In addition, they serve as the building blocks to

newer and better information security implementations.

What can be done to improve the vulnerability scanning process?

Since the model for VF, as proposed in this thesis, utilises existing vulnerability

scanners to conduct vulnerability scans, no improvement in vulnerability scanning

products themselves has been suggested.

Instead, however, the vulnerability scanning process has been improved, as s hown in

chapter 6, in that fewer vulnerability scans are conducted when vulnerability forecasts

are made. In addition, this also buys more time and, therefore, lessens the

administrative overhead of working through lengthy vulnerability scanner reports to

rectify vulnerabilities.

How can the impact of current vulnerability scanners on system
resources be minimised?

Chapter 5 provided a detailed study of specific vulnerability scanner products and

reported on the researcher’s practical experience and the database structures of current

vulnerability scanner products. It was explained in chapter 3 that the modus operandi

of a vulnerability scanner is to simulate attacks to test whether the system resources

 CONCLUSION

 Page 151

have been secured sufficiently. There is no possibility, unfortunately, of changing this

modus operandi of current vulnerability scanners.

An alternative scanning strategy has, however, been suggested and discussed in

chapters 6 and 7 – that of being able to conduct fewer vulnerability scans without

compromising the detection of vulnerabilities, and being able to forecast which

vulnerabilities will occur in the mean time before the next vulnerability scan is

conducted. The increased time frame between successive vulnerability scans,

therefore, means that the abundant consumption of system resources will occur less

frequently. The impact of current vulnerability scanners on system resources is,

therefore, minimised.

How can the disparity be addressed in the kinds of vulnerabilities
that different vulnerability scanner products can detect?

The disparity problem between different vulnerability scanners was addressed in

chapter 3. A solution to this problem was suggested in chapter 4, where the concept

of harmonised vulnerability categories was introduced.

The harmonised vulnerability categories provide a standard method for grouping

related vulnerabilities and, thus, enable one to know, which subset of standardised

vulnerabilities a specific vulnerability scanner can detect from a potentially

exhaustive set of standardised vulnerabilities.

How should vulnerability scanner products provide more intelligent
results so that they will aid risk management?

Chapter 6 identified some specific problems with current vulnerability scanner

products, after which the concept of vulnerability forecasting was introduced. The

model for VF has been explained in detail, but chapter 7 was specifically devoted to

the heart of the VF model, namely the vulnerability forecast engine. It is in the latter

chapter that “more intelligent results” have been provided by the model for

vulnerability forecasting. The VF model was tested by a prototype as described in

chapter 8.

CHAPTER 9

Page 152

Looking at the results of chapter 8, a vulnerability forecast is provided, which would

enable management to analyse the risk of the vulnerability forecast. In doing so,

vulnerability forecasting more intelligently provides human resources with the ability

to effect risk management.

99..33 FFUUTTUURR EE RR EESS EEAARRCC HH

The proposed model achieved the objectives to the extent described in the section

above, but it suffers from some limitations. The limitations, fortunately, provide

opportunities to extend and support the work described in this thesis by a number of

future research projects as presented below:

• Further research is possible in a bid to find techniques on how to automate the

procedure of mapping vulnerabilities of current VS products onto the

harmonised vulnerability categories, because this process is done manually in

the current research project. In addition, when th e specific VS product’s

vulnerability database is updated, the new vulnerabilities are currently mapped

manually onto the harmonised vulnerability categories.

• Having said the above, another potential research project can be identified:

integrating current VS technology and vulnerability forecasting in a single

vulnerability-forecasting-enabled VS. In this way the administration of

vulnerability forecasting will be decreased even further.

• The process of configuring the vulnerability forecast engine according to the

history scan data before a vulnerability forecast can be made is also currently

done manually. Automating this process requires more intelligent techniques

such as using the graphical information created from the history scan data to

automatically set up the fuzzy groups, creating the mapping table and defining

the membership function. The administration of vulnerability forecasting will

yet again be decreased by such intelligent techniques.

• For the current research project, the researcher claimed that having sufficient

history data would enable one to do a vulnerability forecast. However, on

what grounds can one claim that the history data gathered is sufficient? In

addition, for how long will a forecast remain valid? These time-frame-based

questions are questions that may be addressed in a research project of its own

merit.

 CONCLUSION

 Page 153

• Vulnerability forecasting is built upon the specific information security

technology called vulnerability scanning. It might be possible, as a future

research project, to combine vulnerability scanning with other information

security technologies such as intrusion detection systems and firewalls. In this

way, hybrid vulnerability forecasting might be possible.

• Finally, one might ask whether there may be other means of implementing

intelligent techniques to do a vulnerability forecast. The technique used in this

research project – fuzzy logic – might be replaced or enhanced by using

techniques such as neural networks [HAMB 93] or fuzzy cognitive maps

[YELZ 95].

99..44 EEPPIILLOOGGUUEE

The researcher concludes this research project with the following quote:

“Research is what you’re doing, when you don’t know what you’re doing.”

 Charles Wilson, president of General Electric, 1945 -1950

This quote may prove to make sense at the start of a research project, but, is it not

wonderful in the world of research that, the closer the research project progresses to

the end, the less this quote makes sense? This has been the experience of the

researcher throughout the completion of this research project. The researcher hopes

that the work presented in this thesis will stimulate further research – not only in the

particular future research projects mentioned above, but also in the entire domain of

Internet and network security. The researcher believes that this thesis is able to do

that, and, to prove this, leaves its readers with the following truth about research:

“To research there is no end, only new beginnings.”

 Reinhardt A. Botha, CoSAWoE – A Model for Context-sensitive

Access Control in Workflow Environments, Chapter 12

CHAPTER 9

Page 154

 Page 155

AAPPPPEENNDDIIXX AA

IINNSSTTAALLLLIINNGG TTHHEE VVFF PPRROOTTOOTTYYPPEE

SSOOFFTTWWAARREE AANNDD AADDDDIITTIIOONNAALL SSOOFFTTWWAARREE
CCOOMMPPOONNEENNTTSS
__

Appendix A serves as a guide to installing and getting started with the VF Prototype.

AA..11 IINNSS TTAALLLLAA TTIIOO NN RR EEQQ UUIIRREEMMEENNTTSS

The following minimu m system requirements would have to be met in order to run

the VF Prototype:

• A Pentium III 500 MHz or equivalent processor.

• 64 MB RAM.

• Microsoft® Windows 98/2000/XP.

It is recommended, however, that the prototype be executed on a computer with 128

MB RAM or more to ensure better performance. In addition, an 800 x 600 pixels or

more Super VGA display screen would enable a clearer display of graphs.

AA..22 CCOONNVV EENNTTIIOO NNSS UUSS EEDD

To explain, in special cases, how the VF Prototype works, the prototype employs the

typefaces described in table A.1 to indicate special text.

APPENDIX A

Page 156

Table A.1 : Typefaces employed to indicate special text
Typeface Meaning
Courier New
typeface

Courier New text represents text as it appears on the screen
or as it should be entered into a field on the screen.

Italics
Italicised text represents commands, for example the text
Start indicates that the “Start” button in Windows should be
activated.

à

This symbol is used as a separator that separates commands.
To open the “Run” command in Windows, for example, the
text sequence Start à Run indicates that the “Start”
command should be activated, followed by the “Run”
command.

Boldface Boldface text is used to emphasise certain terms and to refer
to certain objects, buttons or labels in the VF Prototype.

Note that the terms “directory” and “folder” are used interchangeably and have the

same meaning in this context.

AA..33 IINNSS TTAALLLLII NNGG TTHHEE VVFF PPRROOTTOO TTYY PPEE SSOOFFTTWWAARR EE

The VF Prototype software can be downloaded from the Web at the following URL:

http://www.cs.up.ac.za/~hventer. Once at this web site, the following steps can be

taken to download and install the software:

• Downloading the VF Prototype software:

o Create a temporary directory on the hard drive of your computer and

call it, for example, C:\temp.

o Point your Web browser to the following URL:

http://www.cs.up.ac.za/~hventer/vf/vf.exe .

o Download the VF.exe installation file onto the hard drive of your

computer into the C:\temp directory you have created.

• Installing the VF Prototype software:

o Click on Start à Run and enter C:\temp\VF.exe into the Open

field as shown by the Run window in figure A.1.

INSTALLING THE VF PROTOTYPE SOFTWARE AND ADDITIONAL SOFTWARE COMPONENTS

 Page 157

Figure A.1: Entering the command to run the VF installation software

o Click on the OK button. The VF installation software should open as

shown in figure A.2.

o Change the text in the Destination folder field to C:\. Note that the

installation software [ROSH 03] will automatically create the C:\VF

subdirectory on your computer’s hard drive. Strictly C:\ only should

be entered in the Destination folder field.

o Click on the Install button to start the installation process. Figure A.3

shows the installation progress of the VF Prototype.

Figure A.2: Specifying the destination folder for installing the VF Prototype
software

APPENDIX A

Page 158

Figure A.3: The VF Prototype files being installed by the installation software

The VF Prototype software installation procedure is not complete at this stage. Some

additional software components still need to be installed before the VF Prototype

software will run correctly. The next section provides the installation procedure for

these additional software components.

AA..44 IINNSS TTAALLLLII NNGG AADDDDIITTIIOONNAA LL SSOOFFTTWWAARR EE CCOO MMPPOO NNEENNTTSS

The VF Prototype uses additional components, referred to as ActiveX controls

[MICR 03], to run successfully. An ActiveX control is a software component that

was developed for a general purpose, e.g. to add additional programming

functionality. Two ActiveX controls were used in the VF Prototype and should be

installed as follows:

• The COMDLG32.OCX file should already be extracted and available in the

C:\VF directory that was created with the VF Prototype software installation

process.

• The COMDLG32.OCX file needs to be registered in the Windows registry.

In order to register this file, click Start à Run in Windows.

INSTALLING THE VF PROTOTYPE SOFTWARE AND ADDITIONAL SOFTWARE COMPONENTS

 Page 159

• Type the following register command regsvr32 C:\VF\COMDLG32.OCX

in the Open field of the Run window as shown in figure A.4.

Figure A.4: Running the register command

• Click on the OK button in the Run window. The message box shown in

figure A.5 should appear if the regis tration process was successful.

Figure A.5: Successful component registration

• Click on the OK button to dismiss the message box in figure A.5.

• Repeat all the steps of this section for installing additional software

components, but do so for the file MSCOMCTL.OCX instead of

COMDLG32.OCX. The file MSCOMCTL.OCX should also be available in

the C:\VF directory after installation of the VF Prototype software.

The VF Prototype software should now be installed successfully and is ready to run.

APPENDIX A

Page 160

 Page 161

AAPPPPEENNDDIIXX BB

SSOOUURRCCEE CCOODDEE OOFF TTHHEE VVFF PPRROOTTOOTTYYPPEE
__

The source code for the VF Prototype is written in Microsoft Visual Basic 6.0 and is

provided in this appendix. A screenshot of the project layout as displayed in visual

basic is shown in figure B.1.

Figure B.1: Project layout of the VF Prototype

The source code is presented in the order of the forms, module, and user controls

listed in figure B.1. A functional description is also provided for each of these.

BB..11 SSOOUURRCC EE CCOODD EE FFOORR TTHHEE FFOORR MMSS

B.1.1 The “frmCalculations” form

The design of this form is shown in figure B.2. This form is used to show some of the

detailed steps in calculating the fuzzy expected value.

APPENDIX B

Page 162

Figure B.2: The “frmCalculations” form

The source code for this form follows below.

Option Explicit

Private Sub cmdOK_Click()
 Unload Me
End Sub

Private Sub Form_Load()
 'Center window on screen
 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 2

 gbFmCalculationsLoaded = True
End Sub

Private Sub Form_Unload(Cancel As Integer)
 gbFmCalculationsLoaded = False
End Sub

B.1.2 The “frmGraphics” form

The design of this form is shown in figure B.3. This form is used to display the

graphs in the VF Prototype.

 SOURCE CODE OF THE VF PROTOTYPE

 Page 163

Figure B.3: The “frmGraphics” form

The source code for this form follows below.

Option Explicit

Private Sub cmdOK_Click()
 Unload Me
End Sub

Private Sub Form_Activate()
 Screen.MousePointer = vbNormal
End Sub

Private Sub Form_Load()

 'Center form on screen
 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 2

 cmdOK.Visible = True

 gbFmGraphicsLoaded = True

End Sub

Private Sub Form_Resize()

 If Me.WindowState <> vbMinimized Then
 GraphView1.Move 0, 0, Me.ScaleWidth, Me.ScaleHeight - cmdOK.Height - 40
 cmdOK.Move Me.ScaleWidth - cmdOK.Width, GraphView1.Height + 10
 End If

End Sub

Private Sub Form_Unload(Cancel As Integer)
 gbFmGraphicsLoaded = False
End Sub

APPENDIX B

Page 164

B.1.3 The “frmHelp” form

The design of this form is shown in figure B.4. This form is used to display

information about the items in the vulnerability database of the particular VS product

used by the VF Prototype, e.g. descriptions of vulnerability categories and

vulnerabilities.

Figure B.4: The “frmHelp” form

The source code for this form follows below. In order to enhance the readability and

to dis tinguish between the procedures, a horizontal line separates each procedure.

Option Explicit

Dim bIsActive As Boolean
Dim bExpanded As Boolean

'Constants
Private Const vSYSTEM_INTEGRITY As Long = 1

 SOURCE CODE OF THE VF PROTOTYPE

 Page 165

Private Const vCONFIDENTIALITY As Long = 2
Private Const vACCOUNTABILITY As Long = 4
Private Const vDATA_INTEGRITY As Long = 8
Private Const vAUTHORIZATION As Long = 16
Private Const vAVAILABILITY As Long = 32
Private Const vINTELIGENCE As Long = 64

Private Type VulnType
 ID As Long
 Name As String

 RiskFactor As Long
 Complexity As Long
 Fixease As Long
 Popularity As Long
 RootCause As Long
 Impact As Long
 VulDesV As String
 Suggestion As String
 ManagerDesc As String
End Type

Private Type CatsType
 ID As Long
 Name As String
 Vulnerabilities() As VulnType
End Type
Dim Cats() As CatsType

Private Sub cmdMore_Click()

 Dim lstItm As ListItem
 Dim Count As Long

 If bExpanded Then
 txtVDescription.TabStop = False
 txtSuggestion.TabStop = False
 txtManDescription.TabStop = False

 Me.Height = 3960
 cmdMore.Caption = "&More Info >>"
 bExpanded = False
 Else
 bExpanded = True
 For Count = 1 To lvVulnerabilities.ListItems.Count
 If lvVulnerabilities.ListItems(Count).Selected Then
 Set lstItm = lvVulnerabilities.ListItems(Count)
 Call lvVulnerabilities_ItemClick(lstItm)
 Exit For
 End If
 Next Count

 txtVDescription.TabStop = True
 txtSuggestion.TabStop = True
 txtManDescription.TabStop = True
 Me.Height = 7905
 cmdMore.Caption = "&More Info <<"
 End If

End Sub

Private Sub cmdOK_Click()
 Unload Me
End Sub

Private Sub Form_Activate()
 If Not bIsActive Then
 If lvCategory.Visible Then lvCategory.SetFocus
 bIsActive = True
 End If
End Sub

Private Sub Form_Load()

 'Center window on screen
 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 3

APPENDIX B

Page 166

 Me.Height = 3960
 bExpanded = False
 bIsActive = False

 gbFmHelpLoaded = True

End Sub

Public Sub SetupData(Priority As Long)

 On Error GoTo ErrorHandler

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset
 Dim SQL As String
 Dim lLastPriority As Long
 Dim bAdded As Boolean
 Dim lNumCat As Long, lNumVuln As Long
 Dim Count As Long
 Dim lstItm As ListItem

 'Open connection
 TempConn.ConnectionString = Replace(gsDefaultConnString, "%PATH%", App.Path &
"\CCSVulnDB.mdb")
 TempConn.Open

 'Open recordset
 TempRS.CursorLocation = adUseServer
 TempRS.CursorType = adOpenStatic
 TempRS.LockType = adLockOptimistic

 SQL = "SELECT * FROM VulnData WHERE ID > 999 ORDER BY ID ASC"

 TempRS.Open SQL, TempConn, adCmdTable
 lLastPriority = -1
 lNumCat = 0
 Do While Not TempRS.EOF
 If (TempRS!ID Mod 1000 = 0) Then
 lNumCat = lNumCat + 1
 'If lNumCat = 19 Then lNumCat = 20
 lNumVuln = 0
 If lNumCat = 1 Then
 ReDim Cats(1 To lNumCat)
 Else
 ReDim Preserve Cats(1 To lNumCat)
 End If
 If lNumCat = 20 Then ReDim Cats(lNumCat - 1).Vulnerabilities(0)
 ReDim Cats(lNumCat).Vulnerabilities(0)

 Cats(lNumCat).Name = ReplaceAllCrLfFromText("" & TempRS!VulDesS)
 Cats(lNumCat).ID = TempRS!ID

 If TempRS!Priority <> 999 Then
 lLastPriority = TempRS!Priority
 End If
 End If

 If (lLastPriority = TempRS!Priority) And (TempRS!ID <> TempRS!Priority) Then
 lNumVuln = lNumVuln + 1
 If lNumVuln = 1 Then
 ReDim Cats(lNumCat).Vulnerabilities(1 To lNumVuln)
 Else
 ReDim Preserve Cats(lNumCat).Vulnerabilities(1 To lNumVuln)
 End If

 Cats(lNumCat).Vulnerabilities(lNumVuln).Name =
ReplaceAllCrLfFromText(TempRS!VulDesS)
 Cats(lNumCat).Vulnerabilities(lNumVuln).ID = TempRS!ID

 Cats(lNumCat).Vulnerabilities(lNumVuln).RiskFactor = TempRS!RiskFactor
 Cats(lNumCat).Vulnerabilities(lNumVuln).Complexity = TempRS!Complexit y
 Cats(lNumCat).Vulnerabilities(lNumVuln).Fixease = TempRS!Fixease
 Cats(lNumCat).Vulnerabilities(lNumVuln).Popularity = TempRS!Popularity
 Cats(lNumCat).Vulnerabilities(lNumVuln).RootCause = TempRS!RootCause
 Cats(lNumCat).Vulnerabilities(lNumVuln).Impact = TempRS!Impact

 SOURCE CODE OF THE VF PROTOTYPE

 Page 167

 Cats(lNumCat).Vulnerabilities(lNumVuln).VulDesV = ReplaceAllCrLfFromText("" &
TempRS!VulDesV)
 Cats(lNumCat).Vulnerabilities(lNumVuln).Suggestion = ReplaceAllCrLfFromText("" &
TempRS!Suggestion)
 Cats(lNumCat).Vulnerabilities(lNumVuln).ManagerDesc = ReplaceAllCrLfFromText(""
& TempRS!ManagerDesc)

 End If

 TempRS.MoveNext
 Loop

 'Close
 TempRS.Close
 TempConn.Close

 lvCategory.ListItems.Clear
 For Count = 1 To lNumCat
 Set lstItm = lvCategory.ListItems.Add(, "Key" & CStr(Cats(Count).ID),
Cats(Count).ID)
 lstItm.SubItems(1) = Cats(Count).Name
 If lvCategory.ColumnHeaders("Name").Width < fmMain.TextWidth(Cats(Count).Name)
Then
 lvCategory.ColumnHeaders("Name").Width = fmMain.TextWidth(Cats(Count).Name) +
100
 End If

 If Priority = Cats(Count).ID Then
 lvCategory.ListItems(Count).Selected = True
 lvCategory.ListItems(Count).EnsureVisible
 Call lvCategory_ItemClick(lstItm)
 End If
 Next Count

Quit:
 Exit Sub

ErrorHandler:
 Resume Quit
 Resume

End Sub

Private Function ReplaceAllCrLfFromText(sFromText As String, Optional ReplaceWith As
String = "") As String

 Dim sText As String

 sText = sFromText
 If InStr(1, sText, vbCrLf) > 0 Then sText = Replace(sText, vbCrLf, ReplaceWith)
 If InStr(1, sText, vbLf) > 0 Then sText = Replace(sText, vbLf, ReplaceWith)
 If InStr(1, sText, vbCr) > 0 Then sText = Replace(sText, vbCr, ReplaceWith)
 ReplaceAllCrLfFromText = sText

End Function

Private Sub Form_Unload(Cancel As Integer)
 gbFmHelpLoaded = False
End Sub

Private Sub lvCategory_ItemClick(ByVal Item As MSComctlLib.ListItem)

 On Error GoTo ErrorHandler

 Dim lCat As Long, Count As Long
 Dim lstItm As ListItem

 If lvCategory.ListItems.Count < 1 Then Exit Sub
 For Count = 1 To lvCategory.ListItems.Count
 If lvCategory.ListItems(Count).Selected Then
 lCat = Count
 Exit For
 End If
 Next Count

 lvVulnerabilities.ListItems.Clear
 For Count = 1 To UBound(Cats(lCat).Vulnerabilities)

APPENDIX B

Page 168

 Set lstItm = lvVulnerabilities.ListItems.Add(, "Key" &
CStr(Cats(lCat).Vulnerabilities(Count).ID), Cats(lCat).Vulnerabilities(Count).ID)
 lstItm.SubItems(1) = Cats(lCat).Vulnerabilities(Count).Name
 If lvVulnerabilities.ColumnHeaders("Name").Width <
fmMain.TextWidth(Cats(lCat).Vulnerabilities(Count).Name) Then
 lvVulnerabilities.ColumnHeaders("Name").Width =
fmMain.TextWidth(Cats(lCat).Vulnerabilities(Count).Name) + 100
 End If
 Next Count
 If lvVulnerabilities.ListItems.Count > 0 Then
lvVulnerabilities.ListItems(1).Selected = True

Quit:
 Exit Sub

ErrorHandler:
 Resume Quit

End Sub

Private Sub lvVulnerabilities_ItemClick(ByVal Item As MSComctlLib.ListItem)

 Dim lTemp As Long
 Dim lCat As Long, Count As Long
 Dim sTemp As String

 lCat = -1
 sTemp = Replace(Item.Key, "Key", "")
 lCat = Fix(CLng(sTemp) / 1000)

 If lCat <= 0 Then Exit Sub

 lTemp = Item.Index

 If bExpanded Then
 lblID.Caption = Cats(lCat).Vulnerabilities(lTemp).ID
 lblDescription.Caption = Cats(lCat).Vulnerabilities(lTemp).Name

 Select Case Cats(lCat).Vulnerabilities(lTemp).RiskFactor
 Case 0: lblRiskFactor.Caption = "Low"
 Case 1: lblRiskFactor.Caption = "Medium"
 Case 2: lblRiskFactor.Caption = "High"
 End Select

 Select Case Cats(lCat).Vulnerabilities(lTemp).Complexity
 Case 0: lblComplexity.Caption = "N/A"
 Case 1: lblComplexity.Caption = "Low"
 Case 2: lblComplexity.Caption = "Medium"
 Case 3: lblComplexity.Caption = "High"
 End Select

 Select Case Cats(lCat).Vulnerabilities(lTemp).Fixease
 Case 0: lblFixease.Caption = "N/A"
 Case 1: lblFixease.Caption = "Trivial"
 Case 2: lblFixease.Caption = "Simple"
 Case 3: lblFixease.Caption = "Moderate"
 Case 4: lblFixease.Caption = "Difficult"
 Case 5: lblFixease.Caption = "Infeasable"
 End Select

 Select Case Cats(lCat).Vulnerabilities(lTemp).Popularity
 Case 0: lblPopularity.Caption = "N/A"
 Case 1: lblPopularity.Caption = "Obscure"
 Case 2: lblPopularity.Caption = "Widespread"
 Case 3: lblPopularity.Caption = "Popular"
 End Select

 Select Case Cats(lCat).Vulnerabilities(lTemp).RootCause
 Case 0: lblRootCause.Caption = "N/A"
 Case 1: lblRootCause.Caption = "Configuration"
 Case 2: lblRootCause.Caption = "Implementation"
 Case 3: lblRootCause.Caption = "Design"
 End Select

 txtImpact.Text = GetImpact(Cats(lCat).Vulnerabilities(lTemp).Impact)
 txtVDescription.Text = Cats(lCat).Vulnerabilities(lTemp).VulDesV
 txtSuggestion.Text = Cats(lCat).Vulnerabilities(lTemp).Suggestion

 SOURCE CODE OF THE VF PROTOTYPE

 Page 169

 txtManDescription.Text = Cats(lCat).Vulnerabilities(lTemp).ManagerDesc
 End If

End Sub

Private Function GetImpact(lImpact As Long) As String

 Dim sTemp As String
 Dim lTemp As Long

 lTemp = lImpact
 If lTemp = 0 Then
 GetImpact = "N/A"
 Exit Function
 End If

 sTemp = ""
 Do While lTemp > 0
 If (lTemp >= vINTELIGENCE) Then
 sTemp = sTemp & "Inteligence" & vbCrLf
 lTemp = lTemp - vINTELIGENCE
 Else
 If (lTemp >= vAVAILABILITY) Then
 sTemp = sTemp & "Availability" & vbCrLf
 lTemp = lTemp - vAVAILABILITY
 Else
 If (lTemp >= vAUTHORIZATION) Then
 sTemp = sTemp & "Authorization" & vbCrLf
 lTemp = lTemp - vAUTHORIZATION
 Else
 If (lTemp >= vDATA_INTEGRITY) Then
 sTemp = sTemp & "Data Integrity" & vbCrLf
 lTemp = lTemp - vDATA_INTEGRITY
 Else
 If (lTemp >= vACCOUNTABILITY) Then
 sTemp = sTemp & "Accountability" & vbCrLf
 lTemp = lTemp - vACCOUNTABILITY
 Else
 If (lTemp >= vCONFIDENTIALITY) Then
 sTemp = sTemp & "Confidentiality" & vbCrLf
 lTemp = lTemp - vCONFIDENTIALITY
 Else
 If (lTemp >= vSYSTEM_INTEGRITY) Then
 sTemp = sTemp & "System Integrity" & vbCrLf
 lTemp = lTemp - vSYSTEM_INTEGRITY
 End If
 End If
 End If
 End If
 End If
 End If
 End If
 Loop

 If Right$(sTemp, Len(vbCrLf)) = vbCrLf Then sTemp = Left$(sTemp, Len(sTemp) -
Len(vbCrLf))
 GetImpact = sTemp

End Function

B.1.4 The “frmMain” form

The design of this form is shown in figure B.5. This form is used as the start-up form

from where all functions of the VF Prototype can be accessed..

APPENDIX B

Page 170

Figure B.5: The “frmMain” form

The source code for this form follows below.

Option Explicit
Dim nLastIndexSelected As Integer, nLastIndexSelectedCat As Integer
Dim lScrollingValue As Long, lScrollingValueCat As Long
Dim lButtonDown As Long
Dim bHelpClicked As Boolean

Private Sub cbDBDirs_Click()
 bHelpClicked = False
End Sub

Private Sub cbDBDirs_KeyUp(KeyCode As Integer, Shift As Integer)

 Dim sTemp As String

 If KeyCode = vbKeyReturn Then
 sTemp = cbDBDirs.Text
 If Right$(sTemp, 1) = "\" Then sTemp = Left$(sTemp, Len(sTemp) - 1)

 If sTemp = "" Then
 'Call MsgBox("Please specify a valid directory path!", vbOKOnly + vbInformation,
"Database Path")
 Exit Sub
 End If

 If Dir(sTemp, vbDirectory) = "" Then

 SOURCE CODE OF THE VF PROTOTYPE

 Page 171

 Call MsgBox("Please specify a valid directory path!", vbOKOnly + vbInformation,
"Database Path")
 Exit Sub
 End If

 cbDBDirs.AddItem sTemp
 End If

End Sub

Private Function AddEntryTocbDBDirs(sAddEntry As String) As Boolean

 Dim sTemp As String
 Dim Count As Long
 Dim bOK As Boolean, bExists As Boolean

 sTemp = sAddEntry
 If Right$(sTemp, 1) = "\" Then sTemp = Left$(sTemp, Len(sTemp) - 1)

 If sTemp = "" Then
 Call MsgBox("Please specify a valid directory path!", vbOKOnly + vbInformation,
"Database Path")
 Exit Function
 End If

 If Dir(sTemp, vbDirectory) = "" Then
 Call MsgBox("Please specify a valid directory path!", vbOKOnly + vbInformation,
"Database Path")
 Exit Function
 End If

 'Check if entry alredy exists
 bOK = False
 bExists = False
 For Count = 1 To cbDBDirs.ListCount
 If LCase(cbDBDirs.List(Count - 1)) = LCase(sAddEntry) Then
 bExists = True
 bOK = True
 AddEntryTocbDBDirs = False
 Exit For
 End If
 Next Count

 If Not bOK Then
 cbDBDirs.AddItem sTemp
 cbDBDirs.ListIndex = cbDBDirs.NewIndex
 AddEntryTocbDBDirs = True
 Else
 AddEntryTocbDBDirs = bExists
 End If

End Function

Private Function AddEntryTocbActual(sAddEntry As String) As Boolean

 Dim sTemp As String
 Dim Count As Long
 Dim bOK As Boolean, bExists As Boolean

 sTemp = sAddEntry
 If Right$(sTemp, 1) = "\" Then sTemp = Left$(sTemp, Len(sTemp) - 1)

 'Check if entry alredy exists
 bOK = False
 bExists = False
 For Count = 1 To cbActual.ListCount
 If LCase(cbActual.List(Count - 1)) = LCase(sAddEntry) Then
 bExists = True
 bOK = True
 cbActual.ListIndex = (Count - 1)
 Exit For
 End If
 Next Count

 If Not bOK Then
 cbActual.AddItem sTemp
 cbActual.ListIndex = cbActual.NewIndex

APPENDIX B

Page 172

 AddEntryTocbActual = True
 Else
 AddEntryTocbActual = bExists
 End If

End Function

Private Sub chkCompare_Click()
 Label4.Enabled = (chkCompare.Value = vbChecked)
 cbActual.Enabled = (chkCompare.Value = vbChecked)
 cmdSelectActual.Enabled = (chkCompare.Value = vbChecked)
 cmdGo.Enabled = (chkCompare.Value = vbChecked)
End Sub

Private Sub chkTest_Click()
 bHelpClicked = False
End Sub

Private Sub cmdDummy_Click()
 bHelpClicked = False
 If picDBsIn.Visible Then picDBsIn.SetFocus
End Sub

Private Sub cmdDummy_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub cmdDummyCat_Click()
 bHelpClicked = False
 If picCategoriesIn.Visible Then picCategoriesIn.SetFocus
End Sub

Private Sub cmdDummyCat_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub cmdExit_Click()
 Unload Me
End Sub

Private Sub cmdGo_Click()

 Dim Count As Long, Place As Long, lMaxGraphValue As Long, CountCats As Long
 Dim bContinue As Boolean
 Dim sDBNamePath As String, sDBName As String, sDBPath As String
 Dim PredictionsLB() As Long, PredictionsUB() As Long

 bContinue = True
 For Count = 1 To glNumVulnerabilityCategories
 'If Count <> 19 Then
 If Not Categories(Count).HasBeenSetup Then
 bContinue = False
 Exit For
 End If
 'End If
 Next Count

 If Not bContinue Then
 If MsgBox("Not all of the vulnerability scanning categories have been set up yet.
A vulnerability category that has been set up successfully contains a red tick mark
next to it. Do you want to continue anyway?", vbYesNoCancel + vbInformation, "View
Results") <> vbYes Then Exit Sub
 bContinue = True
 End If

 sDBNamePath = cbActual.Text
 If sDBNamePath = "" Then
 bContinue = False
 Else
 Place = InStrRev(sDBNamePath, "\")
 If Place > 0 Then
 sDBName = Mid$(sDBNamePath, Place + 1)
 sDBPath = Left$(sDBNamePath, Place)

 SOURCE CODE OF THE VF PROTOTYPE

 Page 173

 Else
 sDBName = sDBNamePath
 sDBPath = ""
 End If

 If Dir(sDBNamePath, vbArchive + vbHidden + vbNormal + vbReadOnly + vbSystem +
vbVolume) <> sDBName Then bContinue = False
 End If

 If Not bContinue Then
 Call MsgBox("Please specify a valid database file!", vbOKOnly + vbInformation,
"Comparing Data")
 If (cbActual.Visible) And (cbActual.Enabled) Then cbActual.SetFocus
 Exit Sub
 End If

 'Save directory path & file
 If AddEntryTocbActual(sDBNamePath) Then
 Screen.MousePointer = vbHourglass

 If chkTest.Value = vbChecked Then
 'Test info
 ReDim ActualScan.VulnCount(1 To glNumVulnerabilityCategories)
 ReDim ActualScan.VulnID(1 To glNumVulnerabilityCategories)
 Call SetupDataForScan(16,
"40,0,0,0,0,0,0,7,0,0,0,0,0,0,0,23,1,44,0,0,67,0,3,16,19,144,0,2,0,1,0", True)
 Else
 'Read info from db
 ActualScan.TableName = sDBName
 Call GetNumberOfVulnerabilitiesForTable(sDBPath, ActualScan)
 End If

 ReDim PredictionsLB(1 To glNumVulnerabilityCategories)
 ReDim PredictionsUB(1 To glNumVulnerabilityCategories)
 For Count = 1 To glNumVulnerabilityCategories
 PredictionsLB(Count) = Categories(Count).Final_AmtVulns.Lowerbound
 PredictionsUB(Count) = Categories(Count).Final_AmtVulns.Upperbound
 Next Count

 'ActualScan.VulnCount & Predictions(Count)
 Call SavePathsInCbActualToText

 'Display Results
 Load fmGraphics

 With fmGraphics.GraphView1
 .Special_LineColor = Options.Prediction_LineColor
 .Prediction_LineColor = Options.Prediction_ColumnColor

 .Prediction_Heading_Top = "Forecast Bounds"
 .Prediction_Heading_Bottom = "Actual Scan"
 .Prediction_DisplayInfo = True

 .Heading = "Comparison Between Forecast and Actual Vulnerability Scan"
 .XAxis_Heading = "Vulnerability Category"
 .XAxis_Increment = 1
 .XAxis_Min = 0
 .XAxis_Max = glNumVulnerabilityCategories

 .YAxis_Heading = "Number of Vulnerabilities"
 .YAxis_Increment = 10
 .YAxis_Min = 0

 lMaxGraphValue = 100
 For CountCats = 1 To glNumDatabaseScans
 Do While ScanInfo(CountCats).MaxEntries > lMaxGraphValue
 lMaxGraphValue = lMaxGraphValue + 10
 Loop
 'If ScanInfo(Count).VulnCount(CountCats) > ScanInfo(Count).MaxEntries Then
 ' ScanInfo(Count).MaxEntries = ScanInfo(Count).VulnCount(CountCats)
 'End If
 Next CountCats
 For CountCats = 1 To glNumVulnerabilityCategories
 If ActualScan.MaxEntries < ActualScan.VulnCount(CountCats) Then
ActualScan.MaxEntries = ActualScan.VulnCount(CountCats)
 Do While ActualScan.MaxEntries > lMaxGraphValue
 lMaxGraphValue = lMaxGraphValue + 10

APPENDIX B

Page 174

 Loop
 Next CountCats
 .YAxis_Max = lMaxGraphValue
 .XAxis_Values = ""

 Call .DrawGraphWithPredictions(ActualScan.VulnCount, PredictionsLB,
PredictionsUB)
 End With

 fmGraphics.Show vbModal
 End If

 Screen.MousePointer = vbNormal

End Sub

Private Sub cmdHelp_Click()
 bHelpClicked = True
End Sub

Private Sub cmdHelp_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub cmdLoad_Click()

 Load fmSaveLoad
 fmSaveLoad.cmdSaveLoad.Caption = "&Load"
 fmSaveLoad.Show vbModal

End Sub

Public Sub cmdLoadData_Click()
 Call cmdLoadDataClick
End Sub

Public Sub cmdLoadDataClick(Optional bSetupCategoryInfo As Boolean = True)

 Dim sBuffer As String
 Dim Count As Long, CountCats As Long
 Dim sngTop As Single
 Dim nIndex As Integer

 If LCase(cbSWPackage.Text) = "<none>" Then
 Call MsgBox("You firts have to set up the software information via the options!",
vbOKOnly + vbInformation)
 Exit Sub
 End If

 bHelpClicked = False

 'Get index
 nIndex = cbSWPackage.ItemData(cbSWPackage.ListIndex)
 SWPackageCurrent = SWPackageInfo(nIndex)

 'Set up vulnerability categories
 If chkMap.Value = vbChecked Then
 glNumVulnerabilityCategories = glCustomCategoriesNum
 lblInfo.Caption = "Loading vulnerability data and mapping to harmonised
vulnerability categories..."
 Else
 glNumVulnerabilityCategories = UBound(SWPackageCurrent.VulnDB.MainCategories)
 lblInfo.Caption = "Loading vulnerability info..."
 End If

 Call ClearForm(lblDBName.Count > 1)

 If (SWPackageCurrent.ScanningDB.TableName = "") Or
(SWPackageCurrent.ScanningDB.FieldName = "") Then
 Call MsgBox("You first have to set up the table and field name containing the
vulnerability scanning info via the options!", vbOKOnly + vbInformation)
 Exit Sub
 End If

 If (chkTest.Visible) And (chkTest.Value = vbChecked) Then

 SOURCE CODE OF THE VF PROTOTYPE

 Page 175

 Call LoadData
 Exit Sub
 End If

 tsMain.Tabs(1).Selected = True
 tsMain.Visible = False
 frmMain(0).Visible = False
 frmMain(1).Visible = False

 chkCompare.Visible = False
 chkCompare.Value = vbUnchecked
 Label4.Visible = False
 cbActual.Visible = False
 cmdSelectActual.Visible = False
 cmdGo.Visible = False
 cmdSave.Visible = False

 pbLoading.Value = 0
 frmLoading.Visible = True
 Me.Refresh

 sBuffer = cbDBDirs.Text
 If (sBuffer = "") Then Exit Sub

 If AddEntryTocbDBDirs(sBuffer) Then
 Screen.MousePointer = vbHourglass

 If (Right$(sBuffer, 1) <> "\") Then sBuffer = sBuffer & "\"
 glNumDatabaseScans = GetNumberOfDBsInDirectory(sBuffer, ScanInfo)

 If glNumDatabaseScans > 0 Then

 'Loop through databases (scans)
 sngTop = imgCheck(0).Top

 For Count = 1 To glNumDatabaseScans
 pbLoading.Value = Fix(Count / glNumDatabaseScans * 100)

 Call GetNumberOfVulnerabilitiesForTable(sBuffer, ScanInfo(Count))

 For CountCats = 1 To glNumVulnerabilityCategories
 If ScanInfo(Count).VulnCount(CountCats) > ScanInfo(Count).MaxEntries Then
 ScanInfo(Count).MaxEntries = ScanInfo(Count).VulnCount(CountCats)
 End If
 Next CountCats

 'Add tables to picDBsIn
 Load imgCheck(Count)
 imgCheck(Count).Move imgCheck(0).Left, sngTop
 imgCheck(Count).Visible = True

 Load lblDBName(Count)
 lblDBName(Count).Caption = "" & ScanInfo(Count).TableName
 lblDBName(Count).Move lblDBName(0).Left, imgCheck(Count).Top +
((imgCheck(Count).Height - lblDBName(Count).Height) / 2)
 lblDBName(Count).Visible = True

 Load cmdSetup(Count)
 cmdSetup(Count).Move picDBsIn.Width - cmdSetup(Count).Width - 25,
imgCheck(Count).Top, cmdSetup(0).Width, imgCheck(Count).Height
 cmdSetup(Count).Visible = True

 sngTop = imgCheck(Count).Top + imgCheck(Count).Height + 10
 Next Count
 pbLoading.Value = 100

 picDBsIn.Height = sngTop + 100
 picGap.Visible = False
 If (picDBsIn.Height > picDBs.Height) Then
 VScroll1.Visible = True
 picDBsIn.Width = VScroll1.Left
 If (picDBsIn.Width > picDBs.Width) Then
 HScroll1.Visible = True
 HScroll1.Width = picDBs.Width - VScroll1.Width
 VScroll1.Height = picDBs.Height - VScroll1.Height
 picGap.Move HScroll1.Left, VScroll1.Top
 picGap.Visible = True

APPENDIX B

Page 176

 Else
 HScroll1.Visible = False
 VScroll1.Height = picDBs.Height - 60
 End If
 Else
 picDBsIn.Width = VScroll1.Left + VScroll1.Width
 VScroll1.Visible = False
 If (picDBsIn.Width > picDBs.Width) Then
 HScroll1.Visible = True
 HScroll1.Width = picDBs.Width - 60
 Else
 HScroll1.Visible = False
 End If
 End If

 lScrollingValue = Abs(picDBsIn.Height - picDBs.Height) / 10
 VScroll1.Max = Abs(picDBsIn.Height - picDBs.Height) / lScrollingValue

 frmLoading.Visible = False

 tsMain.Visible = True
 frmMain(0).Visible = True

 If Options.SaveLoad = vbChecked Then
 cmdSave.Visible = True
 End If

 chkCompare.Visible = True
 Label4.Enabled = False
 Label4.Visible = True
 cbActual.Enabled = False
 cbActual.Visible = True
 cmdSelectActual.Enabled = False
 cmdSelectActual.Visible = True
 cmdGo.Enabled = False
 cmdGo.Visible = True

 If bSetupCategoryInfo Then Call SetupCategoryInfo

 End If

 Call SavePathsInCbDBDirsToText
 End If

 Screen.MousePointer = vbNormal

End Sub

Private Sub LoadData(Optional bSetupCategoryInfo As Boolean = True)

 Dim sBuffer As String
 Dim Count As Long, CountCats As Long, Place As Long
 Dim sngTop As Single
 Dim sTempScan(1 To 15) As String

 Screen.MousePointer = vbHourglass

 sTempScan(1) =
"1007,1008,1008,1008,1009,1021,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1036,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1
041,1041,1041,1041,1041,1041,1041,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,80
42,8042,8042,8042,8042,8054,9001,10042,10056,10068,13002,13002,16001,16001,16001,16004
,16005,16005,16005,16006,16008,16020,16020,16020,16020,16020,16020,16020,16020,16020,1
6020,16020,16020,16020,16020,16020,16023,17002,17005,18001,18001,18001,18001,18001,180
01,18001,18001,18001,18001,18001,18001,18001,18001,18002,18002,18002,18003,18005,18007
,18008,18009,18010,18011,18012,18015,18018,18020,18022,18024,18024,18024,18024,18024,1
8024,18024,18024,18024,18024,18024,18024,18024,18024,18027,20001,20001,20010,20010,200
11,20012,20012,20013,20013,20014,20014,20015,20015,20016,20016,20020,20022,20023,20024
,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,2
1001,21001,21001,21002,21002,21002,21002,21002,21002,21002"
 sTempScan(1) = sTempScan(1) &
",21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21003,21003,21003,21003,
21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21 003,21003,21005,23
029,23030,24001,24003,24005,24006,24007,24008,24010,24011,24012,24013,24014,24015,2401
6,24017,24018,24020,25001,25002,25003,25004,25005,25006,25007,25008,25009,25010,25011,
25012,25013,25014,25015,25016,25019,25020,25022,26001,26001,26001,26001,26001,26001,26
001,26001,26001,26001,26001,26002,26002,26002,26002,26002,26002,26002,26002,26002,2600

 SOURCE CODE OF THE VF PROTOTYPE

 Page 177

2,26002,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26004,26004,
26004,26004,26004,26004,26004,26004,26004,26004,26004,26005,26005,26005,26005,26005,26
005,26005,26005,26005,26005,26005,26006,26006,26006,26006,26006,26006,26006,26006,2600
6,26006,26006,26008,26009,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,
26010,28001,28001,28001,28001,28001,28002,28005,28006,28010,28011,28012,28080,28081,28
082,28150,28151,28152,28173,28176,28250,"
 sTempScan(1) = sTempScan(1) &
"28251,28252,28253,28254,28255,28256,30001,30003,30004,30005"

 sTempScan(2) =
"1008,1008,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1036,1036,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,2003,2007,2012,2013,8
042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,9001,10056,1
0068,16001,16001,16001,16004,16005,16005,16005,16008,16008,16020,16020,16020,16020,160
20,16020,16020,16020,16020,16020,16020,16020,16020,16020,16023,17002,17005,18001,18001
,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18002,18002,1
8002,18003,18005,18007,18008,18009,18010,18011,18012,18015,18018,18020,18022,18024,180
24,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18027,20001,20001
,20010,20010,20011,20012,20012,20013,20013,20014,20014,20015,20015,20016,20016,20020,2
0022,20023,20024,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,210
01,21001,21001,21001,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002
,21002,21003,21003,21003,21003,21003,21003,21003,21003,"
 sTempScan(2) = sTempScan(2) &
"21003,21003,21003,21003,21003,21003,21005,23029,23030,24001,24003,24005,24006,24007,2
4008,24010,24011,24012,24013,24014,24015,24016,24017,24018,24020,25001,25002,25003,250
04,25005,25006,25007,25008,25009,25010,25011,25012,25013,25014,25015,25016,25019,25020
,25022,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26002,26002,2
6002,26002,26002,26002,26002,26002,26002,26002,26002,26003,26003,26003,26003,26003,260
03,26003,26003,26003,26003,26003,26004,26004,26004,26004,26004,26004,26004,26004,26004
,26004,26004,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005,26006,2
6006,26006,26006,26006,26006,26006,26006,26006,26006,26006,26008,26009,26010,26010,260
10,26010,26010,26010,26010,26010,26010,26010,26010,28001,28001,28001,28001,28002,28005
,28006,28010,28011,28012,28080,28081,28082,28150,28151,28152,28173,28176,28250,28251,2
8252,28253,28254,28255,28256,30001,30003,30004,30005"

 sTempScan(3) =
"1008,1008,1008,1009,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1036,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1
041,2003,2007,2012,2013,8001,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,80
42,8042,8042,8042,9001,10056,10068,16001,16001,16001,16001,16002,16003,16003,16004,160
05,16005,16005,16006,16007,16008,16008,16008,16009,16020,16020,16020,16020,16020,16020
,16020,16020,16020,16020,16020,16020,16020,16020,17002,17005,18001,18001,18001,18001,1
8001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18002,18002,18002,18024,180
24,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,20001,20010
,20010,20011,20012,20012,20013,20013,20014,20014,20015,20015,20016,20016,20020,20022,2
0023,20024,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,210
01,21001,21001,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002
,21002,21002,21002,21003,21003,21003,21003,21003,21003"
 sTempScan(3) = sTempScan(3) &
",21003,21003,21003,21003,21003,21003,21003,21005,26001,26001,26001,26001,26001,26001,
26001,26001,26001,26001,26001,26002,26002,26002,26002,26002,26002,26002,26002,26002,26
002,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26004,26004,2600
4,26004,26004,26004,26004,26004,26004,26004,26004,26005,26005,26005,26005,26005,26005,
26005,26005,26005,26005,26005,26006,26006,26006,26006,26006,26006,26006,26006,26006,26
006,26006,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,28001,2800
1,28001"

 sTempScan(4) =
"1006,1008,1008,1008,1008,1009,1009,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1033,1033,1036,1036,1036,1041,1041,1041,1041,1041,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,2003,8001,8042,8042,8042,80
42,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,9001,9001,100
56,10068,11011,15021,15037,16001,16001,16001,16003,16003,16005,16005,16005,16008,16020
,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,1
6020,16023,17002,17005,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,180
01,18001,18001,18001,18001,18002,18002,18002,18004,18005,18007,18008,18009,18010,18011
,18012,18015,18018,18020,18022,18024,18024,18024,18024,18024,18024,18024,18024,18024,1
8024,18024,18024,18024,18024,18024,18027,20001,20010,20010,20010,20011,20011,20012,200
12,20012,20013,20013,20013,20014,20014,20014,20015,20015,20015,20016,20016,20016,20020
,20022,20023,20024,21001,21001,21001,21001,21001,21001,"
 sTempScan(4) = sTempScan(4) &
"21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21002,21002,2
1002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,210
02,21002,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003
,21003,21003,21003,21003,21003,21005,21005,23029,23030,24001,24003,24005,24006,24007,2
4008,24010,24011,24012,24013,24014,24015,24016,24017,24018,24020,25001,25002,25003,250
04,25005,25006,25007,25008,25009,25010,25011,25012,25013,25014,25015,25016,25019,25020

APPENDIX B

Page 178

,25022,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,2
6002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26003,26003,260
03,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26004,26004,26004,26004
,26004,26004,26004,26004,26004,26004,26004,26004,26004,26005,26005,26005,26005,26005,2
6005,26005,26005,26005,26005,26005,26005,26005,26006,26006,26006,26006,26006,26006,260
06,26006,26006,26006,26006,26006,26006,"
 sTempScan(4) = sTempScan(4) &
"26008,26009,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,2
6010,28001,28001,28001,28001,28002,28005,28006,28010,28011,28012,28080,28081,28082,281
50,28151,28152,28173,28176,28250,28251,28252,28253,28254,28255,28256,30001,30003,30004
,30005"

 sTempScan(5) =
"1006,1008,1008,1008,1008,1009,1009,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1033,1036,1036,1036,1041,1041,1041,1041,1041,1041,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,1041,2003,2003,2007,2007,2012,2013,8042,80
42,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,9001,900
1,10068,11011,15021,15037,16001,16001,16001,16003,16005,16005,16005,16008,16008,16020,
16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16
023,17002,17005,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,1800
1,18001,18001,18002,18002,18002,18004,18007,18008,18009,18010,18011,18012,18015,18018,
18020,18022,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18
024,18024,18027,20001,20001,20010,20010,20010,20011,20011,20012,20012,20012,20013,2001
3,20013,20014,20014,20014,20015,20015,20015,20016,20016,20016,20020,20022,20023,20024,
21001,21001,21001,21001,21001,21001,21001,21001,21001,"
 sTempScan(5) = sTempScan(5) &
"21001,21001,21001,21001,21001,21001,21001,21001,21002,21002,21002,21002,21002,21002,2
1002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21003,21003,21003,210
03,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21005
,21005,23029,23030,24001,24003,24005,24006,24007,24008,24010,24011,24012,24013,24014,2
4015,24016,24017,24018,24020,25001,25002,25003,25004,25005,25006,25007,25008,25009,250
10,25011,25012,25013,25014,25015,25016,25019,25020,25022,26001,26001,26001,26001,26001
,26001,26001,26001,26001,26001,26001,26002,26002,26002,26002,26002,26002,26002,26002,2
6002,26002,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26004,260
04,26004,26004,26004,26004,26004,26004,26004,26004,26004,26005,26005,26005,26005,26005
,26005,26005,26005,26005,26005,26005,26006,26006,26006,26006,26006,26006,26006,26006,2
6006,26006,26006,26008,26009,26010,26010,26010,26010,26010,26010,26010,26010,26010,260
10,26010,28001,28001,28001,28001,28002,"
 sTempScan(5) = sTempScan(5) &
"28005,28006,28010,28011,28012,28080,28081,28082,28150,28151,28152,28173,28176,28250,2
8251,28252,28253,28254,28255,28256,30001,30003,30004,30005"

 sTempScan(6) =
"1006,1008,1008,1008,1009,1009,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1036,1036,1036,1041,1041,1041,1041,1041,1041, 1041,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,2007,2012,2013,3001,8042,8042,8042,8042,80
42,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,8042,9001,9001,10056,10068,1
1011,13002,15021,15037,16001,16001,16001,16003,16005,16005,16005,16008,16008,16020,160
20,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16023
,17002,17005,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,1
8001,18001,18002,18002,18002,18004,18007,18008,18009,18010,18011,18012,18015,18018,180
20,18022,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024
,18024,18027,20001,20010,20010,20010,20011,20011,20012,20012,20012,20013,20013,20013,2
0014,20014,20014,20015,20015,20015,20016,20016,20016,20020,20022,20023,20024,21001,210
01,21001,21001,21001,21001,21001,21001,21001,21001,21001,"
 sTempScan(6) = sTempScan(6) &
"21001,21001,21001,21001,21001,21001,21002,21002,21002,21002,21002,21002,21002,21002,2
1002,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,210
03,21003,21003,21003,21005,23029,23030,24001,24003,24005,24006,24007,24008,24010,24011
,24012,24013,24014,24015,24016,24017,24018,24020,25001,25002,25003,25004,25005,25006,2
5007,25008,25009,25010,25011,25012,25013,25014,25015,25016,25019,25020,25022,26001,260
01,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26002,26002,26002,26002
,26002,26002,26002,26002,26002,26002,26002,26003,26003,26003,26003,26003,26003,26003,2
6003,26003,26003,26003,26003,26004,26004,26004,26004,26004,26004,26004,26004,26004,260
04,26004,26004,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005
,26006,26006,26006,26006,26006,26006,26006,26006,26006,26006,26006,26006,26008,26009,2
6010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,28001,28001,280
01,28001,28002,28005,28006,28010,28011,"
 sTempScan(6) = sTempScan(6) &
"28012,28080,28081,28082,28150,28151,28152,28173,28176,28250,28251,28252,28253,28254,2
8255,28256,30001,30003,30004,30005"

 sTempScan(7) =
"1006,1007,1008,1008,1008,1008,1009,1009,1021,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1036,1036,1036,1041,1041,1041,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,2003,2003,2007,20
07,2012,2013,8001,8001,8001,8004,8004,8004,8004,8004,8005,8010,8016,8030,8030,8030,803

 SOURCE CODE OF THE VF PROTOTYPE

 Page 179

0,8042,8050,9001,9001,10056,10068,11011,15021,15037,16001,16001,16001,16001,16002,1600
3,16003,16004,16005,16005,16005,16005,16006,16007,16008,16008,16008,16009,16020,16020,
16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16
023,17002,17005,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,1800
1,18001,18001,18001,18002,18002,18002,18004,18007,18008,18009,18010,18011,18012,18015,
18018,18020,18022,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18
024,18024,18024,18024,18027,20010,20010,20010,20011,20011,20012,20012,20012,20013,2001
3,20013,20014,20014,20014,20015,20015,20015,20016,20016,"
 sTempScan(7) = sTempScan(7) &
"20016,20020,20022,20023,20024,21001,21001,21001,21001,21001,21001,21001,21001,21001,2
1001,21001,21001,21001,21001,21001,21001,21001,21001,21002,21002,21002,21002,21002,210
02,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21003,21 003
,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,2
1003,21003,21005,21005,23029,23030,24001,24003,24005,24006,24007,24008,24010,24011,240
12,24013,24014,24015,24016,24017,24018,24020,25001,25002,25003,25004,25005,25006,25007
,25008,25009,25010,25011,25012,25013,25014,25015,25016,25019,25020,25022,26001,26001,2
6001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26002,26002,26002,260
02,26002,26002,26002,26002,26002,26002,26002,26002,26003,26003,26003,26003,26003,26003
,26003,26003,26003,26003,26003,26003,26003,26004,26004,26004,26004,26004,26004,26004,2
6004,26004,26004,26004,26004,26004,26005,26005,26005,26005,26005,26005,26005,26005,260
05,26005,26005,26005,26005,26006,26006,"
 sTempScan(7) = sTempScan(7) &
"26006,26006,26006,26006,26006,26006,26006,26006,26006,26006,26006,26008,26009,26010,2
6010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,28001,28001,280
01,28001,28002,28005,28006,28010,28011,28012,28080,28081,28082,28150,28151,28152,28173
,28176,28250,28251,28252,28253,28254,28255,28256,30001,30003,30004,30005"

 sTempScan(8) =
"1006,1008,1008,1009,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1036,1036,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1
041,1041,1041,1041,1041,2003,2007,2007,2012,2013,8001,8004,8004,8004,8004,8004,8005,80
10,8016,8030,8030,8030,8030,8030,8030,8030,9001,9001,10068,11011,15021,15037,16001,160
01,16001,16003,16005,16005,16005,16008,16008,16020,16020,16020,16020,16020,16020,16020
,16020,16020,16020,16020,16020,16020,16020,16020,16023,18001,18001,18001,18001,18001,1
8001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18002,18002,18002,18003,180
05,18007,18008,18009,18010,18011,18012,18015,18018,18020,18022,18024,18024,18024,18024
,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18027,20001,20001,20010,2
0010,20011,20012,20012,20013,20013,20014,20014,20015,20016,21001,21001,21001,21001,210
01,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21002,21002
,21002,21002,21002,21002,21002,21002,21002,21002,21002,"
 sTempScan(8) = sTempScan(8) &
"21002,21002,21002,21002,21002,21003,21003,21003,21003,21003,21003,21003,21003,21003,2
1003,21003,21003,21003,21003,21003,21003,21004,21005,21007,23029,23030,24001,24003,240
05,24006,24007,24008,24010,24011,24012,24013,24014,24015,24016,24017,24018,24020,25001
,25002,25003,25004,25005,25006,25007,25008,25009,25010,25011,25012,25013,25014,25015,2
5016,25019,25020,25022,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,260
01,26001,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26003
,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26004,26004,26004,2
6004,26004,26004,26004,26004,26004,26004,26004,26004,26005,26005,26005,26005,26005,260
05,26005,26005,26005,26005,26005,26005,26006,26006,26006,26006,26006,26006,26006,26006
,26006,26006,26006,26006,26008,26009,26010,26010,26010,26010,26010,26010,26010,26010,2
6010,26010,26010,26010,28001,28001,28001,28001,28002,28005,28006,28010,28011,28012,280
80,28081,28082,28150,28151,28152,28173,"
 sTempScan(8) = sTempScan(8) &
"28176,28250,28251,28252,28253,28254,28255,28256,30001,30003,30004,30005"

 sTempScan(9) =
"1008,1008,1008,1009,1009,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1033,1033,1036,1036,1036,1041,1041,1041,1041,1041,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,2003,2003,2007,20
07,2012,2013,8001,8001,8001,8004,8004,8004,8004,8004,8004,8005,8010,8016,8030,8030,803
0,8030,8030,8030,8050,9001,9001,10056,10068,11011,13002,13002,13002,15021,15037,16001,
16001,16001,16001,16003,16005,16005,16005,16006,16008,16008,16020,16020,16020,16020,16
020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,1602
3,17002,17005,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,
18001,18001,18001,18001,18001,18002,18002,18002,18002,18004,18007,18008,18009,18010,18
011,18012,18015,18018,18020,18022,18024,18024,18024,18024,18024,18024,18024,18024,1802
4,18024,18024,18024,18024,18024,18024,18024,18024,18027,20001,20010,20010,20011,20011,
20012,20012,20013,20013,20014,20014,20015,20016,20016,"
 sTempScan(9) = sTempScan(9) &
"20020,20022,20023,20024,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,2
1001,21001,21001,21001,21001,21001,21001,21001,21001,21002,21002,21002,21002,21002,210
02,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002
,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,2
1003,21003,21003,21003,21003,21003,21005,23029,23030,24001,24003,24005,24006,24007,240
08,24010,24011,24012,24013,24014,24015,24016,24017,24018,24020,25001,25002,25003,25004
,25005,25006,25007,25008,25009,25010,25011,25012,25013,25014,25015,25016,25019,25020,2

APPENDIX B

Page 180

5022,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,260
01,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26003
,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26004,2
6004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26005,260
05,26005,26005,26005,26005,26005,26005,"
 sTempScan(9) = sTempScan(9) &
"26005,26005,26005,26005,26005,26005,26006,26006,26006,26006,26006,26006,26006,26006,2
6006,26006,26006,26006,26006,26006,26008,26009,26010,26010,26010,26010,26010,26010,260
10,26010,26010,26010,26010,26010,26010,26010,28001,28001,28001,28001,28001,28002,28005
,28006,28010,28011,28012,28080,28081,28082,28150,28151,28152,28173,28176,28250,28251,2
8252,28253,28254,28255,28256,30001,30003,30004,30005"

 sTempScan(10) =
"1006,1008,1008,1008,1009,1009,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1033,1033,1036,1036,1036,1041,1041,1041,1041,1041,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,8001,8001,8004,8004,8004,8004,8004,8004,80
05,8010,8012,8016,8030,8030,8030,8030,8030,8030,8030,8050,9001,9001,10056,10068,11011,
15021,15037,16001,16001,16001,16003,16005,16005,16005,16008,16008,16020,16020,16020,16
020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,1602
3,17002,17005,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,
18001,18001,18001,18002,18002,18002,18004,18007,18008,18009,18010,18011,18012,18015,18
018,18020,18022,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,1802
4,18024,18024,18024,18027,20001,20010,20010,20011,20011,20012,20012,20013,20013,20014,
20014,20015,20016,20016,20020,20022,20023,20024,21001,21001,21001,21001,21001,21001,21
001,21001,21001,21001,21001,21001,21001,21001,21001,"
 sTempScan(10) = sTempScan(10) &
"21001,21001,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,2
1002,21002,21002,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,210
03,21003,21003,21003,21003,21003,21003,21004,21005,21005,23029,23030,24001,24003,24005
,24006,24007,24008,24010,24011,24012,24013,24014,24015,24016,24017,24018,24020,25001,2
5002,25003,25004,25005,25006,25007,25008,25009,25010,25011,25012,25013,25014,25015,250
16,25019,25020,25022,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001
,26001,26001,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,2
6003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26004,260
04,26004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26005,26005,26005
,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005,26006,26006,26006,26006,2
6006,26006,26006,26006,26006,26006,26006,26006,26006,26008,26009,26010,26010,26010,260
10,26010,26010,26010,26010,26010,26010,"
 sTempScan(10) = sTempScan(10) &
"26010,26010,26010,26010,28001,28001,28001,28001,28002,28005,28006,28010,28011,28012,2
8080,28081,28082,28150,28151,28152,28173,28176,28250,28251,28252,28253,28254,28255,282
56,30001,30003,30004,30005"

 sTempScan(11) =
"1006,1008,1008,1008,1009,1009,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1036,1036,1036,1041,1041,1041,1041,1041,1041,1041,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,8001,8004,8004,8004,8004,8004,8005,8010,80
16,8030,8030,8030,8030,8030,8030,8032,9001,9001,10056,10068,11011,15021,15037,16001,16
001,16005,16005,16008,16008,16020,16020,16020,16020,16020,16020,16020,16020,16020,1602
0,16020,16020,16020,16020,16020,16023,17002,17005,18001,18001,18001,18001,18001,18001,
18001,18001,18001,18001,18001,18001,18001,18001,18002,18002,18004,18007,18008,18009,18
010,18011,18012,18015,18018,18020,18022,18024,18024,18024,18024,18024,18024,18024,1802
4,18024,18024,18024,18024,18024,18024,18027,20001,20010,20010,20011,20011,20012,20012,
20013,20013,20014,20014,20015,20016,20016,20020,20022,20023,20024,21001,21001,21001,21
001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21002,2100
2,21002,21002,21002,21002,21002,21002,21002,21002,21002,"
 sTempScan(11) = sTempScan(11) &
"21002,21002,21002,21002,21002,21002,21003,21003,21003,21003,21003,21003,21003,21003,2
1003,21003,21003,21003,21003,21003,21003,21003,21005,21005,23029,23030,24001,24003,240
05,24006,24007,24008,24010,24011,24012,24013,24014,24015,24016,24017,24018,24020,25001
,25002,25003,25004,25005,25006,25007,25008,25009,25010,25011,25012,25013,25014,25015,2
5016,25019,25020,25022,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,260
01,26001,26001,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002
,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26003,26004,2
6004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26005,26005,260
05,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005,26006,26006,26006,26006
,26006,26006,26006,26006,26006,26006,26006,26006,26006,26008,26009,26010,26010,26010,2
6010,26010,26010,26010,26010,26010,26010,26010,26010,26010,28001,28001,28001,28002,280
05,28006,28010,28011,28012,28080,28081,"
 sTempScan(11) = sTempScan(11) &
"28082,28150,28151,28152,28173,28176,28250,28251,28252,28253,28254,28255,28256,30001,3
0003,30004,30005"

 sTempScan(12) =
"1001,1006,1007,1008,1008,1008,1008,1008,1009,1009,1019,1021,1023,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1036,1036,1
036,1036,1037,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,10

 SOURCE CODE OF THE VF PROTOTYPE

 Page 181

41,1041,1041,1041,2003,2003,2007,2012,2013,3001,8001,8001,8004,8004,8004,8004,8004,800
4,8005,8005,8010,8016,8030,8030,8030,8030,8030,8030,8033,8038,8039,9001,9001,10002,100
20,10056,10068,11011,15021,15037,16001,16001,16001,16001,16003,16004,16005,16005,16005
,16006,16008,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,1
6020,16020,16020,16020,16020,16023,17002,17005,18001,18001,18001,18001,18001,18001,180
01,18001,18001,18001,18001,18001,18001,18002,18002,18002,18004,18007,18008,18009,18010
,18011,18012,18015,18018,18020,18022,18024,18024,18024,18024,18024,18024,18024,18024,1
8024,18024,18024,18024,18024,18027,20010,20010,20010,20010,20011,20011,20011,20012,200
12,20012,20012,20013,20013,20013,20013,20014,20014,20014,"
 sTempScan(12) = sTempScan(12) &
"20014,20015,20015,20016,20016,20016,20016,20020,20022,20023,20024,21001,21001,21001,2
1001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,210
01,21001,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002
,21002,21002,21002,21002,21002,21003,21003,21003,21003,21003,21003,21003,21003,21003,2
1003,21003,21003,21003,21003,21003,21003,21003,21003,21004,21005,21005,21005,21005,210
06,24001,24003,24005,24006,24007,24008,24010,24011,24012,24013,24014,24015,24016,24017
,24018,24020,25001,25002,25003,25004,25005,25006,25007,25008,25009,25010,25011,25012,2
5013,25014,25015,25016,25019,25020,25022,26001,26001,26001,26001,26001,26001,26001,260
01,26002,26002,26002,26002,26002,26002,26002,26003,26003,26003,26003,26003,26003,26003
,26003,26004,26004,26004,26004,26004,26004,26004,26004,26005,26005,26005,26005,26005,2
6005,26005,26005,26006,26006,26006,26006,26006,26006,26006,26006,26010,26010,26010,260
10,26010,26010,26010,26010,26010,26010,"
 sTempScan(12) = sTempScan(12) &
"26010,26010,26010,28001,28001,28001,28001,28001,28002,28005,28006,28010,28011,28012,2
8080,28081,28082,28150,28151,28152,28173,28176,28250,28251,28252,28253,28254,28255,282
56,30001,30003,30004,30005"

 sTempScan(13) =
"1008,1008,1008,1008,1008,1009,1009,1019,1023,1033,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1036,1036,1036,1037,1041,1041,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,2003,2003,2007,20
07,2012,2013,8004,8004,8004,8004,8004,8005,8010,8030,8030,8030,8030,8030,8030,9001,100
02,10020,10056,10068,11011,13002,15021,15037,16001,16001,16004,16005,16005,16008,16020
,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16023,1
7002,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,18001,180
01,18001,18002,18002,18007,18008,18009,18010,18011,18012,18015,18018,18020,18022,18024
,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,18024,1
8027,20010,20010,20010,20010,20011,20011,20011,20012,20012,20012,20012,20013,20013,200
13,20013,20014,20014,20014,20014,20015,20015,20016,20016,20016,20016,20020,20022,20023
,20024,21001,21001,21001,21001,21001,21001,21001,21001,"
 sTempScan(13) = sTempScan(13) &
"21001,21001,21001,21001,21001,21001,21001,21001,21001,21002,21002,21002,21002,21002,2
1002,21002,21002,21002,21002,21002,21003,21003,21003,21003,21003,21003,21003,21003,210
03,21003,21003,21003,21003,21003,21003,21003,21003,21003,21005,21005,21005,21006,24001
,24003,24005,24006,24007,24008,24010,24011,24012,24013,24014,24015,24016,24017,24018,2
4020,25015,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,26001,260
02,26002,26002,26002,26002,26002,26002,26002,26002,26002,26002,26003,26003,26003,26003
,26003,26003,26003,26003,26003,26003,26003,26003,26004,26004,26004,26004,26004,26004,2
6004,26004,26004,26004,26004,26004,26005,26005,26005,26005,26005,26005,26005,26005,260
05,26005,26005,26005,26006,26006,26006,26006,26006,26006,26006,26006,26006,26006,26006
,26006,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,26010,2
8001,28001,28001,28002,28005,28006,28010,28011,28012,28080,28081,28082,28150,28151,281
52,28173,28176,28250,28251,28252,"
 sTempScan(13) = sTempScan(13) & "28253,28254,28255,28256"

 sTempScan(14) =
"1001,1006,1008,1008,1008,1008,1008,1009,1009,1019,1023,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1036,1036,1036,1037,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,20
03,2003,2007,2007,2012,2013,8001,8001,8004,8004,8004,8004,8004,8005,8010,8012,8016,803
0,8030,8030,8030,8030,8030,8032,9001,10002,10020,10056,10068,11011,15021,15037,16001,1
6001,16001,16003,16003,16005,16005,16005,16008,16020,16020,16020,16020,16020,16020,160
20,16020,16020,16020,16020,16020,16020,16020,16020,17002,17005,18001,18001,18001,18001
,18001,18001,18001,18001,18002,18002,18002,18024,18024,18024,18024,18024,18024,18024,1
8024,20001,20001,20010,20010,20010,20010,20011,20011,20011,20012,20012,20012,20012,200
13,20013,20013,20013,20014,20014,20014,20014,20015,20015,20016,20016,20016,20016,20020
,20022,20023,20024,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,2
1001,21001,21001,21001,21001,21001,21001,21002,21002,"
 sTempScan(14) = sTempScan(14) &
"21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,21002,2
1003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,210
03,21003,21003,21003,21004,21005,21005,21005,21006,26001,26001,26001,26001,26001,26002
,26002,26002,26002,26003,26003,26003,26003,26003,26004,26004,26004,26004,26004,26005,2
6005,26005,26005,26005,26006,26006,26006,26006,26006,26010,26010,26010,26010,26010,260
10,26010,26010,26010,26010,26010,26010,28001,28001,28001"

APPENDIX B

Page 182

 sTempScan(15) =
"1001,1006,1008,1008,1008,1008,1008,1009,1019,1023,1033,1033,1033,1033,1033,1033,1033,
1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1033,1036,1036,1036,1036,1037,1041,1
041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,1041,20
03,2007,3001,8001,8004,8004,8004,8004,8004,8005,8010,8016,8030,8030,8030,8030,8030,900
1,10002,10020,10056,10068,11011,13002,13002,15021,15037,16001,16001,16001,16003,16003,
16005,16005,16008,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16020,16
020,16020,16020,16020,16023,17002,17005,18001,18001,18001,18001,18001,18001,18001,1800
1,18001,18001,18001,18001,18001,18001,18001,18002,18002,18002,18003,18005,18007,18008,
18009,18010,18011,18012,18015,18018,18020,18022,18024,18024,18024,18024,18024,18024,18
024,18024,18024,18024,18024,18024,18024,18024,18027,20001,20010,20010,20010,20010,2001
1,20011,20011,20012,20012,20012,20012,20013,20013,20013,20013,20014,20014,20014,20014,
20015,20015,20016,20016,20016,20016,20020,20022,20023,"
 sTempScan(15) = sTempScan(15) &
"20024,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,21001,2
1001,21001,21001,21001,21001,21002,21002,21002,21002,21002,21002,21002,21002,21002,210
02,21002,21002,21002,21002,21002,21002,21002,21002,21003,21003,21003,21003,21003,21003
,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21003,21005,21005,2
1005,21006,23029,23030,24001,24003,24005,24006,24007,24008,24010,24011,24012,24013,240
14,24015,24016,24017,24018,24020,25001,25002,25003,25004,25005,25006,25007,25008,25009
,25010,25011,25012,25013,25014,25015,25016,25019,25020,25022,26001,26001,26001,26001,2
6001,26001,26001,26001,26001,26001,26001,26001,26002,26002,26002,26002,26002,26002,260
02,26002,26002,26002,26002,26002,26003,26003,26003,26003,26003,26003,26003,26003,26003
,26003,26003,26003,26004,26004,26004,26004,26004,26004,26004,26004,26004,26004,26004,2
6004,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005,26005,26006,260
06,26006,26006,26006,26006,26006,26006,"
 sTempScan(15) = sTempScan(15) &
"26006,26006,26006,26006,26008,26009,26010,26010,26010,26010,26010,26010,26010,26010,2
6010,26010,26010,26010,28001,28001,28001,28001,28002,28005,28006,28010,28011,28012,280
80,28081,28082,28150,28151,28152,28173,28176,28250,28251,28252,28253,28254,28255,28 256
,30001,30003,30004,30005"

 glNumDatabaseScans = 15
 ReDim ScanInfo(1 To glNumDatabaseScans)
 For Count = 1 To 15
 ReDim ScanInfo(Count).VulnCount(1 To glNumVulnerabilityCategories)
 ReDim ScanInfo(Count).VulnID(1 To glNumVulnerabilityCategories)

 Do
 Place = InStr(1, sTempScan(Count), ",")
 If Place > 0 Then
 CountCats = CLng(Left(sTempScan(Count), Place - 1))
 sTempScan(Count) = Mid$(sTempScan(Count), Place + 1)
 Else
 CountCats = CLng(sTempScan(Count))
 sTempScan(Count) = ""
 End If

 Call MapVulnerabilityToCategory(CountCats, ScanInfo(Count))
 Loop While sTempScan(Count) <> ""

 Next Count

 If glNumDatabaseScans > 0 Then

 'Loop through tables
 sngTop = imgCheck(0).Top
 For Count = 1 To glNumDatabaseScans
 For CountCats = 1 To glNumVulnerabilityCategories
 If ScanInfo(Count).VulnCount(CountCats) > ScanInfo(Count).MaxEntries Then
 ScanInfo(Count).MaxEntries = ScanInfo(Count).VulnCount(CountCats)
 End If
 Next CountCats

 'Add tables to picDBsIn
 Load imgCheck(Count)
 imgCheck(Count).Move imgCheck(0).Left, sngTop
 imgCheck(Count).Visible = True

 Load lblDBName(Count)
 lblDBName(Count).Caption = "" & ScanInfo(Count).TableName
 lblDBName(Count).Move lblDBName(0).Left, imgCheck(Count).Top +
((imgCheck(Count).Height - lblDBName(Count).Height) / 2)
 lblDBName(Count).Visible = True

 Load cmdSetup(Count)

 SOURCE CODE OF THE VF PROTOTYPE

 Page 183

 cmdSetup(Count).Move picDBsIn.Width - cmdSetup(Count).Width - 25,
imgCheck(Count).Top, cmdSetup(0).Width, imgCheck(Count).Height
 cmdSetup(Count).Visible = True

 sngTop = imgCheck(Count).Top + imgCheck(Count).Height + 10
 Next Count

 picDBsIn.Height = sngTop + 100
 picGap.Visible = False
 If (picDBsIn.Height > picDBs.Height) Then
 VScroll1.Visible = True
 picDBsIn.Width = VScroll1.Left
 If (picDBsIn.Width > picDBs.Width) Then
 HScroll1.Visible = True
 HScroll1.Width = picDBs.Width - VScroll1.Width
 VScroll1.Height = picDBs.Height - VScroll1.Height
 picGap.Move HScroll1.Left, VScroll1.Top
 picGap.Visible = True
 Else
 HScroll1.Visible = False
 VScroll1.Height = picDBs.Height - 60
 End If
 Else
 picDBsIn.Width = VScroll1.Left + VScroll1.Width
 VScroll1.Visible = False
 If (picDBsIn.Width > picDBs.Width) Then
 HScroll1.Visible = True
 HScroll1.Width = picDBs.Width - 60
 Else
 HScroll1.Visible = False
 End If
 End If

 tsMain.Visible = True
 frmMain(0).Visible = True
 lScrollingValue = Abs(picDBsIn.Height - picDBs.Height) / 10
 VScroll1.Max = Abs(picDBsIn.Height - picDBs.Height) / lScrollingValue

 chkCompare.Visible = True
 Label4.Enabled = False
 Label4.Visible = True
 cbActual.Enabled = False
 cbActual.Visible = True
 cmdSelectActual.Enabled = False
 cmdSelectActual.Visible = True
 cmdGo.Enabled = False
 cmdGo.Visible = True

 If bSetupCategoryInfo Then Call SetupCategoryInfo

 End If

 Screen.MousePointer = vbNormal

End Sub

Private Sub SetupDataForScan(ScanNumber As Long, NumbersString As String, Optional
bIsComparingDB As Boolean = False)

 Dim Count As Long, Place As Long
 Dim lNum As Long
 Dim sTemp As String, sVal As String

 If bIsComparingDB Then
 ActualScan.TableName = "Fuzzy" & Format(ScanNumber, "00") & ".mdb"
 Else
 ScanInfo(ScanNumber).TableName = "Fuzzy" & Format(ScanNumber, "00") & ".mdb"
 End If
 lNum = 0
 sTemp = NumbersString
 Do While (lNum < glNumVulnerabilityCategories) And (sTemp <> "")
 lNum = lNum + 1
 Place = InStr(1, sTemp, ",")
 If Place > 0 Then
 sVal = Left$(sTemp, Place - 1)
 sTemp = Mid(sTemp, Place + 1)
 Else

APPENDIX B

Page 184

 sVal = sTemp
 sTemp = ""
 End If
 If bIsComparingDB Then
 ActualScan.VulnCount(lNum) = CLng(sVal)
 If ActualScan.MaxEntries < ActualScan.VulnCount(lNum) Then ActualScan.MaxEntries
= ActualScan.VulnCount(lNum)
 Else
 ScanInfo(ScanNumber).VulnCount(lNum) = CLng(sVal)
 If ScanInfo(ScanNumber).MaxEntries < ScanInfo(ScanNumber).VulnCount(lNum) Then
ScanInfo(ScanNumber).MaxEntries = ScanInfo(ScanNumber).VulnCount(lNum)
 End If
 Loop

End Sub

Private Sub cmdLoadData_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub cmdSave_Click()

 Load fmSaveLoad
 fmSaveLoad.cmdSaveLoad.Caption = "&Save"
 fmSaveLoad.Show vbModal

End Sub

Private Sub cmdSelectActual_Click()

 Dim sTemp As String
 Dim Place As Long

 sTemp = cbActual.Text
 If sTemp = "" Then
 sTemp = App.Path
 Else
 Place = InStrRev(sTemp, "\")
 sTemp = Left$(sTemp, Place - 1)
 End If

 cmdDlgActual.DefaultExt = sTemp
 cmdDlgActual.DialogTitle = "Select Database"
 cmdDlgActual.Filter = "Database Files|*.mdb"
 cmdDlgActual.InitDir = sTemp
 cmdDlgActual.ShowOpen

 sTemp = cmdDlgActual.FileName
 If sTemp <> "" Then
 cbActual.Text = sTemp
 End If

End Sub

Private Sub cmdSelectDBDir_Click()

 Dim lpIDList As Long
 Dim sBuffer As String
 Dim sDBFiles() As String

 bHelpClicked = False

 InitDir = ""
 If Right$(InitDir, 1) = "\" Then
 If Len(InitDir) > 3 Then
 InitDir = Left$(InitDir, Len(InitDir) - 1)
 End If
 End If

 gsFilter = ""
 gsStatusTextFound = "Database found"
 BrowseInfo.hWndOwner = Me.hwnd

 BrowseInfo.pIDLRoot = 0
 BrowseInfo.pszDisplayName = lpIDList

 SOURCE CODE OF THE VF PROTOTYPE

 Page 185

 BrowseInfo.lpszTitle = lstrcat("Select database path", "")

 BrowseInfo.ulFlags = BIF_STATUSTEXT

 BrowseInfo.lpfnCallback = GetProcAddress(AddressOf BrowseCallbackProc)
 BrowseInfo.lParam = 0
 lpIDList = SHBrowseForFolder(BrowseInfo)

 If (lpIDList) Then
 sBuffer = Space(MAX_PATH)
 Call SHGetPathFromIDList(lpIDList, sBuffer)
 sBuffer = Left(sBuffer, InStr(sBuffer, vbNullChar) - 1)
 cbDBDirs.Text = sBuffer
 End If

End Sub

Private Sub cmdSelectDBDir_MouseMove(Button As Integer, Shift As Integer, X As Single,
Y As Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub cmdSetup_Click(Index As Integer)

 Dim lMaxGraphValue As Long, Count As Long
 Dim sTemp As String

 Screen.MousePointer = vbHourglass

 bHelpClicked = False

 Load fmGraphics
 fmGraphics.GraphView1.Special_LineColor = Options.Prediction_LineColor
 fmGraphics.GraphView1.Prediction_LineColor = Options.Prediction_ColumnColor

 fmGraphics.GraphView1.Heading = "Vulnerabilities for Scan " & CStr(Index)
 fmGraphics.GraphView1.XAxis_Heading = "Vulnerability Category"
 fmGraphics.GraphView1.XAxis_Increment = 1
 fmGraphics.GraphView1.XAxis_Min = 0
 fmGraphics.GraphView1.XAxis_Max = glNumVulnerabilityCategories

 fmGraphics.GraphView1.YAxis_Heading = "Number of Vulnerabilities"
 fmGraphics.GraphView1.YAxis_Increment = 10
 fmGraphics.GraphView1.YAxis_Min = 0

 If ScanInfo(Index).MaxEntries > 100 Then
 lMaxGraphValue = 100
 Do While ScanInfo(Index).MaxEntries > lMaxGraphValue
 lMaxGraphValue = lMaxGraphValue + 10
 Loop
 fmGraphics.GraphView1.YAxis_Max = lMaxGraphValue
 Else
 fmGraphics.GraphView1.YAxis_Max = 100
 End If

 sTemp = ""
 For Count = 1 To UBound(SWPackageCurrent.VulnDB.MainCategories)
 sTemp = sTemp & SWPackageCurrent.VulnDB.MainCategories(Count).Number & ","
 Next Count
 If Right$(sTemp, 1) = "," Then sTemp = Left$(sTemp, Len(sTemp) - 1)
 fmGraphics.GraphView1.XAxis_Values = sTemp

 Call fmGraphics.GraphView1.DrawGraphColumns(ScanInfo(Index).VulnCount)

 If picDBsIn.Visible Then picDBsIn.SetFocus
 DoEvents
 fmGraphics.Show

End Sub

Private Sub cmdSetup_MouseMove(Index As Integer, Button As Integer, Shift As Integer,
X As Single, Y As Single)
 Call DeselectAllCategories
 Call DeselectAllTables
 lblDBName(Index).FontBold = True
End Sub

APPENDIX B

Page 186

Private Sub cmdSetupCategory_Click(Index As Integer)

 Dim lMaxGraphValue As Long, Count As Long, CountIn As Long

 If bHelpClicked Then
 bHelpClicked = False
 End If

 Screen.MousePointer = vbHourglass

 gnCurCat = CLng(lblCategory(Index).Tag)

 Load fmSetup
 fmSetup.GraphView1.Special_LineColor = Options.Prediction_LineColor
 fmSetup.GraphView1.Prediction_LineColor = Options.Prediction_ColumnColor

 fmSetup.GraphView1.Heading = "Vulnerabilities for Vulnerability Category " &
CStr(gnCurCat)
 fmSetup.GraphView1.XAxis_Heading = "Scan Number"
 fmSetup.GraphView1.XAxis_Increment = 1
 fmSetup.GraphView1.XAxis_Min = 0
 fmSetup.GraphView1.XAxis_Max = glNumDatabaseScans

 fmSetup.GraphView1.YAxis_Heading = "Number of Vulnerabilities"
 fmSetup.GraphView1.YAxis_Increment = 10
 fmSetup.GraphView1.YAxis_Min = 0

 lMaxGraphValue = 100
 If lMaxGraphValue < Categories(Index).MaxVulnerabilityValue Then lMaxGraphValue =
Categories(Index).MaxVulnerabilityValue
 fmSetup.GraphView1.YAxis_Max = lMaxGraphValue

 Call fmSetup.GraphView1.DrawGraphColumns(Categories(Index).NumberOfVulnerabilities)

 Call fmSetup.SetupFormWithCategoryInfo(Index)

 If Categories(Index).DisplayResultOnGraph Then
 fmSetup.chkDisplay.Value = vbChecked
 Else
 fmSetup.chkDisplay.Value = vbUnchecked
 End If

 If picCategoriesIn.Visible Then picCategoriesIn.SetFocus
 fmSetup.Show

End Sub

Private Sub cmdSetupCategory_MouseMove(Index As Integer, Button As Integer, Shift As
Integer, X As Single, Y As Single)
 Call DeselectAllTables
 Call SelectCategory(Index)
End Sub

Private Sub cmdOptions_Click()
 If gbDBDetected Then
 Screen.MousePointer = vbHourglass
 fmOptions.Show vbModal
 End If
End Sub

Private Sub Form_Click()
 bHelpClicked = False
End Sub

Private Sub Form_DblClick()
 'If lButtonDown = (vbCtrlMask + vbShiftMask + vbAltMask) Then
 ' chkTest.Value = vbChecked
 ' chkTest.Visible = True
 'End If
End Sub

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
 lButtonDown = Shift
End Sub

Private Sub Form_Load()

 SOURCE CODE OF THE VF PROTOTYPE

 Page 187

 'Center form on screen
 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 2

 'Initialize variables
 glNumDatabaseScans = 0

 If gbDBDetected Then
 shpConnected.FillColor = vbGreen
 Else
 shpConnected.FillColor = vbRed
 End If

 cmdLoad.Visible = (Options.SaveLoad <> 0)

 lScrollingValue = 150
 VScroll1.Max = Abs(picDBsIn.Height - picDBs.Height) / lScrollingValue
 Call LoadPreviousPathsIntocbDBDirs
 Call SetupSWPackageCombo

End Sub

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub Form_Unload(Cancel As Integer)
 Call UnloadApplication(False)
End Sub

Private Sub Frame1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Call DeselectAllTables
End Sub

Private Sub frmMain_Click(Index As Integer)
 bHelpClicked = False
End Sub

Private Sub frmMain_MouseMove(Index As Integer, Button As Integer, Shift As Integer, X
As Single, Y As Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub HScroll1_Change()
 'move picture up/down
 picDBsIn.Left = -(HScroll1.Value * lScrollingValue)
End Sub

Private Sub HScroll1_Scroll()
 'move picture up/down
 picDBsIn.Left = -(HScroll1.Value * lScrollingValue)
End Sub

Private Sub HScrollCat_Change()
 'move picture up/down
 picCategoriesIn.Left = -(HScrollCat.Value * lScrollingValueCat)
End Sub

Private Sub HScrollCat_Scroll()
 'move picture up/down
 picCategoriesIn.Left = -(HScrollCat.Value * lScrollingValueCat)
End Sub

Private Sub imgCheck_Click(Index As Integer)
 bHelpClicked = False
End Sub

Private Sub imgCheck_DblClick(Index As Integer)
 Call cmdSetup_Click(Index)
End Sub

APPENDIX B

Page 188

Private Sub imgCheck_MouseMove(Index As Integer, Button As Integer, Shift As Integer,
X As Single, Y As Single)
 Call DeselectAllCategories
 Call SelectTable(Index)
End Sub

Private Sub imgCheckCategory_Click(Index As Integer)
 bHelpClicked = False
End Sub

Private Sub imgCheckCategory_DblClick(Index As Integer)
 Call cmdSetupCategory_Click(Index)
End Sub

Private Sub imgCheckCategory_MouseMove(Index As Integer, Button As Integer, Shift As
Integer, X As Single, Y As Single)
 Call DeselectAllTables
 Call SelectCategory(Index)
End Sub

Private Sub Label1_Click()
 bHelpClicked = False
End Sub

Private Sub Label2_Click()
 bHelpClicked = False
End Sub

Private Sub Label2_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub Label3_Click()
 bHelpClicked = False
End Sub

Private Sub Label3_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub lblCategory_Click(Index As Integer)

 Dim Count As Long

 If bHelpClicked Then
 Load fmHelp
 Call fmHelp.SetupData(CLng(Index) * 1000)
 fmHelp.Show vbModal
 Call SetAllCategoryLabelMousePointersToDefault
 End If

End Sub

Private Sub lblCategory_DblClick(Index As Integer)
 Call cmdSetupCategory_Click(Index)
End Sub

Private Sub lblCategory_MouseMove(Index As Integer, Button As Integer, Shift As
Integer, X As Single, Y As Single)

 Call DeselectAllTables
 If bHelpClicked Then
 Set lblCategory(Index).MouseIcon = picCursor.Picture
 lblCategory(Index).MousePointer = vbCustom
 Else
 Set lblCategory(Index).MouseIcon = Nothing
 lblCategory(Index).MousePointer = vbNormal
 End If
 Call SelectCategory(Index)

End Sub

Private Sub lblDBName_Click(Index As Integer)

 SOURCE CODE OF THE VF PROTOTYPE

 Page 189

 bHelpClicked = False
End Sub

Private Sub lblDBName_DblClick(Index As Integer)
 Call cmdSetup_Click(Index)
End Sub

Private Sub lblDBName_MouseMove(Index As Integer, Button As Integer, Shift As Integer,
X As Single, Y As Single)
 If gbFmSetupLoaded Then Exit Sub
 Call SelectTable(Index)
End Sub

Private Sub picCategories_Click()
 bHelpClicked = False
End Sub

Private Sub picCategories_MouseMove(Button As Integer, Shift As Integer, X As Single,
Y As Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub picCategoriesIn_Click()
 bHelpClicked = False
End Sub

Private Sub picCategoriesIn_MouseMove(Button As Integer, Shift As Integer, X As
Single, Y As Single)

 Dim Count As Integer
 Dim nIndex As Integer

 nIndex = -1
 For Count = 1 To imgCheckCategory.Count - 1
 'If Count <> 19 Then
 If (Y >= imgCheckCategory(Count).Top) And (Y <= (imgCheckCategory(Count).Top +
imgCheckCategory(Count).Height)) Then
 nIndex = Count
 Exit For
 End If
 'End If
 Next Count

 If nIndex < 0 Then
 Call DeselectAllCategories
 Else
 Call SelectCategory(nIndex)
 End If

End Sub

Private Sub picDBs_Click()
 bHelpClicked = False
End Sub

Private Sub picDBs_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub picDBsIn_Click()
 bHelpClicked = False
End Sub

Private Sub picDBsIn_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)

 Dim Count As Integer
 Dim nIndex As Integer

 nIndex = -1
 For Count = 1 To imgCheck.Count - 1
 If (Y >= imgCheck(Count).Top) And (Y <= (imgCheck(Count).Top +
imgCheck(Count).Height)) Then
 nIndex = Count

APPENDIX B

Page 190

 Exit For
 End If
 Next Count

 If nIndex < 0 Then
 Call DeselectAllTables
 Else
 Call SelectTable(nIndex)
 End If

End Sub

Private Sub picGap_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Call DeselectAllTables
End Sub

Private Sub LoadPreviousPathsIntocbDBDirs()

 Dim Count As Long
 Dim lIndex As Long

 lIndex = 0
 For Count = 1 To UBound(gsPreviousPaths)
 If InStr(1, gsPreviousPaths(Count), "-->") Then
 cbDBDirs.AddItem Trim(Replace(gsPreviousPaths(Count), "-->", ""))
 lIndex = Count
 Else
 cbDBDirs.AddItem gsPreviousPaths(Count)
 End If
 Next Count
 If cbDBDirs.ListCount > 0 Then cbDBDirs.ListIndex = 0

 For Count = 1 To UBound(gsPreviousComparePaths)
 cbActual.AddItem gsPreviousComparePaths(Count)
 Next Count
 If cbActual.ListCount > 0 Then cbActual.ListIndex = 0

End Sub

Private Sub SavePathsInCbDBDirsToText()

 Dim lNum As Long, Count As Long

 lNum = cbDBDirs.ListCount
 If lNum > 0 Then
 If lNum > 5 Then lNum = 5
 ReDim gsPreviousPaths(1 To lNum)
 Else
 ReDim gsPreviousPaths(0)
 Exit Sub
 End If

 For Count = 1 To lNum
 If cbDBDirs.ListIndex = (Count - 1) Then
 gsPreviousPaths(Count) = cbDBDirs.List(Count - 1) & " -->"
 Else
 gsPreviousPaths(Count) = cbDBDirs.List(Count - 1)
 End If
 Next Count

End Sub

Private Sub SavePathsInCbActualToText()

 Dim lNum As Long, Count As Long

 lNum = cbActual.ListCount
 If lNum > 0 Then
 If lNum > 5 Then lNum = 5
 ReDim gsPreviousComparePaths(1 To lNum)
 Else
 ReDim gsPreviousComparePaths(0)
 Exit Sub
 End If

 For Count = 1 To lNum

 SOURCE CODE OF THE VF PROTOTYPE

 Page 191

 gsPreviousComparePaths(Count) = cbActual.List(Count - 1)
 Next Count

End Sub

Private Sub tsMain_Click()
 Call SetTab(tsMain, frmMain)
End Sub

Private Sub tsMain_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Call DeselectAllTables
 Call DeselectAllCategories
End Sub

Private Sub VScroll1_Change()
 'move picture up/down
 picDBsIn.Top = -(VScroll1.Value * lScrollingValue)
End Sub

Private Sub VScroll1_Scroll()
 'move picture up/down
 picDBsIn.Top = -(VScroll1.Value * lScrollingValue)
End Sub

Private Sub VScrollCat_Change()
 'move picture up/down
 picCategoriesIn.Top = -(VScrollCat.Value * lScrollingValueCat)
End Sub

Private Sub VScrollCat_Scroll()
 'move picture up/down
 picCategoriesIn.Top = -(VScrollCat.Value * lScrollingValueCat)
End Sub

Private Sub DeselectAllTables()

 Dim Count As Long

 If gbFmSetupLoaded Then Exit Sub

 For Count = 1 To (lblDBName.Count - 1)
 lblDBName(Count).FontBold = False
 Next Count
 nLastIndexSelected = -1

End Sub

Private Sub DeselectAllCategories()

 On Error Resume Next

 Dim Count As Long

 If gbFmSetupLoaded Then Exit Sub

 'For Count = 1 To (lblCategory.Count - 1)
 For Count = 1 To (lblCategory.Count)
 lblCategory(Count).FontBold = False
 Next Count
 nLastIndexSelectedCat = -1

End Sub

Private Sub SetAllCategoryLabelMousePointersToDefault()

 Dim Count As Long

 For Count = 1 To (lblCategory.Count - 1)
 'If Count <> 19 Then
 Set lblCategory(Count).MouseIcon = Nothing
 lblCategory(Count).MousePointer = vbNormal
 'End If
 Next Count
 bHelpClicked = False

End Sub

APPENDIX B

Page 192

Private Sub SelectTable(Index As Integer)
 If gbFmSetupLoaded Then Exit Sub
 If nLastIndexSelected = Index Then Exit Sub
 Call DeselectAllTables
 lblDBName(Index).FontBold = True
 nLastIndexSelected = Index
End Sub

Private Sub SelectCategory(Index As Integer)
 If gbFmSetupLoaded Then Exit Sub
 If nLastIndexSelectedCat = Index Then Exit Sub
 Call DeselectAllCategories
 lblCategory(Index).FontBold = True
 nLastIndexSelectedCat = Index
End Sub

Private Sub SetupCategoriesPicBox()

 Dim Count As Long
 Dim sngTop As Single

 sngTop = imgCheckCategory(0).Top
 For Count = 1 To glNumVulnerabilityCategories
 'If Count <> 19 Then
 'Add categories to picCategoriesIn
 Load imgCheckCategory(Count)
 imgCheckCategory(Count).Move imgCheckCategory(0).Left, sngTop
 imgCheckCategory(Count).Visible = False

 Load lblCategory(Count)
 lblCategory(Count).Caption = "Category " &
SWPackageCurrent.VulnDB.MainCategories(Count).Number 'CStr(Count)
 lblCategory(Count).Tag =
CStr(SWPackageCurrent.VulnDB.MainCategories(Count).Number)
 lblCategory(Count).Move lblCategory(0).Left, imgCheckCategory(Count).Top +
((imgCheckCategory(Count).Height - lblCategory(Count).Height) / 2)
 lblCategory(Count).Visible = True

 Load cmdSetupCategory(Count)
 cmdSetupCategory(Count).Move picCategoriesIn.Width - cmdSetupCategory(Count).Width
- 25, imgCheckCategory(Count).Top, cmdSetupCategory(0).Width,
imgCheckCategory(Count).Height
 cmdSetupCategory(Count).Visible = True

 sngTop = imgCheckCategory(Count).Top + imgCheckCategory(Count).Height + 10
 'End If
 Next Count

 If glNumVulnerabilityCategories > 0 Then
 picCategoriesIn.Height = sngTop + 100
 picGapCat.Visible = False
 If (picCategoriesIn.Height > picCategories.Height) Then
 VScrollCat.Visible = True
 picCategoriesIn.Width = VScrollCat.Left
 If (picCategoriesIn.Width > picCategories.Width) Then
 HScrollCat.Visible = True
 HScrollCat.Width = picCategories.Width - VScrollCat.Width
 VScrollCat.Height = picCategories.Height - VScrollCat.Height
 picGapCat.Move HScrollCat.Left, VScrollCat.Top
 picGapCat.Visible = True
 Else
 HScrollCat.Visible = False
 VScrollCat.Height = picCategories.Height - 60
 End If
 Else
 picCategoriesIn.Width = VScrollCat.Left + VScrollCat.Width
 VScrollCat.Visible = False
 If (picCategoriesIn.Width > picCategories.Width) Then
 HScrollCat.Visible = True
 HScrollCat.Width = picCategories.Width - 60
 Else
 HScrollCat.Visible = False
 End If
 End If

 lScrollingValueCat = Abs(picDBsIn.Height - picDBs.Height) / 10

 SOURCE CODE OF THE VF PROTOTYPE

 Page 193

 VScrollCat.Max = Abs(picCategoriesIn.Height - picCategories.Height) /
lScrollingValueCat

 End If

End Sub

Private Sub SetupCategoryInfo()

 On Error GoTo ErrorHandler

 Dim Count As Long, CountScan As Long
 Dim lNumScans As Long, lNumAdjectives As Long

 If (glNumVulnerabilityCategories <= 0) Or (glNumDatabaseScans <= 0) Then Exit Sub

 ReDim Categories(1 To glNumVulnerabilityCategories)

 For Count = 1 To glNumVulnerabilityCategories

 Categories(Count).CategoryNumber = CLng(lblCategory(Count).Tag)
 ReDim Categories(Count).NumberOfVulnerabilities(1 To glNumDatabaseScans)

 For CountScan = 1 To glNumDatabaseScans
 Categories(Count).NumberOfVulnerabilities(CountScan) =
ScanInfo(CountScan).VulnCount(Count)
 If Categories(Count).MaxVulnerabilityValue <
Categories(Count).NumberOfVulnerabilities(CountScan) Then
 Categories(Count).MaxVulnerabilityValue =
Categories(Count).NumberOfVulnerabilities(CountScan)
 End If
 Next CountScan

 Categories(Count).NumberOfGroups = 0
 ReDim Categories(Count).Groups(0)

 lNumAdjectives = UBound(gsAdjectives)
 If lNumAdjectives > 0 Then
 ReDim Categories(Count).Adjectives(1 To lNumAdjectives)
 Else
 ReDim Categories(Count).Adjectives(0)
 End If

 Categories(Count).HasBeenSetup = False
 Categories(Count).DisplayResultOnGraph = False
 Next Count

 For Count = 1 To glNumVulnerabilityCategories
 If Categories(Count).MaxVulnerabilityValue < 1 Then
 lblCategory(Count).ForeColor = vbRed
 imgCheckCategory(Count).Visible = True
 Categories(Count).HasBeenSetup = True
 Categories(Count).Final_AmtVulns.Lowerbound = 0
 Categories(Count).Final_AmtVulns.Upperbound = 0
 Else
 lblCategory(Count).ForeColor = vbButtonText
 End If
 Next Count

Quit:
 Exit Sub

ErrorHandler:
 Resume Quit

End Sub

Private Sub ClearForm(bClear As Boolean)

 Dim Count As Long

 If bClear Then
 For Count = (lblDBName.Count - 1) To 1 Step -1
 Unload imgCheck(Count)
 Unload lblDBName(Count)
 Unload cmdSetup(Count)
 Next Count

APPENDIX B

Page 194

 End If

 For Count = (lblCategory.Count - 1) To 1 Step -1
 'If Count <> 19 Then
 Unload imgCheckCategory(Count)
 Unload lblCategory(Count)
 Unload cmdSetupCategory(Count)
 'imgCheckCategory(Count).Visible = False
 'End If
 Next Count

 Call SetupCategoriesPicBox

End Sub

Public Sub SetupSWPackageCombo()

 On Error Resume Next

 Dim lNum As Long, Count As Long

 lNum = 0
 lNum = UBound(SWPackageInfo)

 cbSWPackage.Clear
 If lNum > 0 Then
 For Count = 1 To lNum
 cbSWPackage.AddItem SWPackageInfo(Count).Name
 cbSWPackage.ItemData(cbSWPackage.NewIndex) = SWPackageInfo(Count).Number
 Next Count
 Else
 cbSWPackage.AddItem "<None>"
 End If
 If cbSWPackage.ListCount > 0 Then cbSWPackage.ListIndex = 0

End Sub

B.1.5 The “frmOptions” form

The design of this form is shown in figure B.6. This form is used to set up some

options and aspects of the VF Prototype, for exa mple, the adjective list and the

harmonised vulnerability categories . There are also some options that can be set

regarding the colour preference of the forecasting lines that indicate the vulnerability

forecast range.

 SOURCE CODE OF THE VF PROTOTYPE

 Page 195

Figure B.6: The “frmOptions” form

The source code for this form follows below.

Option Explicit
Dim bChanges As Boolean

Private Sub cbVulnSWList_Click()

 Dim bEnable As Boolean
 Dim nTemp As Integer

 bEnable = ((cbVulnSWList.ListIndex >= 0) And (LCase(cbVulnSWList.Text) <> "<none>"))
 Label3.Enabled = bEnable
 Label4.Enabled = bEnable
 txtScanTableName.Enabled = bEnable
 txtScanFieldName.Enabled = bEnable
 cmdSelectDBDir.Enabled = bEnable

 If bEnable Then
 If Not gbBusyAddEdit Then
 nTemp = cbVulnSWList.ItemData(cbVulnSWList.ListIndex)
 SWPackageCurrent = SWPackageInfo(nTemp)
 txtScanTableName.Text = SWPackageCurrent.ScanningDB.TableName
 txtScanFieldName.Text = SWPackageCurrent.ScanningDB.FieldName
 End If
 Else

APPENDIX B

Page 196

 txtScanTableName.Text = ""
 txtScanFieldName.Text = ""
 End If

End Sub

Private Sub chkLoadSave_Click()
 Options.SaveLoad = chkLoadSave.Value

 If chkLoadSave.Value = vbChecked Then
 If fmMain.tsMain.Visible Then fmMain.cmdSave.Visible = True
 fmMain.cmdLoad.Visible = True
 Else
 If fmMain.tsMain.Visible Then fmMain.cmdSave.Visible = False
 fmMain.cmdLoad.Visible = False
 End If
End Sub

Private Sub cmdColors_Click(Index As Integer)

 On Error GoTo ErrorHandler

 cdColors.Color = picColors(Index).BackColor
 cdColors.CancelError = True
 cdColors.ShowColor

 picColors(Index).BackColor = cdColors.Color
 Select Case Index
 Case 0: Options.Prediction_LineColor = cdColors.Color
 Case 1: Options.Prediction_ColumnColor = cdColors.Color
 End Select

Quit:
 cmdOK.SetFocus
 Exit Sub

ErrorHandler:
 Resume Quit

End Sub

Private Sub cmdDefault_Click()
 Options.Prediction_LineColor = vbRed
 Options.Prediction_ColumnColor = &HFF8080 'light blue
 picColors(0).BackColor = Options.Prediction_LineColor
 picColors(1).BackColor = Options.Prediction_ColumnColor
 cmdOK.SetFocus
End Sub

Private Sub cmdOK_Click()

 Dim Count As Long, lNum As Long, lIndex As Long
 Dim sTemp As String
 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset

 'Reload scanning software
 With fmMain.cbSWPackage
 If (cbVulnSWList.ListCount > 0) And (cbVulnSWList.Text <> "<None>") Then
 sTemp = .Text
 .Clear

 lNum = cbVulnSWList.ListCount
 If (lNum = 1) And (cbVulnSWList.Text = "<None>") Then
 .AddItem "<None>"
 .ItemData(.NewIndex) = -1
 .ListIndex = 0
 Else
 lIndex = 0
 For Count = 1 To lNum
 .AddItem cbVulnSWList.List(Count - 1)
 .ItemData(.NewIndex) = cbVulnSWList.ItemData(Count - 1)
 If sTemp = cbVulnSWList.List(Count - 1) Then
 lIndex = lNum - 1
 End If
 Next Count
 .ListIndex = lIndex

 SOURCE CODE OF THE VF PROTOTYPE

 Page 197

 End If

 'Open connection
 TempConn.ConnectionString = gsConnectionStringToMainDB
 TempConn.Open

 'Open recordset
 Call OpenDBTable(TempConn, TempRS, "SELECT * FROM SWPackage WHERE Package_ID=" &
CStr(SWPackageCurrent.Number))
 If Not TempRS.EOF Then
 TempRS!Scan_DB_TableName = "" & txtScanTableName.Text
 TempRS!Scan_DB_FieldName = "" & txtScanFieldName.Text
 TempRS!Scan_DB_Sample_DB_PathName = "" &
SWPackageCurrent.ScanningDB.SampleDB.DBPathName
 TempRS.Update
 End If

 'Close recordset and connection
 TempRS.Close
 TempConn.Close

 End If
 End With

 Unload Me

End Sub

Private Sub cmdSelectDBDir_Click()

 Dim nTemp As Integer
 Dim Count As Long, lNum As Long

 If (cbVulnSWList.ListIndex < 0) Or (LCase(cbVulnSWList.Text) = "<none>") Then Exit
Sub

 nTemp = cbVulnSWList.ItemData(cbVulnSWList.ListIndex)
 SWPackageCurrent = SWPackageInfo(nTemp)
 Load fmSetupNames
 fmSetupNames.Show vbModal
 If ModalResult Then
 SWPackageInfo(nTemp) = SWPackageCurrent
 End If

End Sub

Private Sub Form_Activate()
 Screen.MousePointer = vbNormal
End Sub

Private Sub Form_Load()

 'Center form on screen
 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 2

 gbBusyAddEdit = False
 bChanges = False
 Call SetupForm

 gbFmOptionsLoaded = True

End Sub

Private Sub Form_Unload(Cancel As Integer)

 Dim Count As Long, lNum As Long

 If bChanges Then
 lNum = lstAdjectives.ListCount
 If lNum <= 0 Then
 ReDim gsAdjectives(0)
 Else
 ReDim gsAdjectives(1 To lNum)

 For Count = 1 To lNum
 gsAdjectives(Count) = lstAdjectives.List(Count - 1)

APPENDIX B

Page 198

 Next Count
 End If

 End If

 gbFmOptionsLoaded = False
End Sub

Private Sub lstAdjectives_DblClick()
 Call EditAdjective
End Sub

Private Sub lstAdjectives_KeyDown(KeyCode As Integer, Shift As Integer)
 Call DeleteAdjective
End Sub

Private Sub lvCategories_DblClick()
 Call EditCategory
End Sub

Private Sub lvCategories_KeyDown(KeyCode As Integer, Shift As Integer)
 Call DeleteCategory
End Sub

Private Sub tbAdjectives_ButtonClick(ByVal Button As MSComctlLib.Button)

 Select Case Button.Key
 Case "Add": Call AddAdjective
 Case "Delete": Call DeleteAdjective
 Case "Properties": Call EditAdjective
 End Select

End Sub

Private Sub tbCategories_ButtonClick(ByVal Button As MSComctlLib.Button)

 Select Case Button.Key
 Case "Add": Call AddCategory
 Case "Delete": Call DeleteCategory
 Case "Properties": Call EditCategory
 Case "Default": Call DefaultCategories
 End Select

End Sub

Private Sub tbSW_ButtonClick(ByVal Button As MSComctlLib.Button)

 Select Case Button.Key
 Case "Add": Call AddSWPackage
 Case "Delete": Call DeleteSWPackage
 Case "Properties": Call EditSWPackage
 End Select

End Sub

Private Sub SetupForm()

 On Error Resume Next

 Dim Count As Long, lNum As Long
 Dim li As ListItem
 Dim sngTempWidth As Single

 'Set up adjectives
 lstAdjectives.Clear
 For Count = 1 To UBound(gsAdjectives)
 lstAdjectives.AddItem gsAdjectives(Count)
 lstAdjectives.ItemData(lstAdjectives.NewIndex) = Count
 Next Count
 If lstAdjectives.ListCount > 0 Then lstAdjectives.ListIndex = 0

 'Set up colors
 picColors(0).BackColor = Options.Prediction_LineColor
 picColors(1).BackColor = Options.Prediction_ColumnColor
 chkLoadSave.Value = Options.SaveLoad

 'Set up custom categories

 SOURCE CODE OF THE VF PROTOTYPE

 Page 199

 lvCategories.ListItems.Clear
 sngTempWidth = 0
 For Count = 1 To glCustomCategoriesNum
 Set li = lvCategories.ListItems.Add(, "Key" &
CStr(CustomCategoryInfo(Count).Number), CStr(CustomCategoryInfo(Count).Number))
 li.SubItems(1) = CustomCategoryInfo(Count).Description
 If sngTempWidth < fmMain.TextWidth(CustomCategoryInfo(Count).Description) Then
sngTempWidth = fmMain.TextWidth(CustomCategoryInfo(Count).Description)
 Next Count
 sngTempWidth = sngTempWidth + 500
 If lvCategories.ColumnHeaders("CatDescr").Width < sngTempWidth Then
lvCategories.ColumnHeaders("CatDescr").Width = sngTempWidth
 If lvCategories.ListItems.Count > 0 Then lvCategories.ListItems(1).Selected = True

 'Set up software list
 lNum = 0
 lNum = UBound(SWPackageInfo)
 cbVulnSWList.Clear
 If lNum > 0 Then
 For Count = 1 To lNum
 cbVulnSWList.AddItem SWPackageInfo(Count).Name
 cbVulnSWList.ItemData(cbVulnSWList.NewIndex) = Count
 Next Count
 Else
 cbVulnSWList.AddItem "<None>"
 End If
 If cbVulnSWList.ListCount > 0 Then cbVulnSWList.ListIndex = 0

End Sub

Private Sub AddAdjective()

 Dim sAdjective As String
 Dim Count As Long
 Dim bAdd As Boolean

 bChanges = True
 sAdjective = InputBox("Enter new adjective", "Adding Adjective")
 If sAdjective <> "" Then

 bAdd = True
 For Count = 0 To (lstAdjectives.ListCount - 1)
 If LCase(sAdjective) = LCase(lstAdjectives.List(Count)) Then
 Call MsgBox("An adjective with this name already exists!", vbOKOnly +
vbInformation, "Adding Adjective")
 bAdd = False
 Exit For
 End If
 Next Count

 If bAdd Then
 lstAdjectives.AddItem sAdjective
 lstAdjectives.ItemData(lstAdjectives.NewIndex) = lstAdjectives.ListCount
 lstAdjectives.ListIndex = lstAdjectives.NewIndex
 End If
 End If

End Sub

Private Sub DeleteAdjective()

 Dim sAdjective As String

 If (lstAdjectives.ListIndex < 0) Or (lstAdjectives.ListCount < 1) Then Exit Sub

 bChanges = True
 sAdjective = lstAdjectives.List(lstAdjectives.ListIndex)
 If MsgBox("Are you sure that you want to delete the adjective '" & sAdjective &
"'?", vbYesNoCancel + vbQuestion, "Deleting Adjective") = vbYes Then
 lstAdjectives.RemoveItem (lstAdjectives.ListIndex)
 If lstAdjectives.ListCount > 0 Then lstAdjectives.ListIndex = 0
 End If

End Sub

Private Sub EditAdjective()

APPENDIX B

Page 200

 Dim sAdjective As String, sOld As String
 Dim Count As Long
 Dim bEdit As Boolean

 If (lstAdjectives.ListIndex < 0) Or (lstAdjectives.ListCount < 1) Then Exit Sub

 bChanges = True
 sOld = lstAdjectives.List(lstAdjectives.ListIndex)
 sAdjective = InputBox("Change adjective to:", "Editing Adjective", sOld)
 If sAdjective <> "" Then

 bEdit = True
 For Count = 0 To (lstAdjectives.ListCount - 1)
 If (LCase(sAdjective) = LCase(lstAdjectives.List(Count))) And (sOld <>
lstAdjectives.List(Count)) Then
 Call MsgBox("An adjective with this name already exists!", vbOKOnly +
vbInformation, "Editing Adjective")
 bEdit = False
 Exit For
 End If
 Next Count

 If bEdit Then
 lstAdjectives.List(lstAdjectives.ListIndex) = sAdjective
 End If
 End If

End Sub

Private Sub AddCategory()

 Dim sCategory As String
 Dim Count As Long
 Dim bAdd As Boolean
 Dim li As ListItem
 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset

 bChanges = True
 sCategory = InputBox("Enter new category description", "Adding Category")
 If sCategory <> "" Then

 bAdd = True
 For Count = 1 To lvCategories.ListItems.Count
 If LCase(sCategory) = LCase(lvCategories.ListItems(Count).SubItems(1)) Then
 Call MsgBox("A category with this description already exists!", vbOKOnly +
vbInformation, "Adding Category")
 bAdd = False
 Exit For
 End If
 Next Count

 Screen.MousePointer = vbHourglass

 If bAdd Then
 glCustomCategoriesNum = glCustomCategoriesNum + 1
 If glCustomCategoriesNum = 1 Then
 ReDim CustomCategoryInfo(1 To glCustomCategoriesNum)
 Else
 ReDim Preserve CustomCategoryInfo(1 To glCustomCategoriesNum)
 End If
 CustomCategoryInfo(glCustomCategoriesNum).Number = glCustomCategoriesNum
 CustomCategoryInfo(glCustomCategoriesNum).Description = sCategory

 Call AddCategorytoDB(CustomCategoryInfo(glCustomCategoriesNum).Number,
CustomCategoryInfo(glCustomCategoriesNum).Description)

 'Open connection
 TempConn.ConnectionString = gsConnectionStringToMainDB
 TempConn.Open

 'Open recordset

 Set li = lvCategories.ListItems.Add(, "Key" & (lvCategories.ListItems.Count +
1), CStr(lvCategories.ListItems.Count + 1))
 li.SubItems(1) = sCategory

 SOURCE CODE OF THE VF PROTOTYPE

 Page 201

 li.Selected = True
 Call lvCategories.SelectedItem.EnsureVisible
 End If
 End If

 Screen.MousePointer = vbNormal

End Sub

Private Sub AddCategorytoDB(CatNumber As Long, CatName As String)

 On Error Resume Next

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset

 'Open connection
 TempConn.ConnectionString = gsConnectionStringToMainDB
 TempConn.Open

 'Open recordset
 Call OpenDBTable(TempConn, TempRS, "SELECT * FROM HVC WHERE HVC_Number=" &
CatNumber)
 If TempRS.EOF Then
 TempRS.AddNew
 End If
 TempRS!HVC_Number = CatNumber
 TempRS!HVC_Name = "" & CatName
 TempRS.Update

End Sub

Private Sub DefaultCategories()

 Dim li As ListItem
 Dim Count As Long

 If MsgBox("Are you sure that you want to reload the default categories and delete
the current ones?", vbYesNoCancel + vbQuestion, "Default Categories") = vbYes Then
 Screen.MousePointer = vbHourglass

 lvCategories.ListItems.Clear
 Set li = lvCategories.ListItems.Add(, "Key1", 1)
 li.SubItems(1) = "Password Cracking and Sniffing"
 Set li = lvCategories.ListItems.Add(, "Key2", 2)
 li.SubItems(1) = "Network and System Information Gathering"
 Set li = lvCategories.ListItems.Add(, "Key3", 3)
 li.SubItems(1) = "User Enumeration and Information"
 Set li = lvCategories.ListItems.Add(, "Key4", 4)
 li.SubItems(1) = "Backdoors, Trojans and Remote Controlling"
 Set li = lvCategories.ListItems.Add(, "Key5", 5)
 li.SubItems(1) = "Gaining Unauthorised Access to Remote Connections & Services"
 Set li = lvCategories.ListItems.Add(, "Key6", 6)
 li.SubItems(1) = "Privilege and User Escalation"
 Set li = lvCategories.ListItems.Add(, "Key7", 7)
 li.SubItems(1) = "Spoofing or Masquerading"
 Set li = lvCategories.ListItems.Add(, "Key8", 8)
 li.SubItems(1) = "Miss-configurations"
 Set li = lvCategories.ListItems.Add(, "Key9", 9)
 li.SubItems(1) = "Denial-of-Service (DoS) and Buffer Overflows"
 Set li = lvCategories.ListItems.Add(, "Key10", 10)
 li.SubItems(1) = "Virusses and Worms"
 Set li = lvCategories.ListItems.Add(, "Key11", 11)
 li.SubItems(1) = "Hardware Specific"
 Set li = lvCategories.ListItems.Add(, "Key12", 12)
 li.SubItems(1) = "Software Specific and Updates"
 Set li = lvCategories.ListItems.Add(, "Key13", 13)
 li.SubItems(1) = "Security Policy Violations"
 'Set li = lvCategories.ListItems.Add(, "Key14", 14)
 'li.SubItems(1) = "Web Site or Organisational Defacement"
 'Set li = lvCategories.ListItems.Add(, "Key15", 15)
 'li.SubItems(1) = "Potential False Positives"
 lvCategories.ListItems(1).Selected = True
 Call lvCategories.SelectedItem.EnsureVisible

 glCustomCategoriesNum = 15
 ReDim CustomCategoryInfo(1 To glCustomCategoriesNum)

APPENDIX B

Page 202

 Call DeleteCategoryFromDB(-1)
 For Count = 1 To lvCategories.ListItems.Count
 Call AddCategorytoDB(CLng(lvCategories.ListItems(Count).Text),
lvCategories.ListItems(Count).SubItems(1))
 CustomCategoryInfo(Count).Number = CLng(lvCategories.ListItems(Count).Text)
 CustomCategoryInfo(Count).Description =
lvCategories.ListItems(Count).SubItems(1)
 Next Count

 End If

 Screen.MousePointer = vbNormal

End Sub

Private Sub DeleteCategory()

 Dim sCategory As String
 Dim lCatNum As Long

 If (lvCategories.ListItems.Count < 1) Then Exit Sub
 If (Not lvCategories.SelectedItem.Selected) Then Exit Sub

 bChanges = True
 sCategory = lvCategories.SelectedItem.SubItems(1)
 If MsgBox("Are you sure that you want to delete the category '" & sCategory & "'?",
vbYesNoCancel + vbQuestion, "Deleting Category") = vbYes Then
 Screen.MousePointer = vbHourglass

 lCatNum = CLng(lvCategories.SelectedItem.Text)
 Call DeleteCategoryFromDB(lCatNum)

 glCustomCategoriesNum = glCustomCategoriesNum - 1
 If glCustomCategoriesNum = 0 Then
 ReDim CustomCategoryInfo(0)
 Else
 ReDim Preserve CustomCategoryInfo(1 To glCustomCategoriesNum)
 End If

 Call lvCategories.ListItems.Remove(lvCategories.SelectedItem.Index)
 If (lvCategories.ListItems.Count > 0) Then lvCategories.ListItems(1).Selected =
True
 lvCategories.SelectedItem.EnsureVisible

 End If
 Screen.MousePointer = vbNormal

End Sub

Private Sub DeleteCategoryFromDB(CatNumber As Long)

 On Error Resume Next

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset

 'Open connection
 TempConn.ConnectionString = gsConnectionStringToMainDB
 TempConn.Open

 If CatNumber < 0 Then
 TempConn.Execute "DELETE FROM HVC"
 Else
 TempConn.Execute "DELETE FROM HVC WHERE HVC_Number=" & CatNumber
 End If

 'Close connectio
 TempConn.Close

End Sub

Private Sub EditCategory()

 Dim sCategory As String, sOld As String
 Dim Count As Long
 Dim bEdit As Boolean

 SOURCE CODE OF THE VF PROTOTYPE

 Page 203

 Dim lIndex As Long

 If (lvCategories.ListItems.Count < 1) Then Exit Sub
 If (Not lvCategories.SelectedItem.Selected) Then Exit Sub

 bChanges = True
 sOld = lvCategories.SelectedItem.SubItems(1)
 sCategory = InputBox("Change category description to:", "Editing Category", sOld)
 If sCategory <> "" Then

 bEdit = True
 For Count = 1 To lvCategories.ListItems.Count
 If (LCase(sCategory) = LCase(lvCategories.ListItems(Count).SubItems(1))) And
(sOld <> lvCategories.ListItems(Count).SubItems(1)) Then
 Call MsgBox("A category with this description already exists!", vbOKOnly +
vbInformation, "Adding Category")
 bEdit = False
 Exit For
 End If
 Next Count

 If bEdit Then
 lIndex = CLng(Replace(lvCategories.SelectedItem.Key, "Key", ""))
 CustomCategoryInfo(lIndex).Description = sCategory
 lvCategories.SelectedItem.SubItems(1) = sCategory

 Call AddCategorytoDB(lIndex, sCategory)
 End If
 End If

End Sub

Private Sub AddSWPackage()

 On Error GoTo ErrorHandler

 Dim lNumSWPackages As Long

 gbBusyAddEdit = True

 lNumSWPackages = UBound(SWPackageInfo)
 lNumSWPackages = lNumSWPackages + 1
 If lNumSWPackages = 1 Then
 ReDim SWPackageInfo(1 To lNumSWPackages)
 Else
 ReDim Preserve SWPackageInfo(1 To lNumSWPackages)
 End If
 Call ClearSWPackageInfo(SWPackageInfo(lNumSWPackages))
 SWPackageCurrent = SWPackageInfo(lNumSWPackages)

 Load fmSWSetup
 fmSWSetup.Show vbModal
 If ModalResult Then
 SWPackageInfo(lNumSWPackages) = SWPackageCurrent
 Else
 If lNumSWPackages = 1 Then
 ReDim SWPackageInfo(0)
 Else
 lNumSWPackages = lNumSWPackages - 1
 ReDim Preserve SWPackageInfo(1 To lNumSWPackages)
 End If
 End If

 gbBusyAddEdit = False
 Exit Sub

ErrorHandler:
 lNumSWPackages = 0
 Resume Next

End Sub

Private Sub DeleteSWPackage()

 Dim nTemp As Integer
 Dim Count As Long, lNum As Long

APPENDIX B

Page 204

 If (cbVulnSWList.ListIndex < 0) Or (LCase(cbVulnSWList.Text) = "<none>") Then Exit
Sub

 If MsgBox("Are you sure that you want to delete the information of '" &
cbVulnSWList.Text & "'?", vbYesNoCancel + vbQuestion) <> vbYes Then Exit Sub

 nTemp = cbVulnSWList.ItemData(cbVulnSWList.ListIndex)

 lNum = UBound(SWPackageInfo)
 If lNum = 1 Then
 cbVulnSWList.Clear
 cbVulnSWList.AddItem "<None>"
 ReDim SWPackageInfo(0)
 Else
 Call cbVulnSWList.RemoveItem(cbVulnSWList.ListIndex)

 For Count = nTemp To (lNum - 1)
 SWPackageInfo(Count) = SWPackageInfo(Count + 1)
 Next Count
 ReDim Preserve SWPackageInfo(1 To lNum - 1)
 End If
 If cbVulnSWList.ListCount > 0 Then cbVulnSWList.ListIndex = 0

End Sub

Private Sub EditSWPackage()

 Dim nTemp As Integer
 Dim Count As Long, lNum As Long

 If (cbVulnSWList.ListIndex < 0) Or (LCase(cbVulnSWList.Text) = "<none>") Then Exit
Sub

 gbBusyAddEdit = True
 nTemp = cbVulnSWList.ItemData(cbVulnSWList.ListIndex)
 SWPackageCurrent = SWPackageInfo(nTemp)
 Load fmSWSetup
 fmSWSetup.Show vbModal
 If ModalResult Then
 SWPackageInfo(nTemp) = SWPackageCurrent
 End If
 gbBusyAddEdit = False

End Sub

B.1.6 The “frmSaveLoad” form

The design of this form is shown in figure B.7. This form is used to save and load

profiles of settings as defined in the VF Prototype.

Figure B.7: The “frmSaveLoad” form

 SOURCE CODE OF THE VF PROTOTYPE

 Page 205

The source code for this form follows below.

Option Explicit

Private Type SaveLoadType
 ID As Long
 Name As String
 Date As Double
End Type
Dim SaveLoad() As SaveLoadType

Private Sub cmdCancel_Click()
 Unload Me
End Sub

Private Sub cmdDelete_Click()
 Call SaveData(True)
End Sub

Private Sub cmdSaveLoad_Click()

 On Error GoTo ErrorHandler

 Dim Count As Long, CountIn As Long, lExists As Long, lNum As Long, lNumCats As Long,
lTempCounter As Long, lTempCounter1 As Long
 Dim FileNum As Long, WriteFileNum As Long, lLine As Long
 Dim sSplit() As String
 Dim InputData As String, sTemp As String
 Dim bOK As Boolean

 Screen.MousePointer = vbHourglass

 lLine = -1
 If cmdSaveLoad.Caption = "&Save" Then
 Call SaveData
 Else

 If txtName.Text = "" Then
 Screen.MousePointer = vbNormal
 Call MsgBox("You have to specify a name for the saved data!", vbOKOnly +
vbInformation, "Load Data")
 txtName.SetFocus
 Exit Sub
 End If

 bOK = False
 For Count = 1 To lvNames.ListItems.Count
 If LCase(lvNames.ListItems(Count).Text) = LCase(txtName.Text) Then
 bOK = True
 Exit For
 End If
 Next Count
 If Not bOK Then
 Screen.MousePointer = vbNormal
 Call MsgBox("The saved data's name that you specified does not exist!", vbOKOnly
+ vbInformation, "Load Data")
 txtName.SetFocus
 Exit Sub
 End If

 Me.Hide

 'Open file
 FileNum = FreeFile
 Open (App.Path & "\SavedData.vpl") For Input As #FileNum

 If Not EOF(FileNum) Then
 'Read Next line
 Line Input #FileNum, InputData

 lNum = 0
 If InputData = "SAVED_NAMES" Then
 Do
 'Read Next line

APPENDIX B

Page 206

 Line Input #FileNum, InputData

 If InputData <> "END OF SAVED_NAMES" Then
 sSplit = Split(InputData, "|||")
 If LCase(sSplit(1)) = LCase(txtName.Text) Then
 lNum = CLng(sSplit(0))
 End If
 End If
 Loop While (InputData <> "END OF SAVED_NAMES") And (lNum = 0)
 End If

 If (lNum <= 0) Or (EOF(FileNum)) Then Screen.MousePointer = vbNormal: Exit Sub

 Do While Not EOF(FileNum)
 'Read Next line
 Line Input #FileNum, InputData

 If InputData = "DATA FOR ID " & CStr(lNum) Then
 Do
 'Read Next line
 Line Input #FileNum, InputData

 If InStr(1, InputData, "|||") Then
 sSplit = Split(InputData, "|||")

 Select Case UCase(sSplit(0))
 Case "DB PATH": fmMain.cbDBDirs.Text = sSplit(1)
 Case "SW PACKAGE": fmMain.cbSWPackage.Text = sSplit(1)
 Case "MAP": fmMain.chkMap.Value = CInt(sSplit(1))

 Case "CATEGORIES"
 lNumCats = CLng(sSplit(1))
 ReDim Categories(1 To lNumCats)
 lTempCounter = 0

 Do
 'Read Next line
 Line Input #FileNum, InputData

 If InputData <> "END CATEGORIES" Then
 sSplit = Split(InputData, "|||")

 Select Case sSplit(0)
 Case "CatNum"
 lTempCounter = lTempCounter + 1
 Categories(lTempCounter).CategoryNumber = CLng(sSplit(1))
 Case "NumOfVulns"
 sTemp = sSplit(1)
 sSplit = Split(sTemp, ",")
 lNumCats = (UBound(sSplit) - LBound(sSplit)) + 1
 ReDim Categories(lTempCounter).NumberOfVulnerabilities(1
To lNumCats)

 For Count = 1 To lNumCats
 If sSplit(Count - 1) = "" Then

Categories(lTempCounter).NumberOfVulnerabilities(Count) = 0
 Else

Categories(lTempCounter).NumberOfVulnerabilities(Count) = CLng(sSplit(Count - 1))
 End If
 Next Count

 Case "MaxVulnVal":
Categories(lTempCounter).MaxVulnerabilityValue = CLng(sSplit(1))
 Case "NumOfGroups"
 Categories(lTempCounter).NumberOfGroups = CLng(sSplit(1))
 If Categories(lTempCounter).NumberOfGroups > 0 Then
 ReDim Categories(lTempCounter).Groups(1 To
Categories(lTempCounter).NumberOfGroups)
 End If

 CountIn = 0
 Do
 'Read Next line
 Line Input #FileNum, InputData
 If InputData <> "END OF GROUPS" Then

 SOURCE CODE OF THE VF PROTOTYPE

 Page 207

 sSplit = Split(InputData, "|||")
 If sSplit(0) = "Group" Then
 CountIn = CountIn + 1
 sSplit = Split(sSplit(1), ",")
 If UBound(sSplit) <> 12 Then Screen.MousePointer =
vbNormal: Exit Sub

 Categories(lTempCounter).Groups(CountIn).ScanFrom =
CLng(sSplit(0))
 Categories(lTempCounter).Groups(CountIn).ScanTo =
CLng(sSplit(1))
 Categories(lTempCounter).Groups(CountIn).Adjective =
sSplit(2)

Categories(lTempCounter).Groups(CountIn).VulnerabilityFrom = CLng(sSplit(3))

Categories(lTempCounter).Groups(CountIn).VulnerabilityTo = CLng(sSplit(4))

Categories(lTempCounter).Groups(CountIn).VulnerabilityTranslatedFrom = CDbl(sSplit(5))

Categories(lTempCounter).Groups(CountIn).VulnerabilityTranslatedTo = CDbl(sSplit(6))
 Categories(lTempCounter).Groups(CountIn).Cx_From =
CDbl(sSplit(7))
 Categories(lTempCounter).Groups(CountIn).Cx_To =
CDbl(sSplit(8))

Categories(lTempCounter).Groups(CountIn).Mu_Lowerbound = CDbl(sSplit(9))

Categories(lTempCounter).Groups(CountIn).Mu_Upperbound = CDbl(sSplit(10))

Categories(lTempCounter).Groups(CountIn).MIN_Cx_Mu_LB = CDbl(sSplit(11))

Categories(lTempCounter).Groups(CountIn).MIN_Cx_Mu_UB = CDbl(sSplit(12))
 End If
 End If
 Loop Until InputData = "END OF GROUPS"

 Case "Adjectives"
 If CLng(sSplit(1)) < 1 Then Screen.MousePointer =
vbNormal: Exit Sub
 ReDim Categories(lTempCounter).Adjectives(1 To
CLng(sSplit(1)))

 CountIn = 0
 Do
 'Read Next line
 Line Input #FileNum, InputData
 If InputData <> "END OF ADJECTIVES" Then
 sSplit = Split(InputData, "|||")
 If Left$(sSplit(0), 9) = "Adjective" Then
 CountIn = CountIn + 1
 sSplit = Split(sSplit(1), ",")
 If UBound(sSplit) <> 3 Then Screen.MousePointer =
vbNormal: Exit Sub

Categories(lTempCounter).Adjectives(CountIn).LowerOperator = CLng(sSplit(0))

Categories(lTempCounter).Adjectives(CountIn).LowerValue = sSplit(1)

Categories(lTempCounter).Adjectives(CountIn).UpperOperator = CLng(sSplit(2))

Categories(lTempCounter).Adjectives(CountIn).UpperValue = sSplit(3)
 End If
 End If
 Loop Until InputData = "END OF ADJECTIVES"

 Case "Rule_Name": Categories(lTempCounter).Rule_Name =
sSplit(1)
 Case "Rule_Value": Categories(lTempCounter).Rule_Value =
sSplit(1)

 Case "HasBeenSetup": Categories(lTempCounter).HasBeenSetup =
CBool(CLng(sSplit(1)))
 Case "Membership_Op1":
Categories(lTempCounter).Membership_Op1 = CLng(sSplit(1))

APPENDIX B

Page 208

 Case "Membership_Devider":
Categories(lTempCounter).Membership_Devider = CLng(sSplit(1))
 Case "Membership_Op2":
Categories(lTempCounter).Membership_Op2 = CLng(sSplit(1))
 Case "Membership_Op3":
Categories(lTempCounter).Membership_Op3 = CLng(sSplit(1))
 Case "Membership_To": Categories(lTempCounter).Membership_To
= CLng(sSplit(1))
 Case "Membership_Op4":
Categories(lTempCounter).Membership_Op4 = CLng(sSplit(1))

 Case "MAXofMIN_Cx_Mu"
 sSplit = Split(sSplit(1), ",")
 Categories(lTempCounter).MAXofMIN_Cx_Mu.Lowerbound =
CDbl(sSplit(0))
 Categories(lTempCounter).MAXofMIN_Cx_Mu.Upperbo und =
CDbl(sSplit(1))

 Case "Final"
 sSplit = Split(sSplit(1), ",")
 Categories(lTempCounter).Final.Lowerbound =
CDbl(sSplit(0))
 Categories(lTempCounter).Final.Upperbound =
CDbl(sSplit(1))

 Case "Final_AmtVulns"
 sSplit = Split(sSplit(1), ",")
 Categories(lTempCounter).Final_AmtVulns.Lowerbound =
CLng(sSplit(0))
 Categories(lTempCounter).Final_AmtVulns.Upperbound =
CLng(sSplit(1))

 Case "DisplayResultOnGraph":
Categories(lTempCounter).DisplayResultOnGraph = CBool(CLng(sSplit(1)))
 End Select
 End If
 Loop While InputData <> "END CATEGORIES"

 End Select
 Else
 If InputData <> "END DATA" Then
 Select Case InputData
 End Select
 End If
 End If

 Loop Until InputData = "END DATA"
 End If
 Loop
 End If

 Call fmMain.cmdLoadDataClick(False)

 For Count = 1 To (fmMain.lblCategory.Count - 1)
 fmMain.imgCheckCategory(Count).Visible = (Categories(Count).HasBeenSetup)

 If Categories(Count).MaxVulnerabilityValue < 1 Then
 fmMain.lblCategory(Count).ForeColor = vbRed
 Else
 fmMain.lblCategory(Count).ForeColor = vbButtonText
 End If
 Next Count
 End If
 Close #FileNum
 Screen.MousePointer = vbNormal
 Unload Me

 Exit Sub

ErrorHandler:
 If lLine = 0 Then lTempCounter = 0
 If lLine = 2 Then lTempCounter1 = 0
 Resume Next

End Sub

Private Sub Form_Load()

 SOURCE CODE OF THE VF PROTOTYPE

 Page 209

 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 2

 Call ReadSavedNames

End Sub

Private Sub SaveData(Optional bSaveWithoutCurrent As Boolean = False)

 On Error GoTo ErrorHandler

 Dim Count As Long, CountIn As Long, lExists As Long, lNum As Long, lTempCounter As
Long, lTempCounter1 As Long
 Dim FileNum As Long, WriteFileNum As Long, lLine As Long
 Dim sSplit() As String
 Dim InputData As String, sTemp As String
 Dim OldNew() As PredictionType

 lLine = -1
 If txtName.Text = "" Then
 Screen.MousePointer = vbNormal
 If bSaveWithoutCurrent Then
 Call MsgBox("You have to specify the name of the saved data to be deleted!",
vbOKOnly + vbInformation, "Delete Data")
 Else
 Call MsgBox("You have to specify a name for the saved data!", vbOKOnly +
vbInformation, "Save Data")
 End If
 txtName.SetFocus
 Exit Sub
 End If

 If Not bSaveWithoutCurrent Then
 If InStr(1, txtName.Text, "\") Or InStr(1, txtName.Text, "/") Or InStr(1,
txtName.Text, ":") Or InStr(1, txtName.Text, "*") Or InStr(1, txtName.Text, "?") Or
InStr(1, txtName.Text, Chr(34)) Or InStr(1, txtName.Text, "<") Or InStr(1,
txtName.Text, ">") Or InStr(1, txtName.Text, "|") Then
 Screen.MousePointer = vbNormal
 Call MsgBox("The name for the saved data cannot contain any of the following
characters:" & vbCrLf & "\ / : * ? """" < > |", vbOKOnly + vbInformation, "Save Data")
 txtName.SetFocus
 Exit Sub
 End If
 End If

 lExists = -1
 For Count = 1 To lvNames.ListItems.Count
 If lvNames.ListItems(Count).Text = txtName.Text Then
 lExists = Count
 Exit For
 End If
 Next Count
 If lExists > 0 Then
 Screen.MousePointer = vbNormal
 If bSaveWithoutCurrent Then
 If MsgBox("Are you sure that you want to delete the selected data?",
vbYesNoCancel + vbQuestion, "Delete Data") <> vbYes Then Exit Sub
 Else
 If MsgBox("Are you sure that you want to replace the selected data with the new
data?", vbYesNoCancel + vbQuestion, "Save Data") <> vbYes Then Exit Sub
 End If
 Screen.MousePointer = vbHourglass
 lExists = CLng(Replace(lvNames.ListItems(lExists).Key, "Key", ""))
 Else
 If bSaveWithoutCurrent Then
 Screen.MousePointer = vbNormal
 Call MsgBox("You have to specify the name of the saved data to be deleted!",
vbOKOnly + vbInformation, "Delete Data")
 txtName.SetFocus
 Exit Sub
 End If
 End If

 'Open Write file
 WriteFileNum = FreeFile
 Open (App.Path & "\Temp.vpl") For Output Access Write As #WriteFileNum

APPENDIX B

Page 210

 Print #WriteFileNum, "SAVED_NAMES"

 lNum = 0
 For Count = 1 To lvNames.ListItems.Count
 If lvNames.ListItems(Count).Key <> ("Key" & lExists) Then
 lNum = lNum + 1
 If lNum = 1 Then
 ReDim OldNew(1 To lNum)
 Else
 ReDim Preserve OldNew(1 To lNum)
 End If
 OldNew(lNum).Lowerbound = CLng(Replace(lvNames.ListItems(Count).Key, "Key", ""))
 OldNew(lNum).Upperbound = lNum
 Print #WriteFileNum, lNum & "|||" & lvNames.ListItems(Count).Text & "|||" &
CDbl(CDate(lvNames.ListItems(Count).SubItems(1)))
 End If
 Next Count
 If Not bSaveWithoutCurrent Then
 lNum = lNum + 1
 Print #WriteFileNum, CStr(lNum) & "|||" & txtName.Text & "|||" & CDbl(Now)
 End If

 Print #WriteFileNum, "END OF SAVED_NAMES"

 'Open file
 FileNum = FreeFile
 Open (App.Path & "\SavedData.vpl") For Input As #FileNum

 If Not EOF(FileNum) Then
 Do
 'Read Next line
 Line Input #FileNum, InputData
 Loop Until InputData = "END OF SAVED_NAMES"

 If Not EOF(FileNum) Then
 Do
 'Read Next line
 Line Input #FileNum, InputData

 If (Left$(InputData, 12) <> "DATA FOR ID ") Then
 Do Until (Left$(InputData, 12) = "DATA FOR ID ") Or (EOF(FileNum))
 'Read Next line
 Line Input #FileNum, InputData
 Loop
 End If
 If InputData = "DATA FOR ID " & CStr(lExists) Then
 Do
 'Read Next line
 Line Input #FileNum, InputData
 Loop While InputData <> "END DATA"
 Else
 If (Left$(InputData, 12) = "DATA FOR ID ") Then
 For Count = 1 To UBound(OldNew)
 If OldNew(Count).Lowerbound = CLng(Mid(InputData, 13)) Then
 Print #WriteFileNum, "DATA FOR ID " & CStr(OldNew(Count).Upperbound)
 End If
 Next Count
 Else
 Print #WriteFileNum, InputData
 End If
 Do
 'Read Next line
 Line Input #FileNum, InputData
 Print #WriteFileNum, InputData
 Loop While InputData <> "END DATA"
 End If
 Loop Until EOF(FileNum)
 End If
 End If

 If Not bSaveWithoutCurrent Then
 Print #WriteFileNum, "DATA FOR ID " & CStr(lNum)
 Print #WriteFileNum, "DB PATH|||" & fmMain.cbDBDirs.Text
 Print #WriteFileNum, "SW PACKAGE|||" & fmMain.cbSWPackage.Text
 Print #WriteFileNum, "MAP|||" & fmMain.chkMap.Value

 SOURCE CODE OF THE VF PROTOTYPE

 Page 211

 lLine = 0
 lTempCounter = UBound(Categories)
 lLine = 1

 Print #WriteFileNum, "CATEGORIES|||" & lTempCounter
 For Count = 1 To lTempCounter
 With Categories(Count)
 Print #WriteFileNum, "CatNum|||" & .CategoryNumber

 lLine = 2
 lTempCounter1 = UBound(.NumberOfVulnerabilities)
 lLine = 3
 sTemp = ""
 For CountIn = 1 To lTempCounter1
 sTemp = sTemp & .NumberOfVulnerabilities(CountIn) & ","
 Next CountIn
 If Right$(sTemp, 1) = "," Then sTemp = Left$(sTemp, Len(sTemp) - 1)
 Print #WriteFileNum, "NumOfVulns|||" & sTemp

 Print #WriteFileNum, "MaxVulnVal|||" & .MaxVulnerabilityValue
 Print #WriteFileNum, "NumOfGroups|||" & .NumberOfGroups

 lLine = 2
 lTempCounter1 = UBound(.Groups)
 lLine = 3
 For CountIn = 1 To lTempCounter1
 sTemp = .Groups(CountIn).ScanFrom & ","
 sTemp = sTemp & .Groups(CountIn).ScanTo & ","
 sTemp = sTemp & .Groups(CountIn).Adjective & ","
 sTemp = sTemp & .Groups(CountIn).VulnerabilityFrom & ","
 sTemp = sTemp & .Groups(CountIn).VulnerabilityTo & ","
 sTemp = sTemp & .Groups(CountIn).VulnerabilityTranslatedFrom & ","
 sTemp = sTemp & .Groups(CountIn).VulnerabilityTranslatedTo & ","
 sTemp = sTemp & .Groups(CountIn).Cx_From & ","
 sTemp = sTemp & .Groups(CountIn).Cx_To & ","
 sTemp = sTemp & .Groups(CountIn).Mu_Lowerbound & ","
 sTemp = sTemp & .Groups(CountIn).Mu_Upperbound & ","
 sTemp = sTemp & .Groups(CountIn).MIN_Cx_Mu_LB & ","
 sTemp = sTemp & .Groups(CountIn).MIN_Cx_Mu_UB
 Print #WriteFileNum, "Group|||" & sTemp
 Next CountIn
 Print #WriteFileNum, "END OF GROUPS"

 lLine = 2
 lTempCounter1 = UBound(.Adjectives)
 lLine = 3
 Print #WriteFileNum, "Adjectives|||" & lTempCounter1
 For CountIn = 1 To lTempCounter1
 sTemp = .Adjectives(CountIn).LowerOperator & ","
 sTemp = sTemp & .Adjectives(CountIn).LowerValue & ","
 sTemp = sTemp & .Adjectives(CountIn).UpperOperator & ","
 sTemp = sTemp & .Adjectives(CountIn).UpperValue
 Print #WriteFileNum, "Adjective" & CountIn & "|||" & sTemp
 Next CountIn
 Print #WriteFileNum, "END OF ADJECTIVES"

 Print #WriteFileNum, "Rule_Name|||" & .Rule_Name
 Print #WriteFileNum, "Rule_Value|||" & .Rule_Value

 Print #WriteFileNum, "HasBeenSetup|||" & CLng(.HasBeenSetup)
 Print #WriteFileNum, "Membership_Op1|||" & .Membership_Op1
 Print #WriteFileNum, "Membership_Devider|||" & .Membership_Devider
 Print #WriteFileNum, "Membership_Op2|||" & .Membership_Op2
 Print #WriteFileNum, "Membership_Op3|||" & .Membership_Op3
 Print #WriteFileNum, "Membership_To|||" & .Membership_To
 Print #WriteFileNum, "Membership_Op4|||" & .Membership_Op4

 Print #WriteFileNum, "MAXofMIN_Cx_Mu|||" & .MAXofMIN_Cx_Mu.Lowerbound & "," &
.MAXofMIN_Cx_Mu.Upperbound
 Print #WriteFileNum, "Final|||" & .Final.Lowerbound & "," & .Final.Upperbound
 Print #WriteFileNum, "Final_AmtVulns|||" & .Final_AmtVulns.Lowerbound & "," &
.Final_AmtVulns.Upperbound

 Print #WriteFileNum, "DisplayResultOnGraph|||" & CLng(.DisplayResultOnGraph)
 End With
 Next Count
 Print #WriteFileNum, "END CATEGORIES"

APPENDIX B

Page 212

 Print #WriteFileNum, "END DATA"
 End If

 Close #WriteFileNum
 Close #FileNum

 Call Kill((App.Path & "\SavedData.vpl"))
 Name (App.Path & "\Temp.vpl") As (App.Path & "\SavedData.vpl")

 txtName.Text = ""
 Call ReadSavedNames
 Screen.MousePointer = vbNormal

 Exit Sub

ErrorHandler:
 If lLine = 0 Then lTempCounter = 0
 If lLine = 2 Then lTempCounter1 = 0
 Resume Next

End Sub

Private Sub ReadSavedNames()

 Dim FileNum As Long, Count As Long
 Dim InputData As String, sLeftHS As String, sRightHS As String
 Dim lNum As Long, lNumCount As Long
 Dim sSplit() As String
 Dim bOK As Boolean
 Dim li As ListItem

 'Open file
 FileNum = FreeFile

 'Create text file if does not exist
 If Dir(App.Path & "\SavedData.vpl", vbArchive + vbHidden + vbNormal + vbReadOnly +
vbSystem + vbVolume) <> "SavedData.vpl" Then
 'Create file
 Open (App.Path & "\SavedData.vpl") For Output Access Write As #FileNum

 Print #FileNum, "SAVED_NAMES"
 Print #FileNum, "END OF SAVED_NAMES"

 'Close file
 Close #FileNum
 End If

 'Open file for reading
 Open (App.Path & "\SavedData.vpl") For Input As #FileNum

 lNum = 0
 bOK = EOF(FileNum)
 Do While Not bOK
 'Read Next line
 Line Input #FileNum, InputData

 If InputData = "SAVED_NAMES" Then
 Do
 'Read Next line
 Line Input #FileNum, InputData

 If InputData <> "END OF SAVED_NAMES" Then
 lNum = lNum + 1
 If lNum = 1 Then
 ReDim SaveLoad(1 To lNum)
 Else
 ReDim Preserve SaveLoad(1 To lNum)
 End If

 sSplit = Split(InputData, "|||")
 SaveLoad(lNum).ID = CLng(sSplit(0))
 SaveLoad(lNum).Name = sSplit(1)
 SaveLoad(lNum).Date = CDbl(sSplit(2))
 Else
 bOK = True
 End If

 SOURCE CODE OF THE VF PROTOTYPE

 Page 213

 Loop Until InputData = "END OF SAVED_NAMES"
 End If
 Loop
 'Close file
 Close #FileNum
 lvNames.ListItems.Clear
 For Count = 1 To lNum
 Set li = lvNames.ListItems.Add(, "Key" & CStr(SaveLoad(Count).ID),
SaveLoad(Count).Name)
 li.SubItems(1) = CDate(SaveLoad(Count).Date)
 Next Count

End Sub

Private Sub lvNames_Click()

 Dim Count As Long
 Dim bOK As Boolean
 If lvNames.ListItems.Count < 1 Then Exit Sub
 bOK = False
 For Count = 1 To lvNames.ListItems.Count
 If lvNames.ListItems(Count).Selected Then
 bOK = True
 Exit For
 End If
 Next Count
 If Not bOK Then Exit Sub
 txtName.Text = lvNames.SelectedItem.Text

End Sub

Private Sub lvNames_DblClick()
 Call cmdSaveLoad_Click
End Sub

Private Sub txtName_KeyDown(KeyCode As Integer, Shift As Integer)
 If KeyCode = vbKeyReturn Then
 Call cmdSaveLoad_Click
 End If
End Sub

B.1.7 The “frmSelectCats” form

The design of this form is shown in figure B.8. This form is used as part of setting up

the harmonised vulnerability categories.

Figure B.8: The “frmSelectCats” form

APPENDIX B

Page 214

The source code for this form follows below.

Option Explicit
Dim FilterArray() As CustomCategoryInfoType

Private Sub cmdAccept_Click()

 Dim Count As Long, lTemp As Long
 Dim sTemp As String

 sTemp = txtNumber.Text
 If Not IsNumeric(sTemp) Then
 Call MsgBox("You have to specify a valid numeric number for the category!",
vbOKOnly + vbInformation, "Incorrect Number")
 txtNumber.SetFocus
 Exit Sub
 End If

 For Count = 1 To fmSWSetup.lvMainCats.ListItems.Count
 If Not fmSWSetup.lvMainCats.ListItems(Count).Selected Then
 If sTemp = fmSWSetup.lvMainCats.ListItems(Count).Text Then
 Call MsgBox("This number is already assigned to another category!", vbOKOnly +
vbInformation, "Incorrect Number")
 txtNumber.SetFocus
 Exit Sub
 End If
 End If
 Next Count

 sTemp = ""
 For Count = 1 To lvSWCategoties.ListItems.Count
 If lvSWCategoties.ListItems(Count).Checked Then
 sTemp = sTemp & lvSWCategoties.ListItems(Count).Text & ","
 End If
 Next Count

 If sTemp <> "" Then
 sTemp = Left$(sTemp, Len(sTemp) - 1)
 Call OptimizeCommaSeperatedNumbers(sTemp)
 End If

 fmSWSetup.lvMainCats.SelectedItem.Text = txtNumber.Text
 fmSWSetup.lvMainCats.SelectedItem.SubItems(3) = sTemp

 Call fmSWSetup.ReorderMainCategories
 Me.Hide
 cmdFilter.Value = vbUnchecked
 txtFilter.Text = ""
 Call RestoreOriginalCategories

End Sub

Private Sub cmdCancel_Click()
 Me.Hide
 cmdFilter.Value = vbUnchecked
 txtFilter.Text = ""
 Call RestoreOriginalCategories
End Sub

Private Sub cmdCheck_Click()
 Call CheckAll
End Sub

Private Sub cmdFilter_Click()

 Dim lNumEntries As Long, Count As Long, CountIn As Long
 Dim sTemp As String
 Dim li As ListItem
 Dim TempFilter() As CustomCategoryInfoType

 Screen.MousePointer = vbHourglass

 If cmdFilter.Value = vbChecked Then
 sTemp = txtFilter.Text

 SOURCE CODE OF THE VF PROTOTYPE

 Page 215

 If Not IsNumeric(sTemp) Then
 Screen.MousePointer = vbNormal
 Call MsgBox("Not a valid filter!", vbOKOnly + vbInformation, "Filter")
 Exit Sub
 End If

 Count = 0
 Do
 Count = Count + 1
 If Count <= lvSWCategoties.ListItems.Count Then
 If Left$(lvSWCategoties.ListItems(Count).Text, Len(sTemp)) <> sTemp Then
 Call lvSWCategoties.ListItems.Remove(Count)
 Count = Count - 1
 End If
 End If
 Loop While (Count <= lvSWCategoties.ListItems.Count)

 txtFilter.Enabled = False

 Else

 Call RestoreOriginalCategories

 txtFilter.Enabled = True
 End If

 If lvSWCategoties.Visible Then lvSWCategoties.SetFocus

 Screen.MousePointer = vbNormal

End Sub

Private Sub cmdUncheck_Click()
 Call CheckAll(False)
End Sub

Private Sub Form_Activate()

 Dim lNumEntries As Long, Count As Long

 If Me.Visible Then
 lNumEntries = lvSWCategoties.ListItems.Count
 If lNumEntries < 1 Then Exit Sub

 ReDim FilterArray(1 To lNumEntries)
 For Count = 1 To lNumEntries
 FilterArray(Count).ID = CLng(lvSWCategoties.ListItems(Count).Text)
 FilterArray(Count).Description = lvSWCategoties.ListItems(Count).SubItems(1)
 FilterArray(Count).Key = lvSWCategoties.ListItems(Count).Key

 If lvSWCategoties.ListItems(Count).Checked Then
 FilterArray(Count).Number = 1
 Else
 FilterArray(Count).Number = 0
 End If
 Next Count

 txtNumber.SelStart = 0
 txtNumber.SelLength = Len(txtNumber.Text)
 txtNumber.SetFocus
 End If
End Sub

Private Sub Form_Load()

 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 2

End Sub

Private Sub CheckAll(Optional bCheck As Boolean = True)

 Dim Count As Long

 For Count = 1 To lvSWCategoties.ListItems.Count
 If bCheck Then
 If lvSWCategoties.ListItems(Count).Selected Then

APPENDIX B

Page 216

 lvSWCategoties.ListItems(Count).Checked = bCheck
 End If
 Else
 lvSWCategoties.ListItems(Count).Checked = bCheck
 End If
 Next Count
 lvSWCategoties.SetFocus
End Sub

Private Sub RestoreOriginalCategories()

 Dim lNumEntries As Long, Count As Long, CountIn As Long
 Dim sTemp As String
 Dim li As ListItem
 Dim TempFilter() As CustomCategoryInfoType

 ReDim TempFilter(0)
 If lvSWCategoties.ListItems.Count > 0 Then
 ReDim TempFilter(1 To lvSWCategoties.ListItems.Count)
 For Count = 1 To lvSWCategoties.ListItems.Count
 TempFilter(Count).ID = CLng(lvSWCategoties.ListItems(Count).Text)
 TempFilter(Count).Description = lvSWCategoties.ListItems(Count).SubItems(1)
 TempFilter(Count).Key = lvSWCategoties.ListItems(Count).Key

 If lvSWCategoties.ListItems(Count).Checked Then
 TempFilter(Count).Number = 1
 Else
 TempFilter(Count).Number = 0
 End If
 Next Count
 End If

 Call lvSWCategoties.ListItems.Clear

 lNumEntries = UBound(FilterArray)
 For Count = 1 To lNumEntries
 Set li = lvSWCategoties.ListItems.Add(, FilterArray(Count).Key,
FilterArray(Count).ID)
 li.SubItems(1) = FilterArray(Count).Description

 If (FilterArray(Count).Number = 1) Then li.Checked = True

 For CountIn = 1 To UBound(TempFilter)
 If TempFilter(CountIn).ID = FilterArray(Count).ID Then
 If (TempFilter(CountIn).Number = 1) Then li.Checked = True
 End If
 Next CountIn
 Next Count
 If lvSWCategoties.ListItems.Count > 0 Then
 lvSWCategoties.ListItems(1).Selected = True
 Call lvSWCategoties.ListItems(1).EnsureVisible
 End If

End Sub

Private Sub txtFilter_KeyDown(KeyCode As Integer, Shift As Integer)
 If KeyCode = vbKeyReturn Then
 cmdFilter.Value = vbChecked
 Call cmdFilter_Click
 End If
End Sub

B.1.8 The “frmSetup” form

The design of this form is shown in figure B.9. This form is used to set up the

mapping table, fuzzy groups, and membership function in the process of doing a

vulnerability forecast.

 SOURCE CODE OF THE VF PROTOTYPE

 Page 217

Figure B.9: The “frmSetup” form

The source code for this form follows below.

Option Explicit
Dim btnDown As Long
Dim bCbOperatorsGotFocus As Boolean
Dim nTabIndex As Integer

Private Sub cbAdjectives_GotFocus(Index As Integer)
 bCbOperatorsGotFocus = True
End Sub

Private Sub cbAdjectives_KeyDown(Index As Integer, KeyCode As Integer, Shift As
Integer)
 If (KeyCode = vbKeyDelete) Or (KeyCode = vbKeyEscape) Then
 cbAdjectives(Index).ListIndex = -1
 End If
End Sub

Private Sub cbAdjectives_LostFocus(Index As Integer)
 bCbOperatorsGotFocus = False
End Sub

Private Sub cbOperatorLower_Click(Index As Integer)

 If cbOperatorLower(Index).ListIndex < 0 Then Exit Sub

 If cbOperatorLower(Index).ItemData(cbOperatorLower(Index).ListIndex) = xINFINITY
Then
 lblXLower(Index).Visible = False

APPENDIX B

Page 218

 lblValLower(Index).Visible = False
 Else
 If Not lblXLower(Index).Visible Then lblXLower(Index).Visible = True
 If Not lblValLower(Index).Visible Then lblValLower(Index).Visible = True
 End If

End Sub

Private Sub cbOperatorLower_GotFocus(Index As Integer)
 bCbOperatorsGotFocus = True
End Sub

Private Sub cbOperatorLower_KeyDown(Index As Integer, KeyCode As Integer, Shift As
Integer)
 If (KeyCode = vbKeyDelete) Or (KeyCode = vbKeyEscape) Then
 cbOperatorLower(Index).ListIndex = -1
 End If
End Sub

Private Sub cbOperatorLower_LostFocus(Index As Integer)
 bCbOperatorsGotFocus = False
 DoEvents
End Sub

Private Sub cbOperatorUpper_Click(Index As Integer)

 If cbOperatorUpper(Index).ItemData(cbOperatorUpper(Index).ListIndex) = xINFINITY
Then
 lblXUpper(Index).Visible = False
 lblValUpper(Index).Visible = False
 Else
 If Not lblXUpper(Index).Visible Then lblXUpper(Index).Visible = True
 If Not lblValUpper(Index).Visible Then lblValUpper(Index).Visible = True
 End If

End Sub

Private Sub cbOperatorUpper_KeyDown(Index As Integer, KeyCode As Integer, Shift As
Integer)
 If (KeyCode = vbKeyDelete) Or (KeyCode = vbKeyEscape) Then
 cbOperatorUpper(Index).ListIndex = -1
 End If
End Sub

Private Sub cbRule_GotFocus()
 bCbOperatorsGotFocus = True
End Sub

Private Sub cbRule_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyDelete) Or (KeyCode = vbKeyEscape) Then
 cbRule.ListIndex = -1
 End If
End Sub

Private Sub cbRule_LostFocus()
 bCbOperatorsGotFocus = False
End Sub

Private Sub chkDisplay_Click()
 GraphView1.Special_Lowerbound = Categories(gnCurCat).Final_AmtVulns.Lowerbound
 GraphView1.Special_Upperbound = Categories(gnCurCat).Final_AmtVulns.Upperbound
 GraphView1.Special_Display = (chkDisplay.Value = vbChecked)

 Categories(gnCurCat).DisplayResultOnGraph = (chkDisplay.Value = vbChecked)
End Sub

Private Sub cmdAccept_Click()
 Call cmdAcceptClick
End Sub

Private Sub cmdAcceptClick(Optional bShowFrame As Boolean = True)

 On Error Resume Next

 Dim Count As Long, lNum As Long

 If CheckInfo Then

 SOURCE CODE OF THE VF PROTOTYPE

 Page 219

 Select Case nTabIndex
 Case 1
 'Groups
 Categories(gnCurCat).NumberOfGroups = CLng(lblNumGroups.Caption)

 ReDim Categories(gnCurCat).Groups(1 To Categories(gnCurCat).NumberOfGroups)
 For Count = 1 To Categories(gnCurCat).NumberOfGroups
 Categories(gnCurCat).Groups(Count).ScanFrom = CLng(txtScanFrom(Count -
1).Text)
 Categories(gnCurCat).Groups(Count).ScanTo = CLng(txtScanTo(Count - 1).Text)
 Categories(gnCurCat).Groups(Count).Adjective = cbAdjectives(Count - 1).Text
 Categories(gnCurCat).Groups(Count).VulnerabilityFrom =
CLng(txtVulnFrom(Count - 1).Text)
 Categories(gnCurCat).Groups(Count).VulnerabilityTo = CLng(txtVulnTo(Count -
1).Text)
 Next Count

 'Adjectives
 lNum = UBound(gsAdjectives)
 ReDim Categories(gnCurCat).Adjectives(1 To lNum)
 For Count = 1 To lNum
 If cbOperatorLower(Count).ListIndex >= 0 Then
 Categories(gnCurCat).Adjectives(Count).LowerOperator =
cbOperatorLower(Count).ItemData(cbOperatorLower(Count).ListIndex)
 Else
 Categories(gnCurCat).Adjectives(Count).LowerOperator = -1
 End If
 Categories(gnCurCat).Adjectives(Count).LowerValue = lblValLower(Count).Text

 If cbOperatorUpper(Count).ListIndex >= 0 Then
 Categories(gnCurCat).Adjectives(Count).UpperOperator =
cbOperatorUpper(Count).ItemData(cbOperatorUpper(Count).ListIndex)
 Else
 Categories(gnCurCat).Adjectives(Count).UpperOperator = -1
 End If
 Categories(gnCurCat).Adjectives(Count).UpperValue = lblValUpper(Count).Text
 Next Count

 'Rule
 Categories(gnCurCat).Rule_Name = cbRule.Text
 Categories(gnCurCat).Rule_Value = txtRule.Text

 Call DoTranslationTab

 cmdAccept.Caption = "&Next >>"
 If TabStrip1.Tabs.Count < 2 Then
 TabStrip1.Tabs.Add 2, "Translation", "Translation"
 End If
 nTabIndex = 2
 If bShowFrame Then
 TabStrip1.Tabs(2).Selected = True
 Call SetTab(TabStrip1, frmWizard)
 frmGraph.ZOrder 0
 End If
 cmdBack.Visible = True

 Case 2
 cmdAccept.Caption = "Finish"
 If TabStrip1.Tabs.Count < 3 Then
 'TabStrip1.Tabs.Add 3, "Conclusion", "Conclusion"
 TabStrip1.Tabs.Add 3, "Forecast", "Forecast"
 End If
 nTabIndex = 3
 TabStrip1.Tabs(3).Selected = True
 Call SetTab(TabStrip1, frmWizard)
 frmGraph.ZOrder 0
 cmdBack.Visible = True

 Case 3
 Categories(gnCurCat).HasBeenSetup = True

 If Not fmMain.imgCheckCategory(gnCurCat).Visible Then
 fmMain.imgCheckCategory(gnCurCat).Visible = True
 End If

 gnCurCat = -1

APPENDIX B

Page 220

 Call UnloadThisForm
 End Select

 End If

End Sub

Private Sub cmdBack_Click()
 Call cmdBackClick
End Sub

Private Sub cmdBackClick(Optional bShowFrame As Boolean = True)
 If nTabIndex > 1 Then
 nTabIndex = nTabIndex - 1
 If bShowFrame Then
 TabStrip1.Tabs(nTabIndex).Selected = True
 Call SetTab(TabStrip1, frmWizard)
 End If
 If nTabIndex = 1 Then cmdBack.Visible = False
 cmdAccept.Caption = "&Next >>"
 Else
 cmdBack.Visible = False
 End If
End Sub

Private Sub cmdCancel_Click()
 Call UnloadThisForm
End Sub

Private Sub cmdDown_Click()

 Dim lNum As Long

 lNum = CLng(lblNumGroups.Caption)
 lNum = lNum - 1
 If lNum < 1 Then lNum = 1
 lblNumGroups.Caption = CStr(lNum)
 picFocus.SetFocus
 Call EnableDisableGroups

End Sub

Private Sub cmdUp_Click()

 Dim lNum As Long

 lNum = CLng(lblNumGroups.Caption)
 lNum = lNum + 1
 If lNum > 5 Then lNum = 5
 lblNumGroups.Caption = CStr(lNum)
 picFocus.SetFocus
 Call EnableDisableGroups

End Sub

Private Sub cmdViewCalc_Click(Index As Integer)

 Dim sTemp As String
 Dim dblTop As Double, dblBottom As Double
 Dim lTempScanFrom() As Long, lTempScanTo() As Long
 Dim Count As Long

 If Categories(gnCurCat).NumberOfGroups < 1 Then Exit Sub

 Load fmCalculations

 'Mu calculations
 ReDim lTempScanFrom(1 To Categories(gnCurCat).NumberOfGroups)
 ReDim lTempScanTo(1 To Categories(gnCurCat).NumberOfGroups)

 For Count = 1 To Categories(gnCurCat).NumberOfGroups
 lTempScanFrom(Count) = Categories(gnCurCat).Groups(Count).ScanFrom
 lTempScanTo(Count) = Categories(gnCurCat).Groups(Count).ScanTo
 Next Count

 'Display calculations
 With fmCalculations

 SOURCE CODE OF THE VF PROTOTYPE

 Page 221

 'LB
 .lblEq1.Caption = "Equation1: Calculation of LB" & (Index + 1)

 .lblEqualsLB(0).Caption = "LB" & CStr(Index + 1) & " ="

 .SumViewLB(0).ToValue = CStr(Categories(gnCurCat).NumberOfGroups)
 .SumViewLB(1).ToValue = CStr(Categories(gnCurCat).NumberOfGroups)
 .SumViewLB(3).FromValue = CStr(Index + 1)
 .SumViewLB(3).ToValue = CStr(Categories(gnCurCat).NumberOfGroups)
 .SumViewLB(4).FromValue = CStr(Index + 1)
 .SumViewLB(4).ToValue = CStr(Categories(gnCurCat).NumberOfGroups)
 '.SumViewLB(5).FromValue = CStr(Index + 1)
 .SumViewLB(5).ToValue = CStr(Index + 1) & "-1"

 'Calculate top
 dblTop = CalculateSumOf(CLng(Index + 1), Categories(gnCurCat).NumberOfGroups,
lTempScanFrom, lTempScanTo, True, sTemp)
 .lblLB(6).Caption = sTemp
 .lblLB(7).Caption = sTemp

 'Calculate bottom-right (bottom-left = top)
 dblBottom = CalculateSumOf(1, CLng(Index), lTempScanFrom, lTempScanTo, False,
sTemp)
 .lblLB(8).Caption = sTemp

 .lblLB(9).Caption = CStr(dblTop) & " / " & CStr(dblTop + dblBottom)
 If Fix(Categories(gnCurCat).Groups(Index + 1).Mu_Lowerbound) <>
Categories(gnCurCat).Groups(Index + 1).Mu_Lowerbound Then
 .lblLB(10).Caption = Format(Categories(gnCurCat).Groups(Index +
1).Mu_Lowerbound, "0.###")
 Else
 .lblLB(10).Caption = Categories(gnCurCat).Groups(Index + 1).Mu_Lowerbound
 End If

 'UB
 .lblEq2.Caption = "Equation2: Calculation of UB" & (Index + 1)

 .lblEqualsUB(0).Caption = "UB" & CStr(Index + 1) & " ="

 .SumViewUB(0).ToValue = CStr(Categories(gnCurCat).NumberOfGroups)
 .SumViewUB(1).ToValue = CStr(Categories(gnCurCat).NumberOfGroups)
 .SumViewUB(3).FromValue = CStr(Index + 1)
 .SumViewUB(3).ToValue = CStr(Categories(gnCurCat).NumberOfGroups)
 .SumViewUB(4).FromValue = CStr(Index + 1)
 .SumViewUB(4).ToValue = CStr(Categories(gnCurCat).NumberOfGroups)
 '.SumViewUB(5).FromValue = CStr(Index + 1)
 .SumViewUB(5).ToValue = CStr(Index + 1) & "-1"

 'Calculate top
 dblTop = CalculateSumOf(CLng(Index + 1), Categories(gnCurCat).NumberOfGroups,
lTempScanFrom, lTempScanTo, False, sTemp)
 .lblUB(6).Caption = sTemp
 .lblUB(7).Caption = sTemp

 'Calculate bottom-right (bottom-left = top)
 dblBottom = CalculateSumOf(1, CLng(Index), lTempScanFrom, lTempScanTo, True,
sTemp)
 .lblUB(8).Caption = sTemp

 .lblUB(9).Caption = CStr(dblTop) & " / " & CStr(dblTop + dblBottom)
 If Fix(Categories(gnCurCat).Groups(Index + 1).Mu_Upperbound) <>
Categories(gnCurCat).Groups(Index + 1).Mu_Upperbound Then
 .lblUB(10).Caption = Format(Categories(gnCurCat).Groups(Index +
1).Mu_Upperbound, "0.###")
 Else
 .lblUB(10).Caption = Categories(gnCurCat).Groups(Index + 1).Mu_Upperbound
 End If
 End With

 'display form
 fmCalculations.Show vbModal

End Sub

Private Sub Command1_Click()
 picFocus.SetFocus
End Sub

APPENDIX B

Page 222

Private Sub Command2_Click()
 picFocus.SetFocus
End Sub

Private Sub Form_Activate()
 Screen.MousePointer = vbNormal
 picFocus.SetFocus
End Sub

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
 btnDown = Shift
 If Not bCbOperatorsGotFocus Then
 Select Case KeyCode
 Case vbKeyDown: Call cmdDown_Click
 Case vbKeyUp: Call cmdUp_Click
 End Select
 End If
End Sub

Private Sub Form_Load()

 'Center form on screen
 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 2

 Frame7.Caption = "Computation of " & Chr(181) & " value"
 Label21.Caption = Chr(181) & "'s"
 Frame4.Caption = "Calculation of MIN(" & Chr(181) & "i, C(xi))"
 Label23.Caption = "MIN(" & Chr(181) & "i,C(xi))"
 Label24.Caption = "Calculation of MIN(" & Chr(181) & "i, C(xi))"

 nTabIndex = 1
 frmGraph.ZOrder 0
 bCbOperatorsGotFocus = False
 gbFmSetupLoaded = True

End Sub

Private Sub Form_Unload(Cancel As Integer)
 Call UnloadThisForm(False)
 gbFmSetupLoaded = False
End Sub

Private Sub UnloadThisForm(Optional bUnloadMe As Boolean = True)
 If gbFmGraphicsLoaded Then Unload fmGraphics
 If bUnloadMe Then Unload Me
End Sub

Private Sub frmWizard_DblClick(Index As Integer)

 Dim Count As Long

 If (Index = 0) Then
 If btnDown = (vbCtrlMask + vbShiftMask + vbAltMask) Then
 Select Case gnCurCat
 Case 1
 cbOperatorLower(1).ListIndex = 1
 lblValLower(1).Text = "10%"
 cbOperatorLower(2).ListIndex = 1
 lblValLower(2).Text = "10%"
 cbOperatorLower(3).ListIndex = 0
 lblValLower(3).Text = "1"
 cbOperatorLower(4).ListIndex = 2
 lblValLower(4).Text = "2"

 cbOperatorUpper(1).ListIndex = 1
 lblValUpper(1).Text = "1"
 cbOperatorUpper(2).ListIndex = 0
 lblValUpper(2).Text = "10%"
 cbOperatorUpper(3).ListIndex = 0
 lblValUpper(3).Text = "10%"
 cbOperatorUpper(4).ListIndex = 4

 lblNumGroups.Caption = 4
 Call EnableDisableGroups

 SOURCE CODE OF THE VF PROTOTYPE

 Page 223

 txtScanFrom(0).Text = "2"
 txtScanTo(0).Text = "2"
 cbAdjectives(0).ListIndex = -1
 txtVulnFrom(0).Text = "30"
 txtVulnTo(0).Text = "35"
 txtScanFrom(1).Text = "6"
 txtScanTo(1).Text = "6"
 cbAdjectives(1).ListIndex = 1
 txtVulnFrom(1).Text = "40"
 txtVulnTo(1).Text = "40"
 txtScanFrom(2).Text = "4"
 txtScanTo(2).Text = "4"
 cbAdjectives(2).ListIndex = 0
 txtVulnFrom(2).Text = "50"
 txtVulnTo(2).Text = "50"
 txtScanFrom(3).Text = "3"
 txtScanTo(3).Text = "3"
 cbAdjectives(3).ListIndex = 2
 txtVulnFrom(3).Text = "50"
 txtVulnTo(3).Text = "50"

 txtTo.Text = "60"
 cbRule.ListIndex = 1
 txtRule.Text = "40"

 Case 2
 cbOperatorLower(1).ListIndex = xMINUS
 lblValLower(1).Text = "5%"
 cbOperatorLower(2).ListIndex = xMINUS
 lblValLower(2).Text = "5%"
 cbOperatorLower(3).ListIndex = xPLUS
 lblValLower(3).Text = "1"
 cbOperatorLower(4).ListIndex = xMULTIPLY
 lblValLower(4).Text = "2"

 cbOperatorUpper(1).ListIndex = xMINUS
 lblValUpper(1).Text = "1"
 cbOperatorUpper(2).ListIndex = xPLUS
 lblValUpper(2).Text = "5%"
 cbOperatorUpper(3).ListIndex = xPLUS
 lblValUpper(3).Text = "5%"
 cbOperatorUpper(4).ListIndex = xINFINITY

 lblNumGroups.Caption = 3
 Call EnableDisableGroups

 txtScanFrom(0).Text = "3"
 txtScanTo(0).Text = "3"
 cbAdjectives(0).ListIndex = -1
 txtVulnFrom(0).Text = "0"
 txtVulnTo(0).Text = "0"
 txtScanFrom(1).Text = "3"
 txtScanTo(1).Text = "3"
 cbAdjectives(1).ListIndex = -1
 txtVulnFrom(1).Text = "1"
 txtVulnTo(1).Text = "3"
 txtScanFrom(2).Text = "9"
 txtScanTo(2).Text = "9"
 cbAdjectives(2).ListIndex = 1
 txtVulnFrom(2).Text = "5"
 txtVulnTo(2).Text = "5"

 txtTo.Text = "100"
 txtDevider.Text = "10"
 cbRule.ListIndex = 1
 txtRule.Text = "5"

 Case 3
 cbOperatorLower(1).ListIndex = xMINUS
 lblValLower(1).Text = "50%"
 cbOperatorLower(2).ListIndex = xMINUS
 lblValLower(2).Text = "50%"
 cbOperatorLower(3).ListIndex = xPLUS
 lblValLower(3).Text = "50%"
 cbOperatorLower(4).ListIndex = xMULTIPLY
 lblValLower(4).Text = "5"

APPENDIX B

Page 224

 cbOperatorUpper(1).ListIndex = xMINUS
 lblValUpper(1).Text = "0"
 cbOperatorUpper(2).ListIndex = xPLUS
 lblValUpper(2).Text = "50%"
 cbOperatorUpper(3).ListIndex = xPLUS
 lblValUpper(3).Text = "50%"
 cbOperatorUpper(4).ListIndex = xINFINITY

 lblNumGroups.Caption = 2
 Call EnableDisableGroups

 txtScanFrom(0).Text = "12"
 txtScanTo(0).Text = "12"
 cbAdjectives(0).ListIndex = -1
 txtVulnFrom(0).Text = "0"
 txtVulnTo(0).Text = "0"
 txtScanFrom(1).Text = "2"
 txtScanTo(1).Text = "2"
 cbAdjectives(1).ListIndex = -1
 txtVulnFrom(1).Text = "1"
 txtVulnTo(1).Text = "1"

 txtTo.Text = "11"
 txtDevider.Text = "5"
 cbRule.ListIndex = 2
 txtRule.Text = "1"

 End Select

 End If
 End If

End Sub

Private Sub GraphView1_Click()

 Dim ColVals() As Long
 Dim lNumCols As Long

 Load fmGraphics

 With fmGraphics
 .GraphView1.Special_LineColor = Options.Prediction_LineColor
 .GraphView1.Prediction_LineColor = Options.Prediction_ColumnColor

 .GraphView1.Heading = GraphView1.Heading
 .GraphView1.XAxis_Heading = GraphView1.XAxis_Heading
 .GraphView1.XAxis_Increment = GraphView1.XAxis_Increment
 .GraphView1.XAxis_Max = GraphView1.XAxis_Max
 .GraphView1.XAxis_Min = GraphView1.XAxis_Min
 .GraphView1.YAxis_Heading = GraphView1.YAxis_Heading
 .GraphView1.YAxis_Increment = GraphView1.YAxis_Increment
 .GraphView1.YAxis_Max = GraphView1.YAxis_Max
 .GraphView1.YAxis_Min = GraphView1.YAxis_Min

 lNumCols = GraphView1.GetGraphColumnValues(ColVals)
 Call .GraphView1.DrawGraphColumns(ColVals)

 .GraphView1.Special_LineColor = GraphView1.Special_LineColor
 .GraphView1.Special_Lowerbound = GraphView1.Special_Lowerbound
 .GraphView1.Special_Upperbound = GraphView1.Special_Upperbound
 .GraphView1.Special_Display = GraphView1.Special_Display
 .GraphView1.XAxis_Values = ""
 End With

 picFocus.SetFocus
 fmGraphics.Show

End Sub

Public Sub SetupFormWithCategoryInfo(CatIndex As Integer)

 On Error GoTo ErrorHandler

 Dim Count As Long, lTemp As Long, CountIn As Long, lNum As Long
 Dim lNumAdj As Long
 Dim sngTop As Single

 SOURCE CODE OF THE VF PROTOTYPE

 Page 225

 Label26.Caption = "IF the amount of vulnerabilities found for vulnerability category
" & gnCurCat & " is"

 'Setup adjective info
 lNumAdj = UBound(gsAdjectives)
 If lNumAdj > 0 Then

 'Setup adjective combos
 cbRule.Clear
 For Count = 0 To (cbAdjectives.Count - 1)
 cbAdjectives(Count).Clear
 Next Count

 sngTop = cbOperatorLower(0).Top
 For Count = 1 To lNumAdj
 'Setup Lower Operator combo
 Load cbOperatorLower(Count)
 Call AddComboOperators(cbOperatorLower(Count))
 cbOperatorLower(Count).Top = sngTop
 sngTop = cbOperatorLower(Count).Top + cbOperatorLower(Count).Height + 15
 cbOperatorLower(Count).Visible = True

 'Setup adjective
 Load lblAdjective(Count)
 lblAdjective(Count).Top = cbOperatorLower(Count).Top +
((cbOperatorLower(Count).Height - lblAdjective(Count).Height) / 2)
 lblAdjective(Count).Caption = gsAdjectives(Count)
 lblAdjective(Count).Visible = True

 'Setup lower x-label
 Load lblXLower(Count)
 lblXLower(Count).Top = cbOperatorLower(Count).Top +
((cbOperatorLower(Count).Height - lblXLower(Count).Height) / 2)
 lblXLower(Count).Visible = True

 'Setup lower value
 Load lblValLower(Count)
 lblValLower(Count).Top = cbOperatorLower(Count).Top
 lblValLower(Count).Visible = True

 'Setup upper x-label
 Load lblXUpper(Count)
 lblXUpper(Count).Top = lblXLower(Count).Top
 lblXUpper(Count).Visible = True

 'Setup Upper Operator combo
 Load cbOperatorUpper(Count)
 Call AddComboOperators(cbOperatorUpper(Count))
 cbOperatorUpper(Count).Top = cbOperatorLower(Count).Top
 cbOperatorUpper(Count).Visible = True

 'Setup upper value
 Load lblValUpper(Count)
 lblValUpper(Count).Top = lblValLower(Count).Top
 lblValUpper(Count).Visible = True

 'Add adjectives
 For CountIn = 0 To (cbAdjectives.Count - 1)
 cbAdjectives(CountIn).AddItem gsAdjectives(Count)
 cbAdjectives(CountIn).ItemData(cbAdjectives(CountIn).NewIndex) = Count
 Next CountIn
 cbRule.AddItem gsAdjectives(Count)
 cbRule.ItemData(cbRule.NewIndex) = Count

 Next Count

 'Check sizes
 If (cbOperatorLower(lNumAdj).Top + cbOperatorLower(lNumAdj).Height) > (Shape1.Top
+ Shape1.Height) Then
 Shape1.Height = (cbOperatorLower(lNumAdj).Top + cbOperatorLower(lNumAdj).Height
+ 100)
 Frame2.Height = Shape1.Height + 270
 GraphView1.Height = Shape1.Height + 270
 Frame1.Top = Frame2.Top + Frame2.Height + 75
 cmdAccept.Top = Frame1.Top + Frame1.Height + 30
 cmdCancel.Top = cmdAccept.Top

APPENDIX B

Page 226

 Me.Height = cmdAccept.Top + cmdAccept.Height + 423
 End If

 End If

 If Categories(gnCurCat).HasBeenSetup Then
 'Groups
 lblNumGroups.Caption = Categories(gnCurCat).NumberOfGroups

 For Count = 1 To Categories(gnCurCat).NumberOfGroups
 txtScanFrom(Count - 1).Text = Categories(gnCurCat).Groups(Count).ScanFrom
 txtScanTo(Count - 1).Text = Categories(gnCurCat).Groups(Count).ScanTo

 For CountIn = 1 To cbAdjectives(Count - 1).ListCount
 If cbAdjectives(Count - 1).List(CountIn - 1) =
Categories(gnCurCat).Groups(Count).Adjective Then
 cbAdjectives(Count - 1).ListIndex = CountIn - 1
 GoTo AfterForIn
 End If
 Next CountIn

AfterForIn:
 txtVulnFrom(Count - 1).Text =
Categories(gnCurCat).Groups(Count).VulnerabilityFrom
 txtVulnTo(Count - 1).Text = Categories(gnCurCat).Groups(Count).VulnerabilityTo
 Next Count
 Call EnableDisableGroups

 'Adjectives
 lNum = UBound(gsAdjectives)
 For Count = 1 To lNum
 cbOperatorLower(Count).ListIndex =
Categories(gnCurCat).Adjectives(Count).LowerOperator
 lblValLower(Count).Text = Categories(gnCurCat).Adjectives(Count).LowerValue

 cbOperatorUpper(Count).ListIndex =
Categories(gnCurCat).Adjectives(Count).UpperOperator
 lblValUpper(Count).Text = Categories(gnCurCat).Adjectives(Count).UpperValue
 Next Count

 'Membership function
 cbMFOps(0).ListIndex = Categories(gnCurCat).Membership_Op1
 txtDevider.Text = Categories(gnCurCat).Membership_Devider
 cbMFOps(1).ListIndex = Categories(gnCurCat).Membership_Op2
 cbMFOps(2).ListIndex = Categories(gnCurCat).Membership_Op3
 cbMFOps(3).ListIndex = Categories(gnCurCat).Membership_Op4
 txtTo.Text = Categories(gnCurCat).Membership_To

 'Rule
 For Count = 0 To cbRule.ListCount - 1
 If cbRule.List(Count) = Categories(gnCurCat).Rule_Name Then
 cbRule.ListIndex = Count
 Exit For
 End If
 Next Count
 If cbRule.ListIndex < 0 Then cbRule.ListIndex = 0
 txtRule.Text = Categories(gnCurCat).Rule_Value

 Call DoTranslationTab

 If TabStrip1.Tabs.Count < 2 Then
 TabStrip1.Tabs.Add 2, "Translation", "Translation"
 TabStrip1.Tabs.Add 3, "Forecast", "Forecast"
 Else
 If TabStrip1.Tabs.Count < 3 Then
 TabStrip1.Tabs.Add 3, "Forecast", "Forecast"
 End If
 End If
 cmdBack.Visible = False
 Else
 lTemp = 10 - (Categories(gnCurCat).MaxVulnerabilityValue Mod 10)
 lTemp = Categories(gnCurCat).MaxVulnerabilityValue + lTemp
 'Membership function combos
 cbMFOps(0).ListIndex = 3
 txtDevider.Text = lTemp
 cbMFOps(1).ListIndex = 1
 cbMFOps(2).ListIndex = 1

 SOURCE CODE OF THE VF PROTOTYPE

 Page 227

 cbMFOps(3).ListIndex = 4
 txtTo.Text = lTemp
 End If

Quit:
 Exit Sub

ErrorHandler:
 MsgBox "ERROR (SetupFormWithCategoryInfo)" & vbCrLf & Err.Number & ": " &
Err.Description, vbOKOnly + vbInformation, "Error Encountered"
 Resume Quit

End Sub

Private Sub AddComboOperators(OperatorCombo As ComboBox)

 On Error Resume Next

 OperatorCombo.Clear
 OperatorCombo.AddItem "+"
 OperatorCombo.ItemData(OperatorCombo.NewIndex) = xPLUS
 OperatorCombo.AddItem "-"
 OperatorCombo.ItemData(OperatorCombo.NewIndex) = xMINUS
 OperatorCombo.AddItem "*"
 OperatorCombo.ItemData(OperatorCombo.NewIndex) = xMULTIPLY
 OperatorCombo.AddItem "/"
 OperatorCombo.ItemData(OperatorCombo.NewIndex) = xDEVIDE
 OperatorCombo.AddItem "inf"
 OperatorCombo.ItemData(OperatorCombo.NewIndex) = xINFINITY

End Sub

Private Sub EnableDisableGroups()

 Dim lNum As Long, Count As Long

 lNum = CLng(lblNumGroups.Caption)
 If (lNum < 1) Or (lNum > 5) Then Exit Sub

 'Disable groups not being used
 If lNum < 5 Then
 For Count = (lNum - 1) To 4
 lblGroup(Count).Enabled = False
 Label1(Count).Enabled = False
 txtScanFrom(Count).Enabled = False
 Label1(Count + 5).Enabled = False
 txtScanTo(Count).Enabled = False
 Label1(Count + 10).Enabled = False
 cbAdjectives(Count).Enabled = False
 txtVulnFrom(Count).Enabled = False
 Label1(Count + 15).Enabled = False
 txtVulnTo(Count).Enabled = False
 Label1(Count + 20).Enabled = False
 Next Count
 End If

 'Enable groups being used
 For Count = 0 To (lNum - 1)
 lblGroup(Count).Enabled = True
 Label1(Count).Enabled = True
 txtScanFrom(Count).Enabled = True
 Label1(Count + 5).Enabled = True
 txtScanTo(Count).Enabled = True
 Label1(Count + 10).Enabled = True
 cbAdjectives(Count).Enabled = True
 txtVulnFrom(Count).Enabled = True
 Label1(Count + 15).Enabled = True
 txtVulnTo(Count).Enabled = True
 Label1(Count + 20).Enabled = True
 Next Count

End Sub

Private Function CheckInfo() As Boolean

 On Error Resume Next

APPENDIX B

Page 228

 Dim bOK As Boolean
 Dim Count As Long

 bOK = True

 Select Case nTabIndex
 Case 1
 'Check adjectives
 For Count = 1 To (lblAdjective.Count - 1)
 If cbOperatorLower(Count).ListIndex < 0 Then
 If TabStrip1.SelectedItem.Index <> 1 Then TabStrip1.Tabs(1).Selected = True
 Call MsgBox("Please specify an operator (+, -, *, /)!", vbOKOnly +
vbInformation, "Check Info")
 cbOperatorLower(Count).SetFocus
 bOK = False
 GoTo Quit
 End If

 If cbOperatorLower(Count).ItemData(cbOperatorLower(Count).ListIndex) <>
xINFINITY Then
 If Not CheckIfContentsOfTextboxIsNumeric(lblValLower(Count)) Then
 If TabStrip1.SelectedItem.Index <> 1 Then TabStrip1.Tabs(1).Selected =
True
 Call MsgBox("Invalid numeric value!", vbOKOnly + vbInformation, "Check
Info")
 lblValLower(Count).SetFocus
 bOK = False
 GoTo Quit
 End If
 End If

 If cbOperatorUpper(Count).ListIndex < 0 Then
 If TabStrip1.SelectedItem.Index <> 1 Then TabStrip1.Tabs(1).Selected = True
 Call MsgBox("Please specify an operator (+, -, *, /)!", vbOKOnly +
vbInformation, "Check Info")
 cbOperatorUpper(Count).SetFocus
 bOK = False
 GoTo Quit
 End If

 If cbOperatorUpper(Count).ItemData(cbOperatorUpper(Count).ListIndex) <>
xINFINITY Then
 If Not CheckIfContentsOfTextboxIsNumeric(lblValUpper(Count)) Then
 If TabStrip1.SelectedItem.Index <> 1 Then TabStrip1.Tabs(1).Selected =
True
 Call MsgBox("Invalid numeric value!", vbOKOnly + vbInformation, "Check
Info")
 lblValUpper(Count).SetFocus
 bOK = False
 GoTo Quit
 End If
 End If
 Next Count

 'Check groups
 For Count = 0 To (lblGroup.Count - 1)
 If lblGroup(Count).Enabled Then
 If Not CheckIfContentsOfTextboxIsNumeric(txtScanFrom(Count), False) Then
 If TabStrip1.SelectedItem.Index <> 1 Then TabStrip1.Tabs(1).Selected =
True
 Call MsgBox("Invalid numeric value!", vbOKOnly + vbInformation, "Check
Info")
 txtScanFrom(Count).SetFocus
 bOK = False
 GoTo Quit
 End If

 If Not CheckIfContentsOfTextboxIsNumeric(txtScanTo(Count), False) Then
 If TabStrip1.SelectedItem.Index <> 1 Then TabStrip1.Tabs(1).Selected =
True
 Call MsgBox("Invalid numeric value!", vbOKOnly + vbInformation, "Check
Info")
 txtScanTo(Count).SetFocus
 bOK = False
 GoTo Quit
 End If

 SOURCE CODE OF THE VF PROTOTYPE

 Page 229

 If Not CheckIfContentsOfTextboxIsNumeric(txtVulnFrom(Count), False) Then
 If TabStrip1.SelectedItem.Index <> 1 Then TabStrip1.Tabs(1).Selected =
True
 Call MsgBox("Invalid numeric value!", vbOKOnly + vbInformation, "Check
Info")
 txtVulnFrom(Count).SetFocus
 bOK = False
 GoTo Quit
 End If

 If Not CheckIfContentsOfTextboxIsNumeric(txtVulnTo(Count), False) Then
 If TabStrip1.SelectedItem.Index <> 1 Then TabStrip1.Tabs(1).Selected =
True
 Call MsgBox("Invalid numeric value!", vbOKOnly + vbInformation, "Check
Info")
 txtVulnTo(Count).SetFocus
 bOK = False
 GoTo Quit
 End If
 End If
 Next Count

 'Check Membership function
 If Not CheckIfContentsOfTextboxIsNumeric(txtDevider, False) Then
 Call MsgBox("Invalid numeric value!", vbOKOnly + vbInformation, "Check Info")
 txtDevider.SetFocus
 bOK = False
 GoTo Quit
 End If

 If Not CheckIfContentsOfTextboxIsNumeric(txtTo, False) Then
 Call MsgBox("Invalid numeric value!", vbOKOnly + vbInformation, "Check Info")
 txtTo.SetFocus
 bOK = False
 GoTo Quit
 End If

 Categories(gnCurCat).Membership_Op1 = cbMFOps(0).ListIndex
 Categories(gnCurCat).Membership_Devider = CLng(txtDevider.Text)
 Categories(gnCurCat).Membership_Op2 = cbMFOps(1).ListIndex
 Categories(gnCurCat).Membership_Op3 = cbMFOps(2).ListIndex
 Categories(gnCurCat).Membership_To = CLng(txtTo.Text)
 Categories(gnCurCat).Membership_Op4 = cbMFOps(3).ListIndex

 Case 2
 End Select

Quit:
 CheckInfo = bOK

End Function

Private Function CheckIfContentsOfTextboxIsNumeric(CheckTextbox As TextBox, Optional
bRightCharCanBePercentage As Boolean = True) As Boolean

 Dim bOK As Boolean
 Dim sTemp As String

 bOK = True
 sTemp = CheckTextbox.Text
 If sTemp = "" Then
 bOK = False
 GoTo Quit
 End If

 If Not IsNumeric(sTemp) Then
 If bRightCharCanBePercentage Then
 If Right$(sTemp, 1) = "%" Then
 sTemp = Trim(Left$(sTemp, Len(sTemp) - 1))
 If Not IsNumeric(sTemp) Then bOK = False
 Else
 bOK = False
 End If
 Else
 bOK = False
 End If
 End If

APPENDIX B

Page 230

Quit:
 CheckIfContentsOfTextboxIsNumeric = bOK

End Function

Private Sub TabStrip1_Click()

 Dim Count As Long, lNum As Long

 If nTabIndex = TabStrip1.SelectedItem.Index Then Exit Sub

 lNum = Abs(nTabIndex - TabStrip1.SelectedItem.Index)
 If nTabIndex > TabStrip1.SelectedItem.Index Then
 If lNum > 1 Then
 For Count = 1 To (lNum - 1)
 Call cmdBackClick(False)
 Next Count
 Call cmdBackClick
 Else
 Call cmdBackClick
 End If
 Else
 If lNum > 1 Then
 For Count = 1 To (lNum - 1)
 Call cmdAcceptClick(False)
 Next Count
 Call cmdAcceptClick
 Else
 Call cmdAcceptClick
 End If
 End If

 nTabIndex = TabStrip1.SelectedItem.Index
End Sub

Private Function TranslateAdjectives(CategoryIndex As Long, GroupInd ex As Long,
Optional NewFrom As Double = 0, Optional NewTo As Double = 0) As String

 On Error Resume Next

 Dim Count As Long, lTemp As Long, lNum As Long
 Dim sTemp As String, sVal As String, sChar As String
 Dim nIndex As Integer

 sTemp = ""
 nIndex = 0
 If Categories(CategoryIndex).Groups(GroupIndex).Adjective = "" Then
 NewFrom = Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityFrom
 NewTo = Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTo
 sTemp = Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityFrom & " to " &
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTo
 Else
 lNum = UBound(gsAdjectives)
 For Count = 1 To lNum
 If gsAdjectives(Count) = Categories(CategoryIndex).Groups(GroupIndex).Adjective
Then
 nIndex = Count
 Exit For
 End If
 Next Count

 'From value
 sVal = Categories(CategoryIndex).Adjectives(nIndex).LowerValue
 If Right$(sVal, 1) = "%" Then
 sVal = Left(sVal, Len(sVal) - 1)
 lTemp = CLng(sVal)

 lTemp = (Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityFrom * lTemp)
/ 100
 Else
 lTemp = CLng(sVal)
 End If

 Select Case Categories(CategoryIndex).Adjectives(nIndex).LowerOperator
 Case xPLUS: NewFrom =
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityFrom + lTemp

 SOURCE CODE OF THE VF PROTOTYPE

 Page 231

 Case xMINUS: NewFrom =
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityFrom - lTemp
 Case xMULTIPLY: NewFrom =
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityFrom * lTemp
 Case xDEVIDE: NewFrom =
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityFrom / lTemp
 Case xINFINITY: NewFrom = -1
 End Select

 If NewFrom = -1 Then
 sTemp = "INF to "
 Else
 If NewFrom <> Fix(NewFrom) Then
 sTemp = Format(NewFrom, "0.###") & " to "
 Else
 sTemp = NewFrom & " to "
 End If
 End If

 'To value
 sVal = Categories(CategoryIndex).Adjectives(nIndex).UpperValue
 If Right$(sVal, 1) = "%" Then
 sVal = Left(sVal, Len(sVal) - 1)
 lTemp = CLng(sVal)

 lTemp = (Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTo * lTemp) /
100
 Else
 lTemp = CLng(sVal)
 End If

 Select Case Categories(CategoryIndex).Adjectives(nIndex).UpperOperator
 Case xPLUS: NewTo = Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTo
+ lTemp
 Case xMINUS: NewTo =
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTo - lTemp
 Case xMULTIPLY: NewTo =
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTo * lTemp
 Case xDEVIDE: NewTo =
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTo / lTemp
 Case xINFINITY: NewTo = -1
 End Select

 If NewTo = -1 Then
 sTemp = sTemp & "INF"
 Else
 If NewTo <> Fix(NewTo) Then
 sTemp = sTemp & Format(NewTo, "0.###")
 Else
 sTemp = sTemp & NewTo
 End If
 End If

 End If
 TranslateAdjectives = sTemp

End Function

Private Function TranslateSpecificAdjective(LowerOperator As Long, LowerValue As
String, UpperOperator As Long, UpperValue As String, lValueToTranslate As Double,
uValueToTranslate As Double) As String

 On Error Resume Next

 Dim Count As Long, lTemp As Double, lNum As Long
 Dim sTemp As String, sVal As String, sChar As String

 sTemp = ""

 'From value
 sVal = LowerValue
 If Right$(sVal, 1) = "%" Then
 sVal = Left(sVal, Len(sVal) - 1)
 lTemp = CLng(sVal)

 lTemp = (lValueToTranslate * lTemp) / 100
 Else

APPENDIX B

Page 232

 lTemp = CLng(sVal)
 End If

 Select Case LowerOperator
 Case xPLUS: lValueToTranslate = lValueToTranslate + lTemp
 Case xMINUS: lValueToTranslate = lValueToTranslate - lTemp
 Case xMULTIPLY: lValueToTranslate = lValueToTranslate * lTemp
 Case xDEVIDE: lValueToTranslate = lValueToTranslate / lTemp
 'Case xINFINITY: NewFrom = -1
 End Select

 'To value
 sVal = UpperValue
 If Right$(sVal, 1) = "%" Then
 sVal = Left(sVal, Len(sVal) - 1)
 lTemp = CLng(sVal)

 lTemp = (uValueToTranslate * lTemp) / 100
 Else
 lTemp = CLng(sVal)
 End If

 Select Case UpperOperator
 Case xPLUS: uValueToTranslate = uValueToTranslate + lTemp
 Case xMINUS: uValueToTranslate = uValueToTranslate - lTemp
 Case xMULTIPLY: uValueToTranslate = uValueToTranslate * lTemp
 Case xDEVIDE: uValueToTranslate = uValueToTranslate / lTemp
 'Case xINFINITY: NewTo = -1
 End Select

 sTemp = RangeFormatForDbl(lValueToTranslate, uValueToTranslate)
 TranslateSpecificAdjective = sTemp

End Function

Private Function ComputeCharFunction(CategoryIndex As Long, GroupIndex As Long,
Optional FromValue As Double = -1, Optional ToValue As Double = -1) As String

 Dim lRule As Long
 Dim sTemp As String

 'From value
 sTemp = ""
 lRule = GetRuleNumber(Categories(CategoryIndex),
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTranslatedFrom)
 Select Case lRule
 Case 1: FromValue = 0
 Case 2: FromValue =
(Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTranslatedFrom /
Categories(CategoryIndex).Membership_Devider)
 Case 3: FromValue = 1
 End Select

 'To value
 lRule = GetRuleNumber(Categories(CategoryIndex),
Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTranslatedTo)
 Select Case lRule
 Case 1: ToValue = 0
 Case 2: ToValue =
(Categories(CategoryIndex).Groups(GroupIndex).VulnerabilityTranslatedTo /
Categories(CategoryIndex).Membership_Devider)
 Case 3: ToValue = 1
 End Select

 sTemp = RangeFormatForDbl(FromValue, ToValue)
 ComputeCharFunction = sTemp

End Function

Private Function GetRuleNumber(Membership As CategoryType, dblFromToValue As Double)
As Long

 Dim lRule As Long, lTemp As Long

 lRule = -1
 Select Case Membership.Membership_Op1
 Case xEQUALS: If dblFromToValue = 0 Then lRule = 1

 SOURCE CODE OF THE VF PROTOTYPE

 Page 233

 Case xLESS_THAN: If dblFromToValue < 0 Then lRule = 1
 Case xGREATER_THAN: If dblFromToValue > 0 Then lRule = 1
 Case xLESS_THAN_OR_EQUAL: If dblFromToValue <= 0 Then lRule = 1
 Case xGREATER_THAN_OR_EQUAL: If dblFromToValue >= 0 Then lRule = 1
 End Select

 If lRule = -1 Then
 Select Case Membership.Membership_Op2
 Case xEQUALS
 If (dblFromToValue = 0) Then
 lTemp = Membership.Membership_To
 Select Case Membership.Membership_Op3
 Case xEQUALS: If (dblFromToValue = lTemp) Then lRule = 2
 Case xLESS_THAN: If (dblFromToValue < lTemp) Then lRule = 2
 Case xGREATER_THAN: If (dblFromToValue > lTemp) Then lRule = 2
 Case xLESS_THAN_OR_EQUAL: If (dblFromToValue <= lTemp) Then lRule = 2
 Case xGREATER_THAN_OR_EQUAL: If (dblFromToValue >= lTemp) Then lRule = 2
 End Select
 End If

 Case xLESS_THAN
 If (0 < dblFromToValue) Then
 lTemp = Membership.Membership_To
 Select Case Membership.Membership_Op3
 Case xEQUALS: If (dblFromToValue = lTemp) Then lRule = 2
 Case xLESS_THAN: If (dblFromToValue < lTemp) Then lRule = 2
 Case xGREATER_THAN: If (dblFromToValue > lTemp) Then lRule = 2
 Case xLESS_THAN_OR_EQUAL: If (dblFromToValue <= lTemp) Then lRule = 2
 Case xGREATER_THAN_OR_EQUAL: If (dblFromToValue >= lTemp) Then lRule = 2
 End Select
 End If

 Case xGREATER_THAN
 If (0 > dblFromToValue) Then
 lTemp = Membership.Membership_To
 Select Case Membership.Membership_Op3
 Case xEQUALS: If (dblFromToValue = lTemp) Then lRule = 2
 Case xLESS_THAN: If (dblFromToValue < lTemp) Then lRule = 2
 Case xGREATER_THAN: If (dblFromToValue > lTemp) Then lRule = 2
 Case xLESS_THAN_OR_EQUAL: If (dblFromToValue <= lTemp) Then lRule = 2
 Case xGREATER_THAN_OR_EQUAL: If (dblFromToValue >= lTemp) Then lRule = 2
 End Select
 End If

 Case xLESS_THAN_OR_EQUAL
 If (0 <= dblFromToValue) Then
 lTemp = Membership.Membership_To
 Select Case Membership.Membership_Op3
 Case xEQUALS: If (dblFromToValue = lTemp) Then lRule = 2
 Case xLESS_THAN: If (dblFromToValue < lTemp) Then lRule = 2
 Case xGREATER_THAN: If (dblFromToValue > lTemp) Then lRule = 2
 Case xLESS_THAN_OR_EQUAL: If (dblFromToValue <= lTemp) Then lRule = 2
 Case xGREATER_THAN_OR_EQUAL: If (dblFromToValue >= lTemp) Then lRule = 2
 End Select
 End If

 Case xGREATER_THAN_OR_EQUAL
 If (0 >= dblFromToValue) Then
 lTemp = Membership.Membership_To
 Select Case Membership.Membership_Op3
 Case xEQUALS: If (dblFromToValue = lTemp) Then lRule = 2
 Case xLESS_THAN: If (dblFromToValue < lTemp) Then lRule = 2
 Case xGREATER_THAN: If (dblFromToValue > lTemp) Then lRule = 2
 Case xLESS_THAN_OR_EQUAL: If (dblFromToValue <= lTemp) Then lRule = 2
 Case xGREATER_THAN_OR_EQUAL: If (dblFromToValue >= lTemp) Then lRule = 2
 End Select
 End If

 End Select
 Else
 If lRule = -1 Then lRule = 3
 End If

 GetRuleNumber = lRule

End Function

APPENDIX B

Page 234

Private Sub DoTranslationTab()

 On Error GoTo ErrorHandler

 Dim Count As Long, lNum As Long, lIndex As Long
 Dim lTempScanFrom() As Long, lTempScanTo() As Long
 Dim dblTopSum As Double, dblBottomSumR As Double, dblMaxL As Double, dblMaxU As
Double
 Dim sTemp As String, sConcl As String, sMAX As String
 Dim s1 As String, s2 As String

 lNum = 0
 For Count = 1 To Categories(gnCurCat).NumberOfGroups
 'Translate
 lblTranslGroup(Count - 1).Caption = "In " &
Categories(gnCurCat).Groups(Count).ScanFrom & " to " &
Categories(gnCurCat).Groups(Count).ScanTo & " scan(s)"
 lblTranslGroup(Count - 1).Visible = True
 lblTransVulns(Count - 1).Caption = TranslateAdjectives(CLng(gnCurCat), Count,
Categories(gnCurCat).Groups(Count).VulnerabilityTranslatedFrom,
Categories(gnCurCat).Groups(Count).VulnerabilityTranslatedTo)
 lblTransVulns(Count - 1).Visible = True

 'Char function
 lblDistrGroup(Count - 1).Caption =
RangeFormatForDbl(CDbl(Categories(gnCurCat).Groups(Count).ScanFrom),
CDbl(Categories(gnCurCat).Groups(Count).ScanTo))
 lblDistrGroup(Count - 1).Visible = True

 lblDistrVulns(Count - 1).Caption = ComputeCharFunction(CLng(gnCurCat), Count,
Categories(gnCurCat).Groups(Count).Cx_From, Categories(gnCurCat).Groups(Count).Cx_To)
 lblDistrVulns(Count - 1).Visible = True

 lblVulns(Count - 1).Caption = lblDistrVulns(Count - 1).Caption
 lblVulns(Count - 1).Visible = True
 cmdViewCalc(Count - 1).Visible = True

 lblMINGroup(Count - 1).Visible = True
 lblMINResult(Count - 1).Visible = True
 Next Count

 If Categories(gnCurCat).NumberOfGroups < 5 Then
 For Count = (Categories(gnCurCat).NumberOfGroups + 1) To 5
 lblTranslGroup(Count - 1).Visible = False
 lblTransVulns(Count - 1).Visible = False
 lblDistrGroup(Count - 1).Visible = False
 lblDistrVulns(Count - 1).Visible = False

 lblVulns(Count - 1).Visible = False
 lblMu(Count - 1).Visible = False
 cmdViewCalc(Count - 1).Visible = False

 lblMINGroup(Count - 1).Visible = False
 lblMINResult(Count - 1).Visible = False
 Next Count
 End If

 'Mu calculations
 ReDim lTempScanFrom(1 To Categories(gnCurCat).NumberOfGroups)
 ReDim lTempScanTo(1 To Categories(gnCurCat).NumberOfGroups)

 For Count = 1 To Categories(gnCurCat).NumberOfGroups
 lTempScanFrom(Count) = Categories(gnCurCat).Groups(Count).ScanFrom
 lTempScanTo(Count) = Categories(gnCurCat).Groups(Count).ScanTo
 Next Count

 sConcl = ""
 For Count = 1 To Categories(gnCurCat).NumberOfGroups

 'Calculate lower bound
 dblTopSum = CalculateSumOf(Count, Categories(gnCurCat).NumberOfGroups,
lTempScanFrom, lTempScanTo)
 dblBottomSumR = CalculateSumOf(1, Count - 1, lTempScanFrom, lTempScanTo, False)
 Categories(gnCurCat).Groups(Count).Mu_Lowerbound = dblTopSum / (dblTopSum +
dblBottomSumR)

 'Calculate upper bound

 SOURCE CODE OF THE VF PROTOTYPE

 Page 235

 dblTopSum = CalculateSumOf(Count, Categories(gnCurCat).NumberOfGroups,
lTempScanFrom, lTempScanTo, False)
 dblBottomSumR = CalculateSumOf(1, Count - 1, lTempScanFrom, lTempScanTo)
 Categories(gnCurCat).Groups(Count).Mu_Upperbound = dblTopSum / (dblTopSum +
dblBottomSumR)

 sTemp = RangeFormatForDbl(Categories(gnCurCat).Groups(Count).Mu_Lowerbound,
Categories(gnCurCat).Groups(Count).Mu_Upperbound)
 lblMu(Count - 1).Caption = sTemp

 'Display min mu and C(x)
 lblMINGroup(Count - 1).Caption = "MIN(" & lblMu(Count - 1).Caption & ", " &
lblVulns(Count - 1).Caption & ")"

 'Calculate MIN(mu,C(x))
 sTemp = MinMuGamma(Categories(gnCurCat).Groups(Count).Mu_Lowerbound,
Categories(gnCurCat).Groups(Count).Mu_Upperbound,
Categories(gnCurCat).Groups(Count).Cx_From, Categories(gnCurCat).Groups(Count).Cx_To,
Categories(gnCurCat).Groups(Count).MIN_Cx_Mu_LB,
Categories(gnCurCat).Groups(Count).MIN_Cx_Mu_UB)
 lblMINResult(Count - 1).Caption = sTemp

 'Forecast
 If sConcl = "" Then
 sConcl = sTemp
 Else
 sConcl = sConcl & ", " & sTemp
 End If

 'Calculate Maximum of (minimums of mu and C(x))
 If Count = 1 Then
 Categories(gnCurCat).MAXofMIN_Cx_Mu.Lowerbound =
Categories(gnCurCat).Groups(Count).MIN_Cx_Mu_LB
 Categories(gnCurCat).MAXofMIN_Cx_Mu.Upperbound =
Categories(gnCurCat).Groups(Count).MIN_Cx_Mu_UB
 sMAX = RangeFormatForDbl(Categories(gnCurCat).MAXofMIN_Cx_Mu.Lowerbound,
Categories(gnCurCat).MAXofMIN_Cx_Mu.Upperbound)
 Else
 sMAX = MaxMuGamma(Categories(gnCurCat).MAXofMIN_Cx_Mu.Lowerbound,
Categories(gnCurCat).MAXofMIN_Cx_Mu.Upperbound,
Categories(gnCurCat).Groups(Count).MIN_Cx_Mu_LB,
Categories(gnCurCat).Groups(Count).MIN_Cx_Mu_UB,
Categories(gnCurCat).MAXofMIN_Cx_Mu.Lowerbound,
Categories(gnCurCat).MAXofMIN_Cx_Mu.Upperbound)
 End If

 Next Count

 'Display Forecast
 lblConcl(0).Caption = "MAX(MIN(" & Chr(181) & "i, C(xi))"
 lblConcl(1).Caption = "= MAX(" & sConcl & ")"
 lblConcl(2).Caption = "= " & sMAX

 lblMore(0).Caption = "The amount of vulnerabilities found for vulnerability category
" & gnCurCat & " = '" & cbRule.Text & "' " & sMAX & " * " &
Categories(gnCurCat).Membership_Devider

 If cbRule.Text <> "" Then

 For Count = 1 To 6
 lblMore(Count).Visible = True
 Next Count

 lblMore(1).Caption = "Get rid of '" & cbRule.Text & "' part:"
 lblMore(2).Caption = "'" & cbRule.Text & "' " & sMAX

 lNum = -1
 lIndex = -1
 lNum = UBound(gsAdjectives)
 For Count = 1 To lNum
 If LCase(gsAdjectives(Count)) = LCase(cbRule.Text) Then
 lIndex = Count
 Exit For
 End If
 Next Count

 If lIndex > 0 Then

APPENDIX B

Page 236

 If Fix(Categories(gnCurCat).MAXofMIN_Cx_Mu.Lowerbound) =
Categories(gnCurCat).MAXofMIN_Cx_Mu.Lowerbound Then
 sTemp = "[" & CStr(Categories(gnCurCat).MAXofMIN_Cx_Mu.Lowerbound)
 Else
 sTemp = "[" & Format(Categories(gnCurCat).MAXofMIN_Cx_Mu.Lowerbound, "0.0##")
 End If
 Select Case Categories(gnCurCat).Adjectives(lIndex).LowerOperator
 Case xPLUS: sTemp = sTemp & " + "
 Case xMINUS: sTemp = sTemp & " - "
 Case xMULTIPLY: sTemp = sTemp & " * "
 Case xDEVIDE: sTemp = sTemp & " / "
 Case xINFINITY
 End Select
 If Fix(Categories(gnCurCat).MAXofMIN_Cx_Mu.Upperbound) =
Categories(gnCurCat).MAXofMIN_Cx_Mu.Upperbound Then
 sTemp = sTemp & Categories(gnCurCat).Adjectives(lIndex).LowerValue & ", " &
CStr(Categories(gnCurCat).MAXofMIN_Cx_Mu.Upperbound)
 Else
 sTemp = sTemp & Categories(gnCurCat).Adjectives(lIndex).LowerValue & ", " &
Format(Categories(gnCurCat).MAXofMIN_Cx_Mu.Upperbound, "0.0##")
 End If

 Select Case Categories(gnCurCat).Adjectives(lIndex).UpperOperator
 Case xPLUS: sTemp = sTemp & " + "
 Case xMINUS: sTemp = sTemp & " - "
 Case xMULTIPLY: sTemp = sTemp & " * "
 Case xDEVIDE: sTemp = sTemp & " / "
 Case xINFINITY
 End Select
 sTemp = sTemp & Categories(gnCurCat).Adjectives(lIndex).UpperValue & "]"
 lblMore(4).Caption = sTemp

 Categories(gnCurCat).Final.Lowerbound =
Categories(gnCurCat).MAXofMIN_Cx_Mu.Lowerbound '0.6
 Categories(gnCurCat).Final.Upperbound =
Categories(gnCurCat).MAXofMIN_Cx_Mu.Upperbound '0.733
 sTemp =
TranslateSpecificAdjective(Categories(gnCurCat).Adjectives(lIndex).LowerOperator,
Categories(gnCurCat).Adjectives(lIndex).LowerValue,
Categories(gnCurCat).Adjectives(lIndex).UpperOperator,
Categories(gnCurCat).Adjectives(lIndex).UpperValue,
Categories(gnCurCat).Final.Lowerbound, Categories(gnCurCat).Final.Upperbound)
 '1 10% 0 10%
 lblMore(6).Caption = sTemp

 lblMore(7).Caption = sTemp & " * " & Categories(gnCurCat).Membership_Devider

 Categories(gnCurCat).Final_AmtVulns.Lowerbound =
Round(Categories(gnCurCat).Final.Lowerbound * Categories(gnCurCat).Membership_Devider)
 Categories(gnCurCat).Final_AmtVulns.Upperbound =
Round(Categories(gnCurCat).Final.Upperbound * Categories(gnCurCat).Membership_Devider)
 lblFinal.Caption =
RangeFormatForDbl(CDbl(Categories(gnCurCat).Final_AmtVulns.Lowerbound),
CDbl(Categories(gnCurCat).Final_AmtVulns.Upperbound))

 sTemp = "The expected amount of vulnerabilities likely to be found in the future
for vulnerability category "
 sTemp = sTemp & gnCurCat & ", is between " &
Categories(gnCurCat).Final_AmtVulns.Lowerbound & " and "
 sTemp = sTemp & Categories(gnCurCat).Final_AmtVulns.Upperbound & "."
 lblMore(9).Caption = sTemp
 End If
 Else
 For Count = 1 To 6
 lblMore(Count).Visible = False
 Next Count

 lblMore(7).Caption = sMAX & " * " & Categories(gnCurCat).Membership_Devider
 Categories(gnCurCat).Final_AmtVulns.Lowerbound =
Round(Categories(gnCurCat).Final.Lowerbound * Categories(gnCurCat).Membership_Devider)
 Categories(gnCurCat).Final_AmtVulns.Upperbound =
Round(Categories(gnCurCat).Final.Upperbound * Categories(gnCurCat).Membership_Devider)
 lblFinal.Caption =
RangeFormatForDbl(CDbl(Categories(gnCurCat).Final_AmtVulns.Lowerbound),
CDbl(Categories(gnCurCat).Final_AmtVulns.Upperbound))
 End If

 SOURCE CODE OF THE VF PROTOTYPE

 Page 237

Quit:
 Exit Sub

ErrorHandler:
 If lNum = -1 Then
 lNum = 0
 Resume Next
 End If
 Resume Quit
 Resume

End Sub

'This function will put x an y into the [x, y] range format
Function RangeFormatForDbl(LeftOperand As Double, RightOperand As Double) As String
 If Fix(LeftOperand) = LeftOperand Then
 If Fix(RightOperand) = RightOperand Then
 RangeFormatForDbl = "[" & CStr(LeftOperand) & ", " & CStr(RightOperand) & "]"
 Else
 RangeFormatForDbl = "[" & CStr(LeftOperand) & ", " & Format(RightOperand,
"0.0##") & "]"
 End If
 Else
 If Fix(LeftOperand) = LeftOperand Then
 RangeFormatForDbl = "[" & Format(LeftOperand, "0.0##") & ", " &
CStr(RightOperand) & "]"
 Else
 RangeFormatForDbl = "[" & Format(LeftOperand, "0.0##") & ", " &
Format(RightOperand, "0.0##") & "]"
 End If
 End If
End Function

'This function calculates the minimum range between each Mu and Gamma range
Private Function MinMuGamma(Mu1 As Double, Mu2 As Double, Gamma1 As Double, Gamma2 As
Double, Optional MinMuGamma1 As Double, Optional MinMuGamma2 As Double) As String

 Dim RangesSubsetIndicator As Integer

 If (((Gamma1 < Mu1) And (Gamma2 < Mu1)) Or ((Mu1 < Gamma1) And (Mu2 < Gamma1))) Then
 'Mu and Gamma ranges don't intersect
 'Apply Theorem 2
 If Gamma2 < Mu1 Then
 MinMuGamma1 = Gamma1
 MinMuGamma2 = Gamma2
 MinMuGamma = RangeFormatForDbl(Gamma1, Gamma2)
 Else
 'Mu2 < Gamma1
 MinMuGamma1 = Mu1
 MinMuGamma2 = Mu2
 MinMuGamma = RangeFormatForDbl(Mu1, Mu2)
 End If
 Else
 'Mu and Gamma ranges intersect
 RangesSubsetIndicator = RangesSubset(Mu1, Mu2, Gamma1, Gamma2)
 Select Case RangesSubsetIndicator
 Case 0 'Neither range is a subset of the other
 'Apply Theorem 4
 If Gamma2 < Mu2 Then
 MinMuGamma1 = Gamma1
 MinMuGamma2 = Gamma2
 MinMuGamma = RangeFormatForDbl(Gamma1, Gamma2)
 Else
 'Mu2 < Gamma2
 MinMuGamma1 = Mu1
 MinMuGamma2 = Mu2
 MinMuGamma = RangeFormatForDbl(Mu1, Mu2)
 End If

 Case 1 'Ranges of Gamma is Subset of Mu
 MinMuGamma1 = Mu1
 MinMuGamma2 = Gamma2
 MinMuGamma = RangeFormatForDbl(Mu1, Gamma2)

 Case 2 'Ranges of Mu is Subset of Gamma
 MinMuGamma1 = Gamma1
 MinMuGamma2 = Mu2

APPENDIX B

Page 238

 MinMuGamma = RangeFormatForDbl(Gamma1, Mu2)

 End Select
 End If
End Function

'This function calculates the maximum range between each Mu and Gamma range
Private Function MaxMuGamma(Mu1 As Double, Mu2 As Double, Gamma1 As Double, Gamma2 As
Double, Optional MaxMuGamma1 As Double, Optional MaxMuGamma2 As Double) As String

 Dim RangesSubsetIndicator As Integer

 If (((Gamma1 < Mu1) And (Gamma2 < Mu1)) Or ((Mu1 < Gamma1) And (Mu2 < Gam ma1))) Then
 'Mu and Gamma ranges don't intersect
 'Apply Theorem 1
 If Gamma1 > Mu2 Then
 MaxMuGamma1 = Gamma1
 MaxMuGamma2 = Gamma2
 MaxMuGamma = RangeFormatForDbl(Gamma1, Gamma2)
 Else
 If Mu1 > Gamma2 Then
 MaxMuGamma1 = Mu1
 MaxMuGamma2 = Mu2
 MaxMuGamma = RangeFormatForDbl(Mu1, Mu2)
 End If
 End If
 Else
 'Mu and Gamma ranges intersect
 RangesSubsetIndicator = RangesSubset(Mu1, Mu2, Gamma1, Gamma2)
 Select Case RangesSubsetIndicator
 Case 0 'Neither range is a subset of the other
 'Apply Theorem 3
 If Gamma2 > Mu2 Then
 MaxMuGamma1 = Gamma1
 MaxMuGamma2 = Gamma2
 MaxMuGamma = RangeFormatForDbl(Gamma1, Gamma2)
 Else
 'Mu2 > Gamma2
 MaxMuGamma1 = Mu1
 MaxMuGamma2 = Mu2
 MaxMuGamma = RangeFormatForDbl(Mu1, Mu2)
 End If

 Case 1 'Ranges of Gamma is Subset of Mu
 MaxMuGamma1 = Gamma1
 MaxMuGamma2 = Mu2
 MaxMuGamma = RangeFormatForDbl(Gamma1, Mu2)

 Case 2 'Ranges of Mu is Subset of Gamma
 MaxMuGamma1 = Mu1
 MaxMuGamma2 = Gamma2
 MaxMuGamma = RangeFormatForDbl(Mu1, Gamma2)

 End Select
 End If
End Function

'This function determines if ranges are subsets
Function RangesSubset(Mu1 As Double, Mu2 As Double, Gamma1 As Double, Gamma2 As
Double) As Integer
 RangesSubset = 0 'Neither range is a subset of the other
 If (Gamma1 >= Mu1) And (Gamma1 <= Mu2) And (Gamma2 >= Mu1) And (Gamma2 <= Mu2) Then
 'Ranges of Gamma is Subset of Mu
 RangesSubset = 1
 Else
 If (Mu1 >= Gamma1) And (Mu1 <= Gamma2) And (Mu2 >= Gamma1) And (Mu2 <= Gamma2)
Then
 'Ranges of Mu is Subset of Gamma
 RangesSubset = 2
 End If
 End If
End Function

Private Function CalculateSumOf(j As Long, n As Long, ScanValuesFrom() As Long,
ScanValuesTo() As Long, Optional bMIN As Boolean = True, Optional sSumString As String
= "") As Double

 SOURCE CODE OF THE VF PROTOTYPE

 Page 239

 Dim Count As Long, lTemp As Long
 Dim dblSum As Double

 dblSum = 0
 sSumString = ""
 For Count = j To n
 If bMIN Then
 If ScanValuesFrom(Count) <= ScanValuesTo(Count) Then
 lTemp = ScanValuesFrom(Count)
 Else
 lTemp = ScanValuesTo(Count)
 End If
 Else
 If ScanValuesFrom(Count) >= ScanValuesTo(Count) Then
 lTemp = ScanValuesFrom(Count)
 Else
 lTemp = ScanValuesTo(Count)
 End If
 End If

 If sSumString = "" Then
 sSumString = CStr(lTemp)
 Else
 sSumString = sSumString & " + " & CStr(lTemp)
 End If

 dblSum = dblSum + lTemp
 Next Count

 If sSumString = "" Then sSumString = "0"
 CalculateSumOf = dblSum

End Function

Private Sub txtTo_Change()
 Label14.Caption = txtTo.Text
End Sub

B.1.9 The “frmSetupNames” form

The design of this form is shown in figure B.10. This form is used to specify where

the vulnerability database is accessed for the specific VS product used. In addition,

the eaxt database tables and fields to be used are specified here .

Figure B.10: The “frmSetupNames” form

APPENDIX B

Page 240

The source code for this form follows below.

Option Explicit

Private Sub cbSQLTables_Click()
 Call LoadTableFields(True)
End Sub

Private Sub cbTables_Click()
 If chkSQL.Value = vbUnchecked Then Call LoadTableFields(True)
End Sub

Private Sub chkSQL_Click()
 frmWhat(0).Visible = Not (chkSQL.Value = vbChecked)
 frmWhat(1).Visible = (chkSQL.Value = vbChecked)
 cbFields.Clear
 cbFields.Visible = False
 Label2.Visible = False
End Sub

Private Sub cmdAccept_Click()

 Dim bOK As Boolean

 bOK = CheckInfo
 If bOK Then

 If gbFmOptionsLoaded Then
 If fmOptions.Visible Then
 If chkSQL.Value = vbChecked Then
 fmOptions.txtScanTableName.Text = txtSQL.Text
 Else
 fmOptions.txtScanTableName.Text = cbTables.Text
 End If
 fmOptions.txtScanFieldName.Text = cbFields.Text
 End If
 End If

 ModalResult = True
 Unload Me

 End If

End Sub

Private Sub cmdCancel_Click()
 ModalResult = False
 Unload Me
End Sub

Private Sub cmdHelp_Click()
 txtSQL.Text = "<REPLACE(<DB_FIELDVALUE(tablename.fieldname)>," & Chr(34) & "{" &
Chr(34) & "|" & Chr(34) & Chr(34) & "," & Chr(34) & "}" & Chr(34) & "|" & Chr(34) &
Chr(34) & "," & Chr(34) & "-" & Chr(34) & "|" & Chr(34) & "_" & Chr(34) &
")>_05050000_2"
End Sub

Private Sub cmdLoadTables_Click()

 On Error Resume Next

 Dim TempCat As New ADOX.Catalog
 Dim TempConn As New ADODB.Connection
 Dim Count As Long

 Screen.MousePointer = vbHourglass

 'Open connection
 TempConn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &
txtSWDir.Text & ";Persist Security Info=False"
 TempConn.Open

 'Open catalog
 TempCat.ActiveConnection = TempConn

 SOURCE CODE OF THE VF PROTOTYPE

 Page 241

 cbTables.Clear
 For Count = 0 To (TempCat.Tables.Count - 1)
 If TempCat.Tables(Count).Type = "TABLE" Then
 cbTables.AddItem TempCat.Tables(Count).Name
 End If
 Next Count
 If cbTables.ListCount > 0 Then
 cbTables.ListIndex = 0
 Call LoadTableFields
 End If

 Screen.MousePointer = vbNormal

End Sub

Private Sub cmdSelectDB_Click()

 On Error GoTo ErrorHandler

 Dim sDef As String

 cmnDlgSWDB.CancelError = True
 cmnDlgSWDB.DialogTitle = "Select Database"

 sDef = txtSWDir.Text
 If (sDef = "") Or (Len(sDef) < 2) Then sDef = App.Path

 cmnDlgSWDB.InitDir = sDef
 cmnDlgSWDB.ShowOpen

 If cmnDlgSWDB.FileName <> "" Then
 txtSWDir.Text = cmnDlgSWDB.FileName
 End If

Quit:
 Exit Sub

ErrorHandler:
 Resume Quit

End Sub

Private Sub cmdSpecial_Click()

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset
 Dim Count As Long, Place1 As Long, Place2 As Long
 Dim SQL As String, sTemp As String, sTable As String, sField As String
 Dim sReplaceString1 As String, sReplaceString2 As String
 Dim sReplaceWhat As String, sReplaceWth As String
 Dim lLine As Long

 If txtSQL.Text = "" Then Exit Sub

 If (InStr(1, LCase(txtSQL.Text), "tablename") > 0) Or (InStr(1, LCase(txtSQL.Text),
"fieldname") > 0) Then
 Call MsgBox("You have to replace 'tablename' with a valid table name and
'fieldname' with a valid field name from the table!", vbOKOnly + vbInformation)
 If txtSQL.Visible Then txtSQL.SetFocus
 Exit Sub
 End If

 Screen.MousePointer = vbHourglass

 sTemp = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & txtSWDir.Text & ";Persist
Security Info=False"

 sTemp = GetTableNameFromReplaceString(txtSQL.Text, sTemp)

 cbSQLTables.Clear
 If sTemp <> "" Then
 cbSQLTables.AddItem sTemp
 cbSQLTables.ListIndex = 0
 If sTemp <> "" Then
 cmdSpecialFields.Enabled = True
 cbSQLTables.Enabled = True

APPENDIX B

Page 242

 End If
 End If

Quit:
 Screen.MousePointer = vbNormal
 Exit Sub

ErrorHandler:
 If lLine = 1 Then
 Call MsgBox("The specified table and/or field does not exist in the database",
vbOKOnly + vbInformation)
 Resume Quit
 End If
 Resume Quit

End Sub

Private Sub cmdSpecialFields_Click()
 Call LoadTableFields(True)
End Sub

Private Sub Form_Load()

 'Center form on screen
 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 2

 Call SetupForm

 gbFmSetupNames = True

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
 If UnloadMode = vbManual Then
 ModalResult = False
 End If
End Sub

Private Sub Form_Unload(Cancel As Integer)
 gbFmSetupNames = False
End Sub

Private Sub txtSQL_Change()
 cmdSpecialFields.Enabled = False
 cbSQLTables.Enabled = False
End Sub

Private Sub LoadTableFields(Optional bDoMousePointer As Boolean = False)

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset
 Dim Count As Long
 Dim myCombo As ComboBox

 If chkSQL.Value = vbChecked Then
 Set myCombo = cbSQLTables
 Else
 Set myCombo = cbTables
 End If

 If myCombo.Text = "" Then Exit Sub

 If bDoMousePointer Then Screen.MousePointer = vbHourglass

 'Open connection
 TempConn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &
txtSWDir.Text & ";Persist Security Info=False"
 TempConn.Open

 'Open table
 TempRS.CursorLocation = adUseServer
 TempRS.CursorType = adOpenStatic
 TempRS.LockType = adLockOptimistic
 TempRS.Open myCombo.Text, TempConn, adCmdTable

 cbFields.Clear

 SOURCE CODE OF THE VF PROTOTYPE

 Page 243

 For Count = 0 To (TempRS.Fields.Count - 1)
 cbFields.AddItem TempRS.Fields(Count).Name
 Next Count
 If cbFields.ListCount > 0 Then
 cbFields.ListIndex = 0
 Label2.Visible = True
 cbFields.Visible = True
 End If

Quit:
 If bDoMousePointer Then Screen.MousePointer = vbNormal
 Exit Sub

ErrorHandler:
 Resume Quit

End Sub

Public Function GetTableNameFromReplaceString(sString As String,
sConnectionStringToDatabase As String) As String

 On Error GoTo ErrorHandler

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset
 Dim Count As Long, Place1 As Long, Place2 As Long
 Dim SQL As String, sTemp As String, sTable As String, sField As String
 Dim sReplaceString1 As String, sReplaceString2 As String
 Dim sReplaceWhat As String, sReplaceWth As String
 Dim lLine As Long

 If sString = "" Then Exit Function

 'Open connection
 TempConn.ConnectionString = sConnectionStringToDatabase
 TempConn.Open

 'Open table
 TempRS.CursorLocation = adUseServer
 TempRS.CursorType = adOpenStatic
 TempRS.LockType = adLockOptimistic

 sTemp = sString
 If InStr(1, LCase(sTemp), "<replace(") Then
 '<REPLACE(<DB_FIELDVALUE(dbo_Events.ProductID)>,"{"|"","}"|"","-"|"_")>_05050000_2
 Place1 = InStr(1, sTemp, "<")
 Place2 = InStrRev(sTemp, ">")

 If (Place1 < 1) Or (Place1 < 1) Then
 SQL = sTemp
 GoTo Quit
 End If

 sReplaceString1 = Mid$(sTemp, Place1 + 1, Place2 - (Place1 + 1))
 sReplaceString1 = Replace(sReplaceString1, "REPLACE(", "") 'Remove REPLACE(
 sReplaceString1 = Left$(sReplaceString1, Len(sReplaceString1) - 1) 'Remove rH)

 Place1 = InStr(1, sReplaceString1, ",")
 If Place1 < 1 Then Exit Function

 sReplaceString2 = Left$(sReplaceString1, Place1 - 1)
 sReplaceString1 = Mid$(sReplaceString1, Place1 + 1)

 'Get table (and field?)
 Place1 = InStr(1, sReplaceString2, "<DB_FIELDVALUE(")
 If Place1 > 0 Then
 'Get value from the field in database
 sReplaceString2 = Replace(sReplaceString2, "<DB_FIELDVALUE(", "")
 sReplaceString2 = Left$(sReplaceString2, Len(sReplaceString2) - 2) 'Remove)>

 Place2 = InStr(1, sReplaceString2, ".") 'eg table.field
 If Place2 > 0 Then
 sTable = Left$(sReplaceString2, Place2 - 1)
 sField = Mid$(sReplaceString2, Place2 + 1)
 Else
 Screen.MousePointer = vbNormal

APPENDIX B

Page 244

 Call MsgBox("You have to specify a table and field to retrieve the value
from!", vbOKOnly + vbInformation)
 Exit Function
 End If

 'Open recordset to get field
 lLine = 1
 TempRS.Open "SELECT TOP 1 " & sField & " FROM " & sTable, TempConn, adCmdTable
 lLine = 2
 If Not TempRS.EOF Then
 sTable = "" & TempRS.Fields(sField).Value
 End If

 TempRS.Close
 TempConn.Close
 Else
 sTable = sReplaceString2
 End If

 If (sReplaceString1 = "") Or (sTable = "") Then Exit Function
 Do While sReplaceString1 <> ""
 Place1 = InStr(1, sReplaceString1, ",")
 If Place1 > 0 Then
 sReplaceString2 = Left$(sReplaceString1, Place1 - 1)
 sReplaceString1 = Mid$(sReplaceString1, Place1 + 1)
 Else
 sReplaceString2 = sReplaceString1
 sReplaceString1 = ""
 End If

 Place2 = InStr(1, sReplaceString2, "|")
 If Place2 > 0 Then
 sReplaceWhat = Left$(sReplaceString2, Place2 - 1)
 sReplaceWhat = Replace(sReplaceWhat, Chr(34), "")
 sReplaceWth = Mid$(sReplaceString2, Place2 + 1)
 sReplaceWth = Replace(sReplaceWth, Chr(34), "")

 sTable = Replace(sTable, sReplaceWhat, sReplaceWth)
 End If
 Loop

 Else
 SQL = sTemp
 End If

 'Replace new table in original string
 Place1 = InStr(1, LCase(sTemp), "<replace(")
 Place2 = InStrRev(LCase(sTemp), ">")
 If (Place1 > 0) And (Place2 > 0) Then
 sReplaceWhat = Mid$(sTemp, Place1, Place2 - Place1 + 1)
 sTemp = Replace(sTemp, sReplaceWhat, sTable)
 End If

Quit:
 GetTableNameFromReplaceString = sTemp
 Exit Function

ErrorHandler:
 If lLine = 1 Then
 Call MsgBox("The specified table and/or field does not exist in the database",
vbOKOnly + vbInformation)
 Resume Quit
 End If
 Resume Quit

End Function

Private Sub SetupForm()

 Dim nIndex As Integer
 Dim Count As Long

 txtSWDir.Text = SWPackageCurrent.ScanningDB.SampleDB.DBPathName

 If txtSWDir.Text <> "" Then
 chkSQL.Value = SWPackageCurrent.ScanningDB.SampleDB.CreatedFrom

 SOURCE CODE OF THE VF PROTOTYPE

 Page 245

 If chkSQL.Value = vbChecked Then
 txtSQL.Text = SWPackageCurrent.ScanningDB.TableName

 'load tables
 Call cmdSpecial_Click

 'Set up table
 nIndex = -1
 For Count = 0 To (cbSQLTables.ListCount - 1)
 If SWPackageCurrent.ScanningDB.SampleDB.SQLResultTableName =
cbSQLTables.List(Count) Then
 nIndex = Count
 Exit For
 End If
 Next Count
 cbSQLTables.ListIndex = nIndex

 'Load fields
 Call cmdSpecialFields_Click
 Else
 'Load tables
 Call cmdLoadTables_Click

 'Set up table
 nIndex = -1
 For Count = 0 To (cbTables.ListCount - 1)
 If SWPackageCurrent.ScanningDB.TableName = cbTables.List(Count) Then
 nIndex = Count
 Exit For
 End If
 Next Count
 cbTables.ListIndex = nIndex

 'Load fields
 Call LoadTableFields

 End If

 'Set up field
 nIndex = -1
 For Count = 0 To (cbFields.ListCount - 1)
 If SWPackageCurrent.ScanningDB.FieldName = cbFields.List(Count) Then
 nIndex = Count
 Exit For
 End If
 Next Count
 cbFields.ListIndex = nIndex

 Else
 chkSQL.Value = vbUnchecked
 frmWhat(1).Visible = False
 frmWhat(0).Visible = True
 cbTables.Clear
 Label2.Visible = False
 cbFields.Visible = False
 End If

End Sub

Private Function CheckInfo() As Boolean

 Dim bOK As Boolean

 bOK = True

 'Check db path
 If (txtSWDir.Text = "") Then
 bOK = False
 Call MsgBox("Please specify a valid database!", vbOKOnly + vbInformation)
 txtSWDir.SetFocus
 GoTo Quit
 End If

 If chkSQL.Value = vbChecked Then
 'Check SQL
 If txtSQL.Text = "" Then
 bOK = False

APPENDIX B

Page 246

 Call MsgBox("Please specify a valid SQL string to return a table!", vbOKOnly +
vbInformation)
 txtSQL.SetFocus
 GoTo Quit
 End If

 'Check tables
 If (cbSQLTables.Text = "") Then
 bOK = False
 Call MsgBox("Please specify a valid table!", vbOKOnly + vbInformation)
 cbSQLTables.SetFocus
 GoTo Quit
 End If
 Else
 'Check tables
 If (cbTables.Text = "") Then
 bOK = False
 Call MsgBox("Please specify a valid table from the database!", vbOKOnly +
vbInformation)
 cbTables.SetFocus
 GoTo Quit
 End If
 End If

 'Check Field
 If (cbFields.Text = "") Then
 bOK = False
 Call MsgBox("Please specify a valid field from the table!", vbOKOnly +
vbInformation)
 cbFields.SetFocus
 GoTo Quit
 End If

 'Set up info
 With SWPackageCurrent.ScanningDB
 .SampleDB.DBPathName = txtSWDir.Text

 .SampleDB.CreatedFrom = CLng(chkSQL.Value)
 If chkSQL.Value = vbChecked Then
 .TableName = txtSQL.Text
 .SampleDB.SQLResultTableName = cbSQLTables.Text
 Else
 .TableName = cbTables.Text
 End If
 .FieldName = cbFields.Text
 End With

Quit:
 CheckInfo = bOK

End Function

B.1.10 The “frmSWSetup” form

The design of this form is shown in figure B.11. This form is used to specifiy

software-specific setup settings for the specific VS product used . This is an important

form since the mapping of vulnerabilities onto the harmonised vulnerability categories

is done for the VS product.

 SOURCE CODE OF THE VF PROTOTYPE

 Page 247

Figure B.11: The “frmSWSetup” form

The source code for this form follows below.

Option Explicit
Dim isActive As Boolean
Dim lScrollingValue As Long
Dim lButton As Long

Private Sub cbTables_Click()
 Call LoadTableFields
End Sub

Private Sub cmdAccept_Click()

 Dim bOK As Boolean

 bOK = CheckInfo
 If bOK Then
 If (LCase(fmOptions.cbVulnSWList.Text) = "<none>") Then
fmOptions.cbVulnSWList.Clear
 fmOptions.cbVulnSWList.AddItem txtName.Text
 fmOptions.cbVulnSWList.ItemData(fmOptions.cbVulnSWList.NewIndex) =
UBound(SWPackageInfo)

 If fmOptions.cbVulnSWList.ListCount > 0 Then fmOptions.cbVulnSWList.ListIndex = 0

 If SWPackageCurrent.Number = 0 Then

APPENDIX B

Page 248

 SWPackageCurrent.Number = GetMaxID("SWPackage", "Package_ID") + 1
 End If
 Call AddSWPackageToDB(SWPackageCurrent)

 ModalResult = True
 Unload Me
 End If

End Sub

Private Sub AddSWPackageToDB(SWPackage As SWPackageInfoType)

 On Error Resume Next

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset
 Dim TempRSSeq As New ADODB.Recordset
 Dim Count As Long, CountSeq As Long
 Dim sTemp As String
 Dim sSplit() As String

 Screen.MousePointer = vbHourglass

 'Open connection
 TempConn.ConnectionString = gsConnectionStringToMainDB
 TempConn.Open

 'Open recordset
 Call OpenDBTable(TempConn, TempRS, "SELECT * FROM SWPackage WHERE Package_ID=" &
SWPackage.Number)
 If TempRS.EOF Then
 TempRS.AddNew
 End If
 TempRS!Package_ID = SWPackage.Number
 TempRS!Package_Name = "" & SWPackage.Name
 TempRS!Vuln_DB_PathName = "" & SWPackage.VulnDB.DBPathName
 TempRS!Vuln_DB_TableName = "" & SWPackage.VulnDB.TableName
 TempRS!Vuln_DB_FieldName_ID = "" & SWPackage.VulnDB.FieldName_ID
 TempRS!Vuln_DB_FieldName_Description = "" & SWPackage.VulnDB.FieldName_Description
 TempRS!Scan_DB_TableName = "" & SWPackage.ScanningDB.TableName
 TempRS!Scan_DB_FieldName = "" & SWPackage.ScanningDB.FieldName
 TempRS.Update

 'Close recordset
 TempRS.Close

 '***
 'Write categories to DB
 '***
 TempConn.Execute "DELETE FROM Vulnerability"
 TempConn.Execute "DELETE FROM VulnerabilityCategory"

 'Open recordset
 Call OpenDBTable(TempConn, TempRS, "SELECT * FROM VulnerabilityCategory")
 Call OpenDBTable(TempConn, TempRSSeq, "SELECT * FROM Vulnerability")
 For Count = 1 To lvMainCats.ListItems.Count
 TempRS.AddNew
 TempRS!VulnerabilityCategory_Number = SWPackage.VulnDB.MainCategories(Count).ID
'1000
 TempRS!VulnerabilityCategory_ID = SWPackage.VulnDB.MainCategories(Count).Number
'1
 TempRS!VulnerabilityCategory_Description = "" &
SWPackage.VulnDB.MainCategories(Count).Description
 TempRS!InternalPackageID =
fmMain.cbSWPackage.ItemData(fmMain.cbSWPackage.ListIndex)
 TempRS.Update

 'Add vulns for this category
 sTemp = SWPackage.VulnDB.MainCategories(Count).Sequence
 Call CreateCommaSeperatedNumbersFromOptimizedString(sTemp)
 sSplit = Split(sTemp, ",")
 For CountSeq = 0 To UBound(sSplit)
 TempRSSeq.AddNew
 TempRSSeq!Vulnerability_Number = CLng(sSplit(CountSeq))
 TempRSSeq!Vulnerability_Descryption =
FindVulnerabilityDescription(CLng(sSplit(CountSeq)))

 SOURCE CODE OF THE VF PROTOTYPE

 Page 249

 TempRSSeq!VulnerabilityCategory_Number =
SWPackage.VulnDB.MainCategories(Count).ID
 TempRSSeq.Update
 Next CountSeq

 Next Count

 'Close recordsets
 TempRSSeq.Close
 TempRS.Close

 '***
 'Write mapping to DB
 '***
 TempConn.Execute "DELETE FROM Mapping"
 'Open recordset
 Call OpenDBTable(TempConn, TempRS, "SELECT * FROM Mapping")
 For Count = 1 To (txtMap.Count - 1)
 sTemp = txtMap(Count).Text
 Call CreateCommaSeperatedNumbersFromOptimizedString(sTemp)
 sSplit = Split(sTemp, ",")
 For CountSeq = 0 To UBound(sSplit)
 TempRS.AddNew
 TempRS!HVC_Number = Count
 TempRS!Vulnerability_Number = CLng(sSplit(CountSeq))
 TempRS!InternalPackageID =
fmMain.cbSWPackage.ItemData(fmMain.cbSWPackage.ListIndex)
 TempRS.Update
 Next CountSeq
 Next Count

 TempRS.Close

 'Close connection
 TempConn.Close

 Screen.MousePointer = vbNormal

End Sub

Private Function FindVulnerabilityDescription(VulnNumber As Long) As String

 Dim Count As Long
 Dim sTemp As String

 On Error GoTo ErrorHandler

 sTemp = ""
 For Count = 1 To lvSWCategoties.ListItems.Count
 If CLng(lvSWCategoties.ListItems(Count).Text) = VulnNumber Then
 sTemp = lvSWCategoties.ListItems(Count).SubItems(1)
 Exit For
 End If
 Next Count

Quit:
 FindVulnerabilityDescription = sTemp
 Exit Function

ErrorHandler:
 sTemp = ""
 Resume Quit

End Function

Private Sub cmdCancel_Click()
 ModalResult = False
 Unload Me
End Sub

Private Sub cmdCatsIn_Click()

 On Error GoTo Quit

 Dim lNumSelected As Long
 Dim Count As Long, CountIn As Long
 Dim sTemp As String, sString As String, sF As String, s1 As String

APPENDIX B

Page 250

 Dim sSplit() As String
 Dim PlaceS As Long, PlaceNextS As Long, lFirstNumberInSequence As Long,
lNextNumberInSequence As Long

 If lvMainCats.ListItems.Count < 1 Then Exit Sub

 lNumSelected = 0
 For Count = 1 To lvMainCats.ListItems.Count
 If lvMainCats.ListItems(Count).Selected Then
 lNumSelected = lNumSelected + 1
 End If
 Next Count

 If lNumSelected < 1 Then Exit Sub

 With fmSelectCats.lvSWCategoties

 sTemp = lvMainCats.SelectedItem.SubItems(3)
 Call CreateCommaSeperatedNumbersFromOptimizedString(sTemp)
 If sTemp <> "" Then
 sSplit = Split(sTemp, ",")
 Else
 ReDim sSplit(0)
 End If

 For Count = 1 To .ListItems.Count
 .ListItems(Count).Checked = False
 .ListItems(Count).Selected = False

 For CountIn = 0 To UBound(sSplit)
 If sSplit(CountIn) = .ListItems(Count).Text Then
 .ListItems(Count).Checked = True
 GoTo AfterCountIn
 End If
 Next CountIn

AfterCountIn:
 Next Count

 If .ListItems.Count > 0 Then
 .ListItems(1).Selected = True
 .SelectedItem.EnsureVisible
 End If

 End With

 fmSelectCats.txtNumber.Text = lvMainCats.SelectedItem.Text
 fmSelectCats.txtNumber.SelStart = 0
 fmSelectCats.txtNumber.SelLength = Len(fmSelectCats.txtNumber.Text)

 fmSelectCats.Show vbModal

Quit:
 Exit Sub

End Sub

Private Sub cmdLoadCatInfo_Click()

 On Error GoTo ErrorHandler

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset
 Dim Count As Long
 Dim li As ListItem
 Dim sTemp As String

 Screen.MousePointer = vbHourglass

 'Open connection
 TempConn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &
txtSWDir.Text & ";Persist Security Info=False"
 TempConn.Open

 'Open recordset
 TempRS.CursorLocation = adUseServer
 TempRS.CursorType = adOpenStatic

 SOURCE CODE OF THE VF PROTOTYPE

 Page 251

 TempRS.LockType = adLockOptimistic
 TempRS.Open "SELECT * FROM " & cbTables.Text & " WHERE " & cbID.Text & " > 0 ORDER
BY " & cbID.Text & " ASC", TempConn, adCmdTable

 lvSWCategoties.ListItems.Clear
 Do While Not TempRS.EOF
 Set li = lvSWCategoties.ListItems.Add(, "Key" & TempRS.Fields(cbID.Text).Value,
TempRS.Fields(cbID.Text).Value)
 sTemp = TempRS.Fields(cbDescription.Text).Value
 sTemp = Replace(sTemp, vbCrLf, "")
 sTemp = Replace(sTemp, vbLf, "")
 sTemp = Replace(sTemp, vbCr, "")
 li.SubItems(1) = sTemp

 Set li = fmSelectCats.lvSWCategoties.ListItems.Add(, "Key" &
TempRS.Fields(cbID.Text).Value, TempRS.Fields(cbID.Text).Value)
 sTemp = TempRS.Fields(cbDescription.Text).Value
 sTemp = Replace(sTemp, vbCrLf, "")
 sTemp = Replace(sTemp, vbLf, "")
 sTemp = Replace(sTemp, vbCr, "")
 li.SubItems(1) = sTemp

 TempRS.MoveNext
 Loop

 'Close recordset and connection
 TempRS.Close
 TempConn.Close

 frmMappingInfo.Visible = True
 If lvSWCategoties.ListItems.Count > 0 Then
 lvSWCategoties.ListItems(1).Selected = True

 frmMappingInfo.Visible = True
 If txtMap(1).Visible Then txtMap(1).SetFocus
 End If

Quit:
 Screen.MousePointer = vbNormal
 Exit Sub

ErrorHandler:
 Resume Quit

End Sub

Private Sub cmdLoadTables_Click()

 On Error Resume Next

 Dim TempCat As New ADOX.Catalog
 Dim TempConn As New ADODB.Connection
 Dim Count As Long

 Screen.MousePointer = vbHourglass

 'Open connection
 TempConn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &
txtSWDir.Text & ";Persist Security Info=False"
 TempConn.Open

 'Open catalog
 TempCat.ActiveConnection = TempConn

 cbTables.Clear
 For Count = 0 To (TempCat.Tables.Count - 1)
 If TempCat.Tables(Count).Type = "TABLE" Then
 cbTables.AddItem TempCat.Tables(Count).Name
 End If
 Next Count
 If cbTables.ListCount > 0 Then
 cbTables.ListIndex = 0
 Call LoadTableFields
 cmdLoadCatInfo.Enabled = True
 Label5.Visible = True
 lvExample.Visible = True
 Label2.Visible = True

APPENDIX B

Page 252

 cbID.Visible = True
 Label4.Visible = True
 cbDescription.Visible = True
 cmdLoadCatInfo.Visible = True
 End If

 Screen.MousePointer = vbNormal

End Sub

Private Sub cmdMap_Click()

 On Error GoTo ErrorHandler

 Dim sTemp As String
 Dim nIndex As Integer
 Dim Count As Long, CountIn As Long
 Dim li As ListItem

 If frmMain(1).Visible Then
 For Count = 1 To (lblNum.Count - 1)
 If lblNum(Count).FontBold Then
 nIndex = CInt(Count)
 Exit For
 End If
 Next Count

 For Count = 1 To lvSWCategoties.ListItems.Count
 If lvSWCategoties.ListItems(Count).Selected Then
 sTemp = lvSWCategoties.ListItems(Count)
 If IsNumeric(sTemp) Then
 If txtMap(nIndex).Text = "" Then
 txtMap(nIndex).Text = sTemp
 Else
 txtMap(nIndex).Text = txtMap(nIndex).Text & "," & sTemp
 End If
 End If
 End If
 Next Count
 Else
 For Count = 1 To lvSWCategoties.ListItems.Count
 If lvSWCategoties.ListItems(Count).Selected Then
 sTemp = lvSWCategoties.ListItems(Count)
 If IsNumeric(sTemp) Then
 Call AddMainCategory(CLng(lvSWCategoties.ListItems(Count).Text),
lvSWCategoties.ListItems(Count).SubItems(1), lvSWCategoties.ListItems(Count).Key)
 End If
 End If
BeforeNext:
 Next Count

 Call ReorderMainCategories
 End If

 Exit Sub

ErrorHandler:
 If Err.Number = 35602 Then
 'Item already exists
 GoTo BeforeNext
 End If
 Resume Next

End Sub

Private Sub AddMainCategory(Number As Long, sDescription As String, sKey As String)

 Dim TempArray() As CustomCategoryInfoType
 Dim Count As Long, lNumCats As Long, lTempIndex As Long
 Dim bAdded As Boolean
 Dim li As ListItem

 lNumCats = lvMainCats.ListItems.Count
 ReDim TempArray(1 To lNumCats + 1)

 If lNumCats = 0 Then
 TempArray(1).Number = Number

 SOURCE CODE OF THE VF PROTOTYPE

 Page 253

 TempArray(1).ID = Number
 TempArray(1).Description = sDescription
 TempArray(1).Key = sKey
 TempArray(1).Sequence = ""
 Else
 lTempIndex = 0
 bAdded = False
 For Count = 1 To lNumCats
 If Number = CLng(lvMainCats.ListItems(Count).Text) Then Exit Sub

 lTempIndex = lTempIndex + 1
 If Number > CLng(lvMainCats.ListItems(Count).Text) Then
 TempArray(lTempIndex).Number = CLng(lvMainCats.ListItems(Count).Text)
 TempArray(lTempIndex).ID = CLng(lvMainCats.ListItems(Count).SubItems(1))
 TempArray(lTempIndex).Description = lvMainCats.ListItems(Count).SubItems(2)
 TempArray(lTempIndex).Key = lvMainCats.ListItems(Count).Key
 TempArray(lTempIndex).Sequence = lvMainCats.ListItems(Count).SubItems(3)
 Else
 If Not bAdded Then
 TempArray(lTempIndex).Number = Number
 TempArray(lTempIndex).ID = Number
 TempArray(lTempIndex).Description = sDescription
 TempArray(lTempIndex).Key = sKey
 TempArray(lTempIndex).Sequence = ""
 Count = Count - 1
 bAdded = True
 Else
 TempArray(lTempIndex).Number = CLng(lvMainCats.ListItems(Count).Text)
 TempArray(lTempIndex).ID = CLng(lvMainCats.ListItems(Count).SubItems(1))
 TempArray(lTempIndex).Description = lvMainCats.ListItems(Count).SubItems(2)
 TempArray(lTempIndex).Key = lvMainCats.ListItems(Count).Key
 TempArray(lTempIndex).Sequence = lvMainCats.ListItems(Count).SubItems(3)
 End If
 End If
 Next Count

 If Not bAdded Then
 TempArray(lNumCats + 1).Number = Number
 TempArray(lNumCats + 1).ID = Number
 TempArray(lNumCats + 1).Description = sDescription
 TempArray(lNumCats + 1).Key = sKey
 TempArray(lNumCats + 1).Sequence = ""
 End If
 End If

 lvMainCats.ListItems.Clear
 For Count = 1 To (lNumCats + 1)
 Set li = lvMainCats.ListItems.Add(, TempArray(Count).Key, TempArray(Count).Number)
 li.SubItems(1) = TempArray(Count).ID
 li.SubItems(2) = TempArray(Count).Description
 li.SubItems(3) = TempArray(Count).Sequence
 Next Count

End Sub

Private Sub cmdOptimize_Click()

 Dim Count As Long
 Dim sTemp As String

 For Count = 1 To (txtMap.Count - 1)
 sTemp = txtMap(Count).Text
 Call OptimizeCommaSeperatedNumbers(sTemp)
 txtMap(Count).Text = sTemp
 Next Count

End Sub

Private Sub cmdRemove_Click()

 Dim lNumSelected As Long, Count As Long

 If lvMainCats.ListItems.Count < 1 Then Exit Sub

 lNumSelected = 0
 For Count = 1 To lvMainCats.ListItems.Count
 If lvMainCats.ListItems(Count).Selected Then

APPENDIX B

Page 254

 lNumSelected = lNumSelected + 1
 End If
 Next Count

 If lNumSelected < 1 Then Exit Sub

 Call lvMainCats.ListItems.Remove(lvMainCats.SelectedItem.Index)
 If lvMainCats.ListItems.Count > 0 Then
 lvMainCats.ListItems(1).Selected = True
 Call lvMainCats.ListItems(1).EnsureVisible
 End If

End Sub

Private Sub cmdSelectDBDir_Click()

 On Error GoTo ErrorHandler

 Dim sDef As String

 cmnDlgSWDB.CancelError = True
 cmnDlgSWDB.DialogTitle = "Select Database"

 sDef = txtSWDir.Text
 If (sDef = "") Or (Len(sDef) < 2) Then sDef = App.Path

 cmnDlgSWDB.InitDir = sDef
 cmnDlgSWDB.ShowOpen

 If cmnDlgSWDB.FileName <> "" Then
 txtSWDir.Text = cmnDlgSWDB.FileName
 End If

Quit:
 Exit Sub

ErrorHandler:
 Resume Quit

End Sub

Private Sub Form_Activate()

 If Not isActive Then
 If txtName.Visible Then
 txtName.SelStart = 0
 txtName.SelLength = Len(txtName.Text)
 txtName.SetFocus
 End If
 isActive = True
 End If

End Sub

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
 lButton = Shift
End Sub

Private Sub Form_Load()

 isActive = False

 'Center form on screen
 Me.Left = (Screen.Width - Me.Width) / 2
 Me.Top = (Screen.Height - Me.Height) / 2

 Call SetupForm
 Load fmSelectCats

 lScrollingValue = 150
 VScroll1.Max = Abs(picMapIn.Height - picMapOut.Height) / lScrollingValue
 gbFmSWSetupLoaded = True

End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
 If UnloadMode = vbManual Then

 SOURCE CODE OF THE VF PROTOTYPE

 Page 255

 ModalResult = False
 End If
End Sub

Private Sub Form_Unload(Cancel As Integer)
 Unload fmSelectCats
 gbFmSWSetupLoaded = False
End Sub

Private Sub SetupForm()

 On Error GoTo ErrorHandler

 Dim Count As Long, lNum As Long, lLine As Long
 Dim sngTop As Single
 Dim nIndex As Integer
 Dim li As ListItem, li2 As ListItem

 sngTop = txtMap(0).Top
 For Count = 1 To glCustomCategoriesNum
 Load txtMap(Count)
 txtMap(Count).Top = sngTop
 txtMap(Count).Text = ""
 txtMap(Count).Visible = True

 Load lblNum(Count)
 lblNum(Count).Top = txtMap(Count).Top + (txtMap(Count).Height -
lblNum(Count).Height) / 2
 lblNum(Count).Caption = CStr(Count)
 lblNum(Count).Visible = True

 sngTop = txtMap(Count).Top + txtMap(Count).Height + 10
 Next Count
 picMapIn.Height = sngTop + 30 '- txtMap(0).Height

 'Set up info
 txtName.Text = SWPackageCurrent.Name
 txtSWDir.Text = SWPackageCurrent.VulnDB.DBPathName

 If txtSWDir.Text <> "" Then
 'Load tables from DB
 Call cmdLoadTables_Click

 'Set up table
 nIndex = -1
 For Count = 0 To (cbTables.ListCount - 1)
 If cbTables.List(Count) = SWPackageCurrent.VulnDB.TableName Then
 nIndex = Count
 Exit For
 End If
 Next Count
 cbTables.ListIndex = nIndex

 'Set up ID Field
 nIndex = -1
 For Count = 0 To (cbID.ListCount - 1)
 If cbID.List(Count) = SWPackageCurrent.VulnDB.FieldName_ID Then
 nIndex = Count
 Exit For
 End If
 Next Count
 cbID.ListIndex = nIndex

 'Set up Description Field
 nIndex = -1
 For Count = 0 To (cbDescription.ListCount - 1)
 If cbDescription.List(Count) = SWPackageCurrent.VulnDB.FieldName_Description
Then
 nIndex = Count
 Exit For
 End If
 Next Count
 cbDescription.ListIndex = nIndex

 'Load categories
 Call cmdLoadCatInfo_Click

APPENDIX B

Page 256

 'Main categories
 For Count = 1 To UBound(SWPackageCurrent.VulnDB.MainCategories)
 Set li2 =
lvSWCategoties.FindItem(CStr(SWPackageCurrent.VulnDB.MainCategories(Count).ID),
lvwText)
 Set li = lvMainCats.ListItems.Add(, "Key" &
SWPackageCurrent.VulnDB.MainCategories(Count).ID,
SWPackageCurrent.VulnDB.MainCategories(Count).Number)
 li.SubItems(1) = SWPackageCurrent.VulnDB.MainCategories(Count).ID
 li.SubItems(2) = li2.SubItems(1)
 li.SubItems(3) = SWPackageCurrent.VulnDB.MainCategories(Count).Sequence
 Next Count

 'Set up mapping info
 lNum = txtMap.Count - 1
 For Count = 1 To lNum
 txtMap(Count).Text = SWPackageCurrent.VulnDB.Mapping(Count)
 Next Count

 Else
 cbTables.Clear
 cbTables.Enabled = False
 lblTables.Enabled = False
 cmdLoadTables.Enabled = False
 cmdLoadCatInfo.Enabled = False
 frmMappingInfo.Visible = False
 End If

Quit:
 Exit Sub

ErrorHandler:
 If lLine = 1 Then
 lNum = 0
 Resume Next
 End If
 Resume Quit

End Sub

Private Sub frmMappingInfo_DblClick()

 Dim lTemp As Long

 If lButton = (vbCtrlMask + vbShiftMask + vbAltMask) Then
 If frmMain(0).Visible Then
 lvMainCats.ListItems.Clear

 Call AddListItem(lvMainCats, "Key1000", "1", "1000", "Information Gathering and
Recon",
"1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1012,1013,1014,1016,1017,1018,
1019,1021,1023,1024,1026,1028,1032,1033,1034,1035,1036,1037,1038,1039,1040,1041")
 Call AddListItem(lvMainCats, "Key2000", "2", "2000", "File Transfer Protocols",
"2001,2002,2003,2004,2005,2006,2007,2010,2011,2012,2013,2014,2016,2017,2018,2019,2021,
2024")
 Call AddListItem(lvMainCats, "Key3000", "3", "3000", "Hardware Peripherals",
"3001,3002,3003,3006,3007,3008,3009,3010,3011,3012")
 Call AddListItem(lvMainCats, "Key4000", "4", "4000", "Backdoors and
Misconfigurations", "4001,4002,4004,4005,4006,4007,4008,4009,4010")
 Call AddListItem(lvMainCats, "Key5000", "5", "5000", "SMTP and Mail Transfer",
"5001,5002,5003,5005,5006,5007,5008,5009,5011,5013,5014,5015,5016,5017,5018,5019,5020,
5021,5023")
 Call AddListItem(lvMainCats, "Key6000", "6", "6000", "Remote Procedure Call
Services",
"6003,6004,6005,6007,6008,6009,6014,6015,6016,6019,6020,6021,6025,6027,6028,6034,6035,
6036,6037")
 Call AddListItem(lvMainCats, "Key7000", "7", "7000", "Networked File Systems",
"7001,7002,7003,7004,7005,7006,7007,7008,7010,7011,7013,7014")
 Call AddListItem(lvMainCats, "Key8000", "8", "8000", "Denial of Service
Attacks",
"8001,8002,8003,8004,8005,8006,8007,8008,8009,8010,8011,8012,8016,8017,8019,8020,8023,
8024,8025,8026,8027,8028,8029,8030,8031,8032,8033,8034,8035,8036,8038,8039, 8040,8041,8
042,8043,8044,8046,8049,8050,8051,8053,8054")
 Call AddListItem(lvMainCats, "Key9000", "9", "9000", "Password
Guessing/Grinding", "9001,9002,9003,9004,9005,9006,9007")
 Call AddListItem(lvMainCats, "Key10000", "10", "10000", "World Wide Web, HTTP,
and CGI",

 SOURCE CODE OF THE VF PROTOTYPE

 Page 257

"10001,10002,10003,10004,10006,10008,10009,10010,10012,10014,10015,10016,10017,10018,1
0019,10020,10021,10022,10023,10024,10025,10026,10027,10028,10029,10030,10031,10032,100
33,10034,10035,10036,10037,10038,10039,10040,10042,10043,10044,10046,10047,10048,10049
,10050,10053,10054,10055,10056,10057,10064,10065,10066,10067,10068")
 Call AddListItem(lvMainCats, "Key11000", "11", "11000", "Network Protocol
Spoofing", "11006,11010,11011")
 Call AddListItem(lvMainCats, "Key12000", "12", "12000", "Packet Filter
Verification Tests",
"12001,12002,12003,12004,12005,12006,12007,12008,12009,12010,12011,12012,12013,12014,1
2015,12016,12017,12018,12019,12020,12021,12022,12023,12024,12025,12026,12027,12028,120
29,12030,12031,12032,12033,12034,12035,12036,12040,12041,12042,12043,12044,12045,12046
,12047,12048,12049,12050,12051,12052,12060,12061,12062,12070,12071,12072")
 Call AddListItem(lvMainCats, "Key13000", "13", "13000", "Firewalls, Filters, and
Proxies", "13001,13002,13005,13011,13012,13013")
 Call AddListItem(lvMainCats, "Key14000", "14", "14000", "Authentication
Mechanisms", "14001,14002,14003,14004,14005,14006,14007")
 Call AddListItem(lvMainCats, "Key15000", "15", "15000", "General Remote
Services",
"15001,15003,15004,15005,15006,15007,15008,15009,15011,15014,15015,15020,15021,15024,1
5025,15026,15027,15028,15029,15030,15031,15032,15033,15034,15035,15036,15037,15038,150
39,15040,15043,15044,15045,15047,15048")
 Call AddListItem(lvMainCats, "Key16000", "16", "16000", "SMB/NetBIOS Resource
Sharing",
"16001,16002,16003,16004,16005,16006,16007,16008,16009,16020,16021,16022,16023,16024")
 Call AddListItem(lvMainCats, "Key17000", "17", "17000", "Domain Name System and
BIND",
"17002,17004,17005,17007,17008,17010,17014,17018,17020,17021,17022,17023,17024")
 Call AddListItem(lvMainCats, "Key18000", "18", "18000", "Windows NT - Network
Vulnerabilities",
"18001,18002,18003,18004,18005,18007,18008,18009,18010,18011,18012,18013,18014,18015,1
8016,18017,18018,18019,18020,18021,18022,18023,18024,18025,18026,18027,18028,18029,180
30,18031")
 Call AddListItem(lvMainCats, "Key20000", "20", "20000", "SNMP/Network
Management",
"20001,20010,20011,20012,20013,20014,20015,20016,20020,20022,20023,20024,20030")
 Call AddListItem(lvMainCats, "Key21000", "21", "21000", "Network Port Scanning",
"21001,21002,21003,21004,21005,21006,21007")
 Call AddListItem(lvMainCats, "Key22000", "22", "22000", "Windows NT - Browser
Zone Policy",
"22001,22002,22003,22004,22005,22006,22007,22008,22009,22010,22011,22012,22013,22014,2
2015,22016,22017,22018,22019,22020,22021,22022")
 Call AddListItem(lvMainCats, "Key23000", "23", "23000", "Windows NT - Privilege
Enumeration",
"23001,23002,23003,23004,23005,23006,23007,23008,23009,23010,23011,23012,23013,23014,2
3015,23016,23017,23018,23019,23020,23021,23022,23023,23024,23025,23026,23027,23028,230
29,23030,23031")
 Call AddListItem(lvMainCats, "Key24000", "24", "24000", "Windows NT - Local
System Policy",
"24001,24002,24003,24004,24005,24006,24007,24008,24009,24010,24011,24012,24013,24014,2
4015,24016,24017,24018,24019,24020,24022,24023,24024,24025,24026,24027")
 Call AddListItem(lvMainCats, "Key25000", "25", "25000", "Windows NT - Auditing
and Password Policy",
"25001,25002,25003,25004,25005,25006,25007,25008,25009,25010,25011,25012,25013,25014,2
5015,25016,25017,25018,25019,25020,25021,25022,25023")
 Call AddListItem(lvMainCats, "Key26000", "26", "26000", "Windows NT -
Information Gathering", "26001,26002,26003,26004,26005,26006,26007,26008,26009,26010")
 Call AddListItem(lvMainCats, "Key27000", "27", "27000", "Intrusion Detection
System Verification",
"27001,27002,27003,27004,27005,27006,27007,27008,27009,27010,27011,27012,27013,27014,2
7015,27016,27017,27018,27019,27020,27021,27022,27023,27024,27025")
 Call AddListItem(lvMainCats, "Key28000", "28", "28000", "Windows NT - Service
Packs (SP) and Hot Fixes (HF)",
"28001,28002,28005,28006,28010,28011,28012,28013,28014,28015,28016,28017,28018,28019,2
8020,28021,28022,28023,28024,28025,28026,28027,28028,28029,28030,28031,28032,28033,280
34,28035,28036,28037,28038,28039,28040,28041,28042,28043,28080,28081,28082,28083,28084
,28085,28086,28087,28088,28089,28090,28091,28092,28150,28151,28152,28153,28154,28155,2
8156,28157,28158,28159,28160,28161,28162,28163,28164,28165,28166,28167,28168,28169,281
73,28174,28175,28176,28200,28201,28250,28251,28252,28253,28254,28255,28256")
 Call AddListItem(lvMainCats, "Key29000", "29", "29000", "Windows NT - Third
Party Software",
"29001,29002,29003,29008,29009,29010,29011,29012,29013,29014,29015,29016,29017,29018,2
9019,29021,29022,29023")
 Call AddListItem(lvMainCats, "Key30000", "30", "30000", "Windows NT - Services
", "30001,30002,30003,30004,30005,30006,30007,30008,30009,30010,30012")
 Call AddListItem(lvMainCats, "Key31000", "31", "31000", "Windows NT - Remote
Access Server",
"31001,31002,31003,31004,31005,31006,31007,31008,31009,31010,31011,31012")

APPENDIX B

Page 258

 Else
 Call AddText(1, "1001,1002,1004,1038,1039,2006,2018,2019,2024,3001-
3003,3006,3008-3011,9000-
9007,10032,10033,15005,15007,15025,15040,15043,16001,16002,16024,17020,18002,18004,180
05,18007-18009,18015,18021,31006")
 Call AddText(2, "1000,1006-
1008,1010,1016,1017,1019,1024,1032,1033,1036,1039,1040,1041,2006,2010,3008,3009,5003,5
006,5007,5011,6009,7005,7014,10002,10010,10015,10020,10021,10038,10047,10048,10064,120
01-12010,12012-12036,13012,14004-14006,15007,15028,16003-
16005,16020,17000,17002,17004,17005,17007,17008,17010,17014,17018,17020-
17023,18004,18005,18007,18026,20001,20010-20016,20020,20022,20023,20030,21000-
21002,21006,21007,26000,26004-26006,26008-26010")
 Call AddText(3, "1001-
1005,1023,1035,3008,3009,5005,6005,15025,15032,15035,20024,26001-26003,26007")
 Call AddText(4, "2001,3008,3009,4000-4002,4004-4010,5001,15003,18015")
 Call AddText(5, "1005,1009-1014,1018,1021,1026,1028,1034,1037,2000,2003-
2007,2012,2016,2017,2021,3006-3009,3012,5000,5002,5008,5009,5015,5019,6000,6003-
6005,6007-6009,6014-6016,6019-6021,6025,6027,6028,6034-6037,7000,7004-
7008,7010,7011,7013,7014,10000,10002-10004,10006,10008,10009,10012,10014-10021,10027-
10030,10034-10036,10039,10040,10043,10044,10046,10049,10050,10053-10056,10064-
10068,13005,13011,13013,14000-14003,15000,15003-
15006,15008,15009,15011,15014,15015,15021,15024,15026-15040,15043-
15045,15047,15048,16000-16009,16020-16024,17000,17007,17024,18000-
18002,18011,18012,18024,18025,20000,20001,21000-21007,26004-26006,26008-26010,30000-
30010,30012,31001-31004,31007-31012")
 Call AddText(6, "1009,2010-
2014,2021,5002,5008,5009,5013,5017,5018,6003,6004,6016,6037,7002,7006-
7008,10031,10034,10037,10066,10067,13013,15004,15006,15015,15024,15027,15036,15039,180
03,18010,18013,18014,18017-18020,18031,23000-23031")
 Call AddText(7, "2007,5016,5021,6016,8001,11000,11006,11010,11011,13000-
13002,15045,17020-17023")
 Call AddText(8, "2002,2017,3003,3010,3011,4000,5015,5021,6003,6009,7001-
7003,7006,8001,10008,10025,12000-12009,12011-12036,12040-12052,12060-12062,12070-
12072,13005,13012,13013,14001-14003,14005,15001,15008,15009,15021,15043,15045,16006-
16008,16020-16023,17004,18000,18001,18007-18015,18017-18020,18022-18031,20001,20010-
20016,20020,20022-20024,20030,22000-22022,23000-23031,24000-24020,24022,24025-
24027,25000-25023,26004,27002,29008-29019,29021-29023,30001,30002,30005,31004,31006")
 Call AddText(9,
"2005,2018,2019,3007,3012,5009,5011,5013,5014,5018,5020,5023,6015,6027,8000 -
8012,8016,8017,8019,8020,8023-8036,8038-8044,8046,8049-
8051,8053,8054,10001,10014,10022-
10024,10026,10035,10042,10057,13011,14007,15015,15027,15029,15034-
15036,15039,15040,15047,15048,16024,17024,18016,20001")
 Call AddText(10, "")
 Call AddText(11, "3000-3003,3006-3012,13001")
 Call AddText(12, "27000-27025,28000-28002,28005,28006,28010-28043,28080-
28092,28150-28169,28173-28176,28200,28201,28250-28256,29000-29003,29008-29019,29021-
29023")
 Call AddText(13, "24000-24020,24022,24025,24026,24027,25000-25023,31001-
31003,31005,31007-31010,31012")
 Call AddText(14, "")
 Call AddText(15, "5006,5007,5020,15038,21001-21005")
 End If
 End If

End Sub

Private Sub AddText(lTextBoxNum As Long, sString As String)
 If lTextBoxNum < txtMap.Count Then
 txtMap(lTextBoxNum).Text = sString
 End If
End Sub

Private Sub AddListItem(lv As ListView, sKey As String, sNumber As String, sID As
String, sDescription As String, sSeq As String)

 Dim li As ListItem

 Set li = lv.ListItems.Add(, sKey, sNumber)
 li.SubItems(1) = sID
 li.SubItems(2) = sDescription
 li.SubItems(3) = sSeq

End Sub

Private Sub lblNum_Click(Index As Integer)
 txtMap(Index).SetFocus

 SOURCE CODE OF THE VF PROTOTYPE

 Page 259

End Sub

Private Sub lvMainCats_DblClick()
 Call cmdCatsIn_Click
End Sub

Private Sub lvSWCategoties_DblClick()
 Call cmdMap_Click
End Sub

Private Sub TabStrip1_Click()
 Call SetTab(TabStrip1, frmMain)
 cmdRemove.Visible = frmMain(0).Visible
End Sub

Private Sub txtMap_GotFocus(Index As Integer)
 Call SetAllLblNumFontBold
 lblNum(Index).FontBold = True
 lblMapping.Caption = "Mapping to custom category " & Index
 lblMapping.Visible = True
End Sub

Private Sub txtMap_LostFocus(Index As Integer)

 Dim bOK As Boolean
 Dim Count As Long

 bOK = False
 For Count = 1 To lblNum.Count - 1
 If lblNum(Count).FontBold Then
 bOK = True
 Exit For
 End If
 Next Count
 lblMapping.Visible = bOK

End Sub

Private Sub txtSWDir_Change()

 Dim sTemp As String, sDBName As String
 Dim Place As Long

 sTemp = txtSWDir.Text

 Place = InStrRev(sTemp, "\")
 If Place > 0 Then
 sDBName = Mid$(sTemp, Place + 1)
 Else
 sDBName = sTemp
 End If

 If Dir(sTemp, vbArchive + vbHidden + vbNormal + vbReadOnly + vbSystem + vbVolume) =
sDBName Then
 cbTables.Enabled = True
 cmdLoadTables.Enabled = True
 lblTables.Enabled = True
 Else
 cbTables.Enabled = False
 cmdLoadTables.Enabled = False
 cmdLoadCatInfo.Enabled = False
 lblTables.Enabled = False
 End If

End Sub

Private Sub LoadTableFields()

 On Error GoTo ErrorHandler

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset
 Dim Count As Long
 Dim li As ListItem

 If cbTables.Text = "" Then Exit Sub

APPENDIX B

Page 260

 'Open connection
 TempConn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &
txtSWDir.Text & ";Persist Security Info=False"
 TempConn.Open

 'Open table
 TempRS.CursorLocation = adUseServer
 TempRS.CursorType = adOpenStatic
 TempRS.LockType = adLockOptimistic
 TempRS.Open "SELECT TOP 2 * FROM " & cbTables.Text, TempConn, adCmdTable

 cbID.Clear
 lvExample.ColumnHeaders.Clear
 lvExample.ListItems.Clear
 cbDescription.Clear
 If Not TempRS.EOF Then
 TempRS.MoveFirst
 TempRS.MoveNext
 End If
 For Count = 0 To (TempRS.Fields.Count - 1)
 cbID.AddItem TempRS.Fields(Count).Name
 cbDescription.AddItem TempRS.Fields(Count).Name

 'Setup example headers
 Call lvExample.ColumnHeaders.Add(, "Key" & Count, TempRS.Fields(Count).Name) ',
fmMain.TextWidth(TempRS.Fields(Count).Name) + 50)

 'Setup example data
 If Not TempRS.EOF Then
 If Count = 0 Then
 Set li = lvExample.ListItems.Add(, "KeyLI",
TempRS.Fields(TempRS.Fields(Count).Name).Value)
 Else
 li.SubItems(Count) = TempRS.Fields(TempRS.Fields(Count).Name).Value
 End If
 End If
 Next Count
 If cbID.ListCount > 0 Then
 cbID.ListIndex = 0
 cbDescription.ListIndex = 0
 End If

Quit:
 Exit Sub

ErrorHandler:
 Resume Quit

End Sub

Private Sub VScroll1_Change()
 'move picture up/down
 picMapIn.Top = -(VScroll1.Value * lScrollingValue)
End Sub

Private Sub VScroll1_Scroll()
 'move picture up/down
 picMapIn.Top = -(VScroll1.Value * lScrollingValue)
End Sub

Private Sub SetAllLblNumFontBold(Optional bValue As Boolean = False)

 Dim Count As Long

 For Count = 1 To (lblNum.Count - 1)
 lblNum(Count).FontBold = bValue
 Next Count
 lblMapping.Visible = False

End Sub

Private Function CheckInfo() As Boolean

 Dim bOK As Boolean, bAllEmpty As Boolean
 Dim Count As Long

 bOK = True

 SOURCE CODE OF THE VF PROTOTYPE

 Page 261

 'Check name
 If (txtName.Text = "") Or (LCase(txtName.Text) = "<new package>") Then
 bOK = False
 Call MsgBox("Please specify a valid name!", vbOKOnly + vbInformation)
 txtName.SetFocus
 GoTo Quit
 End If

 'Check db path
 If (txtSWDir.Text = "") Then
 bOK = False
 Call MsgBox("Please specify a valid database!", vbOKOnly + vbInformation)
 txtSWDir.SetFocus
 GoTo Quit
 End If

 'Check tables
 If (cbTables.Text = "") Then
 bOK = False
 Call MsgBox("Please specify a valid table from the database!", vbOKOnly +
vbInformation)
 cbTables.SetFocus
 GoTo Quit
 End If

 'Check ID Field
 If (cbID.Text = "") Then
 bOK = False
 Call MsgBox("Please specify a valid field representing the unique ID for the
categories!", vbOKOnly + vbInformation)
 cbID.SetFocus
 GoTo Quit
 End If

 'Check tables
 If (cbDescription.Text = "") Then
 bOK = False
 Call MsgBox("Please specify a valid field representing the description for the
categories!", vbOKOnly + vbInformation)
 cbDescription.SetFocus
 GoTo Quit
 End If

 'Check main categories
 If lvMainCats.ListItems.Count < 1 Then
 bOK = False
 Call MsgBox("You have to set up the main software categories, as well as the
categories belonging to them!", vbOKOnly + vbInformation)
 TabStrip1.Tabs(1).Selected = True
 lvMainCats.SetFocus
 GoTo Quit
 End If

 'Check mapping
 bAllEmpty = True
 For Count = 1 To (txtMap.Count - 1)
 If txtMap(Count).Text <> "" Then
 bAllEmpty = False
 Exit For
 End If
 Next Count
 If bAllEmpty Then
 bOK = False
 Call MsgBox("You have to map the software categories to the custom categories!",
vbOKOnly + vbInformation)
 cmdMap.SetFocus
 GoTo Quit
 End If

 'Set up info
 With SWPackageCurrent
 .Name = txtName.Text

 .VulnDB.DBPathName = txtSWDir.Text
 .VulnDB.TableName = cbTables.Text
 .VulnDB.FieldName_ID = cbID.Text

APPENDIX B

Page 262

 .VulnDB.FieldName_Description = cbDescription.Text

 'Main categories
 ReDim .VulnDB.MainCategories(1 To lvMainCats.ListItems.Count)
 For Count = 1 To lvMainCats.ListItems.Count
 .VulnDB.MainCategories(Count).Number = CLng(lvMainCats.ListItems(Count).Text)
 .VulnDB.MainCategories(Count).ID = CLng(lvMainCats.ListItems(Count).SubItems(1))
 .VulnDB.MainCategories(Count).Description =
lvMainCats.ListItems(Count).SubItems(2)
 .VulnDB.MainCategories(Count).Sequence = lvMainCats.ListItems(Count).SubItems(3)
 Next Count

 'Mapped categories
 ReDim .VulnDB.Mapping(1 To glCustomCategoriesNum)
 For Count = 1 To glCustomCategoriesNum
 .VulnDB.Mapping(Count) = txtMap(Count).Text
 Next Count

 End With

Quit:
 CheckInfo = bOK

End Function

Public Sub ReorderMainCategories()

 On Error GoTo ErrorHandler

 Dim Count As Long, lNumItems As Long
 Dim TempArray() As CustomCategoryInfoType
 Dim TempItem As CustomCategoryInfoType
 Dim li As ListItem
 Dim lCurIndex As Long
 Dim sCurID As String

 lNumItems = lvMainCats.ListItems.Count
 If lNumItems < 1 Then Exit Sub

 ReDim TempArray(1 To lNumItems)
 For Count = 1 To lNumItems
 TempItem.Number = CLng(lvMainCats.ListItems(Count).Text)
 TempItem.ID = CLng(lvMainCats.ListItems(Count).SubItems(1))
 TempItem.Description = lvMainCats.ListItems(Count).SubItems(2)
 TempItem.Sequence = lvMainCats.ListItems(Count).SubItems(3)
 TempItem.Key = lvMainCats.ListItems(Count).Key
 Call AddItemToOrderedArray(TempArray, TempItem)
 Next Count

 lCurIndex = 0
 sCurID = lvMainCats.SelectedItem.SubItems(1)
 lvMainCats.ListItems.Clear
 For Count = 1 To lNumItems
 Set li = lvMainCats.ListItems.Add(, TempArray(Count).Key, TempArray(Count).Number)
 li.SubItems(1) = TempArray(Count).ID
 li.SubItems(2) = TempArray(Count).Description
 li.SubItems(3) = TempArray(Count).Sequence

 If sCurID = li.SubItems(1) Then
 lCurIndex = Count
 End If
 Next Count
 If (lCurIndex = 0) And (lvMainCats.ListItems.Count > 0) Then lCurIndex = 1
 If lCurIndex > 0 Then
 lvMainCats.ListItems(lCurIndex).Selected = True
 Call lvMainCats.ListItems(lCurIndex).EnsureVisible
 End If

 Exit Sub

ErrorHandler:
 lCurIndex = 0
 If lvMainCats.ListItems.Count > 0 Then lCurIndex = 1

End Sub

 SOURCE CODE OF THE VF PROTOTYPE

 Page 263

Private Sub AddItemToOrderedArray(OrderedArray() As CustomCategoryInfoType, AddItem As
CustomCategoryInfoType)

 Dim Count As Long, lIndex As Long
 Dim bFound As Boolean

 lIndex = 1
 For Count = 1 To UBound(OrderedArray)
 If (OrderedArray(Count).ID = 0) Then
 lIndex = Count
 Exit For
 Else
 If AddItem.ID < OrderedArray(Count).ID Then
 lIndex = Count
 Exit For
 End If
 End If
 Next Count

 If (lIndex < UBound(OrderedArray)) Then
 If OrderedArray(lIndex).ID <> 0 Then
 For Count = UBound(OrderedArray) To lIndex + 1 Step -1
 OrderedArray(Count) = OrderedArray(Count - 1)
 Next Count
 End If
 End If

 OrderedArray(lIndex) = AddItem

End Sub

Public Sub GetStuff()

 Dim Count As Long
 Dim sTemp As String

 sTemp = ""
 For Count = 1 To lvMainCats.ListItems.Count
 sTemp = sTemp & "Call AddListItem(lvMainCats, " & Chr(34) & "Key" &
lvMainCats.ListItems(Count).SubItems(1) & Chr(34) & ","
 sTemp = sTemp & Chr(34) & lvMainCats.ListItems(Count).Text & Chr(34) & ","
 sTemp = sTemp & Chr(34) & lvMainCats.ListItems(Count).SubItems(1) & Chr(34) & ","
 sTemp = sTemp & Chr(34) & lvMainCats.ListItems(Count).SubItems(2) & Chr(34) & ","
 sTemp = sTemp & Chr(34) & lvMainCats.ListItems(Count).SubItems(3) & Chr(34) &
vbCrLf
 Next Count

 Debug.Print sTemp
End Sub

BB..22 SSOOUURRCC EE CCOODD EE FFOORR TTHHEE ““MMOODDMMAAII NN”” MMOODD UULLEE

The “modMain” module is used to hold code for global variables as well as global

functions and procedures .

The source code for this module follows below.

Option Explicit

Global lLastBlah As Long
Global gsConnectionStringToMainDB As String
Global SQL As String
Global gbDBDetected As Boolean

'Options
Global gsPreviousPaths() As String

APPENDIX B

Page 264

Global gsPreviousComparePaths() As String
Global gsAdjectives() As String

'Variables
Global BrowseInfo As BrowseInfo
Global InitDir As String
Global gsFilter As String
Global gsStatusTextFound As String
Global glNumDatabaseScans As Long
Global gsDefaultConnString As String
Global gnCurCat As Integer
Global ModalResult As Boolean, gbBusyAddEdit As Boolean

Global glNumVulnerabilityCategories As Long
Global glNumCustomVulnerabilityCategories As Long

'Constants
Global Const xPLUS As Long = 0
Global Const xMINUS As Long = 1
Global Const xMULTIPLY As Long = 2
Global Const xDEVIDE As Long = 3
Global Const xINFINITY As Long = 4

Global Const xEQUALS As Long = 0
Global Const xLESS_THAN As Long = 1
Global Const xGREATER_THAN As Long = 2
Global Const xLESS_THAN_OR_EQUAL As Long = 3
Global Const xGREATER_THAN_OR_EQUAL As Long = 4

'Form variables
Global gbFmCalculationsLoaded As Boolean
Global gbFmGraphicsLoaded As Boolean
Global gbFmHelpLoaded As Boolean
Global gbFmOptionsLoaded As Boolean
Global gbFmSetupLoaded As Boolean
Global gbFmSetupNames As Boolean
Global gbFmSWSetupLoaded As Boolean

'Windows functions
Public Declare Function SHBrowseForFolder Lib "shell32" (lpbi As BrowseInfo) As Long
Public Declare Function SHGetPathFromIDList Lib "shell32" (ByVal pidList As Long,
ByVal lpBuffer As String) As Long
Public Declare Function lstrcat Lib "kernel32" Alias "lstrcatA" (ByVal lpString1 As
String, ByVal lpString2 As String) As Long
Public Declare Function PostMessage Lib "user32" Alias "PostMessageA" (ByVal hwnd As
Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long
Public Declare Function SendMessage Lib "user32" Alias "SendMessageA" (ByVal hwnd As
Long, ByVal wMsg As Long, ByVal wParam As Long, lParam As Any) As Long
Public Declare Function SendMessageStr Lib "user32" Alias "SendMessageA" (ByVal hwnd
As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Any) As Long

'Types
Public Type BrowseInfo
 hWndOwner As Long
 pIDLRoot As Long
 pszDisplayName As Long
 lpszTitle As Long
 ulFlags As Long
 lpfnCallback As Long
 lParam As Long
 iImage As Long
End Type

Public Type GroupingType
 ScanFrom As Long
 ScanTo As Long
 Adjective As String

 VulnerabilityFrom As Long
 VulnerabilityTo As Long
 VulnerabilityTranslatedFrom As Double
 VulnerabilityTranslatedTo As Double

 Cx_From As Double
 Cx_To As Double

 Mu_Lowerbound As Double

 SOURCE CODE OF THE VF PROTOTYPE

 Page 265

 Mu_Upperbound As Double

 MIN_Cx_Mu_LB As Double
 MIN_Cx_Mu_UB As Double
End Type

Public Type AdjectiveType
 LowerOperator As Long
 LowerValue As String
 UpperOperator As Long
 UpperValue As String
End Type

Public Type ScanInfoType
 TableName As String
 VulnCount() As Long
 VulnID() As Long
 MaxEntries As Long
End Type
Global ScanInfo() As ScanInfoType
Global ActualScan As ScanInfoType

Public Type PredictionType
 Lowerbound As Long
 Upperbound As Long
End Type
Public Type PredictionDblType
 Lowerbound As Double
 Upperbound As Double
End Type

Public Type CategoryType
 CategoryNumber As Long
 NumberOfVulnerabilities() As Long
 MaxVulnerabilityValue As Long
 NumberOfGroups As Long
 Groups() As GroupingType
 Rule_Name As String
 Rule_Value As String

 Adjectives() As AdjectiveType
 HasBeenSetup As Boolean

 Membership_Op1 As Long
 Membership_Devider As Long
 Membership_Op2 As Long
 Membership_Op3 As Long
 Membership_To As Long
 Membership_Op4 As Long

 MAXofMIN_Cx_Mu As PredictionDblType

 Final As PredictionDblType
 Final_AmtVulns As PredictionType

 DisplayResultOnGraph As Boolean
End Type
Global Categories() As CategoryType

Public Type CustomCategoryInfoType
 ID As Long
 Number As Long
 Description As String

 Key As String
 Sequence As String
End Type
Global CustomCategoryInfo() As CustomCategoryInfoType
Global glCustomCategoriesNum As Long

Public Type OptionsType
 Prediction_LineColor As OLE_COLOR
 Prediction_ColumnColor As OLE_COLOR
 SaveLoad As Integer
End Type
Global Options As OptionsType

APPENDIX B

Page 266

Public Type ScanningSWInfoType
 Name As String
 MappingInfo() As String
End Type

Public Type SWVulnsDescriptionIDType
 DBPathName As String
 TableName As String
 FieldName_ID As String
 FieldName_Description As String

 MainCategories() As CustomCategoryInfoType
 Mapping() As String
End Type

Public Type ScanningDBSampleType
 DBPathName As String
 CreatedFrom As Long
 SQLResultTableName As String
End Type

Public Type ScanningDBType
 TableName As String
 FieldName As String
 SampleDB As ScanningDBSampleType
End Type

Public Type SWPackageInfoType
 Number As Long
 Name As String
 VulnDB As SWVulnsDescriptionIDType
 ScanningDB As ScanningDBType
End Type
Global SWPackageInfo() As SWPackageInfoType
Global SWPackageCurrent As SWPackageInfoType

Global Const MAX_PATH = 260

'ulFlags Constants
Global Const BIF_BROWSEFORCOMPUTER = &H1000 '0x1000 // Browsing for Computers.
Global Const BIF_BROWSEFORPRINTER = &H2000 '0x2000 // Browsing for Printers
Global Const BIF_BROWSEINCLUDEFILES = &H4000 '0x4000 // Browsing for Everything

Global Const BIF_RETURNONLYFSDIRS = &H1 '0x0001 // For finding a folder to
start document searching
Global Const BIF_DONTGOBELOWDOMAIN = &H2 '0x0002 // For starting the Fin d
Computer
Global Const BIF_STATUSTEXT = &H4 '0x0004
Global Const BIF_RETURNFSANCESTORS = &H8 '0x0008
Global Const BIF_EDITBOX = &H10 '0x0010
Global Const BIF_VALIDATE = &H20 '0x0020 // insi st on valid result
(or CANCEL)

'pIDLRoot Constants
Global Const CSIDL_DESKTOP = &H0 '0x0000
Global Const CSIDL_INTERNET = &H1 '0x0001
Global Const CSIDL_PROGRAMS = &H2 '0x0002
Global Const CSIDL_CONTROLS = &H3 '0x0003
Global Const CSIDL_PRINTERS = &H4 '0x0004
Global Const CSIDL_PERSONAL = &H5 '0x0005
Global Const CSIDL_FAVORITES = &H6 '0x0006
Global Const CSIDL_STARTUP = &H7 '0x0007
Global Const CSIDL_RECENT = &H8 '0x0008
Global Const CSIDL_SENDTO = &H9 '0x0009
Global Const CSIDL_BITBUCKET = &HA '0x000a
Global Const CSIDL_STARTMENU = &HB '0x000b
Global Const CSIDL_DESKTOPDIRECTORY = &H10 '0x0010
Global Const CSIDL_DRIVES = &H11 '0x0011
Global Const CSIDL_NETWORK = &H12 '0x0012
Global Const CSIDL_NETHOOD = &H13 '0x0013
Global Const CSIDL_FONTS = &H14 '0x0014
Global Const CSIDL_TEMPLATES = &H15 '0x0015
Global Const CSIDL_COMMON_STARTMENU = &H16 '0x0016
Global Const CSIDL_COMMON_PROGRAMS = &H17 '0X0017
Global Const CSIDL_COMMON_STARTUP = &H18 '0x0018
Global Const CSIDL_COMMON_DESKTOPDIRECTORY = &H19 '0x0019
Global Const CSIDL_APPDATA = &H1A '0x001a

 SOURCE CODE OF THE VF PROTOTYPE

 Page 267

Global Const CSIDL_PRINTHOOD = &H1B '0x001b
Global Const CSIDL_ALTSTARTUP = &H1D '0x001d
Global Const CSIDL_COMMON_ALTSTARTUP = &H1E '0x001e
Global Const CSIDL_COMMON_FAVORITES = &H1F '0x001f
Global Const CSIDL_INTERNET_CACHE = &H20 '0x0020
Global Const CSIDL_COOKIES = &H21 '0x0021
Global Const CSIDL_HISTORY = &H22 '0x0022

'GetCallbackProcAddress Constants
Public Const WM_USER = &H400

'GetCallbackProcAddress Constants (Messages)
Global Const BFFM_SETSTATUSTEXTA = (WM_USER + 100) '(WM_USER + 100)
Global Const BFFM_ENABLEOK = (WM_USER + 101) '(WM_USER + 101)
Global Const BFFM_SETSELECTIONA = (WM_USER + 102) '(WM_USER + 102)
Global Const BFFM_SETSELECTIONW = (WM_USER + 103) '(WM_USER + 103)
Global Const BFFM_SETSTATUSTEXTW = (WM_USER + 104) '(WM_USER + 104)

'GetCallbackProcAddress Constants (uMsg)
Global Const BFFM_INITIALIZED = 1 '1
Global Const BFFM_SELCHANGED = 2 '2
Global Const BFFM_VALIDATEFAILEDA = 3 '3
Global Const BFFM_VALIDATEFAILEDW = 4 '4

Sub Main()

'1: 1001,1002,1004,1038,1039,2006,2018,2019,2024,3001-3003,3006,3008-3011,9000-
9007,10032,10033,15005,15007,15025,15040,15043,16001,16002,16024,17020,18002,18004,180
05,18007-18009,18015,18021,31006
'2: 1000,1006-
1008,1010,1016,1017,1019,1024,1032,1033,1036,1039,1040,1041,2006,2010,3008,3009,5003,5
006,5007,5011,6009,7005,7014,10002,10010,10015,10020,10021,10038,10047,10048,10064,120
01-12010,12012-12036,13012,14004-14006,15007,15028,16003-
16005,16020,17000,17002,17004,17005,17007,17008,17010,17014,17018,17020-
17023,18004,18005,18007,18026,20001,20010-20016,20020,20022,20023,20030,21000-
21002,21006,21007,26000,26004-26006,26008-26010
'3: 1001-1005,1023,1035,3008,3009,5005,6005,15025,15032,15035,20024,26001-26003,26007
'4: 2001,3008,3009,4000-4002,4004-4010,5001,15003,18015
'5: 1005,1009-1014,1018,1021,1026,1028,1034,1037,2000,2003-
2007,2012,2016,2017,2021,3006-3009,3012,5000,5002,5008,5009,5015,5019,6000,6003-
6005,6007-6009,6014-6016,6019-6021,6025,6027,6028,6034-6037,7000,7004-
7008,7010,7011,7013,7014,10000,10002-10004,10006,10008,10009,10012,10014-10021,10027-
10030,10034-10036,10039,10040,10043,10044,10046,10049,10050,10053-10056,10064-
10068,13005,13011,13013,14000-14003,15000,15003-
15006,15008,15009,15011,15014,15015,15021,15024,15026-15040,15043-
15045,15047,15048,16000-16009,16020-16024,17000,17007,17024,18000-
18002,18011,18012,18024,18025,20000,20001,21000-21007,26004-26006,26008-26010,30000-
30010,30012,31001-31004,31007-31012
'6: 1009,2010-2014,2021,5002,5008,5009,5013,5017,5018,6003,6004,6016,6037,7002,7006 -
7008,10031,10034,10037,10066,10067,13013,15004,15006,15015,15024,15027,15036,15039,180
03,18010,18013,18014,18017-18020,18031,23000-23031
'7: 2007,5016,5021,6016,8001,11000,11006,11010,11011,13000-13002,15045,17020-17023
'8: 2002,2017,3003,3010,3011,4000,5015,5021,6003,6009,7001-
7003,7006,8001,10008,10025,12000-12009,12011-12036,12040-12052,12060-12062,12070-
12072,13005,13012,13013,14001-14003,14005,15001,15008,15009,15021,15043,15045,16006-
16008,16020-16023,17004,18000,18001,18007-18015,18017-18020,18022-18031,20001,20010-
20016,20020,20022-20024,20030,22000-22022,23000-23031,24000-24020,24022,24025-
24027,25000-25023,26004,27002,29008-29019,29021-29023,30001,30002,30005,31004,31006
'9: 2005,2018,2019,3007,3012,5009,5011,5013,5014,5018,5020,5023,6015,6027,8000-
8012,8016,8017,8019,8020,8023-8036,8038-8044,8046,8049-
8051,8053,8054,10001,10014,10022-
10024,10026,10035,10042,10057,13011,14007,15015,15027,15029,15034-
15036,15039,15040,15047,15048,16024,17024,18016,20001
'11: 3000-3003,3006-3012,13001
'12: 27000-27025,28000-28002,28005,28006,28010-28043,28080-28092,28150-28169,28173-
28176,28200,28201,28250-28256,29000-29003,29008-29019,29021-29023
'13: 24000-24020,24022,24025,24026,24027,25000-25023,31001-31003,31005,31007-
31010,31012
'15: 5006,5007,5020,15038,21001-21005

 'Set up defaults
 Options.Prediction_LineColor = vbRed
 Options.Prediction_ColumnColor = &HFF8080 'light blue
 Options.SaveLoad = vbChecked

 Call ReadOptionsFromDB
 Call ReadOptionsFromFile

APPENDIX B

Page 268

 gsDefaultConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=%PATH%;Persist
Security Info=False"
 fmMain.Show

End Sub

Public Sub ReadOptionsFromDB()

 On Error GoTo ErrorHandler

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset, TempRS1 As New ADODB.Recordset
 Dim lLevel As Long, lLastCatNum As Long, lTemp As Long
 Dim lNum As Long, lNumCount As Long
 Dim a As New ADOX.Catalog

 gbDBDetected = False

 lLevel = 0
 gsConnectionStringToMainDB = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &
App.Path & "\VF_DB.mdb;Persist Security Info=False"
 'gsConnectionStringToMainDB = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" &
App.Path & "\VF_DB1.mdb;Persist Security Info=False"

 'Open connection to DB
 lLevel = 1
 TempConn.ConnectionString = gsConnectionStringToMainDB
 TempConn.Open

 gbDBDetected = True

 '****************READ CUSTOM CATEGORIES**************************
 'Open recordset
 lLevel = 2
 Call OpenDBTable(TempConn, TempRS, "SELECT * FROM HVC")
 lNum = 0
 ReDim CustomCategoryInfo(lNum)
 Do While Not TempRS.EOF
 lNum = lNum + 1
 If lNum = 1 Then
 ReDim CustomCategoryInfo(1 To lNum)
 Else
 ReDim Preserve CustomCategoryInfo(1 To lNum)
 End If

 CustomCategoryInfo(lNum).Number = TempRS!HVC_Number
 CustomCategoryInfo(lNum).Description = "" & TempRS!HVC_Name

 TempRS.MoveNext
 Loop
 glCustomCategoriesNum = lNum

 'Close recordset
 TempRS.Close
 '****************READ CUSTOM CATEGORIES**************************

 '****************READ SW Packages**************************
 'Open recordset
 lLevel = 5
 Call OpenDBTable(TempConn, TempRS, "SELECT * FROM SWPackage")
 lNum = 0
 ReDim SWPackageInfo(lNum)
 Do While Not TempRS.EOF
 lNum = lNum + 1
 If lNum = 1 Then
 ReDim SWPackageInfo(1 To lNum)
 Else
 ReDim Preserve SWPackageInfo(1 To lNum)
 End If

 SWPackageInfo(lNum).Number = TempRS!Package_ID
 SWPackageInfo(lNum).Name = "" & TempRS!Package_Name
 SWPackageInfo(lNum).VulnDB.DBPathName = "" & TempRS!Vuln_DB_PathName
 SWPackageInfo(lNum).VulnDB.TableName = "" & TempRS!Vuln_DB_TableName
 SWPackageInfo(lNum).VulnDB.FieldName_ID = "" & TempRS!Vuln_DB_FieldName_ID
 SWPackageInfo(lNum).VulnDB.FieldName_Description = "" &
TempRS!Vuln_DB_FieldName_Description

 SOURCE CODE OF THE VF PROTOTYPE

 Page 269

 SWPackageInfo(lNum).ScanningDB.TableName = "" & TempRS!Scan_DB_TableName
 SWPackageInfo(lNum).ScanningDB.FieldName = "" & TempRS!Scan_DB_FieldName

 TempRS.MoveNext
 Loop
 'glCustomCategoriesNum = lNum

 'Close recordset
 TempRS.Close
 '****************READ SW Packages**************************

 '****************READ CYBERCOP CATEGORIES**************************
 'Open recordset
 lLevel = 3
 lLastCatNum = -1
 Call OpenDBTable(TempConn, TempRS, "SELECT * FROM VulnerabilityCategory",
"InternalPackageID ASC, VulnerabilityCategory_Number ASC")
 lNum = 0
 'ReDim SWPackageInfo(lNum)
 If Not TempRS.EOF Then
 Do While Not TempRS.EOF
 If TempRS!InternalPackageID <> lLastCatNum Then
 lNum = lNum + 1
 'If lNum = 1 Then
 ' ReDim SWPackageInfo(1 To lNum)
 'Else
 ' ReDim Preserve SWPackageInfo(1 To lNum)
 'End If

 lLastCatNum = TempRS!InternalPackageID

 lNumCount = 0
 ReDim SWPackageInfo(lNum).VulnDB.MainCategories(lNumCount)
 End If

 lNumCount = lNumCount + 1
 If lNumCount = 1 Then
 ReDim SWPackageInfo(lNum).VulnDB.MainCategories(1 To lNumCount)
 Else
 ReDim Preserve SWPackageInfo(lNum).VulnDB.MainCategories(1 To lNumCount)
 End If

 SWPackageInfo(lNum).VulnDB.MainCategories(lNumCount).Number =
TempRS!VulnerabilityCategory_ID
 SWPackageInfo(lNum).VulnDB.MainCategories(lNumCount).ID =
TempRS!VulnerabilityCategory_Number
 SWPackageInfo(lNum).VulnDB.MainCategories(lNumCount).Description =
TempRS!VulnerabilityCategory_Description
 SWPackageInfo(lNum).VulnDB.MainCategories(lNumCount).Sequence = ""

 SQL = "SELECT * FROM Vulnerability WHERE VulnerabilityCategory_Number=" &
CStr(TempRS!VulnerabilityCategory_Number)
 Call OpenDBTable(TempConn, TempRS1, SQL, "Vulnerability_Number")
 Do While Not TempRS1.EOF
 If SWPackageInfo(lNum).VulnDB.MainCategories(lNumCount).Sequence = "" Then
 SWPackageInfo(lNum).VulnDB.MainCategories(lNumCount).Sequence =
TempRS1!Vulnerability_Number
 Else
 SWPackageInfo(lNum).VulnDB.MainCategories(lNumCount).Sequence =
SWPackageInfo(lNum).VulnDB.MainCategories(lNumCount).Sequence & "," &
TempRS1!Vulnerability_Number
 End If
 TempRS1.MoveNext
 Loop
 TempRS1.Close

 TempRS.MoveNext
 Loop

 '****************READ MAPPING TABLES**************************
 'Open recordset
 lLevel = 4
 lLastCatNum = -1
 Call OpenDBTable(TempConn, TempRS1, "SELECT * FROM Mapping", "HVC_Number ASC,
Vulnerability_Number ASC")
 lNumCount = 0
 ReDim SWPackageInfo(lNum).VulnDB.Mapping(0)

APPENDIX B

Page 270

 Do While Not TempRS1.EOF
 lNumCount = 0
 lTemp = CLng(TempRS1!InternalPackageID)
 If lTemp <= UBound(SWPackageInfo) Then

 If lLastCatNum <> TempRS1!HVC_Number Then
 lLastCatNum = TempRS1!HVC_Number
 If lLastCatNum = 1 Then
 ReDim SWPackageInfo(lTemp).VulnDB.Mapping(1 To lLastCatNum)
 Else
 ReDim Preserve SWPackageInfo(lTemp).VulnDB.Mapping(1 To lLastCatNum)
 End If
 SWPackageInfo(lTemp).VulnDB.Mapping(lLastCatNum) = ""
 End If

 If SWPackageInfo(lTemp).VulnDB.Mapping(lLastCatNum) = "" Then
 SWPackageInfo(lTemp).VulnDB.Mapping(lLastCatNum) =
TempRS1!Vulnerability_Number
 Else
 SWPackageInfo(lTemp).VulnDB.Mapping(lLastCatNum) =
SWPackageInfo(lTemp).VulnDB.Mapping(lLastCatNum) & "," & TempRS1!Vulnerability_Number
 End If
 End If

 TempRS1.MoveNext
 Loop
 'Close recordset
 TempRS1.Close
 '****************READ MAPPING TABLES**************************
 End If

 'Close recordset
 TempRS.Close
 '****************READ CYBERCOP CATEGORIES**************************

 'Close connection to DB
 TempConn.Close

Quit:
 Exit Sub

ErrorHandler:
 Select Case lLevel
 Case 1
 'Can't open connection to DB
 Call MsgBox("Can't open database")
 End
 Case Else
 Resume Next
 End Select
 Resume Next
 Resume

End Sub

Public Function OpenDBTable(OpenConn As ADODB.Connection, OpenRecordset As
ADODB.Recordset, sOpenTable As String, Optional sOrderBy As String = "", Optional
CurLoc As CursorLocationEnum = adUseServer, Optional CurType As CursorTypeEnum =
adOpenKeyset, Optional LckType As LockTypeEnum = adLockOptimistic) As Boolean

 On Error GoTo Quit

 OpenDBTable = False

 Set OpenRecordset = New ADODB.Recordset
 OpenRecordset.CursorLocation = CurLoc
 OpenRecordset.CursorType = CurType
 OpenRecordset.LockType = LckType
 If sOrderBy = "" Then
 OpenRecordset.Open sOpenTable, OpenConn
 Else
 OpenRecordset.Open sOpenTable & " ORDER BY " & sOrderBy, OpenConn
 End If

 OpenDBTable = True

Quit:

 SOURCE CODE OF THE VF PROTOTYPE

 Page 271

 Exit Function

End Function

Public Sub ReadOptionsFromFile()

 Dim FileNum As Long, Place As Long
 Dim InputData As String, sLeftHS As String, sRightHS As String
 Dim lNum As Long, lNumCount As Long
 Dim bRedim As Boolean

 'Open file
 FileNum = FreeFile

 'Create text file if does not exist
 If Dir(App.Path & "\VulnPredict.vpl", vbArchive + vbHidden + vbNormal + vbReadOnly +
vbSystem + vbVolume) <> "VulnPredict.vpl" Then
 Call CreateDefaultTextFile
 End If

 'Open file for reading
 Open (App.Path & "\VulnPredict.vpl") For Input As #FileNum

 Do While Not EOF(FileNum) ' Check for end of file.
 Line Input #FileNum, InputData ' Read line of data.

 Select Case InputData

 Case "DATABASE PATHS"
 lNum = 0
 ReDim gsPreviousPaths(0)
 Do

 'Read Next line
 Line Input #FileNum, InputData

 If InputData <> "END OF DATABASE PATHS" Then
 lNum = lNum + 1
 If lNum = 1 Then
 ReDim gsPreviousPaths(1 To lNum)
 Else
 ReDim Preserve gsPreviousPaths(1 To lNum)
 End If
 gsPreviousPaths(lNum) = InputData
 End If

 Loop While InputData <> "END OF DATABASE PATHS"

 Case "ADJECTIVE LIST"
 lNum = 0
 ReDim gsAdjectives(0)
 Do

 'Read Next line
 Line Input #FileNum, InputData

 If InputData <> "END OF ADJECTIVE LIST" Then
 lNum = lNum + 1
 If lNum = 1 Then
 ReDim gsAdjectives(1 To lNum)
 Else
 ReDim Preserve gsAdjectives(1 To lNum)
 End If
 gsAdjectives(lNum) = InputData
 End If

 Loop While InputData <> "END OF ADJECTIVE LIST"

 Case "COMPARISON DATABASE PATHS"
 lNum = 0
 ReDim gsPreviousComparePaths(0)
 Do

 'Read Next line
 Line Input #FileNum, InputData

APPENDIX B

Page 272

 If InputData <> "END OF COMPARISON DATABASE PATHS" Then
 lNum = lNum + 1
 If lNum = 1 Then
 ReDim gsPreviousComparePaths(1 To lNum)
 Else
 ReDim Preserve gsPreviousComparePaths(1 To lNum)
 End If
 gsPreviousComparePaths(lNum) = InputData
 End If

 Loop While InputData <> "END OF COMPARISON DATABASE PATHS"

 Case "OPTIONS"
 Do

 'Read Next line
 Line Input #FileNum, InputData

 If InputData <> "END OF OPTIONS" Then
 Place = InStr(1, InputData, "|||")
 If Place > 0 Then
 sLeftHS = Left$(InputData, Place - 1)
 sRightHS = Mid$(InputData, Place + 3)
 If IsNumeric(sRightHS) Then
 Select Case sLeftHS
 Case "Prediction_LineColor": Options.Prediction_LineColor =
CLng(sRightHS)
 Case "Prediction_ColumnColor": Options.Prediction_ColumnColor =
CLng(sRightHS)
 Case "SaveLoad": Options.SaveLoad = CInt(sRightHS)
 End Select
 End If
 End If
 End If

 Loop While InputData <> "END OF OPTIONS"

 End Select
 Loop

 'Close file
 Close #FileNum 'Close file.

End Sub

Private Sub CreateDefaultTextFile()

 Dim FileNum As Long, Count As Long
 Dim InputData As String

 FileNum = FreeFile

 'Create file
 Open (App.Path & "\VulnPredict.vpl") For Output Access Write As #FileNum

 'Create default entries
 Print #FileNum, "DATABASE PATHS"
 Print #FileNum, "END OF DATABASE PATHS"

 Print #FileNum, "ADJECTIVE LIST"
 Print #FileNum, "Almost"
 Print #FileNum, "More or less"
 Print #FileNum, "More than"
 Print #FileNum, "Much more than"
 Print #FileNum, "END OF ADJECTIVE LIST"

 Print #FileNum, "COMPARISON DATABASE PATHS"
 Print #FileNum, "END OF COMPARISON DATABASE PATHS"

 Print #FileNum, "OPTIONS"
 Print #FileNum, "Prediction_LineColor|||" & Options.Prediction_LineColor
 Print #FileNum, "Prediction_ColumnColor|||" & Options.Prediction_ColumnColor
 Print #FileNum, "SaveLoad|||" & Options.SaveLoad
 Print #FileNum, "END OF OPTIONS"

End Sub

 SOURCE CODE OF THE VF PROTOTYPE

 Page 273

Public Sub WriteOptionsToFile()

 On Error GoTo ErrorHandler

 Dim FileNum As Long, Count As Long, CountIn As Long, lNum As Long
 Dim lLine As Long, lTempNum As Long

 'Open file
 lLine = 0
 FileNum = FreeFile
 lLine = 1

 'Destroy previous version on file
 If Dir(App.Path & "\VulnPredict.vpl", vbArchive + vbHidden + vbNormal + vbReadOnly +
vbSystem + vbVolume) = "VulnPredict.vpl" Then
 lLine = 2
 Kill App.Path & "\VulnPredict.vpl"
 End If

 'Create file
 lLine = 3
 Open (App.Path & "\VulnPredict.vpl") For Output Access Write As #FileNum

 'Write entries
 '***
 Print #FileNum, "DATABASE PATHS"
 '***
 lLine = 4
 lNum = UBound(gsPreviousPaths)
 lLine = 5
 For Count = 1 To lNum
 Print #FileNum, gsPreviousPaths(Count)
 Next Count

 Print #FileNum, "END OF DATABASE PATHS"

 '***
 Print #FileNum, "ADJECTIVE LIST"
 '***
 lLine = 6
 lNum = UBound(gsAdjectives)
 lLine = 7
 For Count = 1 To lNum
 Print #FileNum, gsAdjectives(Count)
 Next Count

 Print #FileNum, "END OF ADJECTIVE LIST"

 '***
 Print #FileNum, "COMPARISON DATABASE PATHS"
 '***
 lLine = 8
 lNum = UBound(gsPreviousComparePaths)
 lLine = 9
 For Count = 1 To lNum
 Print #FileNum, gsPreviousComparePaths(Count)
 Next Count

 Print #FileNum, "END OF COMPARISON DATABASE PATHS"

 '***
 Print #FileNum, "OPTIONS"
 '***
 Print #FileNum, "Prediction_LineColor|||" & Options.Prediction_LineColor
 Print #FileNum, "Prediction_ColumnColor|||" & Options.Prediction_ColumnColor
 Print #FileNum, "SaveLoad|||" & Options.SaveLoad
 Print #FileNum, "END OF OPTIONS"

 lLine = 12
 Close #FileNum

Quit:
 Exit Sub

APPENDIX B

Page 274

ErrorHandler:
 Select Case lLine
 Case 4, 6, 8, 10: lNum = 0: Resume Next
 Case 20: lTempNum = 0: Resume Next
 Case Else: Resume Quit
 End Select
 Resume

End Sub

Private Sub SplitStringIntoLeftRight(sStringToSplit As String, sLeft As String, sRight
As String, Optional sSeperator As String = "|||")

 Dim Place As Long

 Place = InStr(1, sStringToSplit, sSeperator)
 If Place > 0 Then
 sLeft = Left$(sStringToSplit, Place - 1)
 sRight = Mid$(sStringToSplit, Place + Len(sSeperator))
 Else
 sLeft = sStringToSplit
 sRight = ""
 End If

End Sub

Public Sub OptimizeCommaSeperatedNumbers(sString As String)

 Dim lFirstNumberInSequence As Long, lNextNumberInSequence As Long
 Dim PlaceS As Long, PlaceNextS As Long, PlaceNextE As Long, PlaceTemp As Long
 Dim lSequenceStartComma As Long, lSequenceEndComma As Long
 Dim sTemp As String, s1 As String, sF As String
 Dim lNumInSequence As Long, Count As Long
 Dim bOK As Boolean
 Dim sSequences() As String
 Dim lNumSequences As Long

 'Remove sequences
 PlaceS = InStr(1, sString, "-")
 Do While (PlaceS > 0)
 PlaceNextS = InStrRev(sString, ",", PlaceS)
 If PlaceNextS > 0 Then
 sTemp = Mid$(sString, PlaceNextS + 1, PlaceS - (PlaceNextS + 1))
 Else
 sTemp = Left$(sString, PlaceS - 1)
 End If

 If IsNumeric(sTemp) Then
 sF = sTemp
 s1 = sTemp & "-"
 lFirstNumberInSequence = CLng(sTemp)

 PlaceNextS = InStr(PlaceS, sString, ",")
 If PlaceNextS > 0 Then
 sTemp = Mid$(sString, PlaceS + 1, PlaceNextS - (PlaceS + 1))
 Else
 sTemp = Mid$(sString, PlaceS + 1)
 End If

 If IsNumeric(sTemp) Then
 s1 = s1 & sTemp
 lNextNumberInSequence = CLng(sTemp)

 Do While lFirstNumberInSequence < lNextNumberInSequence
 lFirstNumberInSequence = lFirstNumberInSequence + 1
 sF = sF & "," & CStr(lFirstNumberInSequence)
 Loop

 sString = Replace(sString, s1, sF)
 End If
 End If

 PlaceS = InStr(PlaceS + 1, sString, "-")
 Loop

 bOK = True

 SOURCE CODE OF THE VF PROTOTYPE

 Page 275

 lNumSequences = 0
 PlaceS = 0
 Do While bOK
 lNumInSequence = 1
 lFirstNumberInSequence = GetNextNumber(PlaceS + 1, sString, PlaceNextS)
 lNextNumberInSequence = GetNextNumber(PlaceNextS + 1, sString, PlaceNextE)

 If ((lFirstNumberInSequence + 1) = lNextNumberInSequence) Then
 lSequenceStartComma = PlaceNextS
 Do While ((lFirstNumberInSequence + 1) = lNextNumberInSequence)
 lNumInSequence = lNumInSequence + 1

 lFirstNumberInSequence = lNextNumberInSequence
 lNextNumberInSequence = GetNextNumber(PlaceNextE + 1, sString, PlaceTemp)

 If ((lFirstNumberInSequence + 1) = lNextNumberInSequence) Then
lSequenceEndComma = PlaceNextE

 PlaceNextE = PlaceTemp
 PlaceS = InStr(PlaceS + 1, sString, ",")
 Loop
 Else
 PlaceS = InStr(PlaceS + 1, sString, ",")
 If PlaceNextE < 1 Then PlaceS = 0
 End If

 If (lNumInSequence > 2) Then
 lNumSequences = lNumSequences + 1
 If lNumSequences = 1 Then
 ReDim sSequences(1 To lNumSequences)
 Else
 ReDim Preserve sSequences(1 To lNumSequences)
 End If
 sSequences(lNumSequences) = Mid$(sString, lSequenceStartComma, lSequenceEndComma
- lSequenceStartComma + 1)
 End If

 bOK = (PlaceS > 0)

 Loop

 If lNumSequences > 0 Then
 For Count = 1 To lNumSequences
 sString = Replace(sString, sSequences(Count), "-")
 Next Count
 End If

End Sub

Private Function GetNextNumber(lFromComma As Long, sString As String, lNextComma As
Long) As Long

 Dim lTemp As Long
 Dim sTemp As String

 lNextComma = InStr(lFromComma, sString, ",")
 If lNextComma > 0 Then
 sTemp = Mid$(sString, lFromComma, lNextComma - lFromComma)
 If IsNumeric(sTemp) Then
 lTemp = CLng(sTemp)
 End If
 Else
 sTemp = Mid$(sString, lFromComma)
 If sTemp <> "" Then
 If IsNumeric(sTemp) Then lTemp = CLng(sTemp)
 End If
 End If
 GetNextNumber = lTemp

End Function

Public Sub CreateCommaSeperatedNumbersFromOptimizedString(sString As String)

 Dim PlaceS As Long, PlaceNextS As Long, lFirstNumberInSequence As Long,
lNextNumberInSequence As Long
 Dim sTemp As String, sF As String, s1 As String

APPENDIX B

Page 276

 PlaceS = InStr(1, sString, "-")
 Do While (PlaceS > 0)
 PlaceNextS = InStrRev(sString, ",", PlaceS)
 If PlaceNextS > 0 Then
 sTemp = Mid$(sString, PlaceNextS + 1, PlaceS - (PlaceNextS + 1))
 Else
 sTemp = Left$(sString, PlaceS - 1)
 End If

 If IsNumeric(sTemp) Then
 sF = sTemp
 s1 = sTemp & "-"
 lFirstNumberInSequence = CLng(sTemp)

 PlaceNextS = InStr(PlaceS, sString, ",")
 If PlaceNextS > 0 Then
 sTemp = Mid$(sString, PlaceS + 1, PlaceNextS - (PlaceS + 1))
 Else
 sTemp = Mid$(sString, PlaceS + 1)
 End If

 If IsNumeric(sTemp) Then
 s1 = s1 & sTemp
 lNextNumberInSequence = CLng(sTemp)

 Do While lFirstNumberInSequence < lNextNumberInSequence
 lFirstNumberInSequence = lFirstNumberInSequence + 1
 sF = sF & "," & CStr(lFirstNumberInSequence)
 Loop

 sString = Replace(sString, s1, sF)
 End If
 End If

 PlaceS = InStr(PlaceS + 1, sString, "-")
 Loop

End Sub

Private Function CheckFile(Path As String) As Boolean

 On Error GoTo ErrorHandler

 Dim Result As Boolean

 Result = False

 If Dir(Path) <> "" Then
 Result = True
 End If

Quit:

 CheckFile = Result

 Exit Function

ErrorHandler:

 Resume Quit

End Function

Public Function GetProcAddress(Address As Long) As Long
 GetProcAddress = Address
End Function

Public Function BrowseCallbackProc(ByVal lhWnd As Long, ByVal luMsg As Long, ByVal
lParam As Long, ByVal lpData As Long) As Long
 On Error Resume Next

 Dim Path As String
 Dim sBuffer As String

 Select Case luMsg

 Case BFFM_INITIALIZED '1

 SOURCE CODE OF THE VF PROTOTYPE

 Page 277

 If InitDir <> "" Then
 Call SendMessageStr(lhWnd, BFFM_SETSELECTIONA, 1, lstrcat(InitDir, ""))
 End If

 Case BFFM_SELCHANGED '2
 If (lParam) Then
 sBuffer = Space(MAX_PATH)
 SHGetPathFromIDList lParam, sBuffer
 Path = Left(sBuffer, InStr(sBuffer, vbNullChar))
 End If

 If Path <> Chr(0) Then

 If gsFilter <> "" Then
 If CheckFile(Left(Path, InStr(Path, vbNullChar) - 1) & "\" & gsFilter) Then
 Call SendMessageStr(lhWnd, BFFM_SETSTATUSTEXTA, 0, gsStatusTextFound)
 Call PostMessage(lhWnd, BFFM_ENABLEOK, 0, 1)
 Else
 Call SendMessageStr(lhWnd, BFFM_SETSTATUSTEXTA, 0, Path)
 Call PostMessage(lhWnd, BFFM_ENABLEOK, 0, 0)
 End If
 Else
 Call SendMessageStr(lhWnd, BFFM_SETSTATUSTEXTA, 0, Path)
 End If

 Else

 If gsFilter <> "" Then
 Call SendMessageStr(lhWnd, BFFM_SETSTATUSTEXTA, 0, Path)
 Call PostMessage(lhWnd, BFFM_ENABLEOK, 0, 0)
 Else
 Call SendMessageStr(lhWnd, BFFM_SETSTATUSTEXTA, 0, Path)
 End If

 End If

 Case BFFM_VALIDATEFAILEDA '3

 Case BFFM_VALIDATEFAILEDW = 4 '4

 End Select
End Function

Public Function GetNumberOfDBsInDirectory(sDirectory As String, DirFiles() As
ScanInfoType) As Long

 Dim sTempDir As String, sTempFile As String
 Dim lNum As Long

 sTempDir = sDirectory
 If sTempDir = "" Then
 GetNumberOfDBsInDirectory = 0
 Exit Function
 End If

 lNum = 0
 'Get first file name in directory
 sTempFile = Dir(sTempDir, vbArchive + vbHidden + vbNormal + vbReadOnly + vbSystem +
vbVolume)

 'Loop through all files in directory
 Do While sTempFile <> ""
 If (sTempFile <> ".") And (sTempFile <> "..") Then
 'If file has .mdb extension -> increment counter
 If LCase(Right$(sTempFile, 4)) = ".mdb" Then
 lNum = lNum + 1
 If lNum = 1 Then
 ReDim DirFiles(1 To lNum)
 Else
 ReDim Preserve DirFiles(1 To lNum)
 End If

 DirFiles(lNum).TableName = sTempFile
 End If
 End If

 'Get next file

APPENDIX B

Page 278

 sTempFile = Dir
 Loop

 GetNumberOfDBsInDirectory = lNum

End Function

Public Sub GetNumberOfVulnerabilitiesForTable(sTablePath As String, TableInfo As
ScanInfoType)

 On Error GoTo ErrorHandler

 Dim Count As Long, CountIn As Long
 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset
 Dim sGUIDTableName As String
 Dim lIndex() As Long

 ReDim TableInfo.VulnCount(1 To glNumVulnerabilityCategories)
 ReDim TableInfo.VulnID(1 To glNumVulnerabilityCategories)

 'Open ADO connection to database
 TempConn.ConnectionString = Replace(gsDefaultConnString, "%PATH%", sTablePath &
TableInfo.TableName)
 TempConn.Open

 sGUIDTableName = SWPackageCurrent.ScanningDB.TableName

 'Open recordset
 TempRS.CursorLocation = adUseServer
 TempRS.CursorType = adOpenStatic
 TempRS.LockType = adLockOptimistic

 'Get data
 TempRS.Open "SELECT * FROM " & sGUIDTableName & " WHERE " &
SWPackageCurrent.ScanningDB.FieldName & ">0 ORDER BY " &
SWPackageCurrent.ScanningDB.FieldName & " ASC", TempConn, adCmdTable

 If fmMain.chkMap.Value = vbChecked Then
 For Count = 1 To glNumVulnerabilityCategories
 TableInfo.VulnCount(Count) = Count
 Next Count
 Else
 For Count = 1 To glNumVulnerabilityCategories
 TableInfo.VulnID(Count) = SWPackageCurrent.VulnDB.MainCategories(Count).Number
 Next Count
 End If

 Do While Not TempRS.EOF
 If fmMain.chkMap.Value = vbChecked Then
 Call
MapVulnerabilityToCategory(TempRS.Fields(SWPackageCurrent.ScanningDB.FieldName).Value,
TableInfo)
 Else
 'This function should only return one, but can return more
 lIndex =
SubCategoryIDBelongsToWhichCategory(TempRS.Fields(SWPackageCurrent.ScanningDB.FieldNam
e).Value)

 For Count = 1 To UBound(lIndex)
 For CountIn = 1 To glNumVulnerabilityCategories
 If TableInfo.VulnID(CountIn) = lIndex(Count) Then
 TableInfo.VulnCount(CountIn) = TableInfo.VulnCount(CountIn) + 1
 GoTo AfterCountIn
 End If
 Next CountIn
AfterCountIn:
 Next Count

 End If

 TempRS.MoveNext
 Loop

 TempRS.Close

Quit:

 SOURCE CODE OF THE VF PROTOTYPE

 Page 279

 Exit Sub

ErrorHandler:
 Resume Quit

End Sub

Public Sub MapVulnerabilityToCategory(VulnID As Long, TableInfo As ScanInfoType)

 On Error GoTo ErrorHandler

 Dim Count As Long, CountArray As Long, lVuln As Long, Place As Long
 Dim sFirst As String, sLast As String
 Dim sCatArray() As String
 Dim sTemp As String
 Dim bFound As Boolean

 bFound = False
 'If lLastBlah <> VulnID Then
 ' lLastBlah = VulnID
 ' Stop
 'End If
 For Count = 1 To glNumVulnerabilityCategories
 sTemp = SWPackageCurrent.VulnDB.Mapping(Count)
 Call CreateCommaSeperatedNumbersFromOptimizedString(sTemp)
 sCatArray = Split(sTemp, ",")

 For CountArray = 0 To UBound(sCatArray)
 If IsNumeric(sCatArray(CountArray)) Then
 lVuln = CLng(sCatArray(CountArray))
 If lVuln > VulnID Then GoTo BeforeNext
 If VulnID = lVuln Then
 'Found category
 TableInfo.VulnCount(Count) = TableInfo.VulnCount(Count) + 1
 bFound = True
 End If
 End If
 Next CountArray

BeforeNext:
 Next Count

Quit:
 'If Not bFound Then Stop
 Exit Sub

ErrorHandler:
 Resume Next
 Resume

End Sub

Public Function SubCategoryIDBelongsToWhichCategory(SubCatID As Long) As Long()

 Dim Count As Long, CountArray As Long, lNumReturn As Long
 Dim sTemp As String
 Dim sSplit() As String
 Dim lReturn() As Long

 ReDim lReturn(0)
 lNumReturn = 0
 For Count = 1 To UBound(SWPackageCurrent.VulnDB.MainCategories)
 sTemp = SWPackageCurrent.VulnDB.MainCategories(Count).Sequence
 Call CreateCommaSeperatedNumbersFromOptimizedString(sTemp)

 If sTemp <> "" Then
 sSplit = Split(sTemp, ",")

 For CountArray = 0 To UBound(sSplit)
 If CLng(sSplit(CountArray)) > SubCatID Then GoTo AfterCountArray
 If CLng(sSplit(CountArray)) = SubCatID Then
 lNumReturn = lNumReturn + 1
 If lNumReturn = 1 Then
 ReDim lReturn(1 To lNumReturn)
 Else
 ReDim Preserve lReturn(1 To lNumReturn)
 End If

APPENDIX B

Page 280

 lReturn(lNumReturn) = SWPackageCurrent.VulnDB.MainCategories(Count).Number
 GoTo AfterCountArray
 End If
 Next CountArray
 End If
AfterCountArray:
 Next Count

 SubCategoryIDBelongsToWhichCategory = lReturn

End Function

Public Sub UnloadApplication(Optional UnloadFmMain As Boolean = True)

 Call WriteOptionsToFile

 If gbFmCalculationsLoaded Then Unload fmCalculations
 If gbFmGraphicsLoaded Then Unload fmGraphics
 If gbFmHelpLoaded Then Unload fmHelp
 If gbFmOptionsLoaded Then Unload fmOptions
 If gbFmSetupLoaded Then Unload fmSetup
 If gbFmSetupNames Then Unload fmSetupNames
 If gbFmSWSetupLoaded Then Unload fmSWSetup
 If UnloadFmMain Then Unload fmMain

End Sub

Public Sub SetTab(ByRef tsTabStrip As TabStrip, ByRef frmFrameArray As Object)

 Dim tabIndex As Long

 'Go through all of the frames, only setting the wanted one visible
 For tabIndex = 1 To frmFrameArray.Count
 If tabIndex = tsTabStrip.SelectedItem.Index Then
 'If this is the selected tab, set the frame visible
 frmFrameArray(tabIndex - 1).Visible = True
 'frmFrameArray(tabIndex - 1).ZOrder = 0
 Else
 'Hide unwanted frames
 frmFrameArray(tabIndex - 1).Visible = False
 End If
 Next tabIndex

End Sub

Public Sub ClearSWPackageInfo(TempSWPackageInfo As SWPackageInfoType)

 TempSWPackageInfo.Number = 0
 TempSWPackageInfo.Name = "<New Package>"

 TempSWPackageInfo.VulnDB.DBPathName = ""
 TempSWPackageInfo.VulnDB.TableName = ""
 TempSWPackageInfo.VulnDB.FieldName_ID = ""
 TempSWPackageInfo.VulnDB.FieldName_Description = ""
 ReDim TempSWPackageInfo.VulnDB.Mapping(0)

 TempSWPackageInfo.ScanningDB.TableName = ""
 TempSWPackageInfo.ScanningDB.FieldName = ""
 TempSWPackageInfo.ScanningDB.SampleDB.DBPathName = ""
 TempSWPackageInfo.ScanningDB.SampleDB.CreatedFrom = 0
 TempSWPackageInfo.ScanningDB.SampleDB.SQLResultTableName = ""

End Sub

Public Function GetMaxID(sTable As String, sIDField As String) As Long

 On Error GoTo ErrorHandler

 Dim TempConn As New ADODB.Connection
 Dim TempRS As New ADODB.Recordset
 Dim lMax As Long

 'Open connection to DB
 TempConn.ConnectionString = gsConnectionStringToMainDB
 TempConn.Open

 'Open recordset

 SOURCE CODE OF THE VF PROTOTYPE

 Page 281

 TempRS.CursorLocation = adUseServer
 TempRS.CursorType = adOpenKeyset
 TempRS.LockType = adLockOptimistic
 TempRS.Open "SELECT MAX(" & sIDField & ") AS MaxID FROM " & sTable, TempConn
 lMax = TempRS!MaxID

Quit:
 GetMaxID = lMax
 Exit Function

ErrorHandler:
 lMax = 0
 Resume Quit

End Function

BB..33 SSOOUURRCC EE CCOODD EE FFOORR TTHHEE CCOO NNTTRROOLLSS

B.3.1 The “GraphView” control

The “GraphView” control is used to create any graph that needs to be displayed.

The source code for this control follows below.

Option Explicit

Dim bPropertiesRead As Boolean

Private bColumnBarsAlreadyLoaded As Boolean
Private bDoPicture As Boolean

Private Const m_const_Font_Size As Long = 10
Private Const mX_const_Min As Long = 0
Private mX_const_Max As Long '= glNumVulnerabilityCategories
Private Const mX_const_Increment As Long = 1
Private Const mY_const_Min As Long = 0
Private Const mY_const_Max As Long = 100
Private Const mY_const_Increment As Long = 10

Private mHeading As String
Private mFont_Size As Long
Private mPrediction_DisplayInfo As Boolean
Private mPrediction_Heading_Bottom As String
Private mPrediction_Heading_Top As String
Private mPrediction_LineColor As OLE_COLOR
Private mSpecial_LineColor As OLE_COLOR
Private mSpecial_Display As Boolean
Private mSpecial_Lowerbound As Long
Private mSpecial_Upperbound As Long
Private mUseCustomMouseIcon As Boolean
Private mX_Heading As String
Private mX_Min As Long
Private mX_Max As Long
Private mX_Increment As Long
Private mX_Values As String
Private mY_Heading As String
Private mY_Min As Long
Private mY_Max As Long
Private mY_Increment As Long
Private mY_GridLines As Boolean

Private Type PredType
 Lowerbound As Long
 Upperbound As Long
End Type

APPENDIX B

Page 282

Public Event MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
Public Event Click()

Private Sub lblColumnVal_Click(Index As Integer)
 RaiseEvent Click
End Sub

Private Sub lblColumnVal_MouseMove(Index As Integer, Button As Integer, Shift As
Integer, X As Single, Y As Single)
 RaiseEvent MouseMove(Button, Shift, X, Y)
 Call DoCustomCursorIcon
End Sub

Private Sub lblHeading_Click()
 RaiseEvent Click
End Sub

Private Sub lblHeading_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 RaiseEvent MouseMove(Button, Shift, X, Y)
 Call DoCustomCursorIcon
End Sub

Private Sub lblHeadingX_Click()
 RaiseEvent Click
End Sub

Private Sub lblHeadingX_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 RaiseEvent MouseMove(Button, Shift, X, Y)
 Call DoCustomCursorIcon
End Sub

Private Sub lblXValue_Click(Index As Integer)
 RaiseEvent Click
End Sub

Private Sub lblXValue_MouseMove(Index As Integer, Button As Integer, Shift As Integer,
X As Single, Y As Single)
 RaiseEvent MouseMove(Button, Shift, X, Y)
 Call DoCustomCursorIcon
End Sub

Private Sub lblYValue_Click(Index As Integer)
 RaiseEvent Click
End Sub

Private Sub lblYValue_MouseMove(Index As Integer, Button As Integer, Shift As Integer,
X As Single, Y As Single)
 RaiseEvent MouseMove(Button, Shift, X, Y)
 Call DoCustomCursorIcon
End Sub

Private Sub UserControl_Click()
 RaiseEvent Click
End Sub

Private Sub UserControl_InitProperties()
 mX_const_Max = glNumVulnerabilityCategories
 mHeading = "Heading"
 mFont_Size = m_const_Font_Size
 mSpecial_LineColor = vbWindowText
 mPrediction_DisplayInfo = False
 mPrediction_Heading_Bottom = ""
 mPrediction_Heading_Top = ""
 mPrediction_LineColor = vbWindowText
 mSpecial_Display = False
 mSpecial_Lowerbound = 0
 mSpecial_Upperbound = 0
 mUseCustomMouseIcon = False
 mX_Heading = "X-Axis"
 mX_Min = mX_const_Min
 mX_Max = mX_const_Max
 mX_Increment = mX_const_Increment
 mX_Values = ""
 mY_Min = mY_const_Min

 SOURCE CODE OF THE VF PROTOTYPE

 Page 283

 mY_Max = mY_const_Max
 mY_Heading = "Y-Axis"
 mY_Increment = mY_const_Increment
 mY_GridLines = False
 Call DrawGraph
End Sub

Private Sub UserControl_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 RaiseEvent MouseMove(Button, Shift, X, Y)
 Call DoCustomCursorIcon
End Sub

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
 mHeading = PropBag.ReadProperty("Heading", "Heading")
 mFont_Size = PropBag.ReadProperty("FontSize", m_const_Font_Size)
 mPrediction_DisplayInfo = PropBag.ReadProperty("Prediction_DisplayInfo", False)
 mPrediction_Heading_Bottom = PropBag.ReadProperty("Prediction_Heading_Bottom", "")
 mPrediction_Heading_Top = PropBag.ReadProperty("Prediction_Heading_Top", "")
 mPrediction_LineColor = PropBag.ReadProperty("Prediction_LineColor", vbWindowText)
 mSpecial_LineColor = PropBag.ReadProperty("Special_LineColor", vbWindowText)
 mSpecial_Display = PropBag.ReadProperty("Special_Display", False) 'False
 mSpecial_Lowerbound = PropBag.ReadProperty("Special_Lowerbound", 0)
 mSpecial_Upperbound = PropBag.ReadProperty("Special_Upperbound", 0)
 mUseCustomMouseIcon = PropBag.ReadProperty("UseCustomMouseIcon", False)
 bDoPicture = False
 Set MouseIcon = PropBag.ReadProperty("MouseIcon", Nothing)
 bDoPicture = True
 mX_Heading = PropBag.ReadProperty("XAxis_Heading", "X-Axis")
 mX_Min = PropBag.ReadProperty("XAxis_Min", mX_const_Min)
 mX_Max = PropBag.ReadProperty("XAxis_Max", mX_const_Max)
 mX_Increment = PropBag.ReadProperty("XAxis_Increment", mX_const_Increment)
 mX_Values = PropBag.ReadProperty("XAxis_Values", "")
 mY_Heading = PropBag.ReadProperty("YAxis_Heading", "Y-Axis")
 mY_Min = PropBag.ReadProperty("YAxis_Min", mY_const_Min)
 mY_Max = PropBag.ReadProperty("YAxis_Max", mY_const_Max)
 mY_Increment = PropBag.ReadProperty("YAxis_Increment", mY_const_Increment)
 mY_GridLines = PropBag.ReadProperty("YAxis_GridLines", False)
 bPropertiesRead = True
 Call DrawGraph
End Sub

Private Sub UserControl_Resize()
 lblHeading.Left = (UserControl.ScaleWidth - lblHeading.Width) / 2
 lblHeadingX.Move (UserControl.ScaleWidth - lblHeadingX.Width) / 2,
UserControl.ScaleHeight - lblHeadingX.Height - 4
 lblHeadingY.Top = (UserControl.ScaleHeight - lblHeadingY.Height) / 2
 If bPropertiesRead Then Call DrawGraph(False)
End Sub

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
 Call PropBag.WriteProperty("Heading", mHeading, "Heading")
 Call PropBag.WriteProperty("FontSize", mFont_Size, m_const_Font_Size)
 Call PropBag.WriteProperty("Prediction_DisplayInfo", mPrediction_DisplayInfo, False)
 Call PropBag.WriteProperty("Prediction_Heading_Bottom", mPrediction_Heading_Bottom,
"")
 Call PropBag.WriteProperty("Prediction_Heading_Top", mPrediction_Heading_Top, "")
 Call PropBag.WriteProperty("Prediction_LineColor", mPrediction_LineColor,
vbWindowText)
 Call PropBag.WriteProperty("Special_LineColor", mSpecial_LineColor, vbWindowText)
 Call PropBag.WriteProperty("Special_Display", mSpecial_Display, False)
 Call PropBag.WriteProperty("Special_Lowerbound", mSpecial_Lowerbound, 0)
 Call PropBag.WriteProperty("Special_Upperbound", mSpecial_Upperbound, 0)
 Call PropBag.WriteProperty("UseCustomMouseIcon", mUseCustomMouseIcon, False)
 Call PropBag.WriteProperty("MouseIcon", MouseIcon, Nothing)
 Call PropBag.WriteProperty("XAxis_Heading", mX_Heading, "X-Axis")
 Call PropBag.WriteProperty("XAxis_Min", mX_Min, mX_const_Min)
 Call PropBag.WriteProperty("XAxis_Max", mX_Max, mX_const_Max)
 Call PropBag.WriteProperty("XAxis_Increment", mX_Increment, mX_const_Increment)
 Call PropBag.WriteProperty("XAxis_Values", mX_Values, "")
 Call PropBag.WriteProperty("YAxis_Heading", mY_Heading, "Y-Axis")
 Call PropBag.WriteProperty("YAxis_Min", mY_Min, mY_const_Min)
 Call PropBag.WriteProperty("YAxis_Max", mY_Max, mY_const_Max)
 Call PropBag.WriteProperty("YAxis_Increment", mY_Increment, mY_const_Increment)
 Call PropBag.WriteProperty("YAxis_GridLines", mY_GridLines, False)
End Sub

APPENDIX B

Page 284

Public Property Get Heading() As String
 Heading = mHeading
End Property

Public Property Let Heading(ByVal NewValue As String)
 mHeading = NewValue
 PropertyChanged "Heading"
 lblHeading.Caption = NewValue
 Call UserControl_Resize
End Property

Public Property Get FontSize() As Long
 FontSize = mFont_Size
End Property

Public Property Let FontSize(ByVal NewValue As Long)
 mFont_Size = NewValue
 PropertyChanged "FontSize"
 Call DrawGraph
End Property

Public Property Get MouseIcon() As Picture
 Set MouseIcon = picPicture.Picture
End Property

Public Property Set MouseIcon(ByVal NewValue As Picture)
 Set picPicture.Picture = NewValue
 PropertyChanged "MouseIcon"
End Property

Public Property Get Prediction_DisplayInfo() As Boolean
 Prediction_DisplayInfo = mPrediction_DisplayInfo
End Property

Public Property Let Prediction_DisplayInfo(ByVal NewValue As Boolean)
 mPrediction_DisplayInfo = NewValue
 PropertyChanged "Prediction_DisplayInfo"
End Property

Public Property Get Prediction_Heading_Bottom() As String
 Prediction_Heading_Bottom = mPrediction_Heading_Bottom
End Property

Public Property Let Prediction_Heading_Bottom(ByVal NewValue As String)
 mPrediction_Heading_Bottom = NewValue
 PropertyChanged "Prediction_Heading_Bottom"
End Property

Public Property Get Prediction_Heading_Top() As String
 Prediction_Heading_Top = mPrediction_Heading_Top
End Property

Public Property Let Prediction_Heading_Top(ByVal NewValue As String)
 mPrediction_Heading_Top = NewValue
 PropertyChanged "Prediction_Heading_Top"
End Property

Public Property Get Prediction_LineColor() As OLE_COLOR
 Prediction_LineColor = mPrediction_LineColor
End Property

Public Property Let Prediction_LineColor(ByVal NewValue As OLE_COLOR)
 mPrediction_LineColor = NewValue
 PropertyChanged "Prediction_LineColor"
End Property

Public Property Get Special_LineColor() As OLE_COLOR
 Special_LineColor = mSpecial_LineColor
End Property

Public Property Let Special_LineColor(ByVal NewValue As OLE_COLOR)
 mSpecial_LineColor = NewValue
 PropertyChanged "Special_LineColor"
 Call DisplaySpecialLines
End Property

Public Property Get Special_Display() As Boolean

 SOURCE CODE OF THE VF PROTOTYPE

 Page 285

 Special_Display = mSpecial_Display
End Property

Public Property Let Special_Display(ByVal NewValue As Boolean)
 mSpecial_Display = NewValue
 PropertyChanged "Special_Display"
 Call DisplaySpecialLines
End Property

Public Property Get Special_Lowerbound() As Long
 Special_Lowerbound = mSpecial_Lowerbound
End Property

Public Property Let Special_Lowerbound(ByVal NewValue As Long)
 mSpecial_Lowerbound = NewValue
 PropertyChanged "Special_Lowerbound"
 Call DisplaySpecialLines
End Property

Public Property Get Special_Upperbound() As Long
 Special_Upperbound = mSpecial_Upperbound
End Property

Public Property Let Special_Upperbound(ByVal NewValue As Long)
 mSpecial_Upperbound = NewValue
 PropertyChanged "Special_Upperbound"
 Call DisplaySpecialLines
End Property

Public Property Get UseCustomMouseIcon() As Boolean
 UseCustomMouseIcon = mUseCustomMouseIcon
End Property

Public Property Let UseCustomMouseIcon(ByVal NewValue As Boolean)
 mUseCustomMouseIcon = NewValue
 PropertyChanged "UseCustomMouseIcon"
End Property

Public Property Get XAxis_Heading() As String
 XAxis_Heading = mX_Heading
End Property

Public Property Let XAxis_Heading(ByVal NewValue As String)
 mX_Heading = NewValue
 PropertyChanged "XAxis_Heading"
 lblHeadingX.Caption = NewValue
 Call UserControl_Resize
End Property

Public Property Get XAxis_Min() As Long
 XAxis_Min = mX_Min
End Property

Public Property Let XAxis_Min(ByVal NewValue As Long)
 mX_Min = NewValue
 PropertyChanged "XAxis_Min"
 Call DrawGraph
End Property

Public Property Get XAxis_Max() As Long
 XAxis_Max = mX_Max
End Property

Public Property Let XAxis_Max(ByVal NewValue As Long)
 mX_Max = NewValue
 PropertyChanged "XAxis_Max"
 Call DrawGraph
End Property

Public Property Get XAxis_Increment() As Long
 XAxis_Increment = mX_Increment
End Property

Public Property Let XAxis_Increment(ByVal NewValue As Long)
 mX_Increment = NewValue
 PropertyChanged "XAxis_Increment"
 Call DrawGraph

APPENDIX B

Page 286

End Property

Public Property Get XAxis_Values() As String
 XAxis_Values = mX_Values
End Property

Public Property Let XAxis_Values(ByVal NewValue As String)
 mX_Values = NewValue
 PropertyChanged "XAxis_Values"
 Call UserControl_Resize
End Property

Public Property Get YAxis_Heading() As String
 YAxis_Heading = mY_Heading
End Property

Public Property Let YAxis_Heading(ByVal NewValue As String)
 mY_Heading = NewValue
 PropertyChanged "YAxis_Heading"
 lblHeadingY.Caption = NewValue
 Call UserControl_Resize
End Property

Public Property Get YAxis_Min() As Long
 YAxis_Min = mY_Min
End Property

Public Property Let YAxis_Min(ByVal NewValue As Long)
 mY_Min = NewValue
 PropertyChanged "YAxis_Min"
 Call DrawGraph
End Property

Public Property Get YAxis_Max() As Long
 YAxis_Max = mY_Max
End Property

Public Property Let YAxis_Max(ByVal NewValue As Long)
 mY_Max = NewValue
 PropertyChanged "YAxis_Max"
 Call DrawGraph
End Property

Public Property Get YAxis_Increment() As Long
 YAxis_Increment = mY_Increment
End Property

Public Property Let YAxis_Increment(ByVal NewValue As Long)
 mY_Increment = NewValue
 PropertyChanged "YAxis_Increment"
 Call DrawGraph
End Property

Public Property Get YAxis_GridLines() As Boolean
 YAxis_GridLines = mY_GridLines
End Property

Public Property Let YAxis_GridLines(ByVal NewValue As Boolean)
 mY_GridLines = NewValue
 PropertyChanged "YAxis_GridLines"
 Call DrawGraph
End Property

Private Sub DrawGraph(Optional bReloadObjects As Boolean = True)

 On Error GoTo ErrorHandler

 Dim lNumIncrements As Long, Count As Long
 Dim sngStart As Single, sngAddLeftTop As Single
 Dim lValues() As Long
 Dim bUseOwnValues As Boolean
 Dim XAxisValues() As String
 Dim lTemp1 As Long, lTemp2 As Long

 lblHeading.Caption = mHeading
 lblHeading.FontSize = mFont_Size
 lblHeadingX.Caption = mX_Heading

 SOURCE CODE OF THE VF PROTOTYPE

 Page 287

 lblHeadingX.FontSize = mFont_Size
 lblHeadingY.Caption = mY_Heading
 lblHeadingY.FontSize = mFont_Size

 linXAxis.X2 = UserControl.ScaleWidth - 14
 If mPrediction_DisplayInfo Then
 linXAxis.Y1 = UserControl.ScaleHeight - 60
 linXAxis.Y2 = UserControl.ScaleHeight - 60
 Else
 linXAxis.Y1 = UserControl.ScaleHeight - 45
 linXAxis.Y2 = UserControl.ScaleHeight - 45
 End If
 linYAxis.Y2 = UserControl.ScaleHeight - 40

 If bReloadObjects Then
 If linX.Count > 1 Then
 For Count = 1 To linX.Count - 1
 Unload linX(Count)
 Unload lblXValue(Count)
 Next Count
 End If
 End If

 lNumIncrements = (mY_Max - mY_Min) / mY_Increment

 bUseOwnValues = (mX_Values <> "")
 If bUseOwnValues Then
 XAxisValues = Split(mX_Values, ",")

 If (UBound(XAxisValues) + 1) <> ((mX_Max - mX_Min) / mX_Increment) Then
 ReDim Preserve XAxisValues(0 To ((mX_Max - mX_Min) / mX_Increment) - 1)
 End If
 End If

 sngStart = linXAxis.Y1
 sngAddLeftTop = (linXAxis.Y1 - linYAxis.Y1) / lNumIncrements
 lblXValue(0).Caption = mY_Min
 lblXValue(0).FontSize = mFont_Size - 2
 lblXValue(0).AutoSize = False
 lblXValue(0).Left = linXAxis.X1 - lblXValue(0).Width - 4
 lblXValue(0).Top = sngStart - (lblXValue(0).Height / 2)
 lblXValue(0).Visible = True
 For Count = 1 To lNumIncrements
 If bReloadObjects Then
 Load linX(Count)
 Load lblXValue(Count)
 End If

 sngStart = sngStart - sngAddLeftTop
 linX(Count).X1 = linXAxis.X1
 If Not mY_GridLines Then
 linX(Count).X2 = linYAxis.X1
 End If
 linX(Count).Y1 = sngStart
 linX(Count).Y2 = sngStart
 linX(Count).Visible = True

 lblXValue(Count).AutoSize = True
 lblXValue(Count).FontSize = mFont_Size - 2
 lblXValue(Count).Caption = mY_Increment * Count
 lblXValue(Count).AutoSize = False
 lblXValue(Count).Left = linXAxis.X1 - lblXValue(Count).Width - 4
 lblXValue(Count).Top = sngStart - (lblXValue(0).Height / 2)
 lblXValue(Count).Visible = True
 Next Count
 linYAxis.Y1 = linX(lNumIncrements).Y1

 If bReloadObjects Then
 If linY.Count > 1 Then
 For Count = 1 To linY.Count - 1
 Unload linY(Count)
 Unload lblYValue(Count)
 Next Count
 End If
 End If

 lNumIncrements = ((mX_Max - mX_Min) / mX_Increment)

APPENDIX B

Page 288

 If lNumIncrements <= 0 Then lNumIncrements = 1
 sngStart = linYAxis.X1
 sngAddLeftTop = (linXAxis.X2 - linXAxis.X1) / lNumIncrements
 For Count = 1 To lNumIncrements
 If bReloadObjects Then
 Load linY(Count)
 Load lblYValue(Count)
 End If
 sngStart = sngStart + sngAddLeftTop
 linY(Count).Y1 = linXAxis.Y1
 linY(Count).Y2 = linY(Count).Y1 + 5
 linY(Count).X1 = sngStart
 linY(Count).X2 = sngStart
 linY(Count).Visible = True

 lblYValue(Count).AutoSize = True
 lblYValue(Count).FontSize = mFont_Size - 2
 If bUseOwnValues Then
 lblYValue(Count).Caption = XAxisValues(Count - 1)
 Else
 lblYValue(Count).Caption = mX_Increment * Count
 End If
 lblYValue(Count).AutoSize = False
 If Count = 1 Then
 lblYValue(Count).Left = ((sngStart + linYAxis.X1) / 2) - (lblYValue(Count).Width
/ 2)
 Else
 lblYValue(Count).Left = ((sngStart + linY(Count - 1).X1) / 2) -
(lblYValue(Count).Width / 2)
 End If
 lblYValue(Count).Top = linXAxis.Y1 + 6
 lblYValue(Count).Visible = True
 Next Count
 linXAxis.X2 = linY(lNumIncrements).X1

 If mY_GridLines Then
 For Count = 1 To linX.Count - 1
 linX(Count).X2 = linXAxis.X2
 Next Count
 linY(linY.Count - 1).Y1 = linX(linX.Count - 1).Y1
 End If

 If shpBar.Count > 1 Then
 ReDim lValues(1 To lblColumnVal.Count - 1)

 For Count = 1 To lblColumnVal.Count - 1
 lValues(Count) = CLng(lblColumnVal(Count).Caption)
 Next Count

 If Not bReloadObjects Then bColumnBarsAlreadyLoaded = True
 Call DrawGraphColumns(lValues)
 End If

 Call DisplaySpecialLines

Quit:
 Exit Sub

ErrorHandler:
 If Err = 380 Then
 mFont_Size = 10
 Resume
 End If
 MsgBox Err.Description, vbCritical, "Error" + Str(Err)
 Resume Quit
 Resume

End Sub

Public Sub DrawGraphColumns(ColumnValues() As Long)

 On Error GoTo ErrorHandler

 Dim lNumColumns As Long, Count As Long
 Dim sngWidth As Single, sngTop As Single
 Dim Val As Long
 Dim nIndex As Integer

 SOURCE CODE OF THE VF PROTOTYPE

 Page 289

 Dim Percentage As Double

 'Unload previously loaded column bars
 If Not bColumnBarsAlreadyLoaded Then
 If shpBar.Count > 1 Then
 For Count = 1 To shpBar.Count - 1
 Unload shpBar(Count)
 Unload lblColumnVal(Count)
 Next Count
 End If
 End If

 lNumColumns = UBound(ColumnValues)
 If lNumColumns > ((mX_Max - mX_Min) / mX_Increment) Then lNumColumns = ((mX_Max -
mX_Min) / mX_Increment)
 If lNumColumns < 0 Then Exit Sub

 linX(0).Y1 = linXAxis.Y1
 linX(0).Y2 = linXAxis.Y2

 sngWidth = (linY(1).X1 - linYAxis.X1) / 2
 For Count = 1 To lNumColumns
 If Not bColumnBarsAlreadyLoaded Then
 Load shpBar(Count)
 Load lblColumnVal(Count)
 End If

 Val = ColumnValues(Count)
 lblColumnVal(Count).AutoSize = True
 lblColumnVal(Count).FontSize = mFont_Size - 2
 lblColumnVal(Count).Caption = Val
 lblColumnVal(Count).AutoSize = False

 shpBar(Count).Width = sngWidth
 If Count = 1 Then
 shpBar(Count).Left = ((linY(1).X1 + linYAxis.X1) / 2) - (sngWidth / 2)
 lblColumnVal(Count).Left = ((linY(1).X1 + linYAxis.X1) / 2) -
(lblColumnVal(Count).Width / 2)
 Else
 shpBar(Count).Left = ((linY(Count).X1 + linY(Count - 1).X1) / 2) - (sngWidth /
2)
 lblColumnVal(Count).Left = ((linY(Count).X1 + linY(Count - 1).X1) / 2) -
(lblColumnVal(Count).Width / 2)
 End If

 If Val > 0 Then
 nIndex = 0
 Do While Val > CLng(lblXValue(nIndex).Caption)
 nIndex = nIndex + 1
 Loop
AfterTooManyElements:
 Percentage = (Val - CLng(lblXValue(nIndex - 1).Caption)) /
(CLng(lblXValue(nIndex).Caption) - CLng(lblXValue(nIndex - 1).Caption))
 sngTop = (linX(nIndex - 1).Y1) - ((linX(nIndex - 1).Y1 - linX(nIndex).Y1) *
Percentage)
 shpBar(Count).Top = sngTop

 shpBar(Count).Height = linXAxis.Y1 - sngTop

 lblColumnVal(Count).Top = sngTop - (lblColumnVal(Count).Height * 1.5)

 shpBar(Count).Visible = True
 Else
 lblColumnVal(Count).Top = linXAxis.Y1 - (lblColumnVal(Count).Height * 1.25)
 shpBar(Count).Visible = False
 End If

 lblColumnVal(Count).Visible = True

 Next Count

Quit:
 bColumnBarsAlreadyLoaded = False
 Exit Sub

ErrorHandler:
 If Err = 340 Then

APPENDIX B

Page 290

 nIndex = nIndex - 1
 Resume AfterTooManyElements
 End If
 Resume Quit
 Resume

End Sub

Public Function GetGraphColumnValues(ColumnValues() As Long) As Long

 On Error Resume Next

 Dim lNumCols As Long
 Dim Count As Long

 lNumCols = (lblColumnVal.Count - 1)
 If lNumCols <= 0 Then
 lNumCols = 0
 ReDim ColumnValues(lNumCols)
 Else
 ReDim ColumnValues(1 To lNumCols)
 End If

 If lNumCols > 0 Then
 For Count = 1 To (lblColumnVal.Count - 1)
 ColumnValues(Count) = CLng(lblColumnVal(Count).Caption)
 Next Count
 End If

 GetGraphColumnValues = lNumCols

End Function

Private Sub DoCustomCursorIcon()

 Dim Count As Long

 If mUseCustomMouseIcon = True Then
 If picPicture.Picture <> LoadPicture("") Then
 UserControl.MousePointer = vbCustom
 Set UserControl.MouseIcon = picPicture.Picture
 lblHeading.MousePointer = vbCustom
 Set lblHeading.MouseIcon = picPicture.Picture
 lblHeadingX.MousePointer = vbCustom
 Set lblHeadingX.MouseIcon = picPicture.Picture

 For Count = 1 To (lblXValue.Count - 1)
 lblXValue(Count).MousePointer = vbCustom
 Set lblXValue(Count).MouseIcon = picPicture.Picture
 Next Count
 For Count = 1 To (lblYValue.Count - 1)
 lblYValue(Count).MousePointer = vbCustom
 Set lblYValue(Count).MouseIcon = picPicture.Picture
 Next Count
 For Count = 1 To (lblColumnVal.Count - 1)
 lblColumnVal(Count).MousePointer = vbCustom
 Set lblColumnVal(Count).MouseIcon = picPicture.Picture
 Next Count
 Else
 UserControl.MousePointer = vbNormal
 lblHeading.MousePointer = vbNormal
 lblHeadingX.MousePointer = vbNormal

 For Count = 1 To (lblXValue.Count - 1)
 lblXValue(Count).MousePointer = vbNormal
 Next Count
 For Count = 1 To (lblYValue.Count - 1)
 lblYValue(Count).MousePointer = vbNormal
 Next Count
 For Count = 1 To (lblColumnVal.Count - 1)
 lblColumnVal(Count).MousePointer = vbNormal
 Next Count
 End If
 Else
 UserControl.MousePointer = vbNormal
 lblHeading.MousePointer = vbNormal
 lblHeadingX.MousePointer = vbNormal

 SOURCE CODE OF THE VF PROTOTYPE

 Page 291

 For Count = 1 To (lblXValue.Count - 1)
 lblXValue(Count).MousePointer = vbNormal
 Next Count
 For Count = 1 To (lblYValue.Count - 1)
 lblYValue(Count).MousePointer = vbNormal
 Next Count
 For Count = 1 To (lblColumnVal.Count - 1)
 lblColumnVal(Count).MousePointer = vbNormal
 Next Count
 End If

End Sub

Private Sub DisplaySpecialLines()

 Dim sngTop As Single

 If mSpecial_Display Then
 linSpecialTop.BorderColor = mSpecial_LineColor
 linSpecialBottom.BorderColor = mSpecial_LineColor

 'Get top line values
 sngTop = GetLineYValues(mSpecial_Upperbound)
 linSpecialTop.X1 = linYAxis.X1 + 1
 If mY_GridLines Then
 linSpecialTop.X2 = linXAxis.X2
 Else
 linSpecialTop.X2 = linXAxis.X2
 End If
 linSpecialTop.Y1 = sngTop
 linSpecialTop.Y2 = sngTop

 'Get bottom line values
 sngTop = GetLineYValues(mSpecial_Lowerbound)
 linSpecialBottom.X1 = linYAxis.X1 + 1
 If mY_GridLines Then
 linSpecialBottom.X2 = linXAxis.X2
 Else
 linSpecialBottom.X2 = linXAxis.X2
 End If
 linSpecialBottom.Y1 = sngTop
 linSpecialBottom.Y2 = sngTop

 linSpecialTop.Visible = True
 linSpecialBottom.Visible = True
 Else
 linSpecialTop.Visible = False
 linSpecialBottom.Visible = False
 End If

End Sub

Public Sub DrawGraphWithPredictions(ColumnValues() As Long, PredictionLowerBounds() As
Long, PredictionUpperBounds() As Long)

 On Error GoTo ErrorHandler

 Dim lNumColumns As Long, Count As Long
 Dim sngWidth As Single, sngTop As Single, sngLeft As Single
 Dim Val As Long
 Dim nIndex As Integer
 Dim Percentage As Double

 If (UBound(ColumnValues) < 1) Or (UBound(PredictionLowerBounds) < 1) Or
(UBound(PredictionUpperBounds) < 1) Then Exit Sub

 Call DrawGraphColumns(ColumnValues)

 'Unload previously loaded bound-lines
 For Count = 1 To (linPredictTop.Count - 1)
 Unload shpPredict(Count)
 Unload linPredictTop(Count)
 'Unload linPredictBottom(Count)
 Next Count

 If linY.Count > 1 Then

APPENDIX B

Page 292

 For Count = 1 To (linY.Count - 1)
 Load linPredictTop(Count)
 Load shpPredict(Count)

 If PredictionLowerBounds(Count) = PredictionUpperBounds(Count) Then
 linPredictTop(Count).BorderColor = mPrediction_LineColor
 If Count = 1 Then
 linPredictTop(Count).X1 = linYAxis.X1 + 1
 Else
 linPredictTop(Count).X1 = linY(Count - 1).X1 + 1
 End If
 linPredictTop(Count).X2 = linY(Count).X1
 sngTop = GetLineYValues(PredictionUpperBounds(Count))
 linPredictTop(Count).Y1 = sngTop
 linPredictTop(Count).Y2 = sngTop
 linPredictTop(Count).Visible = True
 linPredictTop(Count).ZOrder 0
 'If sngTop <> linXAxis.Y1 Then linPredictTop(Count).ZOrder 0
 Else
 shpPredict(Count).BorderColor = mPrediction_LineColor
 shpPredict(Count).FillColor = mPrediction_LineColor
 shpPredict(Count).FillStyle = vbSolid
 If Count = 1 Then
 shpPredict(Count).Left = linYAxis.X1 + 1
 shpPredict(Count).Width = linY(Count).X1 - (linYAxis.X1 + 1)
 Else
 shpPredict(Count).Left = linY(Count - 1).X1 + 1
 shpPredict(Count).Width = linY(Count).X1 - (linY(Count - 1).X1 + 1)
 End If
 sngTop = GetLineYValues(PredictionUpperBounds(Count))
 shpPredict(Count).Top = sngTop
 shpPredict(Count).Height = GetLineYValues(PredictionLowerBounds(Count)) -
sngTop
 shpPredict(Count).Visible = True
 shpPredict(Count).ZOrder 1
 End If

 'Load linPredictBottom(Count)
 'linPredictBottom(Count).BorderColor = mPrediction_LineColor
 'linPredictBottom(Count).X1 = linPredictTop(Count).X1
 'linPredictBottom(Count).X2 = linPredictTop(Count).X2
 'sngTop = GetLineYValues(PredictionLowerBounds(Count))
 'linPredictBottom(Count).Y1 = sngTop
 'linPredictBottom(Count).Y2 = sngTop
 'linPredictBottom(Count).Visible = True
 'linPredictBottom(Count).ZOrder 0
 Next Count
 End If

 If mPrediction_DisplayInfo Then
 lblInfo(0).Caption = mPrediction_Heading_Top
 lblInfo(1).Caption = mPrediction_Heading_Bottom
 If TextWidth(mPrediction_Heading_Top) > TextWidth(mPrediction_Heading_Bottom) Then
 sngLeft = linXAxis.X2 - lblInfo(0).Width
 Else
 sngLeft = linXAxis.X2 - lblInfo(1).Width
 End If
 lblInfo(0).Left = sngLeft
 lblInfo(1).Left = sngLeft
 lblInfo(0).Top = lblYValue(lblYValue.Count - 1).Top + lblYValue(lblYValue.Count -
1).Height + 5
 lblInfo(1).Top = lblInfo(0).Top + lblInfo(0).Height - 3
 shpInfo.Left = sngLeft - shpInfo.Width - 10
 shpInfo.Top = lblInfo(1).Top + ((lblInfo(1).Height - shpInfo.Height) / 2)
 linInfo.BorderColor = mPrediction_LineColor
 linInfo.Y1 = lblInfo(0).Top + (lblInfo(0).Height / 2)
 linInfo.Y2 = linInfo.Y1
 linInfo.X1 = shpInfo.Left
 linInfo.X2 = shpInfo.Left + shpInfo.Width

 lblInfo(0).Visible = True
 lblInfo(1).Visible = True
 linInfo.Visible = True
 shpInfo.Visible = True
 Else
 lblInfo(0).Visible = False
 lblInfo(1).Visible = False

 SOURCE CODE OF THE VF PROTOTYPE

 Page 293

 linInfo.Visible = False
 shpInfo.Visible = False
 End If

Quit:
 Exit Sub

ErrorHandler:
 Resume Quit
 Resume

End Sub

Private Function GetLineYValues(ColumnValue As Long) As Single

 Dim Val As Long
 Dim nIndex As Integer
 Dim Percentage As Double
 Dim sngTop As Single

 If ColumnValue = 0 Then
 GetLineYValues = linXAxis.Y1 '- 1
 Exit Function
 End If

 nIndex = 0
 Val = ColumnValue
 Do While Val > CLng(lblXValue(nIndex).Caption)
 nIndex = nIndex + 1
 Loop
 Percentage = (Val - CLng(lblXValue(nIndex - 1).Caption)) /
(CLng(lblXValue(nIndex).Caption) - CLng(lblXValue(nIndex - 1).Caption))
 sngTop = (linX(nIndex - 1).Y1) - ((linX(nIndex - 1).Y1 - linX(nIndex).Y1) *
Percentage)
 GetLineYValues = sngTop

End Function

B.3.2 The “SumView” control

The “SumView” control is used to draw a summation function in a step when

calculating the fuzzy expected value.

The source code for this control follows below.

Option Explicit

'Constants
Private Const m_const_Variable As String = "i"
Private Const m_const_FromValue As String = "1"
Private Const m_const_ToValue As String = "1"

'Values
Private mVariable As String
Private mFromValue As String
Private mToValue As String

Private Sub UserControl_InitProperties()
 mVariable = m_const_Variable
 mFromValue = m_const_FromValue
 mToValue = m_const_ToValue
End Sub

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
 mVariable = PropBag.ReadProperty("Variable", m_const_Variable)
 mFromValue = PropBag.ReadProperty("FromValue", m_const_FromValue)
 mToValue = PropBag.ReadProperty("ToValue", m_const_ToValue)
 Call DrawSum

APPENDIX B

Page 294

End Sub

Private Sub UserControl_Resize()

 If lblFrom.Width > imgSum.Width Then
 UserControl.Width = (lblFrom.Width + 20) '/ Screen.TwipsPerPixelX
 Else
 UserControl.Width = (imgSum.Width + 20) '/ Screen.TwipsPerPixelX
 End If
 UserControl.Height = (lblFrom.Top + lblFrom.Height + 20) '* Screen.TwipsPerPixelY

End Sub

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
 Call PropBag.WriteProperty("Variable", mVariable, m_const_Variable)
 Call PropBag.WriteProperty("FromValue", mFromValue, m_const_FromValue)
 Call PropBag.WriteProperty("ToValue", mToValue, m_const_ToValue)
End Sub

Public Property Get Variable() As String
 Variable = mVariable
End Property

Public Property Let Variable(ByVal NewValue As String)
 mVariable = NewValue
 PropertyChanged "Variable"
 Call DrawSum
End Property

Public Property Get FromValue() As String
 FromValue = mFromValue
End Property

Public Property Let FromValue(ByVal NewValue As String)
 mFromValue = NewValue
 PropertyChanged "FromValue"
 Call DrawSum
End Property

Public Property Get ToValue() As String
 ToValue = mToValue
End Property

Public Property Let ToValue(ByVal NewValue As String)
 mToValue = NewValue
 PropertyChanged "ToValue"
 Call DrawSum
End Property

Private Sub DrawSum()

 lblFrom.Caption = mVariable & "=" & mFromValue
 lblTo.Caption = mToValue

 lblTo.Top = 0
 imgSum.Top = lblTo.Height + 10 '(5 * Screen.TwipsPerPixelY)
 lblFrom.Top = imgSum.Top + imgSum.Height + 10 '(10 * Screen.TwipsPerPixelY)

 If lblFrom.Width > imgSum.Width Then
 lblFrom.Left = 0
 imgSum.Left = (lblFrom.Width - imgSum.Width) / 2
 lblTo.Left = (lblFrom.Width - lblTo.Width) / 2
 Else
 imgSum.Left = 0
 lblFrom.Left = (imgSum.Width - lblFrom.Width) / 2
 lblTo.Left = (imgSum.Width - lblTo.Width) / 2
 End If
 Call UserControl_Resize

End Sub

 SOURCE CODE OF THE VF PROTOTYPE

 Page 295

B.3.3 The “VertLabel” control

The “VertLabel” control is used to draw the bars on a graph.

The source code for this control follows below.

Option Explicit

Dim bPropertiesRead As Boolean

Const m_const_Font_Size As Long = 10

Private mCaption As String
Private mFont_Size As String
Private mBackColor As OLE_COLOR

'API functions
Private Declare Function CreateFontIndirect Lib "gdi32" Alias "CreateFontIndirectA"
(lpLogFont As LOGFONT) As Long
Private Declare Function SelectObject Lib "gdi32" (ByVal hdc As Long, ByVal hObject As
Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long
Private Declare Function GetTextExtentPoint32 Lib "gdi32" Alias
"GetTextExtentPoint32A" (ByVal hdc As Long, ByVal lpsz As String, ByVal cbString As
Long, lpSize As POINTAPI) As Long

'Constants
Private Const LF_FACESIZE As Long = 32
Private Const FW_DONTCARE As Long = 0
Private Const FW_THIN As Long = 100
Private Const FW_EXTRALIGHT As Long = 200
Private Const FW_ULTRALIGHT As Long = 200
Private Const FW_LIGHT As Long = 300
Private Const FW_NORMAL As Long = 400
Private Const FW_REGULAR As Long = 400
Private Const FW_MEDIUM As Long = 500
Private Const FW_SEMIBOLD As Long = 600
Private Const FW_DEMIBOLD As Long = 600
Private Const FW_BOLD As Long = 700
Private Const FW_EXTRABOLD As Long = 800
Private Const FW_ULTRABOLD As Long = 800
Private Const FW_HEAVY As Long = 900
Private Const FW_BLACK As Long = 900

'Types
Private Type LOGFONT
 lfHeight As Long
 lfWidth As Long
 lfEscapement As Long
 lfOrientation As Long
 lfWeight As Long
 lfItalic As Byte
 lfUnderline As Byte
 lfStrikeOut As Byte
 lfCharSet As Byte
 lfOutPrecision As Byte
 lfClipPrecision As Byte
 lfQuality As Byte
 lfPitchAndFamily As Byte
 lfFaceName As String * LF_FACESIZE
End Type

Private Type POINTAPI
 X As Long
 Y As Long
End Type

Public Event Click()
Public Event MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)

APPENDIX B

Page 296

Private Sub UserControl_Click()
 RaiseEvent Click
End Sub

Private Sub UserControl_InitProperties()
 mCaption = "Caption"
 mFont_Size = m_const_Font_Size
 mBackColor = vbButtonFace
 Call DrawLabel
End Sub

Private Sub UserControl_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 RaiseEvent MouseMove(Button, Shift, X, Y)
End Sub

Private Sub UserControl_Paint()
 Call DrawLabel
End Sub

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
 mCaption = PropBag.ReadProperty("Caption", "Caption")
 mBackColor = PropBag.ReadProperty("BackColor", vbButtonFace)
 mFont_Size = PropBag.ReadProperty("FontSize", m_const_Font_Size)
 bPropertiesRead = True
 Call DrawLabel
End Sub

Private Sub UserControl_Resize()
 If bPropertiesRead Then Call DrawLabel
End Sub

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
 Call PropBag.WriteProperty("Caption", mCaption, "Caption")
 Call PropBag.WriteProperty("BackColor", mBackColor, vbButtonFace)
 Call PropBag.WriteProperty("FontSize", mFont_Size, m_const_Font_Size)
End Sub

Public Property Get Caption() As String
 Caption = mCaption
End Property

Public Property Let Caption(ByVal NewValue As String)
 mCaption = NewValue
 PropertyChanged "Caption"
 Call DrawLabel
End Property

Public Property Get BackColor() As OLE_COLOR
 BackColor = mBackColor
End Property

Public Property Let BackColor(ByVal NewValue As OLE_COLOR)
 mBackColor = NewValue
 PropertyChanged "BackColor"
 Call DrawLabel
End Property

Public Property Get FontSize() As Long
 FontSize = mFont_Size
End Property

Public Property Let FontSize(ByVal NewValue As Long)
 mFont_Size = NewValue
 PropertyChanged "FontSize"
 Call DrawLabel
End Property

Private Sub DrawLabel()

 Dim font As LOGFONT
 Dim prevFont As Long, hFont As Long, ret As Long
 Dim TextSize As POINTAPI

 UserControl.Cls
 UserControl.BackColor = mBackColor

 SOURCE CODE OF THE VF PROTOTYPE

 Page 297

 font.lfEscapement = 900
 font.lfFaceName = "Arial" & Chr$(0) 'Null character at end, ONLY True-type fonts
 font.lfWeight = FW_BOLD

 'Windows expects the font size to be in pixels and to
 'be negative if you are specifying the character height
 'you want.
 If mFont_Size = "" Then
 mFont_Size = "0"
 End If
 font.lfHeight = (mFont_Size * -20) / Screen.TwipsPerPixelY
 hFont = CreateFontIndirect(font)
 prevFont = SelectObject(UserControl.hdc, hFont)

 'Get the height and width of our text
 GetTextExtentPoint32 UserControl.hdc, mCaption, Len(mCaption), TextSize

 UserControl.CurrentX = 0 'usercontrol.ScaleWidth / 2
 UserControl.CurrentY = (TextSize.X * Screen.TwipsPerPixelY) 'usercontrol.ScaleHeight
/ 2
 DoEvents
 UserControl.Print mCaption '"Rotated Text"
 ' Clean up by restoring original font.
 ret = SelectObject(UserControl.hdc, prevFont)
 ret = DeleteObject(hFont)

 UserControl.Width = (TextSize.Y * Screen.TwipsPerPixelX)
 UserControl.Height = (TextSize.X * Screen.TwipsPerPixelY)

End Sub

APPENDIX B

Page 298

 Page 299

AAPPPPEENNDDIIXX CC

CCYYBBEERRCCOOPP SSCCAANNNNEERR RREEPPOORRTT
__

The CyberCop Scanner report that was created for the specific scan scenario as stated

in Chapter 8. The report was 162 pages long. An extract of that report for one

specific host, eclab173.rau.ac.za, is shown in this appendix.

CyberCop Scanner Results

 Report Sorted By Host

 152.106.42.173 14 Vulnerabilities
 eclab173.rau.ac.za

 1041 Trace route to host

 Risk Factor: Low
 Complexity: Low
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Insecure Design
 Ease of Fix: Moderate
 Description: This module traces the route to the host being scanned in the same

 manner as the traceroute program in UNIX or the tracert program in
 Windows NT. The route information is stored to the network map file
 as well as being returned by the module. The network mapper uses this
 information to build a map of the network.

 Security Concerns: By allowing traceroutes into your network from outside you allow detailed
 network maps to be derived from the information available. Targets for
 exploitation can be determined from these maps. This presents a strong
 enticement risk.
 Suggestion: Block all unnecessary ICMP, UDP and TCP ports, and loose and strict source
 routed packets. This is usually accomplished with firewall and network
 routing technology. Protect your sensitive servers with such technology
 where possible.

APPENDIX C

Page 300

 16020 NetBIOS Name Table Retrieval

 Risk Factor: Low
 Complexity: Medium
 Popularity: Widespread
 Impact: Intelligence
 Root Cause: Misconfiguration
 Ease of Fix: Moderate
 Description: This check obtains the system name tables from the remote system's NetBIOS
 name service.

 Security Concerns: By accessing system name table information, individuals can obtain
 information which can be used to launch an attack. Information
 available includes:
 1. The NetBIOS name of the server.
 2. The Windows NT workgroup domain name.
 3. Login names of users who are logged into the server.
 4. The name of the administrator account if they are logged into the server.
 Suggestion: Ensure that users outside of your network are not permitted to access
 the NetBIOS name service. This can be performed by implementing packet
 filters on UDP port 137.

 18001 Connection to IPC$ as Anonymous User Allowed

 Risk Factor: Low
 Complexity: Medium
 Popularity: Widespread
 Impact: Intelligence
 Root Cause: Misconfiguration
 Ease of Fix: Simple
 Description: The remote host allows the Anonymous user to establish connections to the
 IPC$ share over the network. The IPC$ share is used by Windows NT to
 provide a number of system administration services to other networked
 users.
 Unix machines running the Samba SMB service also make an IPC$ share
 available over the network.

 Security Concerns: By default, various services and pipes are offered by the IPC$ share
 which cannot be easily restricted by Windows NT.
 Suggestion: It is suggested that you ensure proper restrictions are present to
 disallow connections to IPC$ from entering your network. This can be
 performed by disallowing TCP port 139 from being accessed by the outside
 network. Ensure that you are aware that restricting access to port
 139 may limit the functionality of Windows NT to the outside network.
 This sh ould be performed by preventing your firewall or router from
 passing TCP port 139.
 Consult the Samba documentation for more information about this issue
 under Unix.

 CYBERCOP SCANNER REPORT

 Page 301

 18024 Unable to access IPC$ or Registry

 Risk Factor: Low
 Complexity: Low
 Popularity: Widespread
 Impact: System Integrity::Authorization ::Intelligence
 Root Cause: Misconfiguration
 Ease of Fix: Simple
 Description: CyberCop Scanner was unable to obtain full access to the target
 host's IPC$ share, or the Windows NT registry. Many of the policy
 checks in the scanner require access to the IPC$ share or to the

 registry of the machine being scanned. Without the proper access,
 some checks will not be able to detect vulnerabilities on the remote
 machine. This module provides a warning specifying when access to
 the IPC$ share, the HKEY_LOCAL_MACHINE registry hive or the
 HKEY_USERS registry hive was not granted. This indicates that a complete
 audit of the target system may not have been performed.
 This can occur if the account the scan is being run from does not have
 access to the machine being scanned or if the account does not have
 sufficient permission to access the remote resources.
 This may also indicate that the machine is a standalone system, or is
 not part of the same Windows NT domain from which the scan is being
 performed.
 If access to the registry was not obtained, it may also indicate that
 the target system is not a Windows NT system.

 Security Concerns:
 Suggestion: Ensure that you have run the scanner as the domain Administrator, who
 has sufficient access to perform auditing of the target system.

 21001 TCP port scanning

 Risk Factor: Low
 Complexity: Low
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Insecure Design
 Ease of Fix: Difficult
 Description: This check scans a target host for listening TCP ports.
 Security Concerns:
 Suggestion: The scanner will return which TCP ports are listening. You should check

 these ports to see if they are running services that you have approved. If
 they are running services which are undocumented, or which you do not wish
 to run, we suggest you disable them.

Many operating systems are shipped with a large number of services that are not
required for normal operation. In some cases these services may contain known
or unknown security problems. It is recommended that any services which are
not required be disabled.

APPENDIX C

Page 302

 21002 UDP scanning check

 Risk Factor: Low
 Complexity: Medium
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Insecure Design
 Ease of Fix: Difficult
 Description: This check scans a target host for listening UDP ports.
 Scanning for active UDP ports is very difficult to perform reliably.
 This is due to the fact that UDP is a connectionless protocol, and there
 is no reliable indication whether or not a connection has been established.
 There are 2 primary methods used to scan for listening UDP ports:
 1. Sending data to a UDP port, and awaiting a response from that port.
 2. Sending data to a UDP port, and awaiting an ICMP port unreachable
 message, indicating that this port is NOT active. This allows us to
 build a listing of ports which may be active (if no port unreachable
 message is received from that port).
 There are problems when using both methods.
 When using method 1 and sending random data to each UDP port, many
 services will not respond if they cannot recognize the data. This results
 in being unable to detect many UDP servers which may be running.
 Using method 2 is reliable if we can ensure that two conditions are met:
 1. No ICMP port unreachable messages are lost in transit.
 2. The host reliably returns an ICMP port unreachable packet for every
 port that is inactive. This varies from operating system to operating
 system, in that certain operating systems implement thresholds to prevent
 themselves from sending out too many ICMP port unreachable messages
 in a period of time. Examples of this threshold have been found in
 versions of Linux and Solaris.
 CyberCop Scanner attempts to determine the best method for scanning a host
 for listening UDP servers. It's first choice is to scan by sending data
 and watching for ICMP unreachable messages. CyberCop Scanner will
 determine whether this is possible by first attempting this on ports 45000-45009.
 If CyberCop Scanner receives back all 10 ICMP port unreachable messages,
 it will use this method to scan for active UDP services, and assumes that
 the host reliably returns ICMP port unreachable messages. If this test
 fails, then method 1 is used, and data is sent to each port, awaiting a
 response. If method 2 was used, CyberCop Scanner will attempt to verify
 results by sending 2 more sets of data packets, and ensuring that the host is not
 returning ICMP port unreachable messages for ports which were found to
 be active earlier. This is an attempt to ensure that if any ICMP port
 unreachable packets were lost in transit, we do not falsely report
 listening ports.
 The results from this scan are fairly reliable when scanning on the local
 network, however will vary on long haul networks. Filtering routers will
 also cause results to vary.
 Note that this module can cause inferior routing software to fail. This
 module safely evaluates all major network operating systems.

 Security Concerns:

 CYBERCOP SCANNER REPORT

 Page 303

 Suggestion: The scanner will return which UDP ports are listening. You should check
 these ports to see if they are running services that you have approved. If
 they are running services which are undocumented, or which you do not wish
 to run, we suggest you disable them.
 Many operating systems are shipped with a large number of services that
 are not required for normal operation. In some cases these services may
 contain known or unknown security problems. It is recommended that
 any services which are not required be disabled.

 21003 TCP SYN port scanning

 Risk Factor: Low
 Complexity: Medium
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Insecure Design
 Ease of Fix: Difficult
 Description: This check can be used as a much faster alternative to regular TCP port
 scanning. This check scans a target host for listening TCP ports in much
 the same way as the regular TCP port scanning, however does so by sending
 a packet to initiate a connection and watching for a response. The
 difference in using this method is that a complete connection to the remote
 host is not actually opened.
 The drawback in using this method is that it may be unreliable due to
 packet loss on the network.

 Security Concerns:
 Suggestion: The scanner will return which TCP ports are listening. You should check
 these ports to see if they are running services that you have approved. If
 they are running services which are undocumented, or which you do not wish
 to run, we suggest you disable them. Many operating systems are shipped with a

 large number of services thatare not required for normal operation. In some
 cases these services maycontain known or unknown security problems. It is
 recommended that any services which are not required be disabled.

APPENDIX C

Page 304

 26001 User Enumeration via Anonymous Logon

 Risk Factor: Low
 Complexity: Low
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Software Implementation Problems
 Ease of Fix: Trivial
 Description: A listing of user accounts present on the target host was retrieved.
 Windows NT provides enumeration functions for enumerating users on
 the network. By default, Windows NT 4.0 and 3.51 allow anonymous
 logon users (also known as NULL session connections) to list account
 names.

 Security Concerns:
 Suggestion: To prevent the ability for Anonymous users to enumerate users,
 create the following registry key:
 Hive : HKEY_LOCAL_MACHINE
 Key : System\CurrentControlSet \Control\LSA
 Name : RestrictAnonymous
 Type : REG_DWORD
 Value: 1
 Please note that Service Pack 3 must be installed for these
 restrictions to function.

 26002 Active Users Enumeration via Anonymous Logon

 Risk Factor: Low
 Complexity: Low
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Software Implementation Problems
 Ease of Fix: Trivial
 Description: A listing of logged in users on the target host was retrieved.
 Windows NT provides enumeration functions for enumerating users on
 the network. By default, Windows NT 4.0 and 3.51 allow anonymous
 logon users (also known as NULL session connections) to list account
 names.

 Security Concerns:
 Suggestion: To prevent the ability for Anonymous users to enumerate users,
 create the following registry key:
 Hive : HKEY_LOCAL_MACHINE
 Key : System\CurrentControlSet \Control\LSA
 Name : RestrictAnonymous
 Type : REG_DWORD
 Value: 1
 Please note that Service Pack 3 must be installed for these
 restrictions to function.

 CYBERCOP SCANNER REPORT

 Page 305

 26003 Group Enumeration via Anonymous Logon

 Risk Factor: Low
 Complexity: Low
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Software Implementation Problems
 Ease of Fix: Trivial
 Description: A listing of groups present on the target host was retrieved.
 Windows NT provides enumeration functions for enumerat ing groups on
 the network. By default, Windows NT 4.0 and 3.51 allow anonymous
 logon users (also known as NULL session connections) to list group
 names.

 Security Concerns:
 Suggestion: To prevent the ability for Anonymous users to enumerate groups,
 create the following registry key:
 Hive : HKEY_LOCAL_MACHINE
 Key : System\CurrentControlSet \Control\LSA
 Name : RestrictAnonymous
 Type : REG_DWORD
 Value: 1
 Please note that Service Pack 3 must be installed for these
 restrictions to function.

 26004 Share Enumeration via Anonymous Logon

 Risk Factor: Low
 Complexity: Low
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Misconfiguration
 Ease of Fix: Trivial
 Description: A listing of shares present on the target host was retrieved.
 Windows NT provides enumeration functions for enumerating shares on
 the network. By default, Windows NT 4.0 and 3.51 allow anonymous
 logon users (also known as NULL session connections) to list shares.

 Security Concerns:
 Suggestion: To prevent the ability for Anonymous users to enumerate shares,
 create the following registry key:
 Hive : HKEY_LOCAL_MACHINE
 Key : System\CurrentControlSet \Control\LSA
 Name : RestrictAnonymous
 Type : REG_DWORD
 Value: 1
 Please note that Service Pack 3 must be installed for these
 restrictions to function.

APPENDIX C

Page 306

 26005 Enumerate Network Transports via Anonymous Logon

 Risk Factor: Low
 Complexity: Low
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Software Implementation Problems
 Ease of Fix: Trivial
 Description: CyberCop Scanner was able to retrieve a listing of network transports
 which are present on the target host. Windows NT provides functions
 for enumerating the transports on a network. This module uses these
 functions to enumerate all the network transports on a machine.
 This provides a list of the networking transports installed on a
 machine as well as the hardware addresses of the network cards
 bound to the transports.

 Security Concerns:
 Suggestion: There is currently no method to disable the enumeration of network
 transports via the Anonymous user account.

 26006 Enumerate Active Sessions via Anonymous Logon

 Risk Factor: Low
 Complexity: Low
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Software Implementation Problems
 Ease of Fix: Trivial
 Description: CyberCop Scanner was able to retrieve a listing of sessions which
 are active on the target host. A listing of active sessions displays
 all resources which are currently being accessed on the target host.

 Security Concerns:
 Suggestion: To prevent the ability for Anonymous users to enumerate active sessions,
 create the following registry key:
 Hive : HKEY_LOCAL_MACHINE
 Key : System\CurrentControlSet \Control\LSA
 Name : RestrictAnonymous
 Type : REG_DWORD
 Value: 1
 Please note that Service Pack 3 must be installed for these
 restrictions to function.

 CYBERCOP SCANNER REPORT

 Page 307

 26010 Enumerate RPC Bindings (EPDUMP)

 Risk Factor: Low
 Complexity: Low
 Popularity: Popular
 Impact: Intelligence
 Root Cause: Insecure Design
 Ease of Fix: Infeasible
 Description: This check will gather information about a remote machine by walking
 through the table of all bound RPC endpoints and listing them. This
 provides some information about what RPC services are running on the
 machine and which are accessible remotely through IP or over SMB.

 Security Concerns: The RPC bindings contain information about the network endpoint needed
 to connect to an RPC service. An attacker may need this information
 to connect to a vulnerable RPC service to perfor m an attack.
 The bindings list also provides an attacker with some information
 about what services have been installed on the machine. Enumerating
 the list may be used as a convenient first step for identifying machines
 that are running vulnerable services.
 Because some RPC services are assigned TCP and/or UDP port numbers
 dynamically, the services may be assigned ports that are not protected
 by your firewall.
 Suggestion: There is no known method to disable this functionality at the time
 of this writing. The RPC locater service runs on TCP port 135.
 Ensure that this port is filtered at your firewall to prevent external
 users from obtaining this information.

APPENDIX C

Page 308

 Page 309

AAPPPPEENNDDIIXX DD

TTHHEE CCYYBBEERRCCOOPP SSCCAANNNNEERR

VVUULLNNEERRAABBIILLIITTYY DDAATTAABBAASSEE
__

The CyberCop Scanner vulnerability database is shown in table D.1 below. Note that,

due to space restriction, only the fields necessary to describe each vulnerability in the

vulnerability database, are shown. See [CYBE 02] for a complete CyberCop Scanner

vulnerability database.

Table D.1: The CyberCop Scanner vulnerability database
Vuln.ID Vulnerability name Vulnerability description
1000 Information Gathering and Recon
1001 Finger access control

check
This check attempts to contact the finger daemon on the
target-host and retrieve a list of logged in users.

1002 Finger 0@host check This check attempts to gather user information by fingering
0@target-host.

1003 Finger Redirection Check A frequently overlooked aspect of the "finger" information
system is that many implementations support forwarding of
queries, allowing a finger client to request a finger server to
ask another finger server for information. This can be used
to hide information-gathering attacks by obscuring the
source of the attack, or to obtain access to finger servers
that are protected by selective network access control. This
check attempts to bounce a remote finger request through
the target-host finger daemon. An attempt is made to
resolve a finger query that looks like this: user@some-
remote-host@target-host

1004 Finger .@target-host
check

Some implementations of the "finger" information server
support a little-known feature triggered by requests for the
user ".". In response to this query, these servers will
provide a finger client with information about users who
have never logged in. These users frequently have easily
guessed "default" passwords. This check attempts to
gather user information by fingering .@target-host.

1005 "rusers" service check The "rusers" ONC RPC service, much like finger, provides
information about users currently logged into a Unix
system. This information can be used by an attacker to
obtain lists of usernames to attempt brute-force password
guessing attacks against, and to discover the usage
patterns of the system. This check attempts to retrieve
information from the rusers service on the target-host.
NOTE: This check will only return a listing of users in the
module output on rusers version 2.

APPENDIX D

Page 310

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
1006 Telnet service banner

present
The telnet service banner module obtains and displays the
telnet banner which is obtained from the target host when
connecting to the telnet service.

1007 SMTP banner-check This check collects the message displayed upon
connection to the SMTP port of the target-host.

1008 FTP banner check The FTP banner check attempts to gather banner
information from the ftp daemon.

1009 Anonymous FTP check This check attempts to discern whether CyberCop Scanner
can access an FTP server as an anonymous FTP user.

1010 "rstatd" check "rstatd" is an ONC RPC service that provides information
about the status of a system (including uptime and usage
statistics) to the public. In addition to disclosing sensitive
information about the configuration and capabilities of a
server, "rstatd" can also provide information that is used by
some programs to generate random numbers, and can thus
be used as a tool to compromise other servers on a
system. This module attempts to poll information from
rstatd.

1011 "X.25" gateway RPC
service present

The target host was found to be running the X.25 RPC
gateway service. This is indicative of the target host acting
as a gateway to an X.25 packet switched network.

1012 "bootparamd" RPC
service present

This check identifies the presence of rpc.bootparamd. If it is
present the process will then attempt to coax the NIS
domain name from the server.

1013 Gopher daemon check This check attempts to discover if a gopher daemon is
running on the target host.

1014 IRC server present This particular check discerns whether the IRC service is
present on the target host.

1016 Netstat check Some operating systems are distributed with an Internet
gateway to the "netstat" command enabled in their inetd
configuration. These configurations allow arbitrary entities
on the Internet to obtain the output of the "netstat"
command on these machines. This information can be
sensitive. This check attempts to poll netstat information
from a target host.

1017 Systat check The "systat" command provides information about the
current utilization of resources on a Unix system. Some
operating systems are distributed with an Internet gateway
to the "systat" command, allowing arbitrary entities on the
Internet to gather information from the "systat" command on
remote machines. The information available from systat
allows an attacker to infer the configuration of the machine,
and is thus sensitive. This check attempts to poll systat
information from the target-host.

1018 FSP daemon check This check discerns whether a host is running an FSP
daemon.

1019 SSH information
obtained

The scanner attempts to poll information from your SSH
daemon about it's configuration. The information which can
be gathered remotely from an SSH daemon includes: o
SSH Version o Host key size o Public key size o
Authentication methods in use o Encryption methods in use

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 311

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
1021 ESMTP check This module checks to see if a mailer daemon supports

extended SMTP commands via ehlo.
1023 Identd username

gathering
This check scans a host running ident and returns the UIDs
of network daemons running on the target-host.

1024 Routing table retrieved The routing table has been retrieved from the target host's
routing daemon. This service utilizes RIP (Routing
Information Protocol) to maintain an updated list of routes
and routing information for the host it is running on.

1026 rpc.rquotad check The check attempts to poll rpc.rquotad on the target-host
for user quota information.

1028 rpc.sprayd check The rpc.sprayd service is offered to administrators to
determine traffic statistics on a netw ork. An administrator
can send the service a stream of packets, and is presented
with statistics on the number of packets which have been
received.

1032 ICMP timestamp
obtained

The system time was obtained from the target host utilizing
a capability present within the ICMP protocol. The ICMP
protocol provides an operation to query a remote host for
the current system time.

1033 ICMP netmask obtained The netmask was obtained from the target host utilizing a
capability present within the ICMP protocol. The ICMP
protocol provides an operation to query a remote host for
the network netmask.

1034 "rpcbind" RPC service
present on high
numbered port

This check attempts to determine whether the target host is
running a version of rpcbind which listens on a high
numbered UDP port above 32770 in addition to the
standard port 111. This has been known to occur on the
Solaris operating system.

1035 Finger search.**@host
check

This check attempts to finger search.**@target-host and
monitors output to discern if usernames are returned.

1036 WWW Web Server
Version

This module returns the version of WWW server running on
the remote host, if it is available.

1037 "portmapper" or "rpcbind"
RPC service present

The portmapper service was found running on the target
host. Since RPC services do not run on well known ports
this service is used to map RPC services to the dynamic
port numbers that they currently reside on. RPC client
programs use this service when they make a connection to
a remote RPC server.

1038 S/Key Banner Check This check will determine if the S/Key one-time password
authentication system is installed on the target machine.

1039 Ascend Configurator
Identification Check

Ascend Access Servers and Routers speak a protocol over
the UDP "discard" port that allows the Ascend Java
"Configurator" tool to locate Ascend equipment on a
network automatically. An Ascend router will respond to any
network user that sends a well-formed Configurator packet
with a response that includes the symbolic name of the
router. Attackers can use this to pick out Ascend equipment
from a network (Ascend routers may be a specific target of
attack, or may indicate further network connections), and to
obtain the names of these routers (which may provide
information on which to base password guesses).

APPENDIX D

Page 312

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
1040 Network Time Protocol

server present
An NTP server was found to be present on the target host.
Many Network Time Protocol servers offer detailed
information on their setup, including systems which they
peer with, system memory configuration, and time statistics.
This module obtains information from the remote NTP
server using the NTP version 3 protocol and lists the
information which can be obtained from the server.
Information which can be obtained via NTP includes the
following: - System time statistics (uptime) - System IO
statistics - System memory statistics - Time daemon peer
listing

1041 Trace route to host This module traces the route to the host being scanned in
the same manner as the traceroute program in UNIX or the
tracert program in Windows NT. The route information is
stored to the network map file as well as being returned by
the module. The network mapper uses this information to
build a map of the network.

2000 File Transfer Protocols
2001 NULL Linux FTP

backdoor check
This module attempts gain root level FTP access to the
target-host using a backdoor in some versions of wu-ftp.
NOTE: Other FTP servers that do not adequately enforce
username/password security may report as positive to this
check.

2002 FTP - root directory
write-enabled

This check determines whether the anonymous FTP root
directory is either world write-enabled or write-enabled by
the anonymous ftp account.

2003 FTP - ports opened in
sequential order

The FTP server on the target host was found to open
bound ports, utilized by the PASV feature, in sequential
order.

2004 Wu-FTP "site exec"
check

This module checks if it can execute system commands on
an FTP server via the "site exec" command.

2005 FTP directories check The target host's FTP service was found to contain write-
enabled directories.

2006 WFTP invalid password
check

This check searches for older versions of WFTP (a
Windows based FTP server) which would allow access to
the FTP server with any username and password. Files
could then be downloaded that offer further information
(enticements) that could lead to further exploits of the
system.

2007 FTP - bounce attack The target host's FTP service was found to be vulnerable to
the FTP bounce attack.

2010 FTP - true path check The true home directory was obtained from the target host's
FTP service.

2011 FTP - "RNFR" file
deletion vulnerability

The target host's FTP service was found to contain a
vulnerability in the "RNFR" command which allows
overwriting and removal of files. This vulnerability allows
removal of files even when the FTP servers configuration
prohibits this action.

2012 FTP file write permission
check

This check searches the anonymous FTP directory
hierarchy for write-enabled files.

2013 FTP chmod check This check attempts to execute the chmod command in the
FTP environment.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 313

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
2014 FTP - GNU tar check The target host's FTP server was found to contain a version

of GNU tar which allows command execution.
2016 FTP - NCSA ftpd check This check attempts to gain privileged access to older

NCSA ftp servers.
2017 FTP - Windows NT

Guest FTP
The target Windows NT FTP service was found to have the
'GUEST' account enabled by default. Older versions of
Windows NT were distributed with this account present,
and enabled by default.

2018 FTP - PASV core dump
check

The target host's FTP server was found to be vulnerable to
an attack utilizing the "PASV" FTP command. By initiating a
connection to the FTP service, and issuing the "PASV"
command prior to logging in, the FTP service crashes,
leaving behind a "core" file on some operating systems.

2019 FTP - argument core
dump check

The target host's FTP server was found to be vulnerable to
an attack which is initiated by issuing a "LIST" command
with a large number of arguments. By issuing this
command, the FTP server crashes, leaving behind a "core"
file on some operating systems.

2021 FTP - quote "CWD ~root"
vulnerability

This module tests for the CWD ~root bug, as described in
the paper "Improving the Security of Your Site by Breaking
Into it" by Dan Farmer and Wietse Venema. The ftp server
bug allows remote individuals to obtain root access.

2024 FTP - password file
contains hashes

The target FTP server's password file was found to contain
encrypted password hashes which could be cracked by an
attacker.

3000 Hardware Peripherals
3001 Unpassworded laser jet

printer check
Having a laser jet printer without a password will allow
remote users/intruders to modify its configuration which can
result in a denial of service attack.

3002 Unpassworded
Gatorboxes check

Cayman Systems manufactures a hardware device called a
Gatorbox for bridging ethernet segments and appletalk
networks. By default, a Gatorbox is shipped with no
password. This check determines if the target-host is an
unpassworded Gatorbox.

3003 Portmaster default
password check

A Livingston Portmaster is a network device for central sites
with remote access and point-of-presence (POP) in-a-box
applications. It is often used with PPP dialup access for
ISPs with modems, ISDN, CSU/DSUs, and for routing
purposes. A Livingston Portmaster comes configured with a
default password of !root. If no password has been set, a
remote user/intruder who enters this default password can
reconfigure your Portmaster. Should the Portmaster be
remotely configured to fail, the result will be a denial of
service. If remote users/intruders misconfigure the routing
for this network device, then more subtle mischief can be
accomplished that could put the data communications
through this device at risk.

APPENDIX D

Page 314

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
3006 Ascend Port 150 Check Ascend Port 150 Check Ascend provides networking

equipment: IP routers and multi-protocol bridges which
connect over ISDN (switched-56 and frame relay, also).
Recent versions of Ascend's access server add an option
for remote administration via TCP port 150. Attackers can
use this service to guess passwords against the router,
potentially allowing them to gain remote access to the
router without being logged. To disable remote
management, open the System Profile and set the Remote
Management parameter to No. Ascend maintains a web
site at http://www.ascend.com. There is technical
documentation available for their products at
ftp://ftp.ascend.com/pub/Doc/

3007 HP Printer Remote Print
Check

HP printers that are configured for remote network printing
over IP listen for requests on port 9099 and 9100.
Unauthorized clients can send raw postscript files to these
ports and cause their contents to be printed, regardless of
the permissions set on the printer's LPD service. If the
printer is being relied on for hard-copy of security auditing
logs, an attacker can disable the printer by flooding it with
requests, avoiding hard-copy audit trails. Also, it is possible
to telnet to the printer and change the printer IP or disable
logging. It is also possible to restrict the printer to accept
connections from either a list of IP addresses or a subnet
range.

3008 Ascend SNMP/TFTP
Configuration File
Retrieval

Ascend router and access server platforms are remotely
manageable via the SNMP protocol. The Ascend hooks for
SNMP management include the capability to download and
upload the entire configuration of the router as a text file.
Ascend configuration files include the plain text passwords
to the router, as well as usernames, passwords, and phone
numbers for outgoing connections. The attack works by
using SNMP "set" commands to initiate a TFTP transfer of
the config file (using the Ascend "sysConfigTftp" MIB
extension). If the attacker can execute SNMP "set"
commands against the router, the configuration file can be
retrieved and sensitive information compromised. This
module attempts to determine whether the probed host is
vulnerable to the attack without actually carrying it out. This
is done by setting an arbitrary SNMP variable using an
SNMP "set" command. This check may be preferable to the
full check when time, bandwidth, or disk space is limited;
Ascend configuration files can be quite large.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 315

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
3009 Ascend SNMP/TFTP

Configuration File
Retrieval (full)

Ascend router and access server platforms are remotely
manageable via the SNMP protocol. The Ascend hooks for
SNMP management include the capability to download and
upload the entire configuration of the router as a text file.
Ascend configuration files include the plain text passwords
to the router, as well as usernames, passwords, and phone
numbers for outgoing connections. The attack works by
using SNMP "set" commands to initiate a TFTP transfer of
the config file (using the Ascend "sysConfigTftp" MIB
extension). If the attacker can execute SNMP "set"
commands against the router, the configuration file can be
retrieved and sensitive information compromised. This
module attempts to determine whether the probed host is
vulnerable to the attack without actually carrying it out. This
is done by setting an arbitrary SNMP variable using an
SNMP "set" command. This check may be preferable to the
full check when time, bandwidth, or disk space is limited;
Ascend configuration files can be quite large.

3010 Unpassworded Ascend
router check

Ascend products are shipped with no telnet password set.
Having an Ascend router without a password allows remote
users/intruders to read or modify its configuration, and may
allow them to sniff or redirect traffic. It could also allow them
to launch attacks against other machines from the
compromised Ascend router.

3011 Unpassworded Netopia
router check

Unpassworded Netopia router check Netopia products are
shipped with no telnet password set. Having a Netopia
router without a password allows remote users/intruders to
read or modify its configuration.

3012 Cisco Catalyst Port 7161
Vulnerability

The supervisor module in Cisco Catalyst switches can
remotely be forced to reload, stopping the switch from
forwarding traffic. While the switch will recover
automatically, repeat attacks can deny service indefinitely.
Cisco security notice "Cisco Catalyst Supervisor Remote
Reload" notes the following switches as vulnerable: The
Catalyst 12xx family, running supervisor software v ersions
up to and including 4.29. The Catalyst 29xx family (but not
the Catalyst 2900XL), running supervisor software versions
up to and including 2.1(5), 2.1(501), and 2.1(502). This
includes the Catalyst 2901, 2902, and 2903 switches.
Catalyst 2926 switc hes are not affected, because the
Catalyst 2926 was not released until after the software fix
was made. Catalyst 2900XL switches run unrelated
software, and are not affected by this vulnerability. The
Catalyst 5xxx series (including the Catalyst 55xx family),
running supervisor software versions up to and including
2.1(5), 2.1(501), and 2.1(502). The following versions are
NOT vulnerable: Catalyst 5xxx and 29xx switches running
versions 2.1(6) and later. Catalyst 12xx switches running
versions 4.30 and later.

APPENDIX D

Page 316

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
4000 Backdoors and Misconfigurations
4001 'Rootkit' check 'Rootkit' is the name of a popular collection of trojaned OS

utilities that are used by hackers to backdoor a
compromised host. There is the original rootkit, as well as
versions specifically for SunOS and Linux. This check
attempts to identify a trojan /bin/login program by testing
the default 'rootkit' username and password.

4002 'Hidesource' check 'Hidesource' is the name of a popular collection of trojaned
SunOS utilities that are used by hackers to backdoor a
compromised host. Like the 'rootkit' trojan horse collection,
this is a collection of utilities that replace system utilities
(e.g. the login program) with versions that contain a
"backdoor." This check attempts to identify a trojan
/bin/login program by testing the default 'Hidesource'
username and password.

4004 Port daemon check This particular check scans your machine for port daemons
installed by attackers. One popular program, the socdmini
written by pluvius@io.org, is a program that accepts
semicolon terminated commands and executes them on the
running system.

4005 ICMP backdoor check This check looks for common implementations of ICMP
backdoors by sending out a packet and waiting for a reply.

4006 'HidePak' check 'HidePak' is the name of a popular collection of trojaned
Solaris utilities that are used by hackers to backdoor a
compromised host. Like the 'rootkit' trojan horse collection,
this is a collection of utilities that replace system utilities
(e.g. the login program) with versions that contain a
"backdoor." This check attempts to identify a trojan
/bin/login program by testing the default 'HidePak' login and
password.

4007 Back Orifice Backdoor
Check

Back Orifice is a backdoor program for Windows 9x written
by a group calling themselves the Cult of the Dead Cow.
This backdoor allows remote access to the machine once
installed, allowing the installer to run commands, get screen
shots, modify the registry and perform other operations.
Client programs to access Back Orifice are available for
Windows and Unix. The Back Orifice server is extendable
via plug-in modules. These modules include, for example,
the ability to link Back Orifice to start when another program
(e.g. a web browser) is started. Other, more pernicious
functions include connecting to an IRC server and
announcing your IP address when Back Orifice is started.
This check detects if a default configuration of Back Orifice
has been installed by sending a PING request to the
backdoor program on the default port using the default key.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 317

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
4008 Windows NetBus 1.x

Vulnerability
NetBus is a remote administration and spy tool for Windows
95/98 or Windows NT4 consisting of a server and client.
The server is installed on the host which is to be remotely
administered and the client is used to access the server
from a remote location. By default NetBus 1.x is accessible
on ports 12345 and 12346 with no password. This module
accesses port 12345 to determine if NetBus has been
installed and determines if a password has been set. In
addition, the module verifies whether a backdoor exists in
the installed version of NetBus and whether the NetBus
server can be remotely crashed. NOTE: Please note that
numerous programs have been written to emulate the
behavior of NetBus and simply log access attempts. A
positive response could reflect the fact that such a program
has been found.

4009 Windows NetBus Pro 2.x
Vulnerability

NetBus Pro is a remote administration and spy tool for
Windows 95/98 or Windows NT4 consisting of a server and
client. The server is installed on the host which is to be
remotely administered and the client is used to access the
server from a remote location. NetBus Pro has improved
features from its predecessor, which include a remote file
manager, registry manager and application redirector, plus
the ability to capture screen shots, typed characters and
camera images. By default, NetBus Pro is accessible on
port 20034 with no password. This module accesses
NetBus on this port to determine if NetBus is ins talled and
determine if a password has been set. NOTE: Please note
that numerous programs have been written to emulate the
behavior of NetBus and simply log access attempts. A
positive response could reflect the fact that such a program
has been found.

4010 Back Orifice 2000 Server
Backdoor Check

Back Orifice 2000 is a remote administration tool often used
to backdoor Windows systems. The tool is divided into a
server and client allowing remote access to a host including
the file system and registry. Back Orifice servers are
available for Windows 95, 98 and NT while client programs
to access the server are available for Windows and Unix.
This module detects if a Back Orifice 2000 Server has been
installed.

5000 SMTP and Mail Transfer
5001 Sendmail Wizard check Older versions of Sendmail contained a backdoor which

allowed for remote root access with a secret password.
This check is designed to discern whether the version of
sendmail on the target-host has this backdoor present.

5002 Sendmail DEBUG check The check defines whether your mailer will allow DEBUG
mode. Allowing DEBUG mode is a potentially dangerous
security loophole that could allow a remote user to execute
arbitrary commands as root via the sendmail port.

5003 Sendmail program piped
aliases check

This module collects information about sendmail aliases
that are piped to programs. It is common to define aliases
that pipe received mail to a program for processing. The
following aliases are checked: o root o news o postmaster o
majordomo o decode o admin o webmaster

APPENDIX D

Page 318

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
5005 Sendmail VRFY and

EXPN check
Using data collected by the information gathering modules,
this module attempts to get additional user information from
the SMTP port of the target host with the VRFY and EXPN
commands. VRFY can be used to identify valid user
accounts on the system, whereas EXPN can be used to
identify the delivery addresses of mail aliases and mailing
lists.

5006 Sendmail mailing to
programs check

This module checks to see if a mailer running on a given IP
address allows mail to programs. The module opens a
connection to a given IP address on port 25, sends a HELO
command and then sends the following string 'mail from:
root' followed by a 'rcpt to: |testing'. If that command is
accepted, it is assumed that the host is vulnerable. Notes:
This could report false positives since some mailers won't
complain about 'rcpt to: |testing' but will ignore it. Smail, for
example, behaves this way.

5007 Sendmail bounce 'From:'
check

The 'Bounce' module checks if a mailer running on a given
host allows return addresses that appear to be from
applications. That is, if it is vulnerable to an SMTP bounce
attack. The module opens a connection to a given IP
address on port 25, sends a HELO command and then
sends 'mail from: |root'. It then determines if this command
is accepted, and if it is, reports the host as vulnerable. No
attempt to deliver mail is made. An actual attack would
consist of sending mail with a 'MAIL FROM' string in the
form of: "|/bin/sed '1,/^$/d'|/bin/sh" This command would be
followed by a 'RCPT TO' string such that it would make the
mail bounce and go back to the sender, which would then
pass it through the pipe and execute the body of the
message. Notes: This could report false positives since
Smail and the IRIX 6.x sendmail won't complain about
"MAIL FROM: |/bin/sed '1,/^$/d'|bin/sh " but will ignore it.

5008 Sendmail (8.6.9) identd
check

A vulnerability in version 8.6.9 of Berkeley Sendmail allows
remote users to execute arbitrary commands on vulnerable
systems. This module must be run as 'root', with the
system's identd daemon disabled. If the remote mailer does
not support the ident protocol, the module will wait for an
ident connection for several seconds before reporting a site
as not vulnerable.

5009 Sendmail syslog buffer
overflow check

The syslog module checks if a mailer running on a target
host is vulnerable to the syslog attack. Versions of sendmail
were vulnerable to this attack by overflowing a buffer within
the syslog() libc routine. This vulnerability would allow
remote users to execute arbitrary commands as root on the
remote server.

5011 Sendmail 8.6.11/8.6.12
denial of service check

This 8.6.11/8.6.12 version check module examines
available sendmail banners to determine the presenc e of
Berkeley sendmail 8.6.11 or 8.6.12. If either one is
detected, it is possible that the host is vulnerable to a denial
of service attack specific to these two versions.

5013 Sendmail (8.7.5) GECOS
field buffer overflow
check

This module checks to see if the host is running sendmail
8.7.5. Berkeley sendmail 8.7.5 has two bugs which allow for
local users to gain either default user (most often daemon)
or root privileges.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 319

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
5014 Sendmail (8.8.0/8.8.1)

MIME buffer overflow
check

This check attempts to discern if you are running sendmail
version 8.8.0 or 8.8.1. Both of these versions of sendmail
have a weakness which could allow intruders to access the
vulnerable system as root.

5015 Sendmail Decode alias
check

Some sendmail configurations include an alias called
'decode' that pipes mail through the uudecode program. By
creating and sending uuencoded data to the 'decode' alias,
an attacker could, for example, place an arbitrary .rhosts
file onto your system.

5016 Mail forgery check This check attempts to define if mail can be trivially forged
on a target host.

5017 Sendmail daemon mode
vulnerability

This check attempts to discern if you are running sendmail
version 8.7 through 8.8.2. These versions of sendmail allow
local users to obtain root access by causing sendmail to
execute arbitrary commands as root.

5018 Sendmail (8.8.3/8.8.4)
MIME buffer overflow
check

This check attempts to discern if you are running sendmail
version 8.8.4 or 8.8.3. Both of these versions of sendmail
have a weakness which can allow intruders to access the
vulnerable system as root.

5019 Majordomo Reply-To
check

This check attempts to make majordomo execute
commands embedded in the Reply-To field of a request.
While processing a "lists" command majordomo compares
the Reply-To address against the advertise and noadvertise
lists. In doing so, it may be tricked into executing a
command while expanding the back-tick operator. The
back-tick (`) is used by Unix to enclose executable
commands in a shell command line. In this case, an
expression executed in a perl program. The majordomo
versions noted as being vulnerable are those versions prior
to 1.94.3. Because of the way this check receives
notification from majordomo (it waits for a telnet connection
from the mail server machine), the check may report false
negatives when scanning mail servers that are behind a
firewall.

5020 Qmail Denial of Service By sending a message with a large number of recipients, it
is possible to cause Qmail 1.02 and earlier to utilize all
system resources. NOTE: CyberCop Scanner CANNOT
determine the version of Qmail which you are running,
however CyberCop Scanner CAN detect if you are running
Qmail. In the case where you are running Qmail, this
vulnerability will always return positive. Ensure that you are
running a version of Qmail newer than version 1.02.

5021 Sendmail Relaying
Allowed

This module determines whether your mail server can be
used as a mail gateway or relay. When used as a mail
relay, your host may be prone to "spammers" relaying mail
through your host to reach their intended audience. For
example, if an outside user were to send mail formatted as
being to "target%somedomain.com@yourmailserver.com"
that message could be re-transmitted to the target recipient,
apparently originating from your mail server.

APPENDIX D

Page 320

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
5023 MDaemon SMTP Server

HELO Overflow
Certain versions of the MDaemon SMTP server are
vulnerable to an attack that allows a remote SMTP client to
crash the server. Furthermore, it may be possible to
execute arbitrary commands on the host running the
service. Vulnerable SMTP servers overflow a buffer when
an overly -long argument is given to the SMTP "HELO"
command.

6000 Remote Procedure Call Services
6003 rpc.admind security level

check
Solaris' rpc.admind is a network service designed to allow
remote administration capabilities to network
administrators. This daemon comes by default in insecure
mode, meaning it requires virtually no authentication for
remote users. This allows remote users to append or
change critical system information, including user accounts.
This check determines if rpc.admind is in secure mode or
not.

6004 rpc.pcnfsd execution
vulnerability

The target host was found to be vulnerable to a vulnerability
in the "pcnfsd" RPC service which can allow an attacker to
execute arbitrary commands as the super-user. NOTE: To
test for the vulnerability status of this service, this module
disables the "pcnfsd" service on the target host. You must
restart this service if this vulnerability is returned.

6005 rpc.ugidd daemon check This check determines whether or not we can query the
remote rpc.ugidd daemon and obtain usernames. The
rpc.ugidd daemon is primarily present on Linux installations
and allows for mapping UID and GID numbers to
usernames remotely. This would enable an attacker to
query the server with a range of userid's and obtain remote
usernames for these userid's.

6007 rpc.ypupdated check rpc.ypupdated is a daemon which is part of the NIS suite. It
is used to update changes to NIS databases remotely.
Several vendor versions of rpc.ypupdated have a serious
security vulnerability which allows remote users to execute
commands as root. This check determines whether your
host is vulnerable to this attack.

6008 rpc.statd link/unlink
check

rpc.statd (or s imply statd on some machines) is used to
interact with rpc.lockd to ensure file locking keeps state on
NFS servers. Many versions of rpc.statd have a
vulnerability whereby they can be forced to unlink, (delete)
or create files as root remotely. This check discerns
whether your version of rpc.statd is vulnerable to attack.
There is no method to verify whether this attack worked
remotely. The scanner attempts to create a file in /tmp
called CyberCop.rpc.statd.vulnerability. If this file exists on
the specified host, then your host is vulnerable.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 321

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
6009 NIS domain name check NIS (Network Information System) does most of its

authentication by having the client pass the server the NIS
domain name as a password. When a client provides the
correct NIS domain name, it may request NIS maps. Often
an NIS domain name is easily guessable. If this is the case
then a user anywhere on the Internet who knows your NIS
domain name may request your maps - Passwd.byname,
for example. Note that newer versions of NIS require the
client to belong to an ACL (Access List), such as
securenets.

6014 rpc.selection_svc check The target host was to be running a vulnerable version of
the selection_svc RPC service. This service contains a
security vulnerability which can allow an attacker to read
any arbitrary file on the target system.

6015 rpc.rwalld check The rwall daemon is a service which will broadcast
messages from remote hosts to all users who are logged
into the system. While it is useful for sending broadcast
messages across an entire network for administrative
purposes, it lacks proper authentication. This provides an
attacker with the ability to send messages to every user
logged into your servers. This also allows an attacker to
flood users with messages.

6016 Portmapper spoofed
register/unregister

The portmapper, which provides service to translate port
numbers for RPC services, has a number of weaknesses.
One of these weaknesses allows remote users to
register/unregister services on a remote host by way of
forging UDP packets. An attacker can utilize this to gain
increased access to the local machine. An example attack
involves unregistering a service from the portmapper, and
then re-registering the service on a new port, which they
have control over. This allows an attacker to impersonate
security critical services and gain increased access to the
network. Some versions of ONC RPC for Microsoft
Windows NT are also known to contain this vulnerability.

6019 Mount & NIS services on
non-reserved ports check

This module checks for mount daemon and NIS services
running on non privileged ports. Any of the above services
running on non-reserved are most likely vulnerable to port
hijacking. If a user can hijack these services, he can then
intercept or supply data from or to client programs.

6020 Portmapper
register/unregister check

This module determines whether attackers can register and
unregister services on your portmapper/rpcbind by using
standard RPC calls. This vulnerability does not require
address forgery to succeed and provides any network user
with the ability to register new services and unregister
existing services. Some versions of ONC RPC for Microsoft
Windows NT are also known to contain this vulnerability.
BSDI 2.1, 3.0 and Ultrix are known to be vulnerable to this
attack.

APPENDIX D

Page 322

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
6021 Portmapper

register/unregister
through callit

This check determines if portmapper services can be set
and unset by utilizing a feature within the
portmapper/rpcbind program known as callit(). The callit()
function allows forwarding of requests to local services as
though they were coming from the local system itself. This
allows attackers to bypass IP address based authentication
checks, to register and un-register services, in addition to
exploiting other services. This check attempts to register a
new service on the portmapper/rpcbind by utilizing this
technique. In this way the set request appears to come
from the local machine and may bypass address checks.

6025 Sequential port allocation
check

This check is designed to test if a host will spawn its
listening ports in sequential order. If this is the case,
attackers can implement host spoofing techniques to
services which poll other hosts for authentication. Examples
of such services include, for instance, any service which
requires authentication from DNS servers.

6027 rpc.ttdbserver buffer
overflow vulnerability

The ToolTalk service allows independently developed
applications to communicate with each other by exchanging
ToolTalk messages. Using ToolTalk, applications can
create open protocols which allow different programs to be
interchanged, and new programs to be plugged into the
system with minimal reconfiguration. The ToolTalk
database server (rpc.ttdbserverd) is an ONC RPC service
which manages objects needed for the operation of the
ToolTalk service. ToolTalk-enabled processes
communicate with each other using RPC calls to this
program, which runs on each ToolTalk-enabled host. This
program is a standard component of the ToolTalk system,
which ships as a standard component of many commercial
Unix operating systems. The ToolTalk database server runs
as root. Due to an implementation fault in rpc.ttdbserverd, it
is possible for a malicious remote client to formulate an
RPC message that will cause the server to overflow an
automatic variable on the stack. By overwriting activation
records stored on the stack, it is possible to force a transfer
of control into arbitrary instructions provided by the attacker
in the RPC message, and thus gain total control of the
server process.

6028 rpc.rexd check This check attempts to exploit a weakness in rpc.rexd. The
weakness in question is that common implementations of
rexd take their authentication from the client. This allows
remote users to execute commands remotely with any
other UID (User ID) than root.

6034 nfsd port 4045 Check This check attempts to determine whether the target host is
running a version of lockd which listens on port 4045 and is
capable of servicing NFS requests.

6035 SGI fam server check This check attempts to obtain a list of files from the SGI fam
service.

6036 rpc.statd Bounce
vulnerability

A vulnerability in the rpc.statd service provides attackers
with the ability to "bounce" RPC calls through this service.
Using this technique, an attacker has the ability to pass a
packet, as though it were coming from the local system,
including over the loopback interface.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 323

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
6037 Solaris automountd

vulnerability
This module checks for a vulnerability in the automount
daemon on Solaris systems. This vulnerability can allow
local users to obtain increased access to the target host.
This vulnerability can also be combined with a vulnerability
present in the rpc.statd service, to exploit automountd
remotely.

7000 Networked File Systems
7001 NFS - Superfluous server

check
The target host was found to have an NFS server running
without any directories being exported. Many systems
enable NFS by default, and It is not uncommon to see such
machines running NFS when they are not, in fact, importing
or exporting anything. The NFS service is quite complex
and has a long history of security problems. If it is not
necessary for your system to run NFS, you should consider
disabling the service.

7002 NFS - world exports
found

The target host was found to have directories exported to
"everyone" via NFS. By exporting directories to "everyone",
anyone who can connect to the target host is able to
access these file systems.

7003 NFS - exporting out of
administrative scope
check

The target host was found to be exporting file systems via
NFS to hosts which are outside of the target host's network.
You should ensure that your security policy permits
exporting of file systems outside of the host's local network.

7004 MOUNTD - proxy mount
vulnerability

Older portmappers were flawed in as much as they would
forward requests from other services on remote hosts,
through itself via the callit procedure. When the portmapper
forwarded these requests the source address for the
request becomes that of the localhost. This attack can be
used to talk mountd into mounting file systems to hosts
which it does not trust in it's /etc/exports file. This check
determines whether your portmapper has this problem.

7005 MOUNTD - exported file
system list retrieved

A list of exported file systems was retrieved from the target
host. An attacker may utilize this list to infer a trust
relationship on the network, as well as discover file systems
which may be exported without restrictions.

7006 NFS - exporting sensitive
file check

Exporting sensitive directories can open yourself up to a
number of attacks provided an attacker can mount your file
system in order to either read or write to these directories.

7007 NFS - fake UID check Older mount daemons could be fooled into providing
access under any UID provided an attacker could perform a
mount. This check defines if your daemon has this problem.

7008 NFS - mknod check Some older NFS servers will allow for users to mknod
(create) device files on NFS mounted file systems. This
could allow a cracker to create a kmem device which was
writable that he/she could then use to swap their UID to 0
(root). This check attempts to exploit this problem.

7010 NFS - unchecked cd ..
check

Some older mount daemons did not effectively restrict
access to mounted file systems. This particular flaw allowed
users to cd .. back up the directory tree onto the non
exported file system.

APPENDIX D

Page 324

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
7011 MOUNTD - Ultrix/OSF

remount check
Some versions of Ultrix and OSF mount daemons allowed
for users outside of their exports list to mount file systems.
This check discerns if this problem is present on a target
host.

7013 MOUNTD - exports list
over 256 characters
check

On some mount daemons if the export list is over 256
character long it will allow anyone to mount your NFS
shared directories regardless of whether they are in the
exports list or not. This check sees if your export list is over
256 character long, and attempts to mount those file
systems.

7014 MOUNTD - Linux/Solaris
file existence
vulnerability

Linux and Solaris operating systems allow remote user to
determine the existence of files on the remote server via
rpc.mountd, the NFS mount daemon. By analyzing the error
messages returned by the rpc.mountd daemon, an attacker
can determine whether files exist, without legitimate access
to the NFS server. NOTE: This module may report a false
positive on systems that export /etc via NFS.

8000 Denial of Service Attacks
8001 Echo/chargen packet

flood check
The character generator (chargen) service is designed to
simply generate a stream of characters. It is primarily used
for testing purposes. Remote users/intruders can abuse this
service by exhausting system resources. Spoofed network
sessions that appear to come from that local system's echo
service can be pointed at the chargen service to form a
"loop." This session will cause huge amounts of data to be
passed in an endless loop that causes heavy load to the
system. When this spoofed session is pointed at a remote
system's echo service, this denial of service attack will
cause heavy network traffic/overhead that considerably
slows your network down. It should be noted that an
attacker does not need to be on your subnet to perform this
attack as he/she can forge the source addresses to these
services with relative ease. Denial of Service (DoS) attacks
are usually easy to accomplish and harder to mitigate.
Often the vulnerability is presented in the operating system
(OS) feature implementation (i.e. IP packet handling) or
application software bug (i.e. improper boundary checking,
resource limitations, or untested interactions) The main
defenses against DoS attacks are: - maintain -- apply
appropriate vendor functionality and security patches to
reduce the risk - minimalism -- remove unnecessary
services and functionalities to remove a Dos attack through
that vector - harden -- to have configured your system with
enough resources - to withstand that attack - to "raise the
bar" on the attacker and make it require more effort to be
successful - monitor -- to have and monitor audit trails, logs
and monitoring programs to discover the attack

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 325

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
8002 Recursive finger check Older finger daemons supported "gatewaying" the finger

command whereby a user could finger a
user@someotherhost@thathost, though this was not
common. Of greater concern, though, is the fact that the
finger daemon could be forced to do recursive searches if a
remote user submitted a large number of '@' symbols
before the hostname (e.g finger
@@@@@@@@thathost). If you are running a vulnerable
finger daemon, this recursive searching can force your
machine to fill the process table with recursive searches. In
theory, if enough @'s are supplied it will force the machine
to swap out physical memory to virtual memory, eventually
causing the system to utilize all available memory for this
task. Denial of Service (DoS) attacks are usually easy to
accomplish and harder to mitigate. Often the vulnerability is
presented in the operating system (OS) feature
implementation (e.g. IP packet handling) or application
software bug (i.e. improper boundary checking, resource
limitations, or untested interactions) The main defenses
against DoS attacks are: - maintain -- apply appropriate
vendor functionality and security patches to reduce the risk
- minimalism -- remove unnecessary services and
functionalities to remove a Dos attack through that vector -
harden -- to have configured your system with enough
resources - to withstand that attack - to "raise the bar" on
the attacker and make it require more effort to be
successful - monitor -- to have and monitor audit trails, logs
and monitoring programs to discover the attack

8003 Solaris rpcbind kill check Due to a bug in Solaris's libnsl up to 2.5 an attacker can
force rpcbind to stop offering single service lookups. In
effect, any remote client querying a remote server which is
run out of rpcbind, will not be able to connect to the
application being served.

8004 SYN flood check A common and dangerous denial of service of attack is
called SYN flooding. This attack can be used to completely
disable your network services by flooding them with
connection requests. This will fill the queue which maintains
a list of unestablished incoming connections, forcing it to be
unable to accept additional connections.

8005 ICMP unreachable check A common denial of service attack is to send ICMP
unreachable packets from a spoofed address to a host.
This causes the host being hit with the packets to tear down
all legitimate TCP connections with the host which is being
spoofed in the ICMP packet.

8006 Routed append check Most route daemons which are based off of generic
Berkeley source code have a bug which will allow remote
users to append garbage over system critical files. If this
module returns vulnerable, it does not necessarily mean
that your host is vulnerable to this attack. The scanner has
attempted to create a file in /tmp called
Cybercop.in.routed.vulnerability. There is no method for the
scanner to determine whether this file was successfully
created. Please check the /tmp directory on this host for the
existence of this file.

APPENDIX D

Page 326

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
8007 Linux inetd check On some Linux hosts if a SYN packet is sent and

immediately followed by an RST packet, it will kill inetd(8)
on the target host.

8008 SunOS 4.1.3 UDP reboot
check

Unpatched versions of SunOS 4.1.3 can be forced to
reboot if given a UDP packet with bizarre options set.

8009 In.comsat check The comsat daemon is a program which watches for
incoming mail, and notifies a user of newly arrived mail.
The problem with comsat is that it can be fooled into issuing
endless messages, resulting in a denial of service attack to
users.

8010 PASV denial of service
check

The PASV command in FTP servers asks the server
machines to open a port and return this port number to the
client. The problem is that many FTP servers will allow a
user to continuously issue PASV commands spawning
open ports until there are none left.

8011 Portmaster reboot check Older portmasters could be forced to reboot if sent packets
with particular commands in them.

8012 Compaq/Microcom 6000
Denial of Service check

Compaq/Microcom 6000 Denial of Service check Certain
versions of Compaq's Microcom 6000 Remote Access
Concentrator CPS is susceptible to a denial of service
attack, which will make it unable to accept telnet
connections, until it's restarted.

8016 Syslog write check This check has CyberCop Scanner attempt to write
information to your syslog daemon. If successful it indicates
an attacker could write enough erroneous data to your
syslog file to fill your log files and c ause hard disk failure.

8017 PING denial of service
attack

Many unix variants are prone to an attack whereby a
remote user can cause your system to reboot or panic by
sending it an oversized packet. This is performed by
sending a fragmented packet larger than 65536 bytes in
length, causing the remote system to incorrectly process
this packet. The result is that the remote system will reboot
or panic during processing. This problem is widely known
as the "Ping of Death attack".

8019 Serv-U FTP server CWD
overflow

This check determines whether you can crash the Win95
Serv-U ftp server by sending it a request to change
directories to a directory whose name is longer than 256
characters. It is likely, but not verified, that this can also be
used to remotely execute arbitrary commands on the ftp
server.

8020 Ascend/3com router
zero-length TCP option
DOS

This check determines whether you can reboot an ascend
router by sending it a TCP packet with a zero-length TCP
option. There are several widely distributed programs which
make it easy for people to carry out this attack.

8023 Windows NT - Out Of
Band data DOS

This check determines whether your Windows 95 or
Windows NT servers are vulnerable to a denial of service
attack utilizing out of band data. By connecting to the
NetBIOS port (139) on Windows 95 and Microsoft Windows
NT systems, it is possible to crash the system by sending
out of band data on the connection.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 327

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
8024 IRC Daemon Denial of

Service
IRC (Internet Relay Chat) allows realtime conversation and
discussion on the internet. A vulnerability exists in some
IRC server versions which allow a malicious user to crash
the server. This leads to a denial of service attack which
prevents users from connecting to the server.

8025 Ascend port 150 crash Ascend routers are prone to a denial of service attack,
whereby a malicious user can crash the router or terminal
server by connecting to the remote administration port
(150) and entering the correct data.

8026 CISCO Web Server DOS Many current versions of CISCO IOS have the ability to
allow configuration via a built in WWW server on the router
or terminal server. This web server contains a serious
vulnerability which allows an attacker to crash the device by
specifying an abnormally long URL.

8027 Solaris syslogd Crash Certain versions of Solaris syslogd will crash when they
receive a syslog message off the network from a host
without inverse DNS entries. This allows an attacker to
disable security auditing before attacking a host, avoiding
detection by programs like TCP wrappers. This module
attempts to determine if the host is vulnerable to this
problem by forging a syslog request from a host without
inverse entries. If the host is vulnerable, it's syslogd will be
disabled, and must be re-started via administrative
intervention.

8028 Rwho Daemon Buffer
Overflow

This module determines whether the rwho daemon running
on the target host is vulnerable to a buffer overflow,
allowing remote users to kill off the daemon. The rwho
daemon gathers information on other systems running on
the same subnet. By sending a fake rwho request with an
overly long hostname present, it is possible to cause the
daemon to fault, disabling gathering of accurate network
information. This problem is not known to lead to further
system access. The buffer overflow is only known to
disable this service.

8029 IIS Long URL Denial of
Service

Microsoft IIS WWW server version 2.0 and version 3.0 are
vulnerable to a denial of service attack, allowing a user who
specifies a long URL, to crash the server. By mishandling
this long URL, the WWW server faults, crashing the server,
therefore disabling all WWW services on the host.

8030 Windows NT -
Messenger Service
Denial of Service

The messenger service is a service which is used by
Windows NT systems to send notification messages to
users on the system. This service is commonly used to
send messages regarding events such as security alerts,
and print job status. By sending a message with an
abnormally long username to the messenger s ervice, it is
possible for an attacker to disable this service, and prevent
the user who is logged into the system from receiving any
further notifications.

APPENDIX D

Page 328

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
8031 Windows NT - SMB

Denial of Service
Microsoft Windows NT systems prior to Service Pack 3
contain a serious security vulnerability which can allow a
remote user to cause the server to crash with a blue
screen. By connecting to the SMB port (TCP port 139) and
attempting to execute a SMB file command, prior to logging
in and/or accessing any shares, the system will crash.

8032 LAND Denial of Service
attack

A denial of service present in many operating systems, this
attack allows a malicious user to completely disable the
target host by sending a single TCP packet. This attack is
performed by sending a TCP packet to a running service on
the target host, with a source address of the same host.
The TCP packet is a SYN packet, used to establish a new
connection, and is sent from the same TCP source port, as
the destination port. When accepted by the target host, this
packet causes a loop within the operating system,
essentially locking up the system.

8033 Windows NT - Fragment
Denial of Service attack

The NT TCP/IP stack uses a faulty reconstruction algorithm
to reconstruct fragmented IP packets. This has a number of
effects including allowing packets to be reconstructed
without ever receiving the first fragment and allowing an
attacker to corrupt the memory of the TCP/IP stack.
Because firewalls often only filter the first fragment of an IP
packet, the first effect can allow an attacker to send packets
through a firewall unfiltered. The second effect allows an
attacker to crash an NT system by sending carefully crafted
packets that corrupt the TCP/IP stacks memory.

8034 Windows NT -
LSASS.EXE Denial of
Service

A vulnerability within the LSASS.EXE process on Windows
NT systems allows for a denial of service attack, which
causes an Access Violation in LSASS.EXE. This denial of
service causes the LSASS.EXE process to stop running,
preventing logons from the console, as well as preventing
Event Viewer and Server Manager from operating.

8035 Windows NT -
RPCSS.EXE Denial of
Service

A vulnerability in the RPCSS.EXE process on Windows NT
systems allows for a denial of service attack. This denial of
service attack causes the RPCSS.EXE process to run in an
infinite loop driving the system CPU usage up to 100%. In
addition the RPCSS process stops responding to requests.

8036 Windows NT - IIS ..\..
Denial of Service

The Windows NT IIS Server running on the target host is
vulnerable to a denial of service attack, allowing malicious
users to crash the IIS server. If the CyberCop Scanner
Security Auditing System has discovered this vulnerability
present on the target host, this attack has been
successfully launched, and the system should be restarted.

8038 IP
Fragmentation/Teardrop
Attack

This module sends out invalid fragmented IP packets that
trigger a bug in the IP fragment reassembly code of some
operating systems. This vulnerability allows an attacker to
crash the target system, resulting in loss of service. Due to
the nature of this attack, this module is not reliable. In some
instances the target host will not crash immediately after
this attack has been launched. The second variation of this
attack (Teardrop 2) has been verified to work 100% against
vulnerable systems. The second variation is located in
module 8039.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 329

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
8039 IP

Fragmentation/Teardrop-
2 Attack

This module sends out invalid fragmented IP packets that
trigger a bug in the IP fragment reassembly code of some
operating systems.

8040 Cisco 760/766 Access
Router "login" DOS

Cisco 760-series routers are remote access routers for
ISDN connections. Due to an implementation problem, they
are vulnerable to an attack that can cause the router to
crash and reboot. The attack works by responding to the
router's "Password" prompt with an overly-long random
string. This overflows a buffer in the router, which
subsequently crashes. This module attempts to determine
whether a remote system is vulnerable to attack by
connecting to the router's "telnet" port and sending an
overly-long password. If the test is successful, the router
will crash and reboot; if not, the router will remain stable
throughout the test. Due to the nature of this problem, it is
possible that it (like many buffer overflow bugs similar to it)
can be exploited to obtain access to the router remotely.
This has not yet been confirmed publicly.

8041 IP-Switch IMail / Seattle
Labs Sendmail VRFY
Overflow

Certain versions of the SMTP mail servers from the IP-
Switch IMail package and the Seattle Labs Sendmail
package are vulnerable to an attack that causes the mail
server software to crash. This allows an attacker to
compromise the availability of the mail service on
vulnerable systems. The attack works by sending an overly-
long email address in conjunction with an SMTP "VRFY"
(verify email address) command. In vulnerable software,
this causes a buffer overflow to occur, which in turn causes
the mail software to crash. This module attempts to
ascertain the vulnerability of a remote mail server by
sending an overly-long SMTP "VRFY" command to the mail
server. If the probe is successful, the mail service will
crash. If not, the service will remain stable throughout the
probe. Due to the nature of this vulnerability, it is possible
that it (like other buffer overflow bugs) can be exploited to
obtain remote access to the mail server. This has not been
confirmed publicly.

APPENDIX D

Page 330

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
8042 Ascend "discard" Service

DOS
Ascend routing and access server platforms, including the
Pipeline, MAX, and TNT systems, are vulnerable to a denial
of service attack that allows arbitrary remote users to
reboot the machine. While the machine is in the process of
rebooting, it will be unable to forward traffic, and any
connections (modem, ISDN, etc) will be dropped. Sites that
rely on Ascend routing hardware for connectivity can be cut
off from the network with this attack. The attack works by
sending a specially formatted packet to the UDP "discard"
service on the router. Ascend hardware speaks a special
proprietary "configurator" protocol over UDP "discard", and
when the system receives a malformed configurator packet,
it crashes and reboots. Any attacker that can send packets
to the "discard" port of a vulnerable Ascend router can thus
crash and reboot it. This module attempts to crash an
Ascend router by sending a malformed configurator packet
to the router. If the attack is successful, the router will crash
and reboot. If not, the router will remain stable during the
probe.

8043 rpc.statd buffer overflow This module checks for a vulnerability in the rpc.statd
service present on NFS client and server systems. A buffer
overflow vulnerability present in this service allows
execution of arbitrary commands on vulnerable systems.

8044 Microsoft RAS PPTP
DOS

Microsoft provides remote access capabilities to Windows
NT machines via its RAS subsystem. In order to provide
remote network access with enhanced security, RAS uses
a Microsoft proprietary protocol called PPTP (Point-to-Point
Tunneling Protocol). In a typical configuration, arbitrary
clients on the Internet have the ability to speak a limited
amount of PPTP to a RAS server. Due to an
implementation problem in Microsoft's code, it is possible
for an attacker to cause a RAS s erver to crash by sending a
specific type of PPTP request to the server with a
malformed packet header field. This can be used by an
attacker to deny legitimate remote access to the RAS
server.

8046 Cisco IOS remote router
crash check

A software implementation bug in Cisco IOS makes it
possible for an attacker that gains access to a "login"
prompt to cause the IOS device to crash and reload.
Access to the login prompt can be obtained over TCP/IP,
asynchronous lines, a local console connection or any other
connection supported by Cisco IOS. This check, however,
only tries to establish a connection to the login prompt over
a TCP stream. If the test is successful, the router will crash
and reboot; if not, the router will remain stable throughout
the test.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 331

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
8049 WinGate Proxy

Connection Loop DOS
WinGate is a popular Windows software proxy package. In
some configurations, WinGate servers allow arbitrary users
to connect to the command-line interface of the server; this
enables arbitrary people to bounce connections off the
proxy. This is a vulnerability, as it can be used to launder
connections used for attacks. See check 13013 for more
information. Some versions of the WinGate proxy server
are susceptible to a denial-of-service attack which allows a
remote attacker, who has authorization to connect to the
WinGate command line interface, to render the server
nonfunctional. This attack is carried out by continuously
requesting the server to connect to itself, via the localhost
interface, until the server runs out of memory to handle
further requests.

8050 Xylogics/Bay Annex Ping
CGI Overflow

Bay Networks, a Nortel Networks subsidiary, acquired and
supports a terminal server solution from Xylogics called an
Annex server. Annex servers allow remote users to obtain
dialup connections to a network; they also potentially allow
network clients to dial out of the network, and are thus
coveted targets for attackers. Some versions of the Annex
software are susceptible to a denial of service attack
involving the server's built-in web server. Vulnerable Annex
versions support a "ping" CGI program which, when fed
overly- long queries, overflows an internal buffer and
disables the entire access server. The full extent of this
vulnerability is not known. Typically, overflow conditions
that result in denial of service can be exploited to obtain
complete access to the afflicted software, which can then
be used as a launching point for further attacks.

8051 HP LaserJet 5 SNMP
Denial of Service

8053 Windows NT - SLmail
v3.1 Denial of Service
check

Builds of Seattle Lab's SLMail 3.1 smtp service
(slsmtp.exe) prior to build number 2961 are susceptible to a
denial of service attack. This attack will raise the CPU
usage of the slsmtp.exe process to almost 100%.

8054 BSD Option
Fragmentation
Vulnerability

The IP fragment reassembly algorithm in BSD derived
implementations incorrectly reassembles fragments
containing invalid IP options with the potential to crash or
hang vulnerable systems. Vulnerable systems include
BSDI, FreeBSD, and OpenBSD.

9000 Password Guessing/Grinding
9001 FTP Password Guessing This module attempts to guess passwords via the FTP

server. A common security problem are networked hosts
with easily guessable usernames and passwords. In some
instances, operating systems come pre-configured with
several default user accounts which can allow access to
anyone. CyberCop Scanner will attempt to login to the
remote server with a list of usernames and passwords
which are stored in the files "userlist.txt" and "passlist.txt"
by default. CyberCop Scanner will also save any
usernames which can be obtained via finger, rusers and
other services and attempt to login as those users.

APPENDIX D

Page 332

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
9002 Telnet Password

Guessing
This module attempts to guess passwords via the telnet
daemon. A common security problem is having networked
hosts with easily guessable usernames and passwords. In
some instances, operating systems come pre-configured
with several default user accounts which can allow access
to anyone. CyberCop Scanner will attempt to login to the
remote server with a list of usernames and passwords
which are stored in the files "userlist.txt" and "passlist.txt"
by default. The scanner will also save any usernames
which can be obtained via finger, rusers and other services
and attempt to login as those users.

9003 POP Password Guessing This module attempts to guess passwords via the POP
server. A common security problem are networked hosts
with easily guessable usernames and passwords. In some
instances, operating systems come pre-configured with
several default user accounts which can allow access to
anyone. CyberCop Scanner will attempt to login to the
remote server with a list of usernames and passwords
which are stored in the files "userlist.txt" and "passlist.txt"
by default. CyberCop Scanner will also save any
usernames which can be obtained via finger, rusers and
other services and attempt to login as those users.

9004 IMAP Password
Guessing

This module attempts to guess passwords via the IMAP
server. A common security problem are networked hosts
with easily guessable usernames and passwords. In some
instances, operating systems come pre-configured with
several default user accounts which can allow access to
anyone. CyberCop Scanner will attempt to login to the
remote server with a list of usernames and passwords
which are stored in the files "userlist.txt" and "passlist.txt"
by default. CyberCop Scanner will also save any
usernames which can be obtained via finger, rusers and
other services and attempt to login as those users.

9005 Rexec Password
Guessing

This module attempts to guess passwords via the rexec
daemon. A common security problem is having networked
hosts with easily guessable usernames and passwords. In
some instances, operating systems come pre-configured
with several default user accounts which can allow access
to anyone. CyberCop Scanner will attempt to login to the
remote server with a list of usernames and passwords
which are stored in the files "userlist.txt" and "passlist.txt"
by default. CyberCop Scanner will also save any
usernames which can be obtained via finger, rusers and
other services and attempt to login as those users.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 333

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
9006 Rlogin Password

Guessing
This module attempts to guess passwords via the rlogin
daemon. A common security problem are networked hosts
with easily guessable usernames and passwords. In some
instances, operating systems come pre-configured with
several default user accounts which can allow access to
anyone. CyberCop Scanner will attempt to login to the
remote server with a list of usernames and passwords
which are stored in the files "userlist.txt" and "passlist.txt"
by default. CyberCop Scanner will also save any
usernames which can be obtained via finger, rusers and
other services and attempt to login as those users.

9007 Password(s) guessed via
WWW server

CyberCop Scanner was able to guess the username and
password of a valid account which is utilized to obtain
privileged access to the target WWW server.

10000 World Wide Web, HTTP, and CGI
10001 NCSA WebServer buffer

overflow check (versions
1.4.1 and below)

NCSA's web server software prior to version 1.4.1 had a
buffer overflow that could be exploited to give a remote
user access to the server. This check will attempt to exploit
the buffer overflow in NCSA httpd.

10002 test-cgi check Some HTTP servers ship with a CGI (Common Gateway
Interface) script called test-cgi. This script can be subverted
to list files and directories, anywhere on the host machine.
This check searches for the test-cgi script and determines
whether directories can be listed remotely.

10003 WWW Perl check The WWW Perl check searches your cgi-bin directory for
executable implementations of Perl. Many web server
administrators inadvertently place copies of the Perl
interpreter into their web server script directories.

10004 WWW phf check The phf CGI program is a gateway to the "PH" phone book
system, which is frequently used at Universities to provide
online student phone books. The phf web gateway
improperly parses incoming web requests w hen they
contain quoted newline characters, allowing attackers to
submit requests that will cause phf to execute an arbitrary
command on the web server. This check searches for the
phf script and attempts to exploit it.

10006 Microsoft .bat/com check Some WWW servers, notably WebSite (an O'Reilly &
Associates web server for Windows NT) and Microsoft's IIS
(Internet Information Server) Web Server have a weakness
which allows users to execute arbitrary commands with
'.bat' or '.cmd' files. This check searches for such files and
attempts to exploit them.

10008 Shell interpreter check Leaving executable shells in your cgi-bin directory can
enable remote users to execute arbitrary commands on
your host, as the UID which owns the shells. This can lead
to your machine being breached. This check looks for the
following shells in your cgi-bin directory: * ash * bash * csh *
ksh * sh * tcsh * zsh

10009 PHF bash vulnerability A vulnerability in the GNU BASH shell allows usage of
characters with a decimal value of 255 as command
separators. This problem allows users to send command
strings to remote servers and have the remote server
execute them.

APPENDIX D

Page 334

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
10010 WWW finger check Some web sites implement a web gateway to the "finger"

service, allowing remote web clients to execute finger
queries against arbitrary hosts. In environments where the
"finger" service has been determined to be a security risk
(due to the sensitivity of the information it provides), a web
finger gateway can be used to execute finger queries
against the server, allowing an attacker to obtain
information about its users. This check attempts to find a
web-based finger gateway and execute it.

10012 WWW Server is not
running in a "chroot"
environment

The target WWW server was found to not be running in a
"chroot" environment. When running in a "chroot"
environment, the WWW server's file system is limited to a
small subset of the host's real filesystem. The target WWW
server has the ability to access the entire file system on the
target host.

10014 NCSA WebServer buffer
overflow check (version
1.5c)

NCSA's web server software prior to version 1.5c had a
buffer overflow that could be exploited to give a remote
user access to the server. This check will attempt to exploit
the buffer overflow in NCSA httpd.

10015 Nph-test-cgi check Many Unix-based web servers are bundled with a sample
CGI program called "nph-test-cgi". nph-test-cgi is a test
script that allows "non-parsed headers" to be sent via
HTTP. Due to improper quoting of request parameters,
attackers can formulate requests to this program that will
cause it to list all files on the system.

10016 AnyForm CGI check AnyForm is a CGI program that allows webmasters to
create arbitrary form submission pages without writing a
dedicated CGI program for each form. AnyForm runs the
Bourne shell to execute Sendmail, which it uses to send
form results to the web administrator. Due to improper
quoting of form field parameters, an attacker can place
shell metacharacters in form fields, which will cause
AnyForm to execute an arbitrary command on the web
server. This check searches for the AnyForm script and
attempts to exploit it.

10017 FormMail check FormMail is a CGI program that allows the creation of
arbitrary form submission web pages without writing a
dedicated CGI program for each. FormMail executes the
Bourne shell in order to run a mail program, which is used
to send form results to the web administrator. Due to
improper quoting of form fields, an attacker can place shell
metacharacters in a form field, forcing FormMail to execute
an arbitrary command.

10018 ScriptAlias check The ScriptAlias check attempts to exploit a problem
inherent in both NCSA httpd (all versions up to and
including 1.5) and Apache httpd prior to 1.0. The problem is
that configuring a ScriptAlias directory within the Document
Root permits users to retrieve a CGI program rather than
execute it. This will allow remote users to download scripts
instead of executing them. In effect this will give the
attacker the ability to search your CGI forms for
weaknesses and or steal proprietary programs.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 335

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
10019 Guestbook CGI The Guestbook CGI program allows web browsers to leave

their name in an electronic guestbook. If the web server
implements the Server-Side Includes (SSI) extension, the
Guestbook program can be used to execute an arbitrary
command on the web server, by leaving a name and
message that includes HTML tags for an SSI command.

10020 Test-cgi " *" check Some HTTP servers ship with a CGI script titled test-cgi.
This script can be subverted to list files and directories,
anywhere on the host machine. Later versions of the test-
cgi script, which were meant to prevent the use of wildcards
to obtain file listings have a bug which allows people to
obtain file listings using " *" instead of "*".

10021 Nph-test-cgi " *" check Some HTTP servers ship with a CGI (Common Gateway
Interface) script titled nph-cgi-test. This script can be
subverted to list files and directories, anywhere on the host
machine. This check searches for the nph-test-cgi script
and attempts to exploit it using " *" instead of "*".

10022 Apache httpd cookie
buffer overflow

Version 1.1.1 and earlier of the Apache httpd have a
remotely exploitable buffer overflow in their cookie
generation code. This check determines whether you are
running version 1.1.1 of the Apache httpd with the cookies
module enabled. If you are vulnerable to this attack, remote
individuals can obtain access to your web server machine.

10023 Windows NT - WebSite
buffer overflow

Version 1.1e of the WebSite web server for Windows NT
contains a serious vulnerability allowing remote users to
execute arbitrary commands on systems running WebSite
for Windows NT. The vulnerability exists in the example
CGI program which is located in /cgi-shl/win-c-sample.exe
which contains a buffer overflow. This allows an attacker to
specify instructions for the web server to execute, enabling
them to execute any Windows NT command.

10024 Windows 95 - WebSite
buffer overflow

The release version of the WebSite web server for
Windows 95 contains a serious vulnerability allowing
remote users to execute arbitrary commands on systems
running WebSite for Windows 95. The vulnerability exists in
the example CGI program which is located in /cgi-shl/win-c-
sample.exe which contains a buffer overflow. This allows
an attacker to specify instructions for the web server to
execute, enabling them to execute any Windows 95
command.

10025 php.cgi file printing bug PHP is a CGI program that allows highly flexible dynamic
web pages to be created, by feeding web pages through an
interpreter. The PHP interpreter reads input files, executes
PHP commands, and sends the output to web clients. As
distributed, it is possible for an attacker to request an
arbitrary file from PHP, rather than a specifically allowed
web page. Misconfigured PHP programs will allow an
attacker to read any file the web server can read.

10026 php.cgi buffer overflow php.cgi 2.0beta10 and earlier suffer from a command line
buffer overflow which makes it possible for a remote
attacker to obtain access to your web server.

APPENDIX D

Page 336

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
10027 SGI wrap CGI The version of /var/www/cgi-bin/wrap shipped with some

versions of IRIX permits users to obtain listings of any
directory on your system which ordinary users can read. In
addition, the default inetd.conf instructs IRIX to place a web
server on port 8778 as well as port 80.

10028 IRIX /cgi-bin/handler
check

The /cgi-bin/handler program, shipped with Irix 6.2, makes
it possible for remote individuals to execute arbitrary shell
commands.

10029 Glimpse HTTP check Glimpse is a search engine used to efficiently search for
information in large numbers of files. "aglimpse" is a CGI
program that makes up part of a WWW gateway to
Glimpse. A vulnerability exists in the /cgi-bin/aglimpse script
which allows a remote user to execute arbitrary commands
on the remote system as the user which the web server
runs as.

10030 GAIS websendmail
check

WEBGAIS is a search tool. Some older versions of the
WEBGAIS tool is bundled with a CGI program called
"websendmail", which allows form input to be mailed to an
administrator. The "websendmail" CGI program improperly
processes information from form fields, and allows them to
contain shell metacharacters. This can be used to coerce
the program into executing an arbitrary program on behalf
of an attacker.

10031 WebSite Uploader CGI
check

Uploader.exe is a sample CGI script that comes with
O'Reilly's WebSite web server for NT. Due to insufficient
argument checking, the uploader CGI program will allow
attackers to upload files to arbitrary directories under the
web server root directory. This module uploads a text file to
one of the CGI directories. An attacker could upload a CGI
script and invoke it to get access to the web server.

10032 PHP mlog Example
Script Check

PHP is a CGI program that allows administrators to easily
and flexibly create dynamic web pages. PHP-enabled web
pages are fed through the PHP interpreter, which executes
commands embedded in the web pages and feeds the
output to web clients. The PHP scripting language contains
an example script called mlog.phtml which, due to
insufficient checking of a script argument, will allow a user
connecting via WWW to read any file readable by the web
server daemon. This check tries to obtain the password file
in /etc/passwd using this script.

10033 PHP mylog example
script test

PHP is a CGI program that allows administrators to easily
and flexibly create dynamic web pages. PHP-enabled web
pages are fed through the PHP interpreter, which executes
commands embedded in the web pages and feeds the
output to web clients. The PHP scripting language contains
an example script called mylog.phtml which, due to
insufficient checking of a script argument, will allow a user
connecting via WWW to read any file readable by the web
server daemon. This check tries to obtain the password file
in /etc/passwd using this script.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 337

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
10034 Cisco HTTP Server

Presence
Newer Cisco routers can be configured through a web
interface that works via an HTTP server in the router
software. It is possible that the presence of this server can
allow an attacker to gain extended access to a router.
Presence of this server also indicates an out-of-the-box
configuration of the router which may be vulnerable to other
attacks.

10035 wwwcount Stack Overrun
Check

Certain versions of Muhammad Muquit's wwwcount counter
CGI program are vulnerable to a stack overrun caused by
the processing of an overly-large query string. Attackers
can exploit this problem to run arbitrary programs as the
user-ID of the web server, allowing them to gain remote
access to vulnerable web servers.

10036 IIS ASP source bug In certain versions of IIS it is possible to read the source to
ASP (Active Server Page) files by adding a trailing dot to
the URL or by replacing a dot with it's hex equivalent.
Usually the ASP page will be interpreted on the server to
generate the HTML file that a web browser displays.

10037 IIS newdsn.exe bug The newdsn.exe script that comes with IIS allows users to
create databases through a web interface. The script does
not check the location of the created database. An attacker
can use this script to create or overwrite any file with the
permissions of the anonymous internet account
(IUSR_machinename). Although the attacker does not
control the contents of the created file, it may provide the
leverage needed to compromise security, and can easily be
used to compromise the availability of a vulnerable server
and the machine it runs on.

10038 IRIX MachineInfo Script Silicon Graphics Irix systems are shipped with a default
script in the WWW server cgi-bin directory called
MachineInfo. This script allow a remote user to obtain
complete information on the system's configuration.
Information available includes: 1. Processor type and speed
2. Amount of memory 3. Type of disks installed 4. Type of
graphics board

10039 Netscape FastTrack
Webserver "get/GET"
Bug

Webservers are network servers that speak the HTTP
protocol, which is used over TCP connections. One of the
commands in the HTTP protocol is "GET", which is used to
retrieve HTML files from remote webservers. "GET", like all
HTTP commands, must be issued entirely in uppercase; it
is a violation of the protocol to use lowercase characters in
the command name. Webservers normally issue an error
when an HTTP request is malformed. Due to an
implementation error, some variants of the Netscape
FastTrack webserver do not issue an error, but rather
provide a file listing when a "GET" request is issued in
lowercase.

APPENDIX D

Page 338

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
10040 IRIX webdist.cgi check The webdist.cgi script is shipped with many versions of the

Silicon Graphics IRIX operating system. Due to a problem
processing CGI arguments, the program incorrectly
expands hex-encoded metacharacters without stripping
them from the input. The contents of the CGI input to
webdist.cgi are passed to the shell when the program
executes other commands, so this problem can be used by
an attacker to execute arbitrary commands on vulnerable
systems.

10042 Microsoft Personal
Webserver Overflow
DOS

The Microsoft Personal Webserver (MPWS) is a software
product that allows workstation users to establish personal
web-sites on their desktop machines. Due to a software
implementation problem in Microsoft's code, it is possible to
cause MPWS to crash by sending an oversized HTTP GET
request to the webserver. This can be used to prevent web
users from accessing published pages.

10043 IRIX pfdispaly.cgi
Vulnerability

The pfdispaly.cgi script is shipped with the Silicon Graphics
IRIX operating system as part of the IRIX Performer API
Search Tool which is a web based search tool that assists
in searching of man pages, documents and example code.
The script is loaded by default when installing the IRIX
Performer 2.2 CD on IRIX 6.2, 6.3 and 6.4. Due to a
problem processing CGI input to pfdispaly the contents are
passed to the shell when the program executes other
commands, so this problem can be used by an attacker to
execute arbitrary commands on vulnerable systems.

10044 FSF "info2www" CGI
Check

info2www is a CGI program written in Perl that converts
"info"-formatted program documentation into HTML, for
viewing over the web via browsers. This script passes an
HTTP argument directly to the open() call; an attacker that
specifies an argument that includes the pipe character ('|')
can thus force the script to execute an arbitrary command.

10046 iCat carbo.dll
Vulnerability

The carbo.dll dynamic linked library is shipped with the iCat
Carbo Server, a piece Web catalog authoring software for
Windows servers. Due to a problem processing user input
to carbo.dll the contents are passed to the shell when the
program executes other commands, so this problem can be
used by an attacker to execute arbitrary commands on
vulnerable systems. This vulnerability has been noted in
version 3.0.0 of iCat.

10047 "campas" CGI
Vulnerability

This module tests for the presence of the "campas" CGI
vulnerability on a web server.

10048 HylaFax faxsurvey CGI
vulnerability

HylaFax is a package for Unix systems which provides fax
services. Included in the packet are web pages for
collecting survey information from HylaFax users. The CGI
script which is used to gather this information does not
properly sanitize the user provided input and evaluates it in
a shell.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 339

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
10049 WWW faxsurvey check The faxsurvey CGI program is part of the HylaFAX fax

system for UNIX that permits sending and receiving faxes
using standard fax capable modems. The faxsurvey
program is used to submit forms to a database of HylaFAX
users specifying what modems and operating systems they
are using the package on. Due to invalid checks on the
user's input to the CGI program, it is possible for an
attacker to execute arbitrary commands on vulnerable
hosts.

10050 Acme's thttpd - HTTP
server GET bug (ver

The command parser in thttpd removes only the first slash
in the filename of GET commands. If you're not running the
server in a chrooted environment, an attacker can use this
bug to read files outside of your document tree, for instance
/etc/passwd.

10053 IIS ism.dll Basic/NTLM
Authentication
Vulnerability

Versions 2 and 3 of Microsoft Internet Information Web
Server (IIS) utilized the ism.dll file for remote administration
which was located in the /scripts/iisadmin/ directory. If this
dynamic linked library is accessible, remote users may be
able to use brute force password guessing techniques to
log in and remotely administer the web server. Upgrading
IIS from version 2 or 3 to version 4 does not remove this
file. If ism.dll is accessible, the forms of remote
authentication enabled are returned. Additional information
regarding authentication methods is below. IIS allows three
forms of authentication for access, anonymous, basic and
Windows NT challenge / response (NTLM). Anonymous
access requires no password and generally allows remote
users to access a public web server. Basic authentication
requires a username and password before access is
granted. This form of authentication uses base64 encoding
which is not encrypted allowing passwords to be sniffed as
they pass across the network. NTLM authentication does
encrypt usernames and passwords although is generally
only available when all hosts use a Microsoft operating
system and the web server is not accessed through a proxy
server. Furthermore, in certain vers ions of IIS NTLM
authentication is enabled by default. If either form of
authentication is enabled username/password
combinations can be brute force attacked from remote
hosts.

10054 WinGate Logfile Server
Vulnerability

WinGate Proxy Server provides a Log File Server on port
8010 to remotely view logfiles. In certain cases this server
may be enabled by default. If this service accepts
connections from remote hosts, the entire file system may
be accessible, allowing remote users to access, read or
download any file on your system.

10055 Winroute Administration
Port 3129 Vulnerability

Winroute is a Firewall / Proxy Server for Windows that
allows remote administration on port 3129. If accessible,
remote users can reconfigure sections of the Server, delete
all log information and attempt to authenticate as a user.

APPENDIX D

Page 340

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
10056 IIS Associations reveal

webroot Vulnerability
Microsoft's Internet Information Server (IIS) connects all
files with programs via file-name extension mapping or
associating. The registry key: Hive :
HKEY_LOCAL_MACHINE Key :
\SYSTEM\CurrentControlSet\Services \W3SVC\Parameters\
Script Map shows default associations for the IIS server. A
default IIS 3.0 server shows mappings in this registry key
such as: .ida -> c:\winnt\system32\idq.dll .idq ->
c:\winnt\system32\idq.dll .idc ->
c:\winnt\system32\inetsrv\httpodbc.dll By accessing an
invalid filename with a valid extension such as "file.idq" in
an executable directory the root of the IIS web server
maybe revealed.

10057 IIS / ASP Long File
Name Denial of Service

Certain versions of Microsoft's Internet Information Server
(IIS) Active Server Pages (ASP) are vulnerable to a denial
of service attack if they accept file name paths. This module
accesses two ASP pages that are part of the default ins tall
and attempts to stop the web server from operating.

10064 IIS /scripts Directory
Vulnerability

By default, Microsoft's Internet Information Server creates
an aliased directory "scripts" which, by default, physically
maps to c:\inetpub\scripts. This directory generally contains
executable programs or dynamic linked libraries which help
perform tasks such as remote administration of the web
server. If directory browsing has been enabled on the web
server, third parties will be able to remotely browse the
scripts directory and identify installed software for use in
potential attacks.

10065 Alibaba Web Server ../..
Vulnerability

The Alibaba Web Server version 2.0 allows remote
attackers to access any files on the same drive as the
Alibaba installation. Directory browsing, which is enabled by
default, allows the remote browsing of directories on the
same drive. If directory browsing is not enabled specific file
names can be used for unauthorized access to the web
server.

10066 IIS showcode.asp
Vulnerability

The Microsoft Internet Information Web Server Version 4.0
contains a number of sample Active Server Page files
designed to view the source code of sample applications.
One specific file, showcode.asp, does not correctly verify
input allowing unauthorized access to files outside the web
root of the IIS server.

10067 IIS codebrws.asp
Vulnerability

The Microsoft Internet Information Web Server Version 4.0
contains a number of sample Active Server Page files
designed to view the source code of sample applications.
One specific file, codebrws.asp, does not correctly verify
input allowing unauthorized access to files outside the web
root of the IIS server.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 341

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
10068 Cold Fusion Example

Documentation
Vulnerability

The Cold Fusion Application Server 4.0 installs by default
online documentation allowing remote attackers to view,
upload and delete files anywhere on the server.
Specifically, Cold Fusion installs the following files:
/cfdocs/expeval/openfile.cfm
/cfdocs/expeval/displayopenedfile.cfm
/cfdocs/expeval/exprcalc.cfm The first file allows remote
users to view any file on the server, although as a side
effect it also deletes the file viewed. Upon uploading a file
to Openfile.cfm it calls displayopenedfile.cfm to display the
file which in turn calls exprcalc.cfm to delete the uploaded
file. By using exprcalc.cfm to delete itself, remote attackers
can then upload arbitrary files to the web server. This
module returns a vulnerability if any of the three Cold
Fusion examples is accessible.

11000 Network Protocol Spoofing
11006 RIP spoofing check The target host was found to be utilizing RIP (Routing

Information Protocol) to obtain routing decision information.
Version 1 RIP is an easily spoofable protocol. It has been
determined that the target host is running RIP version 1.

11010 RST out of TCP window
check

A TCP connection between two hosts is identified using the
following information: source IP address, source port,
destination IP address and destination port. Either end can
cause an abrupt close of the connection by sending a TCP
packet with the RST flag set, and the correct identifying
values. This packet must meet certain criteria in order to be
honored by the receiving end. The rules for validating an
RST packet that corresponds to an established connection
are specified in the Request For Comments 793.
Vulnerable hosts do not perform all the validation steps as
per RFC 793 and only check for a identifiers that
correspond to a valid TCP connection.

11011 IP forwarding check The target host was found to have IP forwarding enabled.
12000 Packet Filter Verification Tests
12001 ICMP - echo request ICMP echo request messages are being forwarded.
12002 ICMP - echo request

broadcast
ICMP echo request messages destined for broadcast
addresses are being forwarded.

12003 ICMP - echo reply ICMP echo reply messages are being forwarded.
12004 ICMP - netmask request ICMP netmask request messages are being forwarded.
12005 ICMP - netmask reply ICMP netmask reply messages are being forwarded.
12006 ICMP - timestamp

request
ICMP timestamp request messages are being forwarded.

12007 ICMP - timestamp reply ICMP timestamp reply messages are being forwarded.
12008 ICMP - information

request
ICMP information request messages are being forwarded

12009 ICMP - information reply ICMP information reply messages are being forwarded
12010 ICMP - unreachable -

network
ICMP network unreachable messages are being forwarded.

12011 ICMP - unreachable -
host

ICMP host unreachable messages are being forwarded.

APPENDIX D

Page 342

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
12012 ICMP - unreachable -

protocol
ICMP protocol unreachable message.

12013 ICMP - unreachable -
port

ICMP port unreachable message.

12014 ICMP - fragmentation
needed but DF set

ICMP unreachable, fragmentation needed but don't-
fragment bit set messages forwarded.

12015 ICMP - source route
failed

ICMP unreachable - source route failed messages are
being forwarded

12016 ICMP - destination
network unknown

ICMP unreachable - destination network unknown
messages are being forwarded

12017 ICMP - destination host
unknown

ICMP unreachable - destination host unknown messages
are being forwarded

12018 ICMP - source host
isolated

ICMP unreachable - source host isolated messages are
being forwarded.

12019 ICMP - destination
network administratively
prohibited

ICMP unreachable - destination network administratively
prohibited.

12020 ICMP - destination host
administratively
prohibited

ICMP unreachable - destination host administratively
prohibited.

12021 ICMP - network
unreachable for TOS

ICMP - network unreachable for TOS messages are being
forwarded.

12022 ICMP - host unreachable
for TOS

ICMP - host unreachable for TOS messages are being
forwarded.

12023 ICMP unreachable -
communication
administratively
prohibited

ICMP unreachable - communication administratively
prohibited messages are being forwarded.

12024 ICMP unreachable - host
precedence violation

ICMP unreachable - host precedence violation messages
are being forwarded

12025 ICMP unreachable -
precedence cutoff in
effect

ICMP unreachable - precedence cutoff in effect messages
are being forwarded

12026 ICMP - source quench ICMP source quench messages are being forwarded.
12027 ICMP - redirect - network ICMP network redirect packets are being forwarded.
12028 ICMP - redirect - host ICMP host redirect packets are being forwarded.
12029 ICMP - redirect - TOS

and network
ICMP TOS and network redirect packets are being
forwarded.

12030 ICMP - redirect - TOS
and host

ICMP TOS and host redirect packets are being forwarded.

12031 ICMP - router
advertisement

ICMP router advertisement messages are being forwarded.

12032 ICMP - router solicitation ICMP router solicitation messages are being forwarded.
12033 ICMP - TTL expired in

transit
ICMP - TTL expired in transit messages are being
forwarded

12034 ICMP - TTL expired
during assembly

ICMP - TTL expired during assembly messages are being
forwarded

12035 ICMP - IP header bad ICMP - IP header bad messages are being forwarded
12036 ICMP - required option

missing
ICMP - required option missing messages are being
forwarded

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 343

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
12040 IP - fragmentation - tiny

fragment
The firewall was found to forward packets with an initial
fragment size smaller than 76 bytes. The forwarding of
packets smaller than 76 bytes can allow an attacker to
evade packet filters which filter based on the location and
values of TCP flags within the TCP header. A common
filtering technique is to prevent new incoming TCP
connections from being established through a firewall by
looking for the SYN flag within the TCP header. If this flag
is set, the connection is denied, if coming from the outside.
This vulnerability evades the packet filter by placing the
flags portion of the TCP packet into the next packet. The
following excerpt is taken from RFC 1858: With many IP
implementations it is possible to impose an unusually small
fragment size on outgoing packets. If the fragment size is
made small enough to force some of a TCP packet's TCP
header fields into the second fragment, filter rules that
specify patterns for those fields will not match. If the filtering
implementation does not enforce a minimum fragment size,
a disallowed packet might be passed because it didn't hit a
match in the filter.

12041 IP - fragmentation - tiny
fragment without MF bit
set

The firewall was found to forward packets with a fragment
size smaller than 76 bytes. The forwarding of packets
smaller than 76 bytes can allow an attacker to evade
packet filters which filter based on the location and values
of TCP flags within the TCP header. A common filtering
technique is to prevent new incoming TCP connections
from being established through a firewall by looking for the
SYN flag within the TCP header. If this flag is set, the
connection is denied, if coming from the outside. This
vulnerability evades the packet filter by placing the flags
portion of the TCP packet into the next packet. The
following excerpt is taken from RFC 1858: With many IP
implementations it is possible to impose an unusually small
fragment size on outgoing packets. If the fragment size is
made small enough to force some of a TCP packet's TCP
header fields into the second fragment, filter rules that
specify patterns for those fields will not match. If the filtering
implementation does not enforce a minimum fragment size,
a disallowed packet might be passed because it didn't hit a
match in the filter.

APPENDIX D

Page 344

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
12042 IP - fragmentation - tiny

fragment with reserved
bit set

The firewall was found to forward tiny fragmented IP
datagrams which have the MF (More Fragments) flag set
and the reserved flag set. The forwarding of packets
smaller than 76 bytes can allow an attacker to evade
packet filters which filter based on the location and values
of TCP flags within the TCP header. A common filtering
technique is to prevent new incoming TCP connections
from being established through a firewall by looking for the
SYN flag within the TCP header. If this flag is set, the
connection is denied, if coming from the outside. This
vulnerability evades the packet filter by placing the flags
portion of the TCP packet into the next packet. The
following excerpt is taken from RFC 1858: With many IP
implementations it is possible to impose an unusually small
fragment size on outgoing packets. If the fragment size is
made small enough to force some of a TCP packet's TCP
header fields into the second fragment, filter rules that
specify patterns for those fields will not match. If the filtering
implementation does not enforce a minimum fragment size,
a disallowed packet might be passed because it didn't hit a
match in the filter.

12043 IP - fragmentation -
second fragment has
offset of 1

The firewall was found to forward fragmented IP datagrams
which contain a fragment offset of 1. The forwarding of
fragments with an offset that overlaps other fragments may
allow an attacker to evade packet filters by overwriting
header values in the initial fragment with values that would
not have normally been permitted. The outcome of
overlapping IP fragments depends on whether the
destination IP stack prefers old or new data when
reassembling IP fragments.

12044 IP - options - strict
source route

IP datagrams containing strict source route options are
being forwarded

12045 IP - options - loose
source route

IP datagrams containing loose source route options are
being forwarded

12046 IP - options - record
route

IP datagrams containing record route options are being
forwarded

12047 IP - options - timestamp IP datagrams containing timestamp options are being
forwarded

12048 IP - version - less than 4 IP datagrams with an IP version number of less than 4 are
being forwarded.

12049 IP - version - greater
than 4

IP datagrams with an IP version number of greater than 4
are being forwarded.

12050 IP - TCP protocol
permitted

TCP packets are being forwarded by the firewall without
significant filtering.

12051 IP - UDP protocol
permitted

UDP packets are being forwarded by the firewall without
significant filtering.

12052 IP - odd protocols IP datagrams containing an uncommon protocol are being
forwarded by the firewall.

12060 TCP - common ports
permitted

One or more common TCP services are being forwarded by
the firewall.

12061 TCP - ports permitted
[exhaustive]

One or more TCP services are being forwarded by the
firewall.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 345

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
12062 TCP - source ports

permitted
The firewall allows connections originating from one or
more common source ports into the internal network.

12070 UDP - common ports
permitted

One or more common services are being forwarded by the
firewall.

12071 UDP - ports permitted
[exhaustive]

One or more common services are being forwarded by the
firewall.

12072 UDP - source ports
permitted

The firewall allows connections originating from one or
more common source ports into the internal network.

13000 Firewalls, Filters, and Proxies
13001 Livingston Portmaster

fixed TCP ISN check
This module checks if a Livingston Portmaster router is
vulnerable to TCP sequence prediction attacks. A router
that is vulnerable to this attack is open to spoofing and TCP
session hijacking attacks where the intruder can take over
an established session and gain complete control of the
router's configuration. Livingston Portmaster routers are
particularly vulnerable since they use the same fixed TCP
initial sequence number for all TCP sessions.

13002 TCP sequence numbers
are predictable

The target host was found to be vulnerable to TCP
sequence number prediction attacks. The host generates
TCP sequence numbers in a pattern which can be guessed
by an intruder to launch TCP spoofing based attacks.

13005 SOCKS version 4
configuration check

This check attempts to access services through an
incorrectly configured SOCKS version 4 proxy. A
connection was established through the proxy server back
to the scanning host.

13011 Wingate POP3 proxy
Username Overflow
check

Wingate POP3 proxy Username Overflow check This
module determines whether the remote POP3 server is
vulnerable to a buffer overflow attack when parsing the user
login name. By providing the daemon with a long
username, an attacker can overflow the username buffer
and cause the server to crash. It may be possible for an
attacker to cause the server to run arbitrary programs by
providing a carefully crafted username. A vulnerable
Wingate proxy will stop responding to legitimate clients
after the attack is performed. Notice: Certain versions of
SCO Unix ship with a POP3 service enabled that is
vulnerable to a similar serious problem, in which an
attacker can exploit a buffer overflow triggered by any
overly-large command. Because the test for this specific
POP3 vulnerability involves the transmission of an
extremely large POP command, this test may flag
vulnerable SCO POP servers as well.

13012 IGMP host poll check This check attempts to gather a list of hostnames from
routers which support Multicasting groups.

13013 Unpassworded WinGate
Proxy Server

WinGate is a proxy server for Windows environments. It
allows multiple machines to share a single connection and
IP address by proxying all requests through a single server.
An unpassworded WinGate server can be used to launder
connections for unauthorized and illegal network usage.
WinGate is exploited by connecting to the "telnet" port of
the proxy server, and using the command-line interface to
create a new outbound connection to an arbitrary address.
This new connection can be used to attack other hosts.

APPENDIX D

Page 346

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
14000 Authentication Mechanisms
14001 NIS+ Incorrect

permissions on
passwd.org_dir table

The permissions on the passwd.org_dir table were found to
be set incorrectly. In many cases the permissions on the
default NIS+ installation are set incorrectly. This may allow
unauthorized access to table information.

14002 NIS+ Incorrect
permissions on
passwd.org_dir columns

The permissions on the specific columns within the
passwd.org_dir table were found to be set incorrectly. In
many cases the permissions on the default NIS+
installation are set incorrectly. This may allow unauthorized
access to table information.

14003 NIS+ Incorrect
permissions on
passwd.org_dir entries

The permissions on the specific entries within the
passwd.org_dir table were found to be set incorrectly.

14004 NIS+ Security level
retrieval

This module prints out the security level which the NIS+
server on the target host is currently running at. NIS+
supports 3 different levels of security: Level 0 : No access
control whatsoever is performed Level 1 : AUTH_SYS
credentials are allowed, AUTH_SYS credentials are easily
forged by users and should not be used. Level 2 : Only
AUTH_DES credentials are accepted. This should be the
security level for normal operation.

14005 NIS+ Dangerous security
level

This module determines whether the target NIS+ server is
running at a security level below 2. If the NIS+ server is
running at any security level lower than 2, attackers can
trivially modify and retrieve NIS+ information.

14006 NIS+ Process ID
gathering

This module utilizes a feature of the NIS+ server, which
allows remote users to determine whether a particular
process ID is running on the target server.

14007 NIS+ rpc.nisd remote
buffer overflow

The target host was found to be vulnerable to a buffer
overflow vulnerability in the rpc.nisd RPC service. This
service is present on workstations and servers running the
Sun Microsystems Solaris operating system and utilizing
the NIS+ suite. By sending data consisting of an abnormally
long text string within a valid NIS+ RPC packet, an overflow
within the NIS+ server occurs. By sending correctly formed
data, an attacker can exploit this buffer overflow to r un
commands on the target system. WARNING: If enabled,
this module will crash a vulnerable NIS+ server. If this
module returns positive, ensure that you are prepared to
restart this service.

15000 General Remote Services
15001 Open X Server check The X Windows server running on the target host was

found to allow unrestricted access. Some operating
systems are shipped without any access restrictions to the
X Windows server.

15003 Xterm cookie guess
check

Some versions of X windows use MIT style magic cookies
for authentication. However in some version of X these
cookies are guessable, making your Xterm open to attack
as if it had no access control whatsoever.

15004 Telnet
LD_LIBRARY_PATH
vulnerability

The telnet daemon on the target host was found to be
vulnerable to a security problem which may allow an
attacker to obtain remote super-user access to the system.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 347

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
15005 POP shadowed

password vulnerability
The target host was found to be running a vulnerable
version of the POP3 server for Linux. A known vulnerability
in older Linux installations which also have the shadow
password suite installed allowed an attacker to read any
user's mail via the POP3 service.

15006 rlogin -froot check On some versions of AIX and Linux a remote user can gain
root access by exploiting a problem in rlogind. This problem
is a result of incorrectly parsing the parameters passed to
the login program, which results in the attacker having the
ability to login as the root user, without a password.

15007 Kerberos server c heck This check discerns whether a target Kerberos server (V4)
can be coaxed into offering up valid ciphered passwords.
Passwords encrypted under Kerberos (V4) can be
decrypted much in the same way UNIX password files can.

15008 UUCP service check This module discerns whether the UUCP service is offered
on a host. Many network connected systems are shipped
with the UUCP service enabled by default. This may open
up potential security problems.

15009 Open news server check This module checks to see if it can read or post news
articles off your News Server. If this is possible, a remote
user can poll your news feed causing a strain on your
system resources. Moreover they can post erroneous
information from your news server which may be
embarrassing to your company image.

15011 cfingerd (1) exploit check This module attempts to exploit a vulnerability in earlier
versions of cfingerd for Linux, which could lead to root
compromise. This bug is related to cfingerd parsing
instructions from incoming fingers incorrectly.

15014 Telnet
RESOLV_HOST_CONF
check

Some telnet daemons will accept environment variables
from remote telnet clients. Some of these variables include
paths to system files. A vulnerability exists in some
systems' resolver library whereby a user can specify the
location of a configuration file. If your host is vulnerable to
this, an intruder could read any file on your system by
connecting to your telnet daemon.

15015 Radiusd overflow check Some versions of radiusd have a weakness whereby a
buffer overflow can be exploited to gain a segfault in the
daemon and perhaps execute arbitrary commands as root.

15020 Linux NIS+ account In the past installations of NIS+ on some Linux distributions
were configured improperly in the /etc/passwd file. This
inconsistency allowed for remote users to log in as '+'.

15021 Hosts.equiv (+) check This module check's if your hosts.equiv is misconfigured
with a '+' in it which would allow for users to rsh (or any
other 'r' service for that matter) into your host.

15024 HP Remote Watch check This module determines whether your HP-UX system is
vulnerable to a bug in the HP Remote Watch package
whereby a remote user can easily obtain root access on
your host.

15025 Kerberos user name
gathering check

This check attempts to coax usernames and the Kerberos
realm from a Kerberos server. This allows users to match
up usernames with a list of gathered ciphered passwords
which they could crack.

APPENDIX D

Page 348

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
15026 Linux TFTP (Trivial File

Transfer Protocol) check
This module checks for a faulty access control
implementation in Linux versions of the tftp daemon. Most
current tftpd implementations attempt to restrict access to
files outside of the tftproot directory. The Linux
implementations disallow any files with /../ in their
pathnames, however one can still access files such as
/etc/passwd by prepending ../ in front of the pathname
(../etc/passwd). This will work since the current directory for
tftpd is usually /ftpchroot.

15027 IMAP and POP buffer
overflow check

Several versions of both IMAP and POP servers which
provide remote mail management contain a serious
vulnerability. This check determines whether your IMAP
daemon is vulnerable to a buffer overflow which allows
users to execute arbitrary commands on your server . This
vulnerability allows users to execute commands remotely
as root.

15028 INN control message
check

This check determines whether your version of INN is
vulnerable to a problem which allows remote users to
execute commands on your news server. This can be done
by feeding your news server control messages with shell
escape characters in them, causing INN to execute
commands. This test attempts to determine your INN
version number. INN versions earlier than 1.5.1 have a
number of problems with their parsing of control messages,
resulting in information from message headers being
passed to a shell.

15029 INN nnrpd buffer
overflow

This check determines whether your news server is
vulnerable to a buffer overflow present in the nnrpd
program. The nnrpd program is run by the INN news server
software to handle the reading and posting of usenet
articles by users. A vulnerability in this program can allow
remote users to execute arbitrary commands on your news
server.

15030 SSH Version 1.2.17
check

Version 1.2.17 of the SSH server package contains security
vulnerabilities which can lead to an attacker compromising
the security of the SSH protocol. This vulnerability is
present in version 1.5 of the SSH protocol which is only
present in version 1.2.17 of the SSH package.

15031 Vacation remote
execution vulnerability

Vacation is used by the recipient of email messages to
notify the sender that they are not currently reading their
mail. A vulnerability exists within the vacation program
which allows individuals to execute commands remotely.

15032 Perl fingerd 0.2 Version 0.2 of the perl fingerd passes remote usernames to
a shell. Thus, passing the fingerd a username containing
shell metacharacters can cause it to execute arbitrary
commands remotely.

15033 DG/UX fingerd Some versions of the DG/UX fingerd pass their input to a
shell. This makes it possible for remote attackers to
execute arbitrary commands on the DG/UX system.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 349

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
15034 Telnet Daemon

TERMCAP check
This module determines whether the remote telnet daemon
is vulnerable to a buffer overflow attack when parsing a
terminal capability file. By uploading an alternate termcap
file, an attacker can specify the path to this file and cause
the telnet daemon to execute arbitrary commands.

15035 POP3 Username
Overflow check

This module determines whether the remote POP3 server
is vulnerable to a buffer overflow attack when parsing the
user login name. By providing the daemon with a long
username, an attacker can overflow the username buffer
and cause the server to crash. It may be possible for an
attacker to cause the server to run arbitrary programs by
providing a carefully crafted username. If the POP3 server
is the Seattle Lab Mail Server package, crashing the POP3
server causes the entire mail server to stop. Notice: Certain
versions of SCO Unix ship with a POP3 service enabled
that is vulnerable to a similar serious problem, in which an
attacker can exploit a buffer overflow triggered by any
overly-large command. Because the test for this specific
POP3 vulnerability involves the transmission of an
extremely large POP command, this test may flag
vulnerable SCO POP servers as well.

15036 SCO POP Overflow
check

This module determines whether the remote POP server is
vulnerable to a buffer overflow attack. Santa Cruz
Operation OpenServer 5.0.0 through 5.0.4, Internet
FastStart 1.0.0 and 1.1.0 are known to be vulnerable to this
attack. By providing the daemon with a long string, an
attacker can overflow an internal buffer and cause the
server to execute arbitrary commands as root.

15037 Null Rsh Check This module determines whether a remote user is able to
login to the target system by specifying a NULL username.
The in.rshd daemon on some systems would allow logins
from NULL users due to a vulnerability in the ruserok()
library call.

15038 Solaris in.rlogind FTP
bounce vulnerability

This module determines whether the rlogin daemon on the
target host is vulnerable to an FTP bounce attack. This
vulnerability relies on the ability of an attacker to subvert
the FTP daemon on the target host to connect to the rlogin
service port on the target host, and execute arbitrary
commands. This module determines whether the target
server's rlogin daemon is vulnerable to this attack. In order
to be exploited however, the FTP daemon must also be
running on the target host. This module does not determine
whether the FTP server is running. While this may not be
an exploitable vulnerability at this time, it is possible that an
FTP server may be running on the target host in the future.

APPENDIX D

Page 350

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
15039 Qualcomm "qpopper"

POP3 command
vulnerability

Some versions of the the Qualcomm "qpopper" POP3
service contain a vulnerability which allows an attacker to
execute arbitrary commands remotely as the super-user.
This module checks to see if this vulnerability is present.
Notice: Certain versions of SCO Unix ship with a POP3
service enabled that is vulnerable to a similar serious
problem, in which an attacker can exploit a buffer overflow
triggered by any overly -large command. Because the test
for this specific POP3 vulnerability involves the
transmission of an extremely large POP command, this test
may flag vulnerable SCO POP servers as well.

15040 Qualcomm "qpopper"
POP3 PASS Overflow

Some versions of the the Qualcomm "qpopper" POP3
service contain a vulnerability which allows an attacker to
execute arbitrary commands remotely as the super-user.
This module checks to see if this vulnerability is present.
Notice: Certain versions of SCO Unix ship with a POP3
service enabled that is vulnerable to a similar serious
problem, in which an attacker can exploit a buffer overflow
triggered by any overly -large command. Because the test
for this specific POP3 vulnerability involves the
transmission of an extremely large POP command, this test
may flag vulnerable SCO POP servers as well.

15043 TFTP (Trivial File
Transfer Protocol)
readable

The TFTP service running on the target host was found to
allow the retrieval of arbitrary files.

15044 TFTP (Trivial File
Transfer Protocol)
writable

The TFTP service running on the target host was found to
allow arbitrary files to be created and written to anywhere
on the target system.

15045 SSH
RhostsAuthentication
enabled

The SSH service running on the target host was found to
have rhosts authentication enabled. rhosts authentication
provides access verification based on the source address
of the client user, and is susceptible to IP address spoofing,
and DNS cache corruption attacks.

15047 BNC IRC Proxy Remote
Overflow

BNC is an IRC proxy package that allows IRC chat clients
to obtain forwarded access to IRC servers. BNC listens on
a user- configurable port for connections, and forwards
them to an IRC server. Due to an implementation problem
inside the proxy server, it is possible for a remote attacker
to gain access to the shell account the BNC proxy is
running under. This attack, which exploits a buffer overflow
in the proxy's command processing code, effectively allows
an attacker complete access to the machine the proxy
server is running on.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 351

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
15048 CSM Proxy 4.1 Denial of

service
This check determines whether you can crash the CSM
Proxy 4.1 by sending 1030 characters or more to the FTP
port (21). The CSM Proxy accepts connections and
username/password information before checking for
authorization based on source IP address of the
connection. This allows any user on the Internet/Intranet to
connect to the proxy server (even from an unauthorized
host) and exploit a buffer overflow problem that makes the
CSM Proxy crash (in addition to the Windows NT machine
that it is running on) when it receives more than 1029
characters in its FTP port (port 21/tcp). If the CSM Proxy is
running on a host protected by a firewall and not accessible
from the Internet, this vulnerability can only be exploited by
users on hosts of the internal network. Notice: Under
certain circumstances the UNIX version of the vulnerable
CSM Proxy may not crash, although its memory usage will
significantly increase.

16000 SMB/NetBIOS Resource Sharing
16001 Unpassworded

NetBIOS/SMB check
Service Message Block (SMB) is the standard resource-
sharing protocol used by Windows platforms. The SMB
protocol is transmitted using NetBIOS, a networking
protocol designed to allow groups of PCs to interoperate.
NetBIOS is accessible over TCP/IP using the NBT protocol.
SMB resource sharing makes use of two different security
models, "share-level" and "user-level". In share-level
security, groups of files (directory trees) are protected by a
password, allowing simple workgroups to be configured
simply by ensuring that they share a password. In user-
level security, all attempts to access resources are
authenticated with a username and password. It is possible
to obtain a list of shares offered by an SMB-speaking
computer by initiating an SMB session with no username or
password (this is referred to as a "null session"). The
information available from this transaction can be used by
an attacker to conduct further attacks.

16002 Guessable
NetBIOS/SMB password
check

Service Message Block (SMB) is the standard resource-
sharing protocol used by Windows platforms. The SMB
protocol is transmitted using NetBIOS, a networking
protocol designed to allow groups of PCs to interoperate.
NetBIOS is accessible over TCP/IP using the NBT protocol.
SMB resource sharing makes use of two different security
models, "share-level" and "user-level". In share-level
security, groups of files (directory trees) are protected by a
password, allowing simple workgroups to be configured
simply by ensuring that they share a password. In user-
level security, all attempts to access resources are
authenticated with a username and password. This check
attempts to connect to the remote NetBIOS file sharing
service and attempt to login with common passwords and
accounts which are enabled with Windows NT by default. If
successful, this will allow an unauthorized user to access
shares and services which are being offered by the remote
host. (Note: the usernames and passwords used are not
taken from the userlist or password list files).

APPENDIX D

Page 352

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
16003 SMB LANMAN Pipe

Server information
gathering

Service Message Block (SMB) is the standard resource-
sharing protocol used by Windows platforms. The SMB
protocol is transmitted using NetBIOS, a networking
protocol designed to allow groups of PCs to interoperate.
NetBIOS is accessible over TCP/IP using the NBT protocol.
One resource SMB servers make available to clients is an
IPC mechanism called "transaction pipes". A transaction
pipe allows SMB clients to communicate with remote
servers using the SMB protocol as a transport. Transaction
pipes are accessed via special "file names" from SMB
hosts. Among the transaction pipes available to clients of
Windows NT servers is "\\PIPE\\LANMAN", over which the
Remote Administration Protocol (RAP) is spoken. Using the
LANMAN pipe, it is possible to collect a great deal of
information about the configuration and status of an NT
server. Information available from the LANMAN pipe
includes version and vendor information, along with NT
server, workgroup, and domain names. This information
can be useful to an attacker when looking for weaknesses
in particular server implementations.

16004 SMB LANMAN Pipe
Share listing

Service Message Block (SMB) is the standard resource-
sharing protocol used by Windows platforms. The SMB
protocol is transmitted using NetBIOS, a networking
protocol designed to allow groups of PCs to interoperate.
NetBIOS is accessible over TCP/IP using the NBT protocol.
One resource SMB servers make available to clients is an
IPC mechanism called "transaction pipes". A transaction
pipe allows SMB clients to communicate with remote
servers using the SMB protocol as a transport. Transaction
pipes are accessed via special "file names" from SMB
hosts. Among the transaction pipes available to clients of
Windows NT servers is "\\PIPE\\LANMAN", over which the
Remote Administration Protocol (RAP) is spoken. Using the
LANMAN pipe, it is possible to collect a great deal of
information about the configuration and status of an NT
server. Information available from the LANMAN pipe
includes a list of shares available on the NT server. This
provides an attacker a listing of directories and file systems
which are being offered, giving an attacker a target
filesystem or service to attempt to abuse.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 353

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
16005 SMB LANMAN Pipe

Server browse listing
Service Message Block (SMB) is the standard resource-
sharing protocol used by Windows platforms. The SMB
protocol is transmitted using NetBIOS, a networking
protocol designed to allow groups of PCs to interoperate.
NetBIOS is accessible over TCP/IP using the NBT protocol.
One resource SMB servers make available to clients is an
IPC mechanism called "transaction pipes". A transaction
pipe allows SMB clients to communicate with remote
servers using the SMB protocol as a transport. Transaction
pipes are accessed via special "file names" from SMB
hosts. Among the transaction pipes available to clients of
Windows NT servers is "\\PIPE\\LANMAN", over which the
Remote Administration Protocol (RAP) is spoken. Using the
LANMAN pipe, it is possible to collect a great deal of
information about the configuration and status of an NT
server. The information available from an NT server via the
LANMAN pipe includes the "browse listing" of the system,
which lists the names of other SMB-speaking systems that
the server communicates. This information can provide an
attacker with an easy way to obtain new target systems to
attack.

16006 NetBIOS/SMB
Accessible Share

Service Message Block (SMB) is the standard resource-
sharing protocol used by Windows platforms. The SMB
protocol is transmitted using NetBIOS, a networking
protocol designed to allow groups of PCs to interoperate.
NetBIOS is accessible over TCP/IP using the NBT protocol.
SMB resource sharing makes use of two different security
models, "share-level" and "user-level". In share-level
security, groups of files (directory trees) are protected by a
password, allowing simple workgroups to be configured
simply by ensuring that they share a password. In user-
level security, all attempts to access resources are
authenticated with a username and password. By
manipulating the SMB protocol and services offered by
Windows NT, it is possible to obtain a list of shares
exported by an SMB service. In addition, Windows SMB
servers tend to have several common shares available, the
presence of which can be guessed without attempting to
obtain a share list. This check attempts to access all shares
which are being served by the remote server. If any shares
are accessible, an intruder can possibly read or write data
from and to the share. This can lead to data being stolen, or
modified on the server.

APPENDIX D

Page 354

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
16007 NetBIOS/SMB Hidden

Share
Service Message Block (SMB) is the standard resource-
sharing protocol used by Windows platforms. The SMB
protocol is transmitted using NetBIOS, a networking
protocol designed to allow groups of PCs to interoperate.
NetBIOS is accessible over TCP/IP using the NBT protocol.
SMB resource sharing makes use of two different security
models, "share-level" and "user-level". In share-level
security, groups of files (directory trees) are protected by a
password, allowing simple workgroups to be configured
simply by ensuring that they share a password. In user-
level security, all attempts to access resources are
authenticated with a username and password. Although it is
possible, by manipulating the SMB protocol and services
offered by Windows NT, to obtain a list of shares, many
SMB servers also have several common share names
available, including the "ROOT" share and the root
directory of MS-DOS hard drive partitions. An attacker can
guess the names of these shares and verify their presence
using the SMB protocol, and thus gain information that can
be used to launch further attacks against the system. An
attacker that can gain access to these shares can
potentially read or modify the data they contain.

16008 NetBIOS/SMB Writable
Share Check

Service Message Block (SMB) is the standard resource-
sharing protocol used by Windows platforms. The SMB
protocol is transmitted using NetBIOS, a networking
protocol designed to allow groups of PCs to interoperate.
NetBIOS is accessible over TCP/IP using the NBT protocol.
SMB resource sharing makes use of two different security
models, "share-level" and "user-level". In share-level
security, groups of files (directory trees) are protected by a
password, allowing simple workgroups to be configured
simply by ensuring that they share a password. In user-
level security, all attempts to access resources are
authenticated with a username and password. This check
confirms that a share which has been determined to be
accessible to an attacker is also writable. An attacker with
write access to a share can modify the data it contains,
violating the integrity of that data and potentially the entire
system.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 355

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
16009 NetBIOS/SMB Dot Dot

Bug
Service Message Block (SMB) is the standard resource-
sharing protocol used by Windows platforms. The SMB
protocol is transmitted using NetBIOS, a networking
protocol designed to allow groups of PCs to interoperate.
NetBIOS is accessible over TCP/IP using the NBT protocol.
SMB resource sharing makes use of two different security
models, "share-level" and "user-level". In share-level
security, groups of files (directory trees) are protected by a
password, allowing simple workgroups to be configured
simply by ensuring that they share a password. In user-
level security, all attempts to access resources are
authenticated with a username and password. SMB shares
specify collections of files that are accessible to an SMB
client. Data outside the specified SMB share on the server
should not be accessible to a client; this allows selective
portions of a filesystem to be shared via SMB. Complete
access to the filesystem of an SMB server would allow
clients to access and modify it's configuration, thus
compromising the integrity of the system. In some SMB
implementations, permutations of the ".." directory are
handled incorrectly, allowing an attacker to access data
outside the exported share. This check attempts to
circumvent directory protection by exercising this bug.

16020 NetBIOS Name Table
Retrieval

This check obtains the system name tables from the remote
system's NetBIOS name service.

16021 NetBIOS Name Table
Registration

This module performs a NetBIOS name registration to
register a false machine name on the target host.

16022 NetBIOS Name Table
De-registration

This module performs a NetBIOS name release to de-
register NetBIOS name table entries.

16023 NetBIOS Samba login
defaults to GUEST

Samba is a NetBIOS/SMB file sharing package available
for Unix based operating systems, allowing interoperability
with Windows NT file sharing. The Samba server found on
the target host has been found to default to a GUEST login,
if a valid username and password are not entered.

16024 NetBIOS Samba
password buffer overflow

The Samba NetBIOS distribution on the target host
contains a buffer overflow vulnerability which can allow
remote users to execute arbitrary commands on the server.
By specifying a correctly formatted password string that is
longer than what Samba is expecting, a buffer overflow
occurs. Versions of Samba prior to 1.9.17p2 are vulnerable
to this attack.

17000 Domain Name System and BIND
17002 DNS Supports IQUERY

check
This module determines whether or not the remote
nameserver supports the IQUERY operation. The IQUERY
function in named implementations is fed an IP range
(netmask) and will return all available resource records for
the hosts within the given range.

17004 DNS Zone transfer check This module determines whether or not zone transfers are
supported by the given nameserver.

17005 DNS Zone transfer by
exhaustive search using
IQUERY

If the specified nameserver does not allow zone transfers, it
is still possible in most cases to obtain the same
information, and resource records by iteratively using the
IQUERY operation to build a listing of the domain.

APPENDIX D

Page 356

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
17007 DNS Server allows

Updates
This checks if the target DNS was compiled with the '-
DALLOW_UPDATES' option. '-DALLOW_UPDATES' is an
extension which allows for dynamic updating of name
service information. The dynamic update code in BIND, as
noted by its author Mike Schwartz
(schwartz@cs.washington.edu), ignores all security issues.
As a result, any DNS compiled with -DALLOW_UPDATES
can be easily fooled into changing resource records of the
zones it serves. These updates will also be propagated to
secondary name servers.

17008 DNS additional info
piggybacked in a
QUERY check

This module determines whether or not a host will cache
information which is appended to the end of a legitimate
query. It is highly unlikely that current implementations
support this, however this was supported in old BIND
implementations. We query the server for a legitimate host,
and add additional resource records to the back of the
query. Then we determine whether the server has cached
this additional record or not.

17010 DNS accepts responses
out of sequence check

This module determines whether a DNS server will accept
responses with invalid ID numbers. We query the DNS
server for a host which is resolved somewhere else on the
Internet, and send a fake reply with a false ID number. If
our response is cached, we conclude that the server is
caching responses with invalid ID numbers.

17014 DNS caches answers
with binary data check

Determine whether or not the DNS server will cache binary
data in hostname queries. Caching binary data in place of
hostname information is very dangerous as many programs
expect the nameserver to return clean, valid printable
information. It has been noted that many programs can be
exploited by passing invalid data via DNS responses. We
query the nameserver for a legitimate host, and respond
with a legitimate reply containing invalid binary data. We
then query the DNS server again to determine if this was
cached or not. For reference: BIND 4.8.3 allows caching
anything you want. BIND 4.9.3 will cache under certain
conditions. BIND 4.9.4-P1 will not cache binary data

17018 DNS version number
check

This module attempts to obtain the remote version number
from the DNS server. This information is provided by post
4.9.5 BIND name servers. The information consists of the
version of BIND running on the remote server, and the host
and user who compiled the installed nameserver.

17020 DNS Cache Corruption,
Guessable Query IDs

Most nameservers on the Internet are vulnerable to an
attack that allows an attacker to cache arbitrary information
on the server, thus allowing the attacker to spoof DNS,
redirect web traffic, and subvert hostname- based
authentication. This attack works by forcing the target
nameserver to attempt to resolve the information being
spoofed, and then forging the response to this request. To
do this, the attacker needs to be able to predict the query -
ID used by the target nameserver in the query. This module
attempts to determine whether or not the target nameserver
uses query IDs which can be predicted. If it is determined
that the query IDs are predictable, an attacker can forge
responses to DNS queries and spoof the DNS protocol.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 357

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
17021 DNS Cache Corruption,

Multiple-Answer Attack
Recent revisions of BIND (4.9.5 and below) are vulnerable
to an attack that allows arbitrary individuals on the network
to cache incorrect information on the server. This allows an
attacker to spoof nameservice, redirect web accesses, and
bypass name-based authentication (such as TCP-
wrappers). The attack involves forcing the nameserver to
talk to another server somewhere else on the network, in
order to resolve some random name. The remote server
responds to this query with two answ ers, one answering the
query, and another that contains false information.
Vulnerable servers will cache both answers, and the fake
data will be made available for future queries.

17022 DNS Cache Corruption,
Poisoned-NS Attack

Recent revisions of BIND (4.9.5 and below) are vulnerable
to an attack that allows arbitrary individuals on the network
to cache incorrect information on the server. This allows an
attacker to spoof nameservice, redirect web accesses, and
bypass name-based authentication (such as TCP-
wrappers). This attack works by forcing the nameserver to
talk to a remote server to resolve a query for some random
name. The remote server can trick the nameserver into
caching arbitrary names by responding to this query with an
answer that contains a fake NS record; the information from
this NS record will be cached on the target nameserver.

17023 DNS Cache Corruption,
Parallel Query Attack

Most nameservers on the Internet are vulnerable to an
attack that allows an attacker to cache arbitrary information
on the server, thus allowing the attacker to spoof DNS,
redirect web traffic, and subvert hostname- based
authentication. This attack works by forcing the target
nameserver to attempt to resolve the information being
spoofed, and then forging the response to this request. To
do this, the attacker needs to be able to predict the query -
ID used by the target nameserver in the query. The
effectiveness of this attack can be heightened by forcing
the target nameserver to launch many queries for this
information in parallel, thus causing it to allocate more
query IDs, which gives an attacker a greater opportunity to
guess the query ID, even if it's randomized. This module
attempts to determine if an attacker can force the
nameserver to initiate multiple queries for the exact same
information. If the nameserver does this, an attacker can
significantly increase the odds of successfully guessing
query IDs and forging DNS responses.

17024 DNS IQUERY Buffer
Overflow Attack

Certain versions of BIND are vulnerable to an attack which
allows a remote DNS client to run an arbitrary command on
the nameserver host as the user the server runs as
(frequently root). This attack exploits an implementation
flaw in BIND that involves a buffer overflow triggered by
inserting an overly long name record into a DNS IQUERY
request. Most BIND servers do not support the IQUERY
operation. These servers are not vulnerable to this attack.
However, many Linux hosts run stock nameservers which
are configured to support IQUERY; these hosts can be
compromised completely by this attack.

APPENDIX D

Page 358

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
18000 Windows NT - Network Vulnerabilities
18001 Connection to IPC$ as

Anonymous User
Allowed

The remote host allows the Anonymous user to establish
connections to the IPC$ share over the network. The IPC$
share is used by Windows NT to provide a number of
system administration services to other networked users.
Unix machines running the Samba SMB service also make
an IPC$ share available over the network.

18002 Password Grinding
(through IPC$)

Users may remotely use the services of an NT machine by
connecting to one of the shares. In order to connect to a
share the user must provide an account name and a
password. This module attempts to connect to the IPC$
share (used for remote communication with system
services) by trying a number of users and passwords. If a
username and password is guessed, it may be used to get
protected information, connect to other shares or even log
in to the machine.

18003 Registry permission
problems

This module looks through the remotely accessible parts of
the registry looking for permissions that allow remote users
to modify the registry without an account on the system. In
general remote users should not be allowed to change the
configuration information of the machine w ithout an
account. The impact of having permission problems can
range from benign, to allowing denial of service attacks, to
allowing compromise of the systems accounts.

18004 Password Database
Retrieved

This module grabs the password database from a remote
NT machine. This module does not demonstrate a
vulnerability but rather grabs extra information that would
be available to an attacker who has compromised the
Administrator account.

18005 LSA Secrets Retrieved This module grabs the Services secrets stored in the Local
Security Authority. This module does not demonstrate a
vulnerability but rather obtains extra information that would
be available to an attacker who has compromised the
Administrator account.

18007 Lan Manager
Authentication Enabled

The target host was found to have Lan Manager
authentication enabled. Lan Manager authentication is a
weaker form of authentication which can be easily cracked
by an attacker. Your security policy indicates that Lan
Manager authentication should be disabled.

18008 Force server to use SMB
message signing

The security policy indicates that servers must use SMB
message signing on all SMB traffic. The host is currently
not configured to do so. SMB message signing causes
each packet to be signed by the sender, allowing
verification by both the client and server end, ensuring that
no data has been tampered with by an attacker.

18009 Force client to use SMB
message signing

The security policy indicates that clients must use SMB
message signing on all SMB traffic. The host is currently
not configured to do so. SMB message signing causes
each packet to be signed by the sender, allowing
verification by both the client and server end, ensuring that
no data has been tampered with by an attacker.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 359

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
18010 Registry A ccess Not

Restricted
The restrictions on the Windows NT Registry were found to
allow access to all users. Access to the registry via the
network is governed by the restrictions imposed on the
"winreg" registry key. This key was found either to be
missing or to contain permissions allowing access to
"Everyone".

18011 DCOM Support Enabled
(remote activation of
COM servers)

The target host has been found to have DCOM enabled.
This controls the global activation and call policies of the
machine

18012 DCOM RunAs Value
Writeable

The target host has been found to have the DCOM RunAs
value writable by the Interactive user.

18013 Registry
HKEY_LOCAL_MACHIN
E Key writable

The HKEY_LOCAL_MACHINE key was found to be
writable by the "Everyone" group. This key should never be
writable by the "Everyone" group under any circumstances,
and indicates that the system may have been tampered
with.

18014 Registry
HKEY_CLASSES_ROO
T Key writable

The HKEY_CLASSES_ROOT key was found to be writable
by the "Everyone" group. This key should never be writable
by the "Everyone" group under any circumstances, and
indicates that the system may have been tampered with.

18015 Password Filter Registry
Key Changed

The target host was found to have a modified value for the
alternate security provider registry key. This indicates the
possibility that a Trojan horse has been installed on the
system to gather users' passwords when they are changed.
If this key can be changed by a user, it can be modified to
point to another DLL which can be used to gather
passwords in clear text. This is a DLL which normally exists
only in a Netware environment. A false FPNWCLNT.DLL
can be stored in the %systemroot%\system32 directory
which collects passwords in plain text. If an alternate
provider has been intentionally installed, this test can
produce a false positive. Microsoft mistakenly shipped
Windows NT 4.0 with the Notification Packages value set to
FPNWCLNT. This value allows any user with write
permissions to the %systemroot%\system32 directory to
copy in a DLL file to gather passwords.

APPENDIX D

Page 360

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
18016 Mail Reader Mime Bug MIME is an encoding scheme that allows flexible encoding

of various file types, such as audio messages, graphics and
binary files, to be sent encoded in text. Several mail reading
packages which support the MIME encoding have been
found to have flaws in the parsing of the MIME header
fields. During parsing, the programs copy more data into
local buffers than the buffers were set up to receive
resulting in corruption of internal program data. This module
detects which versions of Microsoft Outlook Express,
Microsoft Outlook98 or Netscape are installed on the
machine through the registry. If a vulnerable mail reader is
found, it is reported. It is not possible to detect if the
Outlook98 patch has been applied remotely through the
registry. As a result, this vulnerability will always be
detected if Outlook98 is installed. You should verify that the
security patch has been installed on any machine that is
reported to have Outlook98 installed. Additionally this
module cannot distinguish between vulnerable and non-
vulnerable versions of the 4.5b1 release of Netscape. It will
flag these as potentially vulnerable. You should verify that
the latest version of the 4.5b1 release has been installed. In
order to work properly, this module must run with the
privileges of the administrator. It either needs to be run as
the domain administrator in the domain the scanned
machine is in, or it must know the administrator account
name and password. To discover the administrator account
name, module 18010 (Windows NT User ID Guessing)
must have run successfully, or the administrator account
must be Administrator. To discover the administrator
password, module 18013 (Windows NT Password Grinding
through IPC$) must have successfully guessed the
administrator password.

18017 Unsafe SNMP Registry
Permissions

The permissions on the registry key containing the SNMP
agent's configuration were found to be unsafe. By default,
all system users are able to access the SNMP
configuration.

18018 Unsafe Run Registry Key
Permissions

The permissions on the Run registry key were found to
allow write access by Everyone. This access allows all
users and guests to add an entry to the registry, which
causes a program to be executed when anyone logs into
the system.

18019 Unsafe RunOnce
Registry Key
Permissions

The permissions on the RunOnce registry key were found
to allow write access by Everyone. This access allows all
users and guests to add an entry to the registry, which
causes a program to be executed when anyone logs into
the system.

18020 Unsafe Uninstall Registry
Key Permissions

The permissions on the Uninstall registry key were found to
allow write access by Everyone. This access allows all
users and guests to add an entry to the registry, which
causes a program to be executed when a user attempts to
remove an application from the system.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 361

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
18021 NDIS 4.0 bit set for

"promiscuous" mode
The target host was found to have an NDIS 4.0 Driver with
its LocalOnly bit set to 1. This enables the host to enter a
"promiscuous -like mode" without using the real NIC's
Promiscuous mode. This is indicative of a host running a
sniffer application such as Microsoft's Network Monitor.

18022 Weak protection found
on base objects (C2)

The target host was found to have weak protection on the
system's base objects. This is a C2 level compliance check.
Tightening security on resources like COM1 and printers
may be of value on a computer containing particularly
sensitive data.

18023 Suspicious use of Win
3.1 File System 8.3
'short' names

The target host was found to to have a suspicious choice of
prohibiting long file names. For this particular version of
Windows this choice may indicate the use of a low -level
disk formatter or other pr imitive executable that relies upon
strict DOS FAT's. Some anti-virus programs and disk-tools
legitimately need this setting.

18024 Unable to access IPC$
or Registry

CyberCop Scanner was unable to obtain full access to the
target host's IPC$ share, or the Windows NT registry. Many
of the policy checks in the scanner require access to the
IPC$ share or to the registry of the machine being scanned.
Without the proper access, some checks will not be able to
detect vulnerabilities on the remote machine. This module
provides a warning specifying when access to the IPC$
share, the HKEY_LOCAL_MACHINE registry hive or the
HKEY_USERS registry hive was not granted. This indicates
that a complete audit of the target system may not have
been performed. This can occur if the account the scan is
being run from does not have access to the machine being
scanned or if the account does not have sufficient
permission to access the remote resources. This may also
indicate that the machine is a standalone system, or is not
part of the same Windows NT domain from which the scan
is being performed. If access to the registry was not
obtained, it may also indicate that the target system is not a
Windows NT system.

18025 IP packet forwarding is
enabled

The target host was found to have IP packet forwarding
enabled. This indicates the possibility of this system being
used as a gateway between two lans.

18026 Auditing configured for
base objects

The target host was found to have Auditing configured for
base objects. An Administrator may use this to audit certain
system objects not commonly known by users (i.e., they are
known to software engineers). Only files and directories in
NTFS partitions can be audited, and it is only access that is
auditable, not intent. This setting may cause suspicion as it
could be an attempt to discover internal security measures.
Though it is likely a misconfiguration and should be turned
off for performance reasons.

18027 TCP/IP Security not
enabled

The target host was found to not have the "Security" setting
in the Start/Control Panel/Network/Protocols/TCPIP
Protocol/Properties/Advanced/Enable Security enabled.

APPENDIX D

Page 362

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
18028 Hard error mode set to

suppress Messages
and/or Audit-logging

The target host was found to prevent the displaying and/or
logging of hard errors. This may be a concern if this host is
not a secured system running authorized company
applications. Typically a computer set to reboot in an un-
attended mode should be physically secure and very tightly
controlled.

18029 Unsecure COM
reference counting

The target host was found to allow AddRef/Release
invocations to be unsecure for applications that do not call
CoInitializeSecurity.

18030 Suspicious COM default
authentication level

The target host was found to have a non-default value f or
the LegacyAuthenticationLevel setting. This setting
determines an authentication level for COM applications
that do not call CoInitializeSecurity.

18031 MDAC settings may
allow Privilege Elevation
attack

The target host was found to have the IIS's Sever settings,
in particular those configuring the Microsoft Data Access
Components (MDAC), to be in an un-safe mode. You
should also check the version of the installed MDAC
system. 1.5 is installed by default with the NT 4.0 Option
Pack. At the time of this writing MDAC was available in
version 2.1. Check the version strings inside the
MSDADC.dll and OleDb32.dll's according to the Security
Bulletin at:
http://www.microsoft.com/security/bulletins/ms99-
025faq.asp

20000 SNMP/Network Management
20001 SNMP Community check This module attempts to talk to a hosts SNMP server using

some commonly used community names. If a successful
connection is made the community is probed to see if it is
read-only or read-write.

20010 SNMP MIB-II
Miscellaneous data

This module gathers miscellaneous information from the
SNMP daemon with the community name provided in the
configuration file. This module retrieves information that is
available to an attacker who has read access to SNMP.
This module uses the community name spec ified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

20011 SNMP MIB-II TCP table This module retrieves the TCP connection table from the
SNMP daemon with the community name provided in the
configuration file. This module retrieves information that is
available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

20012 SNMP MIB-II UDP table This module retrieves the table of listening UDP ports from
the SNMP daemon with the community name provided in
the configuration file. This module retrieves information that
is available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 363

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
20013 SNMP MIB-II Interface

Table
This module retrieves the table of network interfaces from
the SNMP daemon with the community name provided in
the configuration file. This module retrieves information that
is available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

20014 SNMP MIB-II Address
table

This module retrieves the table of IP addresses from the
SNMP daemon with the community name provided in the
configuration file. This module retrieves information that is
available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

20015 SNMP MIB-II ARP table This module retrieves the ARP table (which con tains IP
address to hardware address translations) from the SNMP
daemon with the community name provided in the
configuration file. This module retrieves information that is
available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

20016 SNMP MIB-II Routing
table

This module retrieves the IP routing table from the SNMP
daemon with the community name provided in the
configuration file. This module retrieves information that is
available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

20020 SNMP LANMAN
Miscellaneous
information

This module retrieves miscellaneous information in the
LANMAN MIB from the SNMP daemon with the community
name provided in the configuration file. This module
retrieves information that is available to an attacker who
has read access to SNMP. This module uses the
community name specified in the configuration file and
does not attempt to guess the community name. A separate
SNMP community module is provided to probe for SNMP
access.

20022 SNMP LANMAN Service
table

This module retrieves the LANMAN table of services from
the SNMP daemon with the community name provided in
the configuration file. This module retrieves information that
is available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe f or SNMP access.

APPENDIX D

Page 364

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
20023 SNMP LANMAN Shares This module retrieves the table of LANMAN shares from the

SNMP daemon with the community name provided in the
configuration file. This module retrieves information that is
available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

20024 SNMP LANMAN Users This module retrieves the table of LANMAN users from the
SNMP daemon with the community name provided in the
configuration file. This module retrieves information that is
available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

20030 SNMP SunMib Process
Table

This module retrieves the process table from the SNMP
daemon with the community name provided in the
configuration file. This module retrieves information that is
available to an attacker who has read access to SNMP.
This module uses the community name specified in the
configuration file and does not attempt to guess the
community name. A separate SNMP community module is
provided to probe for SNMP access.

21000 Network Port Scanning
21001 TCP port scanning This check scans a target host for listening TCP ports.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 365

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
21002 UDP scanning check This check scans a target host for listening UDP ports.

Scanning for active UDP ports is very difficult to perform
reliably. This is due to the fact that UDP is a connectionless
protocol, and there is no reliable indication whether or not a
connection has been established. There are 2 primary
methods used to scan for listening UDP ports: 1. Sending
data to a UDP port, and awaiting a response from that port.
2. Sending data to a UDP port, and awaiting an ICMP port
unreachable message, indicating that this port is NOT
active. This allows us to build a listing of ports which may
be active (if no port unreachable message is received from
that port). There are problems when using both methods.
When using method 1 and sending random data to each
UDP port, many services will not respond if they cannot
recognize the data. This results in being unable to detect
many UDP servers which may be running. Using method 2
is reliable if we can ensure that two conditions are met: 1.
No ICMP port unreachable messages are lost in transit. 2.
The host reliably returns an ICMP port unreachable packet
for every port that is inactive. This varies from operating
system to operating system, in that certain operating
systems implement thresholds to prevent themselves from
sending out too many ICMP port unreachable messages in
a period of time. Examples of this threshold have been
found in versions of Linux and Solaris. CyberCop Scanner
attempts to determine the best method for scanning a host
for listening UDP servers. It's first choice is to scan by
sending data and watching for ICMP unreachable
messages. CyberCop Scanner will determine whether this
is possible by first attempting this on ports 45000-45009. If
CyberCop Scanner receives back all 10 ICMP port
unreachable messages, it will use this method to scan for
active UDP services, and assumes that the host reliably
returns ICMP port unreachable messages. If this test fails,
then method 1 is used, and data is sent to each port,
awaiting a response. If method 2 was used, CyberCop
Scanner will attempt to verify results by sending 2 more
sets of data packets, and ensuring that the host is not
returning ICMP port unreachable messages for ports which
were found to be active earlier. This is an attempt to ensure
that if any ICMP port unreachable packets were lost in
transit, we do not falsely report listening ports. The results
from this scan are fairly reliable when scanning on the local
network, however will vary on long haul networks. Filtering
routers will also cause results to vary. Note that this module
can cause inferior routing software to fail. This module
safely evaluates all major network operating systems.

APPENDIX D

Page 366

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
21003 TCP SYN port scanning This check can be used as a much faster alternative to

regular TCP port scanning. This check scans a target host
for listening TCP ports in much the same way as the
regular TCP port scanning, however does so by sending a
packet to initiate a connection and watching for a response.
The difference in using this method is that a complete
connection to the remote host is not actually opened. The
drawback in using this method is that it may be unreliable
due to packet loss on the network.

21004 TCP ACK port scanning This check can be used as a much faster alternative to
regular TCP port scanning. This check scans a target host
for listening TCP ports by observing how the target replies
to a TCP ACK packet. Because the target host replies
differently when an ACK is sent to a listening port than
when an ACK is sent to a non-listening port, the scanner
can infer which ports are being listened on. Because ports
are checked without actually initiating a TCP connection,
this type of scan is sometimes referred to as a "stealth"
scan. The drawback in using this method is that it may be
unreliable due to packet loss on the network and differing
behavior of different target systems. This check may not
work at all against newer versions of many operating
systems.

21005 TCP FIN port scanning This check can be used as a much faster alternative to
regular TCP port scanning. This check scans a target host
for listening TCP ports by observing how the target replies
to a TCP FIN packet. Because the target host replies only
when a FIN is sent to a non-listening port, and not when an
FIN is sent to a listening port, the scanner can infer which
ports are being listened on. Because ports are checked
without actually initiating a TCP connection, this type of
scan is sometimes referred to as a "stealth" scan. The
drawback in using this method is that it may be unreliable
due to packet loss on the network and differing behavior of
different target systems. Because this method assumes
that a target port is listening whenever a reply is not
received, it is particularly prone to packet loss. As a result
this scan may mistakenly report some non-listening ports
as being active.

21006 RPC Scanning Direct The RPC scanning direct check performs a UDP RPC scan
of the remote host, attempting to find services by bypassing
the portmapper or rpcbind. In many instances, the
portmapper (port 111), which translates RPC program
numbers to port numbers, is being filtered at an
organization's filtering device or firewall. By directly
scanning for RPC services, it is still possible to obtain a full
listing of RPC services running on the remote host, and
then contact them directly rather than querying the
portmapper first. This check is unreliable over long haul
networks, due to the unreliability of the UDP transport layer.
In the case where this check is being run over a long haul
network, some RPC programs which are actually running,
may not appear in the scan results.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 367

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
21007 FTP bounce port scan This module determines which TCP ports are alive on the

remote host by utilizing the remote FTP server to attempt to
connect to TCP ports. This module utilizes the FTP bounce
attack to determine which TCP ports are active on the
remote network.

22000 Windows NT - Browser Zone Policy
22001 Internet Explorer Zone -

Download unsigned
ActiveX

The user's ActiveX security setting was found to be set less
securely than the security policy indicates. Th is ActiveX
setting defines whether or not unsigned ActiveX
applications should be downloaded and executed.

22002 Internet Explorer Zone -
Script safe ActiveX

The user's ActiveX security setting was found to be set less
securely than the security policy indicates. This ActiveX
setting defines whether or not safe ActiveX controls should
scripted.

22003 Internet Explorer Zone -
Script unsafe ActiveX

The user's ActiveX security setting was found to be set less
securely than the security policy indicates. This ActiveX
setting defines whether or not unsafe ActiveX controls
should scripted.

22004 Internet Explorer Zone -
Download signed
ActiveX

The user's ActiveX security setting was found to be set less
securely than the security policy indicates. This ActiveX
setting defines whether or not signed ActiveX controls
should downloaded.

22005 Internet Explorer Zone -
Run ActiveX

The user's ActiveX security setting was found to be set less
securely than the security policy indicates. This ActiveX
setting def ines whether or not safe ActiveX controls should
run.

22006 Internet Explorer Zone -
Authentication methods

The user's authentication setting was found to be set less
securely than the security policy indicates. This settings
specifies which authentication techniques are used over the
network when accessing a remote server.

22007 Internet Explorer Zone -
Font downloads

The user's Font download security settings were found to
be set less securely than the security policy indicates. This
option defines whether or not new fonts should be
downloaded.

22008 Internet Explorer Zone -
File downloads

The user's file download security settings were found to be
set less securely than the security policy specifies. The file
download settings specify whether or not file can be
downloaded from the specified zone and stored on the
user's system.

22009 Internet Explorer Zone -
Java permissions

The user's Java permissions were found to be set less
securely than the security policy specifies. Java security
can be c onfigured in 5 ways: - Medium safety - Low safety -
High safety - Disabled - Custom

22010 Internet Explorer Zone -
Software channel
permissions

The user's Software channel permissions were found to be
set less securely than the security policy specifies . Java
security can be configured in 5 ways: - Medium safety -
Low safety - High safety

22011 Internet Explorer Zone -
IFRAME application
launching

The user's IFRAME application launching security settings
were found to be set less securely than the sec urity policy
specifies. This setting defines whether or not applications
can be launched from an IFRAME (Inline Frame).

APPENDIX D

Page 368

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
22012 Internet Explorer Zone -

Desktop item installation
The user's desktop item installation setting is set less
securely than the security policy specifies. This setting
defines whether desktop items can be installed via an
HTML page.

22013 Internet Explorer Zone -
Submit non-encrypted
form data

The 'Submit non-encrypted form data' setting defines
whether or not form data can be submitted via a non-
encrypted connection to a web server. This module
determines whether the user's security configuration is less
secure than the defined security policy.

22014 Internet Explorer Zone -
Drag and drop

This user's drag and drop security settings were found to
be set less securely than the security policy specifies. This
security setting specifies whether items can be drag and
dropped in the specified zone.

22015 Internet Explorer Zone -
Java scripting

This user's java scripting security s etting was found to be
set less securely than the security policy specifies. This
setting defines whether Java scripting is supported and
whether or not to execute Java scripts.

22016 Internet Explorer Zone -
Active scripting

The 'Active scripting' security setting defines whether or not
Active scripting is supported in the specified zone. This
module determines whether the user's security
configuration is less secure than the defined security policy.

22017 Internet Explorer - Invalid
site certificates option
warning

If enabled, this module will check for any users who have
turned the Internet Explorer `warn about invalid site
certificates' option off. This option warns users that they are
connecting to an SSL site that does not have a valid site
certificate, which may indicate that the page being viewed
isn't the legitimate page the user requested.

22018 Internet Explorer -
Changing between
secure/insecure page
warning

The specified user was found to have the Internet Explorer
"Warn if changing betw een secure and not secure mode"
option turned off. This option warns users when they are
connected to a secure (SSL) page and are following a link
to a non-secure page.

22019 Internet Explorer -
Cookie security settings

The specified user was found to have the `allow cookies'
option set to a different value than specified in the security
policy configuration. This option may be set to disallow the
use of cookies entirely, to always allow the use of cookies,
or to allow cookies but present a warning when they are
used.

22020 Internet Explorer - Form
submission redirection
warning

The specified user was found to have the Internet Explorer
`warn if forms submit is being redirected' option was found
to be off. This option warns the user when they submit a
form and the page to which they submitted the form
presents a redirect to another page.

22021 Internet Explorer - Do not
save encrypted pages to
disk option

The specified user was found to have the Internet Explorer
"Do not save encrypted pages to disk" option turned off.
This option prevents Internet Explorer from caching secure
(SSL) pages on the local disk.

22022 Internet Explorer - Java
logging disabled

The target user's Java Logging was found to be disabled.
By having this feature disabled, Java events are not logged
and therefore no record of Java activity is kept.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 369

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
23000 Windows NT - Privilege Enumeration
23001 Privilege - Act as part of

the operating system.
A user or group has been identified to possess Act as part
of the operating system privileges. This privilege is normally
not granted to any user or group. This privilege allows a
process to perform as a secure, trusted part of the
operating system. Only some subsystems are granted this
right.

23002 Privilege - Add
workstations to the
domain

A user or group has been identified to possess the privilege
to add a workstation to a particular domain. This right is
meaningful only on domain controllers. This privilege is
normally not granted to any user or group.

23003 Privilege - Back up f iles
and directories

A user or group has been identified to possess the privilege
to backup files and directories. This right bypasses any file
and directory permissions and allows the user full access to
all files. This privilege is normally only allowed to members
of the Administrators, Backup Operators, and Server
Operators groups.

23004 Privilege - Bypass
traverse checking.

A user or group has been identified to possess the privilege
to bypass traverse checking. This privilege is given to all
users and allows users to change into directories and
access files and subdirectories even if the user has no
permission to access parent directories.

23005 Privilege - Change
system time privilege

A user or group has been identified to possess Change
system time privileges. This privilege allows a user to set
the internal clock of the computer. This privilege is normally
only allowed to members of the Administrators, Power
Users, and Server Operators groups.

23006 Privilege - Create
Pagefile Privilege

A user or group has been identified to possess the privilege
to create system page files. This privilege allows users to
create new page files where system virtual memory will be
stored. This privilege is normally only allowed to members
of the Administrators group.

23007 Privilege - Create a token
object

A user or group has been identified to possess the privilege
to create access tokens. This privilege is only allowed by
the Local Security Authority (LSA). This privilege is
normally not granted to any user or group.

23008 Privilege - Create
Permanent Shared
Objects

A user or group has been identified to possess the privilege
to create permanent shared objects. This privilege allows
users to create special shared objects that are used within
Windows NT. An example of this is the \\Device object. This
privilege is normally not granted to any user or group.

23009 Privilege - Debug
Programs

A user or group has been identified to possess privilege to
debug programs. This privilege allows the debugging of low
level system objects such as program threads. This
privilege is normally only allowed to members of the
Administrators group.

23010 Privilege - Force
shutdown from a remote
system

A user or group has been identified to possess the privilege
to shut the system down from a remote system. This
privilege allows the user to shutdown the system at will.
This privilege is normally only allowed to members of the
Administrators, Power Users, and Server Operators groups.

APPENDIX D

Page 370

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
23011 Privilege - Generate

Security Audits
A user or group has been identified to possess the privilege
to generate security audits. This privilege is normally used
by low level system processes to generate security audit
messages, which are stored in the system security log. This
privilege is normally not granted to any user or group.

23012 Privilege - Increase
Quota Privilege

A user or group has been identified to possess the privilege
to increase quotas. This privilege is not used in the current
implementation of Windows NT, however may be
implemented in future revisions.

23013 Privilege - Increase
Scheduling Priority

A user or group has been identified to possess the privilege
to increase the priority of a process. This privilege is
normally only allowed to members of the Administrators
and Power Users groups.

23014 Privilege - Load and
unload device drivers

A user or group has been identified to possess the privilege
to load and unload device drivers. This privilege allows a
user to install and remove device drivers from the system.
This privilege can allow a user to gain Administrator
access. This privilege is normally only allowed to members
of the Administrators group.

23015 Privilege - Lock pages in
memory

A user or group has been identified to possess the privilege
to lock pages in memory. This privilege allows a user to
lock pages in memory so that they cannot be paged out by
the virtual memory system. This prevents the pages from
ever being removed from memory to be stored in the
system page file. This privilege is normally not granted to
any user or group.

23016 Privilege - Manager
auditing and security log

A user or group has been identified to possess the privilege
to manage the auditing system and the security logs. This
allows the user to specify what type of resource access is
to be audited (such as file access), and to view and clear
the security log. This does not, however, allow the user to
change auditing events via the User Manager -> Audit
menu. This privilege is normally only allowed to members of
the Administrators group.

23017 Privilege - Modify
firmware environment
variables

A user or group has been identified to possess the privilege
to modify system environment variables stored in non-
volatile RAM. The system must support this type of
configuration for this privilege to be significant. This
privilege is normally only allowed to members of the
Administrators group.

23018 Privilege - Profile Single
Process

A user or group has been identified to possess the privilege
to perform profiling (performance sampling) on a process.
This privilege is normally only allowed to members of the
Administrators and Power Users groups.

23019 Privilege - Profile System
Performance

A user or group has been identified to possess the privilege
to perform profiling on the entire system (performance
monitoring). This privilege is normally only allowed to
members of the Administrators group.

23020 Privilege - Replace a
process-level token

A user or group has been identified to possess the privilege
to replace process level tokens. This allows a user to
modify a processes security access token. This privilege is
normally used only by the system and is not granted to any
user or group.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 371

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
23021 Privilege - Restore files

and directories
A user or group has been identified to possess the privilege
to restore files and directories. This permissions allows the
user to restore from backup, files and directories to the
system. This privilege overrides any file and directory
access level restrictions. This privilege is normally only
allowed to members of the Administrators, Backup
Operators, and Server Operators groups.

23022 Privilege - Take
ownership of files or
other objects

A user or group has been identified to possess the privilege
to take ownership of files or objects. This right bypasses
any permissions that are in place to protect the object, and
give ownership to the specified user. This privilege is
normally only allowed to members of the Administrators
group.

23023 Backup Operators Group
- Check for users that do
not belong by default

A user or users have been identified as not belonging to the
Backup Operators Group by default.

23024 Power Users Group -
Check for users that do
not belong by default

A user or users have been identified as not belonging to the
Power Users Group by default.

23025 Print Operator Group -
Check for users that do
not belong by default

A user or users have been identified as not belonging to the
Print Operator Group by default.

23026 Replicator Group - Check
for users that do not
belong by default

A user or users have been identified as not belonging to the
Replicator Group by default.

23027 System Operator Group -
Check for users that do
not belong by default

A user or users have been identified as not belonging to the
System Operator Group by default.

23028 Account Operators
Group - Check for users
that do not belong by
default

A user or users have been identified as not belonging to the
Account Operators Group by default.

23029 Administrators Group -
Check for users that do
not belong by default

A user or users have been identified as not belonging to the
Administrators Group by default.

23030 Guests Group - Check
for users that do not
belong by default

A user or users have been identified as not belonging to the
Guests Group by default.

23031 Domain Administrators
Group - Check for users
that do not belong by
default

A user or users have been identified as not belonging to the
Domain Administrators Group by default.

24000 Windows NT - Local System Policy
24001 Legal Notice - No Legal

Caption Specified
The security policy indicates that a legal caption must be
displayed for users when a logon is initiated. This host does
not have a legal caption present. Windows NT has the
ability to display a caption containing text of your choice,
notifying potential users that they can be held legally liable
if they attempt to use the computer without valid
authorization. The absence of such a message may be
construed as an invitation to enter the computer system
without authorization.

APPENDIX D

Page 372

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
24002 Legal Notice - Legal

Caption does not match
Policy

The security policy indicates that a specific network wide
legal caption must be specified for all systems. This host
does not contain the legal caption specified by the security
policy.

24003 Legal Notice - No Legal
Text Specified

The security policy indicates that legal text must be
displayed for users when a logon is initiated. This host does
not have legal text present. Windows NT has the ability to
display legal text containing text of your choice, notifying
potential users that they can be held legally liable if they
attempt to use the computer without valid authorization.
The absence of such a message may be construed as an
invitation to enter the computer system without
authorization.

24004 Legal Notice - Legal Text
does not match Policy

The security policy indicates that specific network wide
legal text must be specified for all systems. This host does
not contain the legal text specified by the security policy.

24005 Event Log - Application
Event Log Not Restricted

This host does not restrict access to the Application Event
Log by Guest and Null-user logons. This situation allows
arbitrary network users to access this log information.

24006 Event Log - Security
Event Log Not Restricted

This host does not restrict access to the Security Event Log
by Guest and Null-user logons. This situation allows
arbitrary network users to access this log information. This
is an unusual situation as, unlike the Application and
System Event logs, the Security log is protected by the
default installation.

24007 Event Log - System
Event Log Not Restricted

This host does not restrict access to the System Event Log
by Guest and Null-user logons. This situation allows
arbitrary network users to access this log information.

24008 Restrict Print Driver -
Secure Print Driver
Installation

The addition of printer drivers should be restricted to
Administrators and Print Operators (on server), or Power
Users (on workstation). This host does not currently enforce
this restriction.

24009 Restrict Schedule
Service - Secure
Schedule Service (AT
command)

This host was found to allow System Operators to submit
AT commands. Scheduled commands are run in the
context of the Schedule Service itself, the System context,
which provides even more privilege than Administrator
access. By utilizing the schedule service, it is possible for
authorized users to obtain increased privileges to the
system.

24010 Restrict Last User -
Displaying of Last
Logged in User

The name of the last user who utilized the system should
not be displayed in the Logon box. This is done by default
to make it more convenient to logon to the system. This
host currently displays the name of the last logged in user
in the Logon box. This is a concern if the Administrator
account has been renamed, and is frequently used. Users
walking by can obtain the new Administrator name by
looking at the Logon window.

24011 Restrict Shutdown -
Prevent System
Shutdown from Logon
Window

System Shutdown should not be allowed from the initial
system Logon Window. By allowing the Shutdown process
from the Logon Window, any user walking by is able to shut
the system down, without logging in.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 373

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
24012 Restrict Floppy - Prevent

Process Access to the
Floppy Disk Drive

Floppy Disk Drive access should be allowed only for the
currently logged on interactive user. The host currently
allows any process to access the Floppy Disk Drive, thus
allowing any process, even those not owned by the current
user, to access the Floppy Disk Drive.

24013 Restrict CDROM -
Prevent Process Access
to the CDROM Drive

CDROM Drive access should be allowed only for the
currently logged on interactive user. The host currently
allows any process to access the CDROM Drive, thus
allowing any process, even those not owned by the current
user, to access the CDROM Drive.

24014 Clear System Page File
during System Shutdown

The system page file should be cleared during a clean
system shutdown. The host does not currently enforce this
policy. The system page file is used by the Windows NT
virtual memory manager to swap pages of processes from
memory to disk when they are not being used.

24015 Disable Caching of
Logon Credentials

The caching of logon credentials should be disabled during
interactive logon. The host does not currently enforce this
policy. Windows NT by default caches the last logon
credentials for a user who has logged on interactively to the
system. This allows the system to function and allow logons
if the system were to be disconnected from the network, or
the Primary Domain Controller were to become unavailable.

24016 Subsystems - POSIX
Subsystem Enabled

The POSIX subsystem should be disabled. The host does
not currently disable the POSIX subsystem.

24017 Subsystems - OS/2
Subsystem Enabled

The OS/2 subsystem should be disabled. The host does
not currently disable the OS/2 subsystem.

24018 Registry - Registry
Association with
REGEDIT.EXE

Registry files are currently associated with the registry
editor.

24019 Screen Sav er Lockout
Not Enabled

The screen saver lockout functionality should be enabled.
The target host does not currently enforce this. The screen
saver lockout forces the user to enter their logon password
once the screen saver has been activated.

24020 Restrict Autorun -
Prevent Automatic
Execution of CDROM

The Autorun should be disabled on the CDROM Drive. The
host currently has Autorun enabled.

24022 Log Policy - Application
Log Maximum Size

The maximum size of the Application Log on the target host
does not match the policy setting. The maximum size
specifies how large the application log can grow before
entries are over-written, or the log is declared as full.

24023 Log Policy - Application
Log Retention Period

The retention period of the Application Log on the target
host does not match the policy setting. The retention period
specifies how long log entries are to be kept before being
over-written.

24024 Log Policy - Security Log
Maximum Size

The maximum size of the Security Log on the target host
does not match the policy setting. The maximum size
specifies how large the security log can grow before entries
are over-written, or the log is declared as full.

24025 Log Policy - Security Log
Retention Period

The retention period of the Security Log on the target host
does not match the policy setting. The retention period
specifies how long log entries are to be kept before being
over-written.

APPENDIX D

Page 374

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
24026 Log Policy - System Log

Maximum Size
The maximum size of the System Log on the target host
does not match the policy setting. The maximum size
specifies how large the system log can grow before entries
are over-written, or the log is declared as full.

24027 Log Policy - System Log
Retention Period

The retention period of the System Log on the target host
does not match the policy setting. The retention period
specifies how long log entries are to be kept before being
over-written.

25000 Windows NT - Auditing and Password Policy
25001 Auditing - Restart,

Shutdown, and System
Events - Success

The auditing of successful Restart, Shutdown and System
events was found to be disabled on the target host. Your
security policy defines that these events should be audited.
Auditing of Restart, Shutdown, and System events allows
recording of systems starts, shutdowns, and restarts.

25002 Auditing - Restart,
Shutdown, and System
Events - Failure

The auditing of failed Restart, Shutdown and System
events was found to be disabled on the target host. Your
security policy defines that these events should be audited.
Auditing of Restart, Shutdown, and System events allows
recording of systems starts, shutdowns, and restarts.

25003 Auditing - Logon and
Logoff Events - Success

The auditing of successful Logon and Logoff events was
found to be disabled on the target host. Your security policy
defines that these events should be audited. Auditing of
successful Logon and Logoff Events allows tracking of both
local and remote user logons, as well as logons to use the
system's resources. Auditing of successful Logon and
Logoff events allows tracking of system usage, as well as
identifying the misuse of accounts.

25004 Auditing - Logon and
Logoff Events - Failure

The auditing of failed Logon and Logoff events was found
to be disabled on the target host. Your security policy
defines that these events should be audited. Auditing of
failed Logon and Logoff Events allows the administrator to
identify brute-force password attacks, where an attacker
attempts to guess a username and password via repeated
logon requests.

25005 Auditing - File and Object
Access Events - Success

The auditing of successful File and Object Access events
was found to be disabled on the target host. Your security
policy defines that these events should be audited. Auditing
of File and Object Access Events can be utilized to track
down users accessing sensitive files on the target host.

25006 Auditing - File and Object
Access Events - Failure

The auditing of failed File and Object Access events was
found to be disabled on the target host. Your security policy
defines that these events should be audited. Auditing of File
and Object Access Events can be utilized to track down
users accessing sensitive files on the target host.

25007 Auditing - Use of User
Rights - Success

The auditing of successful Use of User Rights was found to
be disabled on the target host. Your security policy defines
that these events should be audited. By auditing the Use of
User Rights, the Administrator can track the misuse of
privileges by authorized users.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 375

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
25008 Auditing - Use of User

Rights - Failure
The auditing of failed Use of User Rights was found to be
disabled on the target host. Your security policy defines that
these events should be audited. By auditing the Use of
User Rights, the Administrator can track the misuse of
privileges by authorized users.

25009 Auditing - Process
Tracking - Success

The auditing of successful Processes was found to be
disabled on the target host. Your security policy defines that
these events should be audited. By auditing the Processes
on the host, you can track program activation, handle
duplication, indirect object access, and process exit. This
functionality allows an Administrator to identify unusual
processes running on their systems.

25010 Auditing - Process
Tracking - Failure

The auditing of failed Processes was found to be disabled
on the target host. Your security policy defines that these
events should be audited. By auditing the Processes on the
host, you can track program activation, handle duplication,
indirect object access, and process exit. This functionality
allows an Administrator to identify unusual processes
running on their systems.

25011 Auditing - Security Policy
Changes - Success

The auditing of successful Security Policy Changes was
found to be disabled on the target host. Your security policy
defines that these events should be audited. Auditing
Security Policy Changes allows an administrator to keep
track of any changes made to the user rights configuration,
or the audit policy configuration on the target host.

25012 Auditing - Security Policy
Changes - Failure

The auditing of failed Security Policy Changes was found to
be disabled on the target host. Your security policy defines
that these events should be audited. Auditing Security
Policy Changes allows an administrator to keep track of any
changes made to the user rights configuration, or the audit
policy configuration on the target host.

25013 Auditing - User and
Group Management
Events - Success

The auditing of successful User and Group Management
Events was found to be disabled on the target host. Your
security policy defines that these events should be audited.
Auditing of User and Group Management Events allows
tracking of any user account or group creations, changes,
or deletions, any user accounts that are renamed, disabled,
or enabled, as well as all password changes.

25014 Auditing - User and
Group Management
Events - Failure

The auditing of failed User and Group Management Events
was found to be disabled on the target host. Your security
policy defines that these events should be audited. Auditing
of User and Group Management Events allows tracking of
any user account or group creations, changes, or deletions,
any user accounts that are renamed, disabled, or enabled,
as well as all password changes.

25015 Auditing - Shut Down
When Audit Log Full

The security policy indicates that hosts should shut down
when their audit log becomes full. This host has not been
configured to do so. If this option is not chosen, important
security ev ents may not be logged. If this option is chosen,
when the audit log is full, the system reboots and causes a
Blue Screen. Once rebooted, only the Administrator is
allowed to log onto the machine (locally or remotely). The
Administrator is then required to clean the audit log.

APPENDIX D

Page 376

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
25016 Account Lockout Policy -

Lockout Threshold
This host was found to have an account lockout threshold
value which differs from that which is defined in the security
policy. The account lockout threshold defines how many
invalid logon attempts can be made before the account is
locked for a period of time.

25017 Account Lockout Policy -
Lockout Period

This host was found to have an account lockout period
value which differs from that which is defined in the security
policy. The account lockout period defines how long an
account will be locked out and disabled after the defined
number of invalid logons.

25018 Account Lockout Policy -
Lockout Window

This host was found to have an account lockout window
value which differs from that which is defined in the security
policy. The account lockout window defines how long the
system will wait before resetting the count of the number of
invalid logons back to 0. For example, if the account lockout
threshold is set to 5, and there were 4 invalid logons, if the
account lockout window is set to 30 minutes, and there are
no other invalid logons after 30 minutes, the number of
invalid logons is set to 0.

25019 Account Password Policy
- Minimum Password
Length

This host was found to have a minimum password length
which is less than the minimum password length defined in
the security policy. A short password is easier for an
attacker to crack, weakening the overall security of the
system.

25020 Account Password Policy
- Password History

This host was found to have a password history length
which is less than the minimum password history length
defined in the security policy. Not enforcing, or defining a
low password history length allows users to utilize
passwords which they have utilized in the past. By doing
this, users may open the system up to an attacker, if a
previous password has been obtained.

25021 Account Password Policy
- Maximum Password
Age

This host was found to have a maximum password age
which is greater than the maximum password age defined
in the security policy. The maximum password age defines
the amount of time which can pass before a user is forced
to change their password to a new password. By allowing a
large maximum password age, users will be forced to
change their passwords less frequently, decreasing the
overall security of the system.

25022 Account Password Policy
- Minimum Password
Age

This host was found to have a minimum password age
which is less than the minimum password age defined in
the security policy. The minimum password age defines the
amount of time which must pass before a user can change
their password again. The minimum password age
mechanism is used to prevent users from circumventing the
password history mechanism by changing their password
repeatedly until the history mechanism has forgotten their
original password. After this has occurred, the user could
enter their original password again.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 377

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
25023 Account Policy - Forcibly

disconnect expired users
On Primary Domain Controllers (PDC's), the 'Forcibly
disconnect expired users' setting determines whether or not
users are forced to disconnect from any servers on a
domain when their logon hours are exceeded. If this setting
is not enabled, users cannot make additional connections
to the domain outside of their scheduled logon hours, but
existing connections will not be terminated. This module
checks to see if the 'Forcibly disconnect expired users'
setting on the PDC is in violation of the configured security
policy.

26000 Windows NT - Information Gathering
26001 User Enumeration via

Anonymous Logon
A listing of user accounts present on the target host was
retrieved. Windows NT provides enumeration functions for
enumerating users on the network. By default, Windows NT
4.0 and 3.51 allow anonymous logon users (also known as
NULL session connections) to list account names.

26002 Active Users
Enumeration via
Anonymous Logon

A listing of logged in users on the target host was retrieved.
Windows NT provides enumeration functions for
enumerating users on the network. By default, Windows NT
4.0 and 3.51 allow anonymous logon users (also known as
NULL session connections) to list account names.

26003 Group Enumeration via
Anonymous Logon

A listing of groups present on the target host was retrieved.
Windows NT provides enumeration functions for
enumerating groups on the network. By default, Windows
NT 4.0 and 3.51 allow anonymous logon users (also known
as NULL session connections) to list group names.

26004 Share Enumeration via
Anonymous Logon

A listing of shares present on the target host was retrieved.
Windows NT provides enumeration functions for
enumerating shares on the network. By default, Windows
NT 4.0 and 3.51 allow anonymous logon users (also known
as NULL session connections) to list shares.

26005 Enumerate Network
Transports via
Anonymous Logon

CyberCop Scanner was able to retrieve a listing of network
transports which are present on the target host. Windows
NT provides functions for enumerating the transports on a
network. This module uses these functions to enumerate all
the network transports on a machine. This provides a list of
the networking transports installed on a machine as well as
the hardware addresses of the network cards bound to the
transports.

26006 Enumerate Active
Sessions via Anonymous
Logon

CyberCop Scanner was able to retrieve a listing of sessions
which are active on the target host. A listing of active
sessions displays all resources which are currently being
accessed on the target host.

26007 User ID Guessing Windows NT uses numeric IDs to identify users. It provides
functions to resolve these identifiers into user names.
These functions can be invoked remotely. This module tries
to resolve a range of user ID's that administrator and user
accounts are commonly assigned from. Because the
administrator account retains the same ID even after being
renamed, it is possible to determine the administrator
account name even if it has been renamed.

APPENDIX D

Page 378

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
26008 Machine Info from the

Registry through IPC$
Share

NT stores most configuration information in the registry.
The registry may be accessed remotely through the IPC$
share. This module retrieves general information about an
NT machine from the registry.

26009 IP Address Info from the
Registry through IPC$
Share

NT stores most configuration information in the registry.
The registry may be accessed remotely through the IPC$
share. This module retrieves information about the network
interfaces in a machine and the addresses assigned to
them.

26010 Enumerate RPC
Bindings (EPDUMP)

This check will gather information about a remote machine
by walking through the table of all bound RPC endpoints
and listing them. This provides some information about
what RPC services are running on the machine and which
are accessible remotely through IP or over SMB.

27000 Intrusion Detection System Verification
27001 IDS Single Out-of-Order

TCP Segment Test
This test determines whether a network intrusion detection
system is capable of reconstructing data from network
transactions w hen the packets compromising those
transactions are sent out-of-order. Real TCP/IP network
software is capable of handling arbitrarily ordered packets;
network intrusion detection software is frequently unable to
do so.

27002 IDS Baseline (Single-
Segment)

This test determines whether a network intrusion detection
system is appropriately configured to detect attacks in TCP
network traffic.

27003 IDS TCB
Desynchronization Test
(RST)

This test attempts to "desynchronize" an intrusion detection
system from a TCP connection being used to carry out an
attack. By creating a false TCP connection prior to carrying
out a real attack, this test attempts to convince an IDS that
the attack-bearing connection is entirely invalid, thus
preventing it from monitoring the data exchanged in the
connection. This specific test functions by opening a
connection, immediately resetting it, and opening a new
connection in it's place. A real TCP/IP stack will
appropriately handle the new connection; broken IDS
software that does not correctly deal with TCP connection
resets will not detect the new connection.

27004 IDS All Out-of-Order TCP
Segment Test

This test determines whether a network intrusion detection
system is capable of reconstructing data from network
transactions when the packets compromising those
transactions are sent out-of-order. Real TCP/IP network
software is capable of handling arbitrarily ordered packets;
network intrusion detection software is frequently unable to
do so.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 379

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
27005 IDS TCP Sequence

Number Verification Test
(Jump-Up)

This test attempts to determine whether a network intrusion
detection system adequately verifies the sequence
numbers on TCP segments. Real TCP/IP network software
discards TCP segments that do not bear appropriate
sequence numbers. Network intrusion detection software
frequently does not, and can be forced to accept bad
network packets which confuse TCP analysis and allow
attacks to be slipped past the system. This specific test
functions by artificially increasing the sequence numbers in
mid-connection. A real TCP/IP stack will discard the
connection at this point; poorly functioning IDS software will
not.

27006 IDS TCP Sequence
Number Verification Test
(Interleave)

This test attempts to determine whether a network intrusion
detection system adequately verifies the sequence
numbers on TCP segments. Real TCP/IP network software
discards TCP segments that do not bear appropriate
sequence numbers. Network intrusion detection software
frequently does not, and can be forced to accept bad
network packets which confuse TCP analysis and allow
attacks to be slipped past the system. This specific test
functions by artificially inserting a badly -sequenced
duplicate TCP segment after each legitimate segment. Real
TCP/IP stacks will discard the bad segments and
reassemble the attack the connection contains. Poorly
functioning IDS software will not.

27007 IDS IP Checksum
Verification

This test attempts to determine whether an intrusion
detection system correctly verifies the IP checksum carr ied
on all IP packets. Real TCP/IP software ensures that the
checksum on each packet is valid before processing it.
Many network intrusion detection systems do not verify the
checksum, and can thus be fooled into accepting bad
packets, which confuses network traffic analysis and allows
attacks to be slipped past the system.

27008 IDS TCP Checksum
Verification

This test attempts to determine whether an intrusion
detection system correctly verifies the TCP checksum
carried on all TCP packets. Real TCP/IP software ensures
that the checksum on each packet is valid before
processing it. Many network intrusion detection systems do
not verify the checksum, and can thus be fooled into
accepting bad packets, which confuses network traffic
analysis and allows attac ks to be slipped past the system.

27009 IDS TCB
Desynchronization Test
(Data)

This test attempts to "desynchronize" an intrusion detection
system from a TCP connection being used to carry out an
attack. By creating a false TCP connection prior to carrying
out a real attack, this test attempts to convince an IDS that
the attack-bearing connection is entirely invalid, thus
preventing it from monitoring the data exchanged in the
connection.

APPENDIX D

Page 380

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
27010 IDS TCP Data-in-SYN

Test
This test attempts to determine w hether a network intrusion
detection system correctly deals with data contained in TCP
handshake packets. Real TCP/IP software, in accordance
with the RFC standard for the TCP protocol, accepts data
contained in SYN handshake packets. Many network
intrusion detection systems do not, and data contained in
SYN packets is thus invisible to these systems.

27011 IDS IP Fragment Replay "Fragmentation" is the process by which large IP packets
are broken into smaller packets for transmission over
network media w ith packet size limitations. All real TCP/IP
stacks handle fragmentation, which requires the network
stack to reassemble complete IP packets from streams of
fragmented packets. This test attempts to verify that a
network intrusion detection system correctly reassembles
complete IP packets out of IP fragment streams. This
specific test attempts to confuse an intrusion detection
system by "replaying" a single fragment in a stream of
fragments. Real TCP/IP stacks will discard the duplicated
fragment. Broken IDS software may incorrectly reassemble
the entire fragment stream.

27012 IDS IP Fragmentation
Test (8-Byte Tiny
Fragments)

"Fragmentation" is the process by which large IP packets
are broken into smaller packets for transmission over
network media with packet size limitations. All real TCP/IP
stacks handle fragmentation, which requires the network
stack to reassemble complete IP packets from streams of
fragmented packets. This test attempts to verify that a
network intrusion detection system correctly reassembles
complete IP packets out of IP fragment streams.

27013 IDS IP Fragmentation
Test (24-byte Packets)

"Fragmentation" is the process by which large IP packets
are broken into smaller packets for transmission over
network media with packet size limi tations. All real TCP/IP
stacks handle fragmentation, which requires the network
stack to reassemble complete IP packets from streams of
fragmented packets. This test attempts to verify that a
network intrusion detection system correctly reassembles
complete IP packets out of IP fragment streams.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 381

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
27014 IDS IP Fragment Out-of-

Order Test
"Fragmentation" is the process by which large IP packets
are broken into smaller packets for transmission over
network media with packet size limitations. All real TCP/IP
stacks handle fragmentation, which requires the network
stack to reassemble complete IP packets from streams of
fragmented packets. This test attempts to verify that a
network intrusion detection system correctly reassembles
complete IP packets out of IP f ragment streams. This
specific test attempts to confuse an intrusion detection
system by sending a single fragment out-of-order, with the
marked "final" fragment sent before the last data fragment.
Real TCP/IP stacks will correctly reassemble fragments
regardless of the order in which they arrive. Broken network
IDS software may incorrectly reassemble the entire
fragment stream, especially when the final fragment
appears out of order (some systems may mistakenly
assume a fragment stream has been completely
transmitted as soon as the final fragment appears in the
stream).

27015 IDS IP Fragmentation
Overlap Test

"Fragmentation" is the process by which large IP packets
are broken into smaller packets for transmission over
network media with packet size limitations. All real TCP/IP
stacks handle fragmentation, which requires the network
stack to reassemble complete IP packets from streams of
fragmented packets. This test attempts to verify that a
network intrusion detection system correctly reassembles
complete IP packets out of IP fragment streams. This
specific test attempts to confuse an intrusion detection
system by sending multiple fragments of varying sizes
which overlap each other. Different operating systems
handle this condition in different ways. An intrusion
detection system that cannot duplicate exactly the manner
in which the target of an attack resolves overlapping
fragments can be forced to incorrectly reassemble a
fragment stream.

27016 IDS TCP Three-Way-
Handshake Test

TCP connections are initiated by means of a handshake
protocol, during which both sides of the connection agree to
the parameters used by the connection. All TCP/IP stacks
communicate over TCP only after establishing a connection
with a handshake. Some network intrusion detection
systems ignore the handshake entirely, and assume that
any data sent over the network in a TCP packet is part of a
legitimate connection. This test attempts to verify whether a
network intrusion detection system actually waits for a
handshake before recording data from a connection.

27017 IDS TCP ACK Flag
Verification

Normally, all data exchanged in a TCP connection is sent in
a TCP packet with the ACK ("acknowledge") flag set. Many
TCP/IP stacks will refuse to accept data in a packet that
does not bear an ACK flag. Network intrusion detection
systems frequently do not verify the presence of the ACK
flag, and can thus be confused into accepting data that is
not actually being exchanged in an actual connection.

APPENDIX D

Page 382

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
27018 IDS IP Fragmentation

Test (Out-of-Order
Fragments)

"Fragmentation" is the process by which large IP packets
are broken into smaller packets for transmission over
network media with packet size limitations. All real TCP/IP
stacks handle fragmentation, which requires the network
stack to reassemble complete IP packets from streams of
fragmented packets. This test attempts to verify that a
network intrusion detection system correctly reassembles
complete IP packets out of IP fragment streams. This
specific test attempts to confuse an intrusion detection
system by sending a single fragment out-of-order. Real
TCP/IP stacks will correctly reassemble fragments
regardless of the order in which they arrive. Broken network
IDS software may incorrectly reassemble the entire
fragment stream.

27019 IDS TCP Segment
Retransmission
(Inconsistent)

Individual segments in a TCP connection can be repeated.
Typically, the first correctly -sequenced segment received in
a connection will be accepted, and subsequent duplicate
segments will be discarded. Real TCP/IP stacks handle
retransmitted segments in a robust fashion by considering
sequence numbers. Many intrusion detection systems fail
to do so, and can be forced to accept invalid data when
segments are repeated. This specific test attempts to
confuse a network IDS by replaying a segment with
inconsistent data. Normally the TCP/IP stack will discard
the retransmitted packet, while some IDS software will
accept the packet and become desynchronized.

27020 IDS TCP Segment
Retransmission

Individual segments in a TCP connection can be repeated.
Typically, the first correctly -sequenced segment received in
a connection will be accepted, and subsequent duplicate
segments will be discarded. Real TCP/IP stacks handle
retransmitted segments in a robust fashion by considering
sequence numbers. Many intrusion detection systems fail
to do so, and can be forced to accept invalid data when
segments are repeated. This specific test attempts to
confuse a network IDS by replaying a single segment. A
real TCP/IP stack will discard the retransmitted packet;
broken IDS software will accept the packet and become
desynchronized.

27021 IDS TCP Second-SYN
Test

TCP connections are initiated by a handshake protocol
involving TCP packets with the SYN flag set. A TCP SYN
packet requests a new connection to be created, and
specifies the sequence numbers for the new connection.
Real TCP/IP software rejects SYN packets received after a
connection has started. Broken intrusion detection system
software may become confused when spurious SYN
packets are received.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 383

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
27022 IDS TCP Reset Test TCP connections are terminated by messages that request

connection teardown. Real TCP/IP software closes open
TCP connections when a correctly -sequenced teardown
message is received; once a connection is closed, a new
connection can be created using the same ports. Some
broken intrusion detection systems fail to tear down
connections when a teardown message is received. These
systems are incapable of tracking new connections that re-
use the port numbers from previously closed connections.

27023 IDS Baseline (Multiple-
Segments)

This test determines whether a network intrusion detection
system is appropriately configured to detect attacks in TCP
network traffic.

27024 IDS TCP Sequence
Number Wrapping

TCP sequence numbers are 32-bit integers. The sequence
numbers of a given connection start at an effectively
random number. TCP/IP network stacks are required to
handle sequence number "wraparound", which occurs
when the TCP sequence number exceeds the maximum
number that can be expressed in 32 bits and thus wraps
back to zero. Broken network intrusion detection systems
fail to handle this case, and packets received after the
sequence numbers wrap will be discarded.

27025 IDS TCP Overlap Test TCP packets contain a variable amount of data. The
sequence numbers on a TCP segment specify what point in
the stream the data in that segment should appear at. Two
TCP segments can contain conflicting data if the sequence
space used by the two segments "overlap". Different
TCP/IP stacks handle this rare case in different manners. A
network intrusion detection system that cannot duplicate
exactly the behavior of the systems it watches can be
confused, and forced to see different data on the network
than what is actually being exchanged.

28000 Windows NT - Service Packs (SP) and Hot Fixes (HF)
28001 Determine if host

Registry can be
accessed

This check will return whether or not the Registry on this
Windows host is accessible from this scanner -host.

28002 Determine the installed
Service Pack revision

This check will return which service pack is installed in this
Windows host. The Service Packs checked for are SP1
through (and including) SP6. If no Service Pack is installed
then this check will return "No Service Pack Ins talled".

28005 SP1 is not installed This check will verify that the Service Pack 1 software is
installed and report a vulnerability if it is not detected.

28006 SP2 is not installed This check will verify that the Service Pack 2 software is
installed and report a vulnerability if it is not detected.

28010 SP3 (40-bit Cipher-
strength) is not installed

This check will verify that the 40-bit cipher-strength
(exportable) version of Service Pack 3 software is installed
and report a vulnerability if it is not detected.

28011 SP3 (128-bit Cipher
strength) is not installed

This check will verify that the 128-bit cipher strength (non
exportable) version of Service Pack 3 software is installed
and will report a vulnerability if it is not detected.

28012 SP3 is not installed This check will verify that the Service Pack 3 software is
installed and will report a vulnerability if it is not detected.

APPENDIX D

Page 384

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
28013 HF-SP3 Access Violation

in Dns.exe Caused by
Malicious Telnet Attack

This host is susceptible to an access violation (a fault) in
the DNS module after malicious attack. There are also four
other potential security holes that are not addressed due to
the lack of this hotfix. This check will verify that this
software is installed and report a vulnerability if not.

28014 HF-SP3 No Memory.dmp
File Created with RAM
Above 1.7 GB

This host is susceptible to failing to write a "Memory.dmp"
file upon faulting. If this host has more than 1.7 gigabytes of
physical memory installed this hotfix should be applied.
This check will verify that this software is installed and
report a vulnerability if not.

28015 HF-SP3 Performance
degradation due to
memory leak in ASP.DLL

This host is susceptible to performance degradation using
Active Server Pages 1.0. This check will verify that this
software is installed and report a vulnerability if not.

28016 HF-SP3 IBM DTTA-
351010 10.1 GB Drive
Capacity Is Inaccurate

The hard disk on this host may incorrectly report its
available free space. This check will verify that this sof tware
is installed and report a vulnerability if not.

28017 HF-SP3 Euro Currency
Not Available in Windows
NT Character Sets

This host does not have a Euro Currency Symbol as part of
its Western European Character Set. This check will verify
that this software is installed and report a vulnerability if not.

28018 HF-SP3 GetAdmin Utility
Grants Users
Administrative Rights

This host is susceptible to having a malicious user run the
popularly available application "Getadmin.exe" to grant
normal users administrative rights by adding them to the
"Administrators" group. There are also two other potential
security holes that are not addressed due to the lack of this
hotfix. This check will verify that this software is installed
and report a vulnerability if not.

28019 HF-SP3 WinNT Lets You
Paste Text into Unlock
Workstation Dialog Box

This host is susceptible to a malicious user accessing the
first line of clipboard-text from the locked console. This
check will verify that this software is installed and report a
vulnerability if not.

28020 HF-SP3 Write Cache on
IDE/ATAPI Disks Is Not
Flushed on Shut Down

This host is susceptible to a "blue-screen" on startup or
starting-up and reporting a "dirty" volume (runs CHKDSK
automatically). The blue-screen will have the following text:
"STOP 0x0000007B (parameter, parameter, parameter,
parameter)" "INACCESSIBLE_BOOT_DEVICE" This check
will verify that this software is installed and report a
vulnerability if not.

28021 HF-SP3 TCP/IP Causes
Time Wait States to
Exceed Four Minutes

This host is susceptible to failing to report incoming data for
a short period of time while in the Winsock 2 service
provider for TDI module. In TCP/IP, time wait state queue
management had a problem that caused time wait states to
exceed four minutes under stress. This check will verify that
this software is installed and report a vulnerability if not.

28022 HF-SP3 Administrators
can Display Contents of
Service Account
Passwords

This host is susceptible to having a malicious program
display security information retained by the LSA (Local
Security Authority). This includes data such as the
passwords for service accounts. Additional encryption for
LSA secrets is needed to properly protect passwords on
this host. This check will verify that this software is installed
and report a vulnerability if not.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 385

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
28023 HF-SP3 Memory Leak

and STOP Screens
Using Intermediate NDIS
Drivers

This host is susceptible to memory leaks and STOP-
screens (crashing) while executing in the NDIS driver layer.
This can occur when an add-on NDIS layer (such as a
filtering driver used for virus -checking or disk-compression)
is installed. This check will verify that this software is
installed and report a vulnerability if not.

28024 HF-SP3 Connecting to a
Server is Slow over RAS
Using LMHOSTS File

This host's RAS Server is susceptible to delaying users
attempting to dial-in the first time by up to 90 seconds. This
check will verify that this software is installed and report a
vulnerability if not.

28025 HF-SP3 Xircom PC Card
Fails to Function

This host is susceptible to inadvertently re-setting the "type"
field on the Xircom CBE-10/100BTX Network Interface
Card. This may cause the board to fail. This check will
verify that this software is installed and report a vulnerability
if not.

28026 HF-SP3 Invalid Operand
with Locked
CMPXCHG8B Instruction

The host may hang given a specific invalid (CPU)
instruction. This check will verify that this software is
installed and report a vulnerability if not.

28027 HF-SP3 PPTP
Performance & Security
Upgrade for WinNT 4.0
Release Notes

New Performance and Security upgrade features of
RAS/PPTP are not applied on this host. This check will
verify that this software is installed and report a vulnerability
if not.

28028 HF-SP3 SecHole Lets
Non-administrative Users
Gain Debug Level
Access

This host is susceptible to an elevation of privilege attack
by a malicious program. This check will verify that this
software is installed and report a vulnerability if not.

28029 HF-SP3 Group of
Hotfixes for Exchange
5.5 and IIS 4.0

Several problems including a possible Access Violation
during Windows NT Explorer and a security problem with
IIS/ASP are not addressed on this host. This check will
verify that this software is installed and report a vulnerability
if not.

28030 HF-SP3 EBCDIC
Characters not Properly
Converted to ANSI
Characters

This host is susceptible to corrupting data due to improper
conversion of EBCDIC to ANSI. This check will verify that
this software is installed and report a vulnerability if not.

28031 HF-SP3 Fault Tolerant
Systems May Encounter
Problems with WinNT
SP3

This host is susceptible to start-up and operating failures (if
using a Fault-Tolerant system) in the Clarion Agent Service.
This check will verify that this software is installed and
report a vulnerability if not.

28032 HF-SP3 Creating an
SFM Volume on Large
Partition Causes a Stop
0x24

There are 10 issues dealing with the "Services for
Macintosh" (SFM) volumes that are not addressed on this
host. This check will verify that this software is installed and
report a vulnerability if not.

28033 HF-SP3 Denial of
Service Attack Against
WinNT Simple TCP/IP
Services

This host is susceptible to a malicious attack against its
Simple TCP/IP Service. This attack can cause increased
network traffic and make the host to appear frozen; causing
a Denial of Service (DOS). This check will verify that this
software is installed and report a vulnerability if not.

APPENDIX D

Page 386

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
28034 HF-SP3 RPCSS.EXE

Consumes 100% CPU
due to RPC-spoofing
Attack

This host is susceptible to a DOS in the Rpcss.exe process
(it could consume 100 percent of CPU time) as the result of
an RPC spoofing attack. This is a malicious attack on the
Remote Procedure Call (RPC) service. This check will
verify that this software is installed and report a vulnerability
if not.

28035 HF-SP3 Denial of
Service Attack Causes
Windows NT Systems to
Reboot

This host is susceptible to hanging during the processing of
a Server Message Block (SMB) logon request; memory
corruption may occur causing one of the following errors:
"STOP 0x0000000A" "STOP 0x00000050" This check will
verify that this software is installed and report a vulnerability
if not.

28036 HF-SP3 Generic SSL
(PCT/TLS) Updates for
IIS and Microsoft Internet
Products

Several updates to the Windows Secure Sockets Layer
software are not applied on this host. This check will verify
that this software is installed and report a vulnerability if not.

28037 HF-SP3 Problems Using
TAPI 2.1

This host may experience one or more of the following
problems while using TAPI 2.1: 1) The data an application
provides for lineSetCallData is lost when Remote TSP is
used. 2) TAPISRV becomes unresponsive and CPU
utilization peaks at 100%. 3) TAPISRV cannot be started
when RAS or another Windows NT Service starts TAPI. 4)
TAPISRV causes an Access Violation error message when
calling Agent functions such as lineAgentSpecific and
lineGetAgentActivityList. This check will verify that this
software is installed and report a vulnerability if not.

28038 HF-SP3 STOP
0x0000000A or
0x00000019 Due to
Modified Teardrop Attack

This host is susceptible to hanging after receiving a number
of deliberately corrupted UDP packets. This check will
verify that this software is installed and report a vulnerability
if not.

28039 HF-SP3 STOP 0xA Due
to Buffer Overflow in
NDISWAN.SYS

The host may experience a STOP 0x0000000A on a
Windows NT computer when copying files via RAS over a
SLIP (Serial Line Interface Protocol) connection. This check
will verify that this software is installed and report a
vulnerability if not.

28040 HF-SP3 Invalid UDP
Frames May Cause
WINS to Terminate

Invalid UDP frames directed to this host if running WINS
raises an exception in WINS causing it to terminate silently.
When WINS is no longer running, problems such as
domain synchronization, browsing, or connectivity may
occur. This check will verify that this software is installed
and report a vulnerability if not.

28041 HF-SP3 "NET USER
/TIMES" Command Does
Not Work in Year 2000

Year 2000 issue with the NET command "/TIMES" fix not
applied on this host. This check will verify that this software
is installed and report a vulnerability if not.

28042 HF-SP3 User Manager
Does Not Recognize
February 2000 As a Leap
Year

There are 13 Year 2000 (Y2K) issues that are not fixed on
this host. This check will verify that this software is installed
and report a vulnerability if not.

28043 HF-SP3 Using Iomega
ATAPI Zip Drives with
Windows NT

This host may not be able to access the disk in the ATAPI
version of an Iomega Zip drive. This check will verify that
this software is installed and report a vulnerability if not.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 387

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
28080 SP4 (40-bit Cipher-

strength) is not installed
This check will verify that the 40-bit (exportable version)
cipher-strength Service Pack 4 software is installed and
report a vulnerability if not.

28081 SP4 (128-bit Cipher-
strength) is not installed

This check will verify that the 128-bit (non exportable
version) cipher-strength Service Pack 4 software is installed
and report a vulnerability if not.

28082 SP4 is not installed This check will verify that the Windows NT Service Pack 4
software is installed and report a vulnerability if not.

28083 HF-SP4 BIOS Date
Value Does Not
Immediately Update on
January 1, 2000

This host is susceptible to various Year 2000 (Y2k) issues.
The BIOS date/time stamp may not be immediately
updated upon booting. This check will verify that this
software is installed and report a vulnerability if not.

28084 HF-SP4 RRAS Computer
Stops Responding to
Incoming Calls Under
Stress

This host is susceptible to a failure in the RRAS Service. An
insufficient buffer size problem in Kmddsp.tsp may cause
this host's RRAS Service to stop responding. This check
will verify that this software is installed and report a
vulnerability if not.

28085 HF-SP4 Executable with
a Specially-Malformed
Image Header May
Crash Windows NT

This host is susceptible to crashing upon receipt of a
malformed image header (on an executable file). This
check will verify that this software is installed and report a
vulnerability if not.

28086 HF-SP4 Exchange
Protocols Fail After
Applying Windows NT
SP4

After applying Windows NT 4.0 Service Pack 4, Microsoft
Exchange Internet Applications and Services may no longer
function properly on this host. This check will verify that this
software is installed and report a vulnerability if not.

28087 HF-SP4 WinNT 4.0 Post-
Service Pack 4 Hotfixes
Combined Into One
Package

Several security issues are not dealt with on the host
machine without the "roll-up" fixes installed. This check will
verify that this software is installed and report a vulnerability
if not.

28088 HF-SP4 Screen Saver
Vulnerability Lets User
Privileges be Elevated

The host is vulnerable to a specially designed screensaver
application which could elevate the security priviliges of the
logged-on use. This check will verify that this software is
installed and report a vulnerability if not.

28089 HF-SP4 Restricting
Changes to Base System
Objects

The host computer is vulnerable to a malicious locally
logged-in User to elevate his privilege to Administator. This
check will verify that this software is installed and report a
vulnerability if not.

28090 HF-SP4 MSMQ Err:
Error While Creating
MSMQ Internal
Certificate

When you click Renew Internal Certificate in the Microsoft
Message Queue Control Panel tool on February 29 of a
leap year (for example, the year 2000, 2004, 2008, and so
on), the following error message is displayed: "Error while
creating MSMQ internal certificate. Error: 0x8000ffff" This
check will verify that this software is installed and report a
vulnerability if not.

28091 HF-SP4 "NET USER
/TIMES" Command Does
Not Work in Year 2000

Year 2000 issue with the NET command "/TIMES" fix not
applied on this host. This check will verify that this software
is installed and report a vulnerability if not.

28092 HF-SP4 WinNT Lets You
Paste Text into Unlock
Workstation Dialog Box

This host is susceptible to a malicious user accessing the
first line of clipboard-text from the locked console. This
check will verify that this software is installed and report a
vulnerability if not.

APPENDIX D

Page 388

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
28150 SP5 (40-bit Cipher-

strength) is not installed
This check will verify that the 40-bit (exportable version)
cipher-strength Service Pack 5 software is installed and
report a vulnerability if not.

28151 SP5 (128-bit Cipher-
strength) is not installed

This check will verify that the 128-bit (non exportable
version) cipher-strength Service Pack 5 software is installed
and report a vulnerability if not.

28152 SP5 is not installed This check will verify that the Service Pack 5 software is
installed and report a vulnerability if not.

28153 HF-SP5 Exceeding
MaxRequestThreads
May Cause Windows NT
to Hang

This host is susceptible to a DOS attack by a malicious
service process running locally. This check will verify that
this software is installed and report a vulnerability if not.

28154 HF-SP5 "Access
Violation" Error Message
When You Quit Phone
Dialer

When this host quits the Phone Dialer, it may receive an
"Access violation" error message. This check will verify that
this software is installed and report a vulnerability if not.

28155 HF-SP5 Malformed
IGMP Packets May
Promote "Denial of
Service" Attack

This host is susceptible to a DOS attack as a fragmented
IGMP packet may cause the TCP/IP stack to improperly
gain access to invalid segments of the computer's memory.
This can the degrade the host's performance until it stops
responding (hangs). This check will verify that this software
is installed and report a vulnerability if not.

28156 HF-SP5 Denial of
Service Attack Using
Unprotected IOCTL
Function Call

A rogue program running on this host making certain
IOCTL Device calls may cause the host to be in a DOS
situation (with the mouse and keyboard). This check will
verify that this software is installed and report a vulnerability
if not.

28157 HF-SP5 Malformed
Request Causes LSA
Service to Hang

A specially malformed request to the Microsoft Local
Security Author ity (LSA) service may be used to exploit a
security vulnerability on this host. A user can abuse this
vulnerability to run a program and cause a denial of service
attack that may cause the LSA service to stop responding
(hang) and require a restart of the host. This check will
verify that this software is installed and report a vulnerability
if not.

28158 HF-SP5 NETDDE.EXE
Fails to Relay
WM_DDE_TERMINATE
to Remote Clients

This host is vulnerable to having applications "orphaned" by
a Network DDE call to terminate the application. This check
will verify that this software is installed and report a
vulnerability if not.

28159 HF-SP5 Memory Leak
When Performance
Counters Are Not
Available

When a program that attempts to gain access to a
performance counter that has not been installed, this
hosts's performance may degrade or may stop responding
(hang) because of a memory leak. This check will verify
that this software is installed and report a vulnerability if not.

28160 HF-SP5 File Corruption
on an NTFS Volume with
More Than 4 Million Files

This host is susceptible to disk corruption on NTFS
volumes. This check will verify that this software is installed
and report a vulnerability if not.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 389

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
28161 HF-SP5 Malformed

Phonebook Entry
Security Vulnerability in
RAS Client

A specially malformed phonebook entry may be used to
exploit a security vulnerability on a computer that has the
Microsoft Remote Access Service (RAS) client software
installed. A user with the proper permissions can abuse this
vulnerability to run a program and cause a denial of service
attack or privilege escalation attack on the RAS client
computer. This check will verify that this software is
installed and report a vulnerability if not.

28162 HF-SP5 DUN
Credentials Cached
When Save Password
Not Selected with RAS

This host is susceptible to having it's client's passwords
(from the Dial-Up Networking Client) cached on the disk
regardless of application settings. This applies to the
Remote Access Service (RAS). This check will verify that
this software is installed and report a vulnerability if not.

28163 HF-SP5 Exchange
Clients Appear to
Intermittently Hang
During Normal Operation

This host's Exchange Server may be vulnerable to a
problem servicing slower Exchange and Outlook Clients.
The clients may appear to stop responding (as they are
waiting for higher-speed clients to complete their exchange
of datagrams. This check will verify that this software is
installed and report a vulnerability if not.

28164 HF-SP5 DUN
Credentials Cached
When Save Password
Not Selected with RRAS

This host is susceptible to having its client's passwords
(from the Dial-Up Networking Client) cached on the disk
regardless of application settings. This applies to the
Routing and Remote Access Service (RRAS). This check
will verify that this software is installed and report a
vulnerability if not.

28165 HF-SP5 Fix for IP Source
Routing Vulnerability

The host computer is vulnerable to security breaches in the
TCP/IP Routing area. This check will verify that this
software is installed and report a vulnerability if not.

28166 HF-SP5 Malformed Help
File Causes Help Utility
to Stop Responding

This host is vulnerable to a specially -malformed Microsoft
Help file that is used to exploit a security vulnerability.
When a user activates the Windows Help file tool (for
example, by pressing the F1 key) this vulnerability may be
used to run a malicious program and may cause the Help
file tool to stop responding (hang). This check will verify that
this software is installed and report a vulnerability if not.

28167 HF-SP5 BIOS Date
Value Does Not
Immediately Update on
January 1, 2000

This host is susceptible to date-rollover problems (at
century rollover) in some older BIOS's. This check will
verify that this software is installed and report a vulnerability
if not.

28168 HF-SP5 XIMS: NNTP
Service Converts Two-
Digit Years Incorrectly

This host's Network News Transfer Protocol (NNTP)
service may not properly convert two-digit years to four
digits. This check will verify that this software is installed
and report a vulnerability if not.

28169 HF-SP5 "NET USER
/TIMES" Command Does
Not Work in Year 2000

Year 2000 issue with the NET command "/TIMES" fix not
applied on this host. This check will verify that this software
is installed and report a vulnerability if not.

28173 SP6 (40-bit Cipher-
strength) is not installed

This check will verify that the 40-bit (non exportable
version) cipher-strength Service Pack 6 software is installed
and report a vulnerability if not.

28174 SP6 (128-bit Cipher-
strength) is not installed

This check will verify that the 128-bit (non exportable
version) cipher-strength Service Pack 6 software is installed
and report a vulnerability if not.

APPENDIX D

Page 390

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
28175 SP6 is not installed This check will verify that the Service Pack 6 software is

installed and report a vulnerability if not.
28176 HF-SP6 Security

Descriptor Allows
Privilege Elevation on
Remote Computers

A malicious user may be able to cause a different program
to run in place of Rasman. Significantly, this program would
run in the System context and allow the program to take
almost any action on the computer. This check will verify
that this software is installed and report a vulnerability if not.

28200 Secure Channel SSL 40-
bit Cipher-strength not
applied

This check will verify that the 40-bit Secure Channel SSL
(Secure Sockets Layer) software is installed and report a
vulnerability if not.

28201 Secure Channel SSL
128-bit Cipher-strength
not applied

The security policy indicates that the 128-bit Secure
Channel SSL (Secure Sockets Layer) software should be
installed. This check will verify that this software is installed
and report a vulnerability if not.

28250 HF-WWW Page
Contents Visible When
Certain Characters are at
End of URL

The IIS Server may be susceptible to exposing the internal
contents of its scripts. Only foreign versions and the English
version with the Far East Language Pack are susceptible.
This check will verify that this software is installed and
report a vulnerability if not. Note that this check is for a
"hotfix", therefore it will return vulnerable even if the
applicable WWW service is not installed.

28251 HF-WWW Specially-
Malformed FTP
Requests May Create
Denial of Service

Specially-malformed FTP requests may create a Denial of
Service in the FTP service, which causes Internet
Information Server (IIS) to stop responding and generate an
Access Violation error message. This check will verify that
this software is installed and report a vulnerability if not.
Note that this check is for a "hotfix", therefore it will return
vulnerable even if the applicable WWW service is not
installed.

28252 HF-WWW Specially-
Malformed Header in
GET Request Creates
Denial of Service

A specially-malformed header in a GET request can create
a Denial of Service in the W3 server and use all available
memory on the Web server, causing Internet Information
Server (IIS) to stop responding to any request. This check
will verify that this software is installed and report a
vulnerability if not. Note that this check is for a "hotfix",
therefore it will return vulnerable even if the applicable
WWW service is not installed.

28253 HF-WWW NTFS
Alternate Data Stream
Name of a File May
Return Source

This host may be susceptible to allowing the script source
for a web page to be viewed. This check will verify that this
software is installed and report a vulnerability if not. Note
that this check is for a "hotfix", therefore it will return
vulnerable even if the applicable WWW service is not
installed.

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 391

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
28254 HF-WWW FTP Passive

Mode May Terminate
Session

The Internet Information Server FTP service includes a
passive mode command (PASV) to request that the server
wait for a connection instead of initiating one after receiving
a transfer command. Certain situations using multiple
passive connections may result in errors, problems with
system performance as well as denial of service situations
for both the Web and FTP services. This check will verify
that this software is installed and report a vulnerability if not.
Note that this check is for a "hotfix", therefore it will return
vulnerable even if the applicable WWW service is not
installed.

28255 HF-WWW Specially-
Malformed GET
Requests Can Create
Denial of Service

FTP Get Commands may cause a DOS against the IIS
Server on the host. This check will verify that this software
is installed and report a vulnerability if not. Note that this
check is for a "hotfix", therefore it will return vulnerable
even if the applicable WWW service is not installed.

28256 HF-WWW Settings May
Not Be Applied with URL
with Short Filename

Some configuration settings on the IIS Server may not be
applied on this host. This check will verify that this software
is installed and report a vulnerability if not. Note that this
check is for a "hotfix", therefore it will return vulnerable
even if the applicable WWW service is not installed.

29000 Windows NT - Third Party Software
29001 Outdated Version of

Netscape Communicator
The target host was found to be running an outdated
version of the Netscape WWW browser. This module
checks specifically for versions less than version 4.61.

29002 SLMail unsecure registry
permissions

The target host was found to have unsecure registry
permissions set on the Seattle Labs SLMail configuration
key.

29003 IIS 2.0/3.0 Installed The target host was found to be running IIS version 2.0 or
3.0. IIS version 2.0/3.0 was known to contain a number of
security problems which are fixed in newer versions.

29008 Unsecure logon method
allowed for MS IIS Web
Server

The target host was found configured to allow MS Peer
Web Server (IIS/FTP/Gopher) logon connections that are
unsecured. If the target host is using Batch mode it could
be exposing other network resources from a remote Web
Browser. If the host is using Network mode it also can be
remotely accessed by a browser but it will not share
resources with the remote machine.

29009 Unsecure logon method
allowed for MS IIS FTP
service

The target host was found to allow unsecured logon modes
to the Microsoft Internet Information Server's FTP service.
Local User logon should be set for the most secure
operation of the Server.

29010 Unsecure logon method
allowed for MS IIS
Gopher service

The target host was found to allow unsecured logon modes
to the Microsoft Internet Information Server's FTP service.
Local User logon should be set for the most secure
operation of the Server.

29011 IIS Anonymous FTP
access permitted

The target host was found to have anonymous FTP access
enabled. Anonymous users are permitted to connect to an
IIS FTP server by default, however your security policy
indicates that access should be restricted to authenticated
users only.

APPENDIX D

Page 392

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
29012 IIS Anonymous Gopher

access permitted
By default, Microsoft's IIS Gopher server allows anonymo us
users to connect and access available information. While
this may be the desired configuration, if restricted or
sensitive information is available via the Gopher server,
access should be limited to authenticated users only.

29013 IIS WWW Guest access
permitted

The target host was found to have Guest WWW access
enabled. This allows the Guest network user to connect to
the IIS WWW server on the target host.

29014 IIS WWW Special
characters permitted

The target host was found to be configured to allow special
characters to be passed to shell commands. The security
policy indicates that this should not be permitted.

29015 IIS WWW CreateProcess
enabled

The target host was found to be configured to run CGI
scripts in the system context instead of the IIS IUSR_ user.
The security policy indicates that this should not be
permitted.

29016 IIS WWW Successful
logging disabled

The target host was found to have the logging of successful
HTTP requests disabled. The security policy indicates that
this logging should be enabled.

29017 IIS WWW Error logging
disabled

The target host was found to have the logging of erroneous
HTTP requests disabled. The security policy indicates that
this logging should be enabled.

29018 IIS WWW Server Side
Includes

The target host was found to have server side include
functionality enabled. The security policy specifies that this
functionality should be disabled.

29019 IIS FTP Guest Access
Permitted

The target host's FTP service was found to be configured to
allow GUEST access. The security policy indicates that
GUEST access should be disabled.

29021 IIS FTP bounce attack
enabled

The target host's FTP service was found to have the FTP
bounce attack enabled. The security policy indicates that
this option should be disabled.

29022 IIS FTP anonymous
usage logging disabled

The target host's FTP service was found to have the
logging of anonymous access disabled.

29023 IIS FTP regular user
usage logging disabled

The target host's FTP service was found to have the
logging of regular user access.

30000 Windows NT - Services
30001 Unrecognized Service

found
An unrecognized Service was detected on the target host.

30002 Service found logged-on
under a User Account

A service was found to be running (logged-in) as a User on
the target host. Most Windows NT Services run in the
"System Account". Briefly, services running in the System
Account (remember that services are started before the
login procedure) have very limited access to remote
resources. They essentially are given the "Everyone"
account's permissions, which are (hopefully) very restricted.

30003 Alerter Service detected The Windows NT Alerter service was found to be running
on the target host. The Alerter is used to forward alerts
generated on the local hos t to remote computers or user
names.

30004 Messenger Service
detected

The messenger service was found to be running on the
target host. The Messenger Service is used to exchange
short messages between Users (that are running the
Service).

 THE CYBERCOP SCANNER VULNERABILITY DATABASE

 Page 393

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
30005 Messenger Service

Found and a Popup-
Message was Sent to
Host

The messenger service was found to be running on the
target host and a Windows Popup message has been sent
to the target.

30006 Remote Access Service
detected

The Remote Access Service (RAS) was detected on the
target host. RAS lets remote users dial into a Windows NT
RAS server and use the resources of its network as if
directly connected. In its simplest mode, users logging on to
Windows NT remotely simply check a small box on their
logon window that automatically establishes the RAS
connection and authenticates the session.

30007 Network Monitor Service
detected

The Network Monitor service was detected on the target
host. Network Monitor is a network diagnostic tool that
monitors local area networks and provides a graphical
display of network statistics. Network administrators can
use these statistics to perform routine trouble-shooting
tasks, such as locating a server that is down, or that is
receiving a disproportionate number of work requests .

30008 PC Anywhere Service
detected

The PC Anywhere service was detected on the target host.
This Symantec product is a "remote desktop", used to
provide a remote user with a virtual desktop of this host.

30009 Remote Desktop Service
detected

The Remote Desktop service was detected on the target
host. This NAI product is a "remote desktop", used to
provide a remote user with a virtual desktop of this host.

30010 Simple TCP/IP Service
detected

The Simple TCP/IP Service was detected on the target
host.

30012 Host set to suppress
Interactive Services

The Target host was found configured to disallow Services
from interacting with the logged-on User. This will likely
disable Security Services from gaining a password after
log-in.

31000 Windows NT - Remote Access Server
31001 Maximum number of

allowable log-in attempt
retries not set to default
value

The target Server was found to have a suspicious RAS
setting allowing more than the default number unsuccessful
tries at remote log-in.

31002 Maximum time limit for
authentication not set to
default value

The target Server was found to have a suspicious RAS
setting allowing too much time for a remote log-in.

31003 No time limit on
connections - inactive
users will never be
disconnected

The target Server was found to have the RAS/NetBIOS
Gateway setting of AutoDisconnect set to a non -default
value. This means a dialed-in User may never be purposely
disconnected even after prolonged periods of inactivity. You
should review this setting in accordance to your security
policy.

31004 Broadcast Datagrams
are being forwarded to
Remote hosts

The target Server was found to have RAS/NetBIOS
Gateway settings that forward Broadcast Datagram packets
to the remote host. Though this may be a security concern
it is more likely a poor performance choice (unless the
remote host absolutely needs to see the Broadcast
Datagram packets on the network).

APPENDIX D

Page 394

Table D.1: The CyberCop Scanner vulnerability database (continued)
Vuln.ID Vulnerability name Vulnerability description
31005 Auditing is turned off

(Event/Security log will
not contain RAS events)

The target Server was found to have a suspicious RAS
setting disabling the RAS Server's ability to perform
auditing.

31006 Authentication test-
password sent in Clear
Text

The target Server was found to have RRAS (Routing and
Remote Access Server)/PPP Gateway settings that allow
the Authentication password (sent during CHAP) to be
passed in Clear Text. It is possible it may also be
configured to not authenticate at all.

31007 Maximum number of
Config-Reject packets
not set to default value

The target Server was found to have RAS/PPP Gatew ay
settings that allow more than the default number of Config-
Reject packets to be sent before the PPP client is deemed
to be not able to connect. A higher number may legitimately
be used for some Unix PPP Clients.

31008 Maximum number of
CNAK packets not set to
default value

The target Server was found to have RAS/PPP Gateway
settings that allow more than the default number of
Configuration Negative Acknowledgments before deciding
the authentication is not converging.

31009 Maximum number of
unanswered Configure-
Request packets not set
to default value

The target Server was found to have RAS/PPP Gateway
settings that indicates the number of Configure-Request
packets - sent without receiving a valid Configure-Ack,
Configure-Nak, or Configure-Reject, before assuming that
the peer is unable to respond - is set to a non-default value.

31010 Maximum number of
unanswered Terminate-
Request packets not set
to default value

The target Server was found to have RAS/PPP Gateway
settings that allowed more than the default number of
Terminate-Requests - without receiving a Terminate-Ack
packet - to be sent before determining that the connection
is not converging.

31011 NBGateway - Suspicious
priority to Multicast
Datagram packets

The target Server was found to have RAS/NetBIOS set for
Multicast Datagram packets to have priority over regular
NetBIOS Session traffic.

31012 NBGateway - NetBIOS
Session auditing turned
off

The target Server was found to have RAS/NetBIOS
Gateway settings that have the NetBIOS audit ing log turned
off. You may want to track the resources accessed during a
remote host's RAS session to track suspicious activity. This
is a C2 compliant setting.

 Page 395

AAPPPPEENNDDIIXX EE

VVUULLNNEERRAABBIILLIITTYY HHIISSTTOORRYY DDAATTAA
__

In order to test the VF Prototype, 15 sets of history scan data were collected. Each of

these sets of history scan data are summarised in figure E.1 to figure E.15

respectively. Figure E.16 shows the history scan data for the scan that was conducted

after a vulnerability forecast has been done. Each figure shows the number of

matched vulnerabilities uncovered for each of the CyberCop Scanner vulnerability

categories over the 59 hosts in the scan scenario as explained in chapter 8.

Vulnerabilities for Scan 1

41

0 0 0 0 0 0

16

1
3

0 0
2

0 0

25

2

44

0

19

52

0
2

16
19

79

0

26

0
4

0
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Categories

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

 o
ve

r
A

ll
59

 H
o

st
s

Figure E.1: Vulnerability history scan data – scan 1

APPENDIX E

Page 396

Vulnerabilities for Scan 2

30

4

0 0 0 0 0

15

1 2
0 0 0 0 0

24

2

43

0

19

42

0
2

16
19

79

0

25

0

4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
tie

s

Figure E.2: Vulnerability history scan data – scan 2

Vulnerabilities for Scan 3

35

4

0 0 0 0 0

16

1 2
0 0 0 0 0

31

2

3 1

0

1 8

44

0 0 0 0

76

0
3

0 0 0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 9 2 0 2 1 2 2 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.3: Vulnerability history scan data – scan 3

 VULNERABILITY HISTORY DATA

 Page 397

Vulnerabilities for Scan 4

46

1 0 0 0 0 0

19

2 2 1 0 0 0
2

26

2

46

0

25

56

0
2

16
19

92

0

25

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

Figure E.4: Vulnerability history scan data – scan 4

Vulnerabilities for Scan 5

44

6

0 0 0 0 0

17

2 1 1 0 0 0
2

25

2

43

0

26

53

0
2

16
19

78

0

25

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

Figure E.5: Vulnerability history scan data – scan 5

APPENDIX E

Page 398

Vulnerabilities for Scan 6

43

3
1 0 0 0 0

17

2 2 1 0 1 0
2

25

2

43

0

25

44

0
2

16
19

85

0

25

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

Figure E.6: Vulnerability history scan data – scan 6

Vulnerabilities for Scan 7

48

6

0 0 0 0 0

17

2 2 1 0 0 0
2

35

2

45

0

24

56

0
2

16
19

92

0

25

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

Figure E.7: Vulnerability history scan data – scan 7

 VULNERABILITY HISTORY DATA

 Page 399

Vulnerabilities for Scan 8

39

5

0 0 0 0 0

16

2 1 1 0 0 0
2

25

0

45

0

13

52

0
2

16
19

86

0

25

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

Figure E.8: Vulnerability history scan data – scan 8

Vulnerabilities for Scan 9

48

6

0 0 0 0 0

19

2 2 1 0
3

0
2

30

2

50

0

18

60

0
2

16
19

99

0

26

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

Figure E.9: Vulnerability history scan data – scan 9

APPENDIX E

Page 400

Vulnerabilities for Scan 10

43

0 0 0 0 0 0

20

2 2 1 0 0 0
2

27

2

45

0

18

53

0
2

16
19

93

0

25

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

Figure E.10: Vulnerability history scan data – scan 10

Vulnerabilities for Scan 11

43

0 0 0 0 0 0

16

2 2 1 0 0 0
2

22

2

42

0

18

51

0
2

16
19

92

0

24

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

Figure E.11: Vulnerability history scan data – scan 11

 VULNERABILITY HISTORY DATA

 Page 401

Vulnerabilities for Scan 12

55

5
1 0 0 0 0

21

2
4

1 0 0 0
2

29

2

41

0

29

61

0 0

16
19

60

0

26

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

 Figure E.12: Vulnerability history scan data – scan 12

Vulnerabilities for Scan 13

48

6

0 0 0 0 0

13

1
4

1 0 1 0
2

21

1

43

0

29

50

0 0

16

1

84

0

24

0 0 0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

 Figure E.13: Vulnerability history scan data – scan 13

APPENDIX E

Page 402

Vulnerabilities for Scan 14

51

6

0 0 0 0 0

18

1
4

1 0 0 0
2

24

2

19

0

31

57

0 0 0 0

41

0
3

0 0 0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

 Figure E.14: Vulnerability history scan data – scan 14

Vulnerabilities for Scan 15

51

2 1 0 0 0 0

14

1
4

1 0
2

0
2

24

2

45

0

30

58

0
2

16
19

86

0

25

0
4

0
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

 Figure E.15: Vulnerability history scan data – scan 15

 VULNERABILITY HISTORY DATA

 Page 403

Vulnerabilities for Scan 16

40

0 0 0 0 0 0

7

0 0 0 0 0 0 0

23

1

44

0 0

67

0
3

16
19

144

0 2 0 1 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Vulnerability Category

N
u

m
b

er
 o

f V
u

ln
er

ab
ili

ti
es

 Figure E.16: Vulnera bility history scan data – scan 16

In the figures above, the data is shown for each s can conducted. In order to compare

the scan data according to each CyberCop Scanner vulnerability category , the data for

all scans are compared in each of figures E.17 to E.48, each time for a specific

CyberCop Scanner vulnerability category.

APPENDIX E

Page 404

Vulnerabilities for Vulnerability Category 1

41

30
35

46
44 43

48

39

48
43 43

55

48
51 51

40

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es
 O

ve
r

A
ll

59
 H

o
st

s

Figure E.17: Scan results over the 16 scans for CyberCop vulnerability category 1

Vulnerabilities for vulnerability category 2

0
4 4

1
6

3
6 5 6

0 0
5 6 6

2 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.18: Scan results over the 16 scans for CyberCop vulnerability category 2

 VULNERABILITY HISTORY DATA

 Page 405

Vulnerabilities for vulnerability category 3

0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.19: Scan results over the 16 scans for CyberCop vulnerability category 3

Vulnerabilities for vulnerability category 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.20: Scan results over the 16 scans for CyberCop vulnerability category 4

APPENDIX E

Page 406

Vulnerabilities for vulnerability category 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.21: Scan results over the 16 scans for CyberCop vulnerability category 5

Vulnerabilities for vulnerability category 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.22: Scan results over the 16 scans for CyberCop vulnerability category 6

 VULNERABILITY HISTORY DATA

 Page 407

Vulnerabilities for vulnerability category 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.23: Scan results over the 16 scans for CyberCop vulnerability category 7

Vulnerabilities for vulnerability category 8

1 6 1 5 1 6
19 17 17 17 16

19 20
1 6

2 1

13
18

14

7

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.24: Scan results over the 16 scans for CyberCop vulnerability category 8

APPENDIX E

Page 408

Vulnerabilities for vulnerability category 9

1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.25 Scan results over the 16 scans for CyberCop vulnerability category 9

Vulnerabilities for vulnerability category 10

3 2 2 2 1 2 2 1 2 2 2 4 4 4 4
0

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.26: Scan results over the 16 scans for CyberCop vulnerability category 10

 VULNERABILITY HISTORY DATA

 Page 409

Vulnerabilities for vulnerability category 11

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.27: Scan results over the 16 scans for CyberCop vulnerability category 11

Vulnerabilities for vulnerability category 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.28: Scan results over the 16 scans for CyberCop vulnerability category 12

APPENDIX E

Page 410

Vulnerabilities for vulnerability category 13

2 0 0 0 0 1 0 0
3

0 0 0 1 0 2 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.29: Scan results over the 16 scans for CyberCop vulnerability category 13

Vulnerabilities for vulnerability category 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.30: Scan results over the 16 scans for CyberCop vulnerability category 14

 VULNERABILITY HISTORY DATA

 Page 411

Vulnerabilities for vulnerability category 15

0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.31: Scan results over the 16 scans for CyberCop vulnerability category 15

Vulnerabilities for vulnerability category 16

2 5 2 4

3 1
26 25 25

35

25
30

27
2 2

2 9

21
24 24 23

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.32: Scan results over the 16 scans for CyberCop vulnerability category 16

APPENDIX E

Page 412

Vulnerabilities for vulnerability category 17

2 2 2 2 2 2 2 0 2 2 2 2 1 2 2 1
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.33: Scan results over the 16 scans for CyberCop vulnerability category 17

Vulnerabilities for vulnerability category 18

4 4 4 3

3 1

46
43 43 45 45

50
45

4 2 4 1 43

19

45 44

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.34: Scan results over the 16 scans for CyberCop vulnerability category 18

 VULNERABILITY HISTORY DATA

 Page 413

Vulnerabilities for vulnerability category 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.35: Scan results over the 16 scans for CyberCop vulnerability category 19

Vulnerabilities for vulnerability category 20

1 9 1 9 1 8

25 26 25 24

13
18 18 1 8

2 9 29 31 30

0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.36: Scan results over the 16 scans for CyberCop vulnerability category 20

APPENDIX E

Page 414

Vulnerabilities for vulnerability category 21

5 2

4 2 4 4

56
53

44

56
52

60

53 5 1

6 1

50

57 58

67

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.37: Scan results over the 16 scans for CyberCop vulnerability category 21

Vulnerabilities for vulnerability category 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.38: Scan results over the 16 scans for CyberCop vulnerability category 22

 VULNERABILITY HISTORY DATA

 Page 415

Vulnerabilities for vulnerability category 23

2 2 0 2 2 2 2 2 2 2 2 0 0 0 2 3

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.39: Scan results over the 16 scans for CyberCop vulnerability category 23

Vulnerabilities for vulnerability category 24

1 6 1 6

0

16 16 16 16 16 16 16 1 6 1 6 16

0

16 16

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.40: Scan results over the 16 scans for CyberCop vulnerability category 24

APPENDIX E

Page 416

Vulnerabilities for vulnerability category 25

1 9 1 9

0

19 19 19 19 19 19 19 1 9 1 9

1 0

19 19

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.41: Scan results over the 16 scans for CyberCop vulnerability category 25

Vulnerabilities for vulnerability category 26

7 9 7 9
7 6

92

78

85

92
86

99
93 9 2

6 0

84

41

86

144

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.42: Scan results over the 16 scans for CyberCop vulnerability category 26

 VULNERABILITY HISTORY DATA

 Page 417

Vulnerabilities for vulnerability category 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.43: Scan results over the 16 scans for CyberCop vulnerability category 27

Vulnerabilities for vulnerability category 28

2 6 2 5

3

25 25 25 25 25 26 25 2 4 2 6 24

3

25

2

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.44: Scan results over the 16 scans for CyberCop vulnerability category 28

APPENDIX E

Page 418

Vulnerabilities for vulnerability category 29

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.45: Scan results over the 16 scans for CyberCop vulnerability category 29

Vulnerabilities for vulnerability category 30

4 4
0

4 4 4 4 4 4 4 4 4
0 0

4
1

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.46: Scan results over the 16 scans for CyberCop vulnerability category 30

 VULNERABILITY HISTORY DATA

 Page 419

Vulnerabilities for vulnerability category 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

Scan number

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Figure E.47: Scan results over the 16 scans for CyberCop vulnerability category 31

APPENDIX E

Page 420

 Page 421

AAPPPPEENNDDIIXX FF

PPAAPPEERRSS PPUUBBLLIISSHHEEDD
__

During the course of the research the following papers were prepared and published in

a number of journals, while some papers have been submitted for publication, but has

not been published yet. In addition, some of the papers have been published in

conference proceedings where indicated below.

The following papers have been submitted successfully and were published in

journals :

• VENTER, H.S.; ELOFF, J.H.P.; 2000; Network Security ; “Network Security:

Important Issues”; Vol. 6 pp. 12-16; Elsevier Science; ISSN 1353-4858.

• VENTER, H.S.; ELOFF, J.H.P.; 2002; South African Computer Journal;

“Harmonising Vulnerability Categories”; pp. 24-31; No. 29; Computer Society

of South Africa South Africa; ISSN 1015-7999.

• VENTER, H.S.; ELOFF, J.H.P.; 2002; Computers & Security; “Vulnerabilities

Categories for Intrusion Detection Systems”; Vol. 21 no. 7, pp. 617 -619;

Elsevier Science; ISSN 0167-4048.

• VENTER, H.S.; ELOFF, J.H.P.; 2003; Computers & Security; “A Taxonomy

for Information Security Technologies”; Vol. 22; Elsevier Science;

ISSN 0167-4048.

• VENTER, H.S.; ELOFF, J.H.P.; 2003; Network Security ; “Assessment of

Vulnerability Scanners”; Vol. 2003 pp. 11-16; Elsevier Science;

ISSN 1353-4858.

The following papers have been submitted, but no confirmation has been received up

to date:

• VENTER, H.S.; ELOFF, J.H.P.; 2003; IEEE Intelligent Systems;

“Vulnerability Forecasting”.

APPENDIX F

Page 422

• VENTER, H.S.; ELOFF, J.H.P.; 2003; Computer Communications;

“Vulnerability Forecasting – A Conceptual Model”; Elsevier Science.

• VENTER, H.S.; ELOFF, J.H.P.; 2003; Computer Networks; “Vulnerability

Scanner Products”; Elsevier Science.

• VENTER, H.S.; ELOFF, J.H.P.; 2003; Computers & Security; “State of the

Art Intrusion Detection and Vulnerability Scanning”; Elsevier Science; ISSN

0167-4048.

The following papers have been published in conference proceedings:

• VENTER, H.S.; ELOFF, J.H.P.; 2000; IFIP/SEC: Information Security for

Global Information Infrastructures; Beijing, China; “Network Security Health

Checking”; ISBN 7-80003-466-6; pp. 287-220.

• VENTER, H.S.; ELOFF, J.H.P.; 2000; IT Indaba, Rand Afrikaans University,

South Africa; “A Model for Network Reconfiguration”.

• VENTER, H.S.; ELOFF, J.H.P.; 2001; Information Security for South Africa

(ISSA) , Magaliesberg Conference Centre, Johannesburg, South Africa;

“Dynamic Intrusion Detection Systems”.

• VENTER, H.S.; ELOFF, J.H.P.; 2002; Information Security for South Africa

(ISSA) , Misty Hills Conference Centre, Johannesburg, South Africa; “Generic

Vulnerability Categories”.

• VENTER, H.S.; ELOFF, J.H.P.; 2002; Annual Conference of the South

African Institute of Computer Scientists & Information Technologists

(SAICSIT) , The Boardwalk Conference Centre, Port Elizabeth, South Africa;

“Enabling Businesses to Evaluate Intrusion Detection Tools”.

 Page 423

BBIIBBLLIIOOGGRRAAPPHHYY
__

[ASTI 99] ASTIHAS, P.; 1999; Daemon News; “Intrusion Detection Systems”;

http://www.daemonnews.org/199905/ids.html.

[BACE 00] BACE, R. G.; 2000; Intrusion Detection; “Defining Intrusion

Detection”, pp. 3-4; “Password-Cracking”; pp. 3, 31, 136, 150-151,

179, 279-280; “Intrusion Detection Concepts”, pp. 37-43;

“Vulnerability Analysis: A Special Case”, pp. 134-154; “Security as

Risk Management”, pp. 258-259; Macmillan Technical Publishing;

ISBN 1-57870-185-6.

[BACK 02] CULT OF A DEAD COW; 2002; Back Orifice;

http://www.cultdeadcow.com.

[BIND 03] BINDVIEW CORPORATION; 2003; Proactive security management

software and services; “bv-Control: the security solution to manage

within and between organizations”; http://www.bindview.com.

[BISH 99] BISHOP, M.; 1999; Proceedings of the Recent Advances in Intrusion

Detection; “Vulnerability Analysis”; pp. 125-136.

[BOBO 95] BOJADZIEV, G.; BOJADZIEV, M.; 1995; Fuzzy Sets, Fuzzy Logic,

Applications; “Fuzzy Logic”, pp. 177-208; World Scientific Publishing

Co Pty. Ltd.; Singapore; ISBN 9-8102-2388-9.

[BSIB 03] BSI BUSINESS INFORMATION; 2003; Information Security; “What

is Information Security?”; http://www.bsi-global.com.

[BUGT 02] SECURITYFOCUS.COM; 2002; Bugtraq; “Bugtraq Archives”;

http://www.securityfocus.com/forums/bugtraq/intro.html.

[CARR 96] CARROLL, J. M.; 1996; Computer Security ; Butterworth-Heinemann;

Third Edition; ISBN 0-7506-9600-1.

[CEOS 03] CISCO SYSTEMS; 2003; Product Bulletin, No. 1736 ; “End-of-Sale

Announcement for Cisco Secure Scanner (Netsonar)”; http://

www.cisco.com/warp/public/cc/pd/sqsw/nesn/prodlit/1736_pp.htm.

[CIDS 03] CISCO SYSTEMS; 2003; Products & Technologies; “Cisco Intrusion

Detection”; http://www.cisco.com.

BIBLIOGRAPHY

Page 424

[COLE 02] COLE, E.; 2002; Hackers Beware – Defending Your Network from the

Wiley Hacker; “Install Intrusion Detection Systems”, pp. 238-239;

New Riders Publishing; ISBN 0-7357-1009-0.

[COME 99] COMER, D. E.; 1999; Computer Networks and Intranets; “Virtual

Private Networks”, p. 191; Prentice Hall; ISBN 0-13-084222-2.

[COMP 02] 2000 – 2002; Computers & Security; Vol. 19 – Vol. 21;

Elsevier Science; ISSN 0167-4048.

[COMP 03] COMPUTER ASSOCIATES; 2003; Security; “eTrust Intrusion

Detection”; http://www3.ca.com.

[COSL 02] CONWAY, S.; SLIGAR, C.; 2002; Unlocking Knowledge Assets;

“Building Taxonomies”, pp. 105-124; Microsoft Press;

ISBN 0-7356-1463-6.

[CRMC 01] CRONKHITE, C.; McCULLOUGH, J.; 2001; Access Denied ;

“Hackers”, p. 261; McGraw-Hill/Osborne; ISBN 0-07-213368-6.

[CSSC 00] CISCO SYSTEMS, INC.; 2000; Cisco Secure Scanner;

Version 2.0.1.2; http://www.cisco.com.

[CSSC 03] CISCO SYSTEMS; 2003; Products & Technologies; “Cisco Secure

Scanner”; http://www.cisco.com.

[CYBE 02] NETWORK ASSOCIATES; 2002; PGP Securities; “CyberCop

Monitor”; http://www.pgp.com/products/cybercop-monitor/default.asp.

[CYBE 03] NETWORK ASSOCIATES; 2003; Sniffer Technologies; “CyberCop

Scanner”; http://www.sniffer.com.

[DAVI 01] DAVID, J.; 2001; Network Security; “The Ins and Outs of Intrusion

Detection”; pp. 13-15; Vol. 2001, No. 10; Elsevier Science;

 ISSN 1353-4858.

[DENN 87] DENNING, D. E.; 1987; IEEE Transactions on Software Engineering ;

“An Intrusion-Detection Model”; pp. 222-232; Vol. 13, No. 2;

IEEE Computer Society; ISSN 0098-5589.

[DERA 03] DERAISON, R.; 2003; Nessus; “What is Nessus?”;

http://www.nessus.org/intro.html.

[EEYE 03] EEYE DIGITAL SECURITY; 2003; Retina Network Security Scanner;

“Superior Vulnerability Detection & Remediation”;

http://www.eeye.com/html/Products/Retina/index.html.

 BIBLIOGRAPHY

 Page 425

[ESCI 02] ENTERPRISE SYSTEMS CONSULTING INCORPORATED; 2002;

Intrusion Detection & Vulnerability Assessment ; “Managing Risk

through Technology”; http://www.1esc.com.

[FRAU 02] 2000 – 2002; Computer Fraud & Security; Vol. 2000 – Vol. 2002;

Elsevier Science; ISSN 1361-3723.

[GENG 02] GENGLER, B.; 2001; Computer Fraud & Security ; “Intrusion

Detection Systems New to Market”; p. 4; Vol. 2002, No. 5;

Elsevier Science; ISSN 1361-3723.

[GOLL 99] GOLLMANN, D.; 1999; Computer Security; “Computer Security”,

p. 5; “Layered models”, pp. 225-226; John Wiley & Sons;

ISBN 0-471-97844-2.

[GRAH 00] GRAHAM, R.; 2000; RobertGraham.com; “FAQ: Network Intrusion

Detection Systems”; http://www.robertgraham.com/pubs/

network-intrusion-detection.html.

GREE 02] GREENSTEIN, M.; VASARHELYI, M.; 2002; Electronic

Commerce – Security, Risk Management, and Control; Second Edition;

“Risks Associated with Viruses and Malicious Code Overflows”,

pp. 242-245; McGraw-Hill; ISBN 0-07-241081-7.

[HAMB 93] HARRIS, C. J.; MOORE, C. G.; BROWN, M; 1993; Intelligent

Control – Aspects of Fuzzy Logic and Neural Nets; “Neural Network

Approximation Capability for Control and Modelling”, pp. 282-312;

“The B-Spline Neural Network and Fuzzy Logic”, pp. 314-356;

World Scientific; ISBN 981-02-1042-6.

[HANC 01] HANCOCK, B.; 2001; Security Views; “U.S. DoD Puts Up Blocks to

Code Red”, pp. 451-452; Elsevier Science; ISSN 0167-4048.

[HARR 03] HARRIS; 2003; STAT – Security Threat Advance Technology ;

“STAT Scanner Professional”; http://www.statonline.com.

[HILL 02] HILLEY, S.; 2002; Computer Fraud & Security; “Where to buy stolen

credit cards!”; p. 2; Vol. 2002, No. 6; Elsevier Science;

ISSN 1361-3723.

[HUTH 01] HUTH, M. R. A.; 2001; Secure Communicating Systems – Design,

Analysis, and Implementation; Cambridge University Press;

ISBN 0-521-80731-X.

BIBLIOGRAPHY

Page 426

[IFAC 98] INTERNATIONAL FEDERATION OF ACCOUNTANTS; 1998;

International Information Technology Guideline; “Managing Security

of Information”; ISBN 1-887-464-31-X.

[INFO 02] INFOSEC; 2002; Information Security & Prevention of Computer

Related Crime; “What is Information Security?”;

http://www.infosec.gov.hk/english/general/infosec/what_infosec.htm.

[INSE 03] INSECURE.ORG; 2003; Introduction; “Nmap Stealth Port Scanner”;

http://www.insecure.org.

[IPFA 03] IPFAQ; 2003; IPv6 Information Page; “IP FAQ”;

http://www.ipv6.org.

[IPV6 03] IPV6 FORUM; 2003; IPv6 Forum; “About the IPv6 Forum”;

http://www.ipv6forum.com.

[IPVE 03] SUN MICROSYSTEMS; 2003; IP Version 6; “Introduction”;

http://playground.sun.com/pub/ipng/html/ipng-main.html.

[ISOR 89] INTERNARIONAL STANDARDS ORGANIZATION; 1989;

ISO 7498-2: Information Processing Systems – Open System

Interconnection ; “Basic Reference Model – Part 2: Security

Architecture”; http://www.iso.ch.

[ISSC 03] INTERNET SECURITY SYSTEMS; 2003; Vulnerability Assessment ;

“Internet Scanner®”; http://www.iss.net.

[ISSN 03] INTERNET SECURITY SYSTEMS; 2003; Internet Security Systems;

“ISS”; http://www.iss.net.

[JAHN 02] JAHNKE, M.; 2002; Research Establishment for Applied Science ;

“SIDI - An Implementation of a Survivable Intrusion Detection

Infrastructure”; http://www.fgan.de/~jahnke/sidi.

[KABY 78] KANDEL, A.; BYATT, W.J.; 1978; Proceedings of the IEEE; “Fuzzy

Sets, Fuzzy Algebra and Fuzzy Statistics”; Vol. 66; No. 12; pp. 1619-

1631.

[KAND 82] KANDEL, A.; 1992; Fuzzy Techniques in Pattern Recognition ;

“Fuzzy Sets”, pp. 23-43; John Wiley & Sons Inc.;

ISBN 0-471-09136-7.

[KAND 92] KANDEL, A.; 1992; Fuzzy Expert Systems; “General Purpose Fuzzy

Expert Systems”, pp. 23-41; CRC Press Inc.; ISBN 0-8493-4297-X.

 BIBLIOGRAPHY

 Page 427

[KASA 00] KANLAYASIRI, U.; SANGUANPONG, S.; 2000; Proceedings of the

7th International Workshop on Academic Information Networks and

Systems, Bangkok, Thailand; “Network-based Intrusion Detection

Model for Detecting TCP SYN Flooding”.

[KEOS 01] KING, C. M.; DALTON, C. E.; OSMANOGLU, T. E.; 2001; Security

Architecture – Design, Deployment & Operations; “Security Policies,

Standards, and Guidelines”, pp. 13-39; RSA Press/Osborne/McGraw-

Hill; ISBN 0-07-213385-6.

[KIDO 01] KING, C. M.; DALTON, C. E.; OSMANOGLU, T. E.; 2001; Security

Architecture – Design, Development & Operations; “Business and

Application Drivers (Case Study)”, p. 1; “Authorisation and Access

Control”, pp. 93-94; “Basic Intrusion Detection Terminology”,

pp. 287-288; McGraw-Hill/Osborne; ISBN 0-07-213385-6.

[KUSP 95] KUMAR, S.; SPAFFORD, E. H.; 1995; Computers & Security ;

“A Software Architecture to Support Misuse Intrusion Detection”,

p. 607; Vol. 14, No. 7; Elsevier Science; ISSN 0167-4048.

[LEXI 02] LEXICO LLC; 2002; Dictionary.com; “technology”; “password”;

http://www.dictionary.com.

[LEXI 03] LEXICO LLC; 2003; Dictionary.com; “architecture”; “risk”; “scan”;

“vulnerability”; http://www.dictionary.com.

[LITS 01] LIN, Y. T.; TSENG, S. S.; LIN, S. C.; 2001; Journal of Information

Science and Engineering; “An Intrusion Detection Model Based Upon

Intrusion Detection Markup Language”, pp. 899-919; Vol. 17, No. 6;

ISSN 1016-2364.

[LOPH 02] @STEAK.COM; 2002; L0pht Crack ; “L0pht Crack Version 3.0”;

http://www.atstake.com/research/lc3/index.html.

[LOPY 01] LOPYREV, A.; 2001; SANS Info Sec Reading Room; “Distributed

Scan Model for Enterprise-Wide Network Vulnerability Assessment”;

http://www.sans.org/rr/audit/scan_model.php.

[MAIW 03] MAIWALD, E.; 2003; Network Security: A Beginner’s Guide ;

Second Edition; “Defining Information Security”, p. 4;

Osborne McGraw-Hill; ISBN 0-07-2229-578.

BIBLIOGRAPHY

Page 428

[MASI 02] MAIWALD, E.; SIEGLEIN, W.; 2002; Security Planning & Disaster

Recovery; “Information Security Policy”, p. 61; McGraw-Hill/

Osborne; ISBN 0-07-222463-0.

[MCAF 03] MCAFEE SECURITY; 2003; CyberCop ASaP; “Vulnerability

Assessment”; http://www.mcafeeb2b.com/services/cybercop -asap.asp.

[MCLE 00] McLEAN, I.; 2000; Windows 2000 Security – Little Black Book; The

Coriolis Group; ISBN 1-57610-387-0.

[MCSK 02] McCLURE, S.; SCAMBRAY, J.; KURTZ, G; 2002; Hacking

Exposed; Third Edition; “Denial of Service (DoS) Attacks”,

pp. 503-525; “Cryptography”, p. 581; McGraw-Hill/Osborne;

ISBN 0-07-219382-4.

[MICR 03] MICROSOFT; 2003; Microsoft COM Technologies; “ActiveX

Controls”; http://www.microsoft.com/com/tech/ActiveX.asp.

[MITR 03] THE MITRE CORPORATION; 2003; Common Vulnerabilities and

Exposures (CVE) ; “CVE, The Key to Information Sharing”;

http://www.cve.mitre.org/introduction.html.

[MOHA 01] MOHAN, P.; 2001; SANS Info Sec Reading Room; “Need for Pure

Integration between Intrusion Detection and Vulnerability

Assessment”; http://www.sans.org/rr/intrusion/integration.php.

[NETB 02] SPECTROSOFT; 2002; Netbus; http://www.netbus.org.

[NETI 03] NETIQ; 2003; Products and Solutions; “Security Analyzer”;

http://www.netiq.com.

[NETR 02] SYMANTEC; 2002; Products; “Symantec NetRecon 3.5”;

http://enterprisesecurity.symantec.com/products/products.

[NETW 02] 2000 – 2002; Network Security; Vol. 2000 – Vol. 2002; Elsevier

Science; ISSN 1353-4858.

[NETW 03] NETWORK ASSOCIATES; 2003; CyberCop Scanner; “CyberCop

Scanner ASaP”; http://www.networkassociates.com.

[NFRS 03] NFR SECURITY; 2003; NFR Intrusion Management System;

“NFR Network Intrusion Detection”;

http://www.nfr.com/products/NID.

[NOCF 01] NORTHCUTT, S.; COOPER, M.; FEARNOW, M.; FREDERICK, K.;

2001; Intrusion Signatures and Analysis; “Passwords”,

 BIBLIOGRAPHY

 Page 429

pp. 57-65, 76-85, 134-143, 149-168, 189, 233-250. New Riders

Publishing; ISBN 0-7357-1063-5.

[NONM 01] NORTHCUTT, S.; NOVAK, J.; McLACHLAN, D.; 2001;

Network Intrusion Detection – An Analyst’s Handbook ; Second

Edition; New Riders Publishing; ISBN 0-7357-1008-2.

[NORT 01] NORTHCUTT, S.; NOVAK, J.; McLACHLAN, D.; 2001; Network

Intrusion Detection ; Second Edition; “Misconfigured Systems”,

pp. 159, 188, 213-214, 387-391; New Riders Publishing; ISBN 0-

7357-1008-2.

[OPPL 98] OPPLIGER, R.; 1998; Internet & Intranet Security; “Access Control

Mechanisms”, p. 58; “Access Control”, pp. 91-147; Artech House

Incorporated; ISBN 0-89006-829-1.

[PAGU 96] PABRAI, U. O.; GURBANI, V. K.; 1996; Internet & TCP/IP Network

Security – Securing Protocols and Applications; “Firewall Systems”,

pp. 163-181; McGraw-Hill; ISBN 0-07-048215-2.

[PALM 01] PALMER, C.; 2001; Network Security ; “Nimda virus hits”; p. 4; Vol.

2001, No. 9; Elsevier Science; ISSN 1353-4858.

[PGPI 03] ZIMMERMANN, P.; 2003; PGP International Home Page; “PGP”;

http://www.pgpi.org

[PHLE 03] PHLEEGER, C. P.; 2003; Security in Computing ; Third Edition;

“Encryption Algorithms”, pp. 37-39; “The Caesar Cipher”, pp. 41-44;

“Hash Algorithms ”, pp. 76-77; “Certificates”, pp. 81-82; “Mandatory

and Discretionary Access Control”, p. 256; Prentice Hall;

ISBN 0-13-035548-8.

[REAL 02] INTERNET SECURITY SYSTEMS; 2002; Internet Security Systems

Incorporated; “RealSecure Gigabit Network Sensor 7.0”;

http://www.iss.net.

[REAL 03] INTERNET SECURITY SYSTEMS; 2003; Internet Security Systems

Incorporated; “RealSecure Gigabit Network Sensor 7.0”;

http://www.iss.net.

[ROSH 03] ROSHAL, E.; 2003; RARLAB; “WinRAR”; http://www.rarlab.com.

[SAIN 03] SAINT CORPORATION; 2003; About SAINT; “SAINT 4

Vulnerability Assessment Tool”; http://www.saintcorporation.com.

BIBLIOGRAPHY

Page 430

[SCHN 00] SCHNEIER, B.; 2000; Secrets and Lies – Digital Security in a

Networked World ; “Hackers”, pp. 43-46; “Intrusion Detection

Systems”, pp. 194-197; John Wiley & Sons Inc.; ISBN 0-471-25311-1.

[SCHN 88] SCHNEIDER, M.; 1988; Fuzzy Sets and Systems; “Properties of the

Fuzzy Expected Value and the Fuzzy Expected Interval in Fuzzy

Environment”; pp. 55-68; Vol. 28; Elsevier Science Publishers;

ISSN 0165-0114.

[SCHU 03] SCHULTZ, E.; 2003; Computers & Security; “Internet security: what’s

in the future?”, pp. 78-79; Vol. 22, No. 2; Elsevier Science; ISSN

0167-4048.

[SCMK 01] SCAMBRAY, J.; McCLURE, S.; KURTZ, G.; 2001; Hacking

Exposed; Second Edition; “Footprinting”, pp. 5-34, 87-95, 164-174,

238-241, 252-257, 287-290, 308, 339-340, 433-437, 453-456, 483-506,

507-653; Osborne/McGraw-Hill; ISBN 0-07-212748-1.

[SECF 02] SECURITY FOCUS; 2002; Advisories; “IIS Worms Detector”;

http://www.securityfocus.com.

[SMIT 00] SMITH, E.; 2000; Information Security In Health-Care Systems: A

New Approach To It Risk Management; “Basic concepts behind fuzzy

system modeling”; p. A-2.; RAU Library, Rand Afrikaans University,

Kingsway, Auckland Park, Johannesburg, South Africa.

[SNOR 02] SNORT.ORG; 2002; Snort; “Snort”; “The Open Source Network

Intrusion Detection System”; http://www.snort.org.

[STEI 98] STEIN, L. D.; 1998; Web Security – A Step-by-Step Reference Guide ;

“Certifying Authorities and the Public Key Infrastructure”, pp. 25-28;

Addison Wesley; ISBN 0-201-63489-9.

[SYMA 03] SYMANTEC ENTERPRISE SOLUTIONS; 2003; Network

vulnerability assessment with root cause analysis; “Symantec

NetRecon 3.5”; http://enterprisesecurity.symantec.com.

[TALI 00] TALISKER; 2000; Network Vulnerabil ity Scanners; “Nessus”;

http://www.networkintrusion.co.uk/N_scan.htm.

[TIWA 99] TIWANA, A.; 1999; Web Security ; “Are Firewalls Enough?”,

pp. 112-135; “Securing Transactions with Digital Certificates”,

pp. 211-227; Digital Press; ISBN 1-55558-210-9.

 BIBLIOGRAPHY

 Page 431

[TRIU 02] TRIULZI, A.; 2002; K2 Defender Intrusion Detection System; “Rising

the Challenge: Moving from Intrusion Detection to Security

Monitoring”; http://www.k2defender.com.

[TUDO 00] TUDOR, J. K.; 2000; Information Security Architecture – An

Integrated Appro ach to Security in the Organization ; Auerbach;

ISBN 0-8493-9988-2.

[VEE1 03] VENTER, H. S.; ELOFF; J. H. P; 2003; Computers & Security; “A

Taxonomy for Information Security Technologies”; Elsevier Science;

ISSN 0167-4048.

[VEE2 03] VENTER, H. S.; ELOFF; J. H. P; 2003; South African Computer

Journal; “Harmonised Vulnerability Categories”; pp. 24-31; No. 29;

Computer Society of South Africa South Africa; ISSN 1015-7999.

[VENT 03] VENTER, H. S.; 2003; Department of Computer Science, University of

Pretoria, Pretoria, South Africa; “The VF Prototype”;

hventer@cs.up.ac.za.

[VISS 03] VISSER, P.; 2003; PO Box 746, Florida Hills, 1716, South Africa;

“The VF Prototype”; visser_pierre@hotmail.com.

[WACA 98] WALKER, K. M.; CAVANAUGH, L. C.; 1998; Computer Security

Policies and SunScreen Firewalls; Prentice Hall; ISBN 0-13-096015-2.

[WEBA 03] WEBOPEDIA.; 2003; Terms; “AES”;

http://www.webopedia.com/term/a/aes.html.

[WEBD 03] WEBOPEDIA.; 2003; Terms; “DES”;

http://www.webopedia.com/term/d/des.html.

[WEBP 03] WEBOPEDIA.; 2003; Terms; “Public-key cryptography”;

http://www.webopedia.com/term/p/public_key_cryptography.html.

[WEBR 03] WEBROOT.; 2003; Products; “Privacy Master”;

http://www.webroot.com/wb/products/privacymaster/index.php.

[WEBS 03] WEBOPEDIA.; 2003; Terms; “Symmetric-key cryptography”;

http://www.webopedia.com/term/s/symmetric_key_cryptography.htm.

[YAZA 92] YAGER, R. R.; ZADEH, L. A.; 1992; An Introduction to Fuzzy Logic

Applications in Intelligent Systems; Kluwer Academic Publishers ;

ISBN 0-7923-9191-8.

BIBLIOGRAPHY

Page 432

[YELZ 95] YEN, J.; LANGARI, R.; ZADEH, L. A.; 1993; Industrial Applications

of Fuzzy Logic and Intelligent Systems; “Two-Degree-of-Freedom

Fuzzy Model for Flight”, p. 119; IEEE Press; ISBN 0-7803-1048-9.

[ZADE 65] ZADEH, L. A.; 1965; Information Control; “Fuzzy Sets”; Vol. 8;

p. 338.

