

Multiple epitope immunogens (MEI) mimic the variability of the V3 loop of HIV-1 subtype C

Raymond Hewer

Multiple epitope immunogens (MEI) mimic the variability of the V3 loop of HIV-1 subtype C.

by

RAYMOND HEWER

B.Sc. (Rand Afrikaans University, Johannesburg, South Africa) 1999

B.Sc. Hons. (Rand Afrikaans University, Johannesburg, South Africa) 2000

Dissertation

Submitted in fulfillment of the requirements for the degree

MAGISTER SCIENTIAE

in

BIOCHEMISTRY

in the

FACULTY OF SCIENCE

at

RAU UNIVERSITY

Auckland Park

South Africa

Supervisor: Dr. Debra Meyer

December 2002

Acknowledgements

My utmost gratitude to Dr. Debra Meyer who is not only an excellent supervisor but also a remarkable and inspiring person.

I would like to thank the MRC for financial support for the duration of this project and the laboratory of Professor J. Torres at the Medical Microbiology and Immunology Department, University of California, Davis for the kind donation of plasma samples.

Mostly, I would like to acknowledge my parents for too many things to list. Your neverending altruism never ceases to amaze me. I thank my sister Jackie for genuine support and belief in me. I thank Keith who will always do more than expected and for the excellent motivation and advice. I thank Pamela, who is a true little sister and is always there for me- especially when I reach the 13th hour.

I thank Megan for everything, especially patience and understanding.

To my lab friends – thanks for the memories, thanks for the laughs.

You'll remember me when the west wind moves Upon the fields of barley You'll forget the sun in his jealous sky As we walk in fields of gold

Forever In Memory

Jaederic I. Modoo 01/02/80 - 20/07/01

JOHANNESBURG

Preface

Contents of this thesis have been compiled in two manuscripts:

- Hewer R., Meyer D. (2002). Producing a highly immunogenic synthetic construct active against HIV-1 subtype C. *Vaccine* 20: 2680 – 2683.
- Hewer R., Meyer D. (2003) Peptide immunogens based on the envelope region of HIV-1 are recognized by HIV / AIDS patient polyclonal antibodies and induce strong humoral immune responses in mice and rabbits. Submitted to *Molecular Immunology*.

A copy of manuscript 1 is included in the Appendix

Contents

A	Abbreviatio	ns	I
Ι	List of Figu	res	V
Ι	List of Tabl	es	VII
A	Abstract		VIII
S	Samevatting		IX
(]	Chapter 1 Literature s	urvey	1
1	. Introdu	ction	1
	1.1. HIV	/ AIDS	3
	1.1.1.	Early history of HIV	3
	1.1.2.	Epidemiology of HIV in South Africa	4
	1.1.3.	Taxonomy	6
	1.1.4.	Nomenclature and phylogeny	8
	1.1.5.	Properties of the virion.	10
	1.1.6.	Genomic organization	11
	1.1.7.	Life cycle of HIV	14
	1.2. AII	OS pathogenesis	16
	1.2.1.	Overview of the function and components of the immune system	16
	1.2.2.	Disease progression	18

1.3. Viral strategies to avoid host immune responses		21
1.3.1. Genet	ic variation	21
1.3.2. Viral	latency	23
1.4. HIV Vac	cines	24
1.4.1. Curre	nt HIV vaccine approaches	25
1.4.2. Neutr	alizing epitopes of HIV-1	27
1.4.3. Proble	ems hindering HIV vaccine development	28
1.4.4. Anima	al models	29

1.5. Synthetic peptides 32 1.5.1. Synthetic peptide-based vaccines 32 1.5.2. Design of synthetic peptides 33 1.5.2.1. Peptide design methodology and considerations 33 1.5.2.2. Synthesis of synthetic peptides 35 1.5.3. Novel peptides designed to target hypervariability 36 1.5.4. Enhancement of peptide immunogenicity 37 1.5.4.1. Carriers 37 1.5.4.2. Multiple antigenic peptide (MAP) 38 1.5.4.3. Adjuvants 39 1.5.5. Characterization of synthetic peptides 41

1.6. Objectives

Chapter 2

Materials and Methods

2.1. De	sign, synthesis and characterization of synthetic	
pepti	de constructs	46
2.1.1.	Design and synthesis	46
2.1.2.	Analysis and characterization	53
2.2. M	EIV3b4-induced humoral immunity	55
2.2.1.	Immunization and sera collection of experimental and control animals	55
2.2.2.	Standard ELISA assays	57
2.2.3.	Cellular proliferation	57
2.2.4.	Assessment of virus neutralizing ability of antibodies.	59
2.3. Ad	Iditional antigens and further modified MEIs	60
2.3.1.	Synthetic peptides	60
2.3.2.	Acetylated MEIV3b4	60
2.3.3.	Pelleted virus	61
2.3.4.	Envelope glycoproteins	61
2.3.5.	Poly-L-lysine	62
2.4. W	hole protein and peptide induced antibodies	62
2.4.1.	Polyclonal antibodies to comparison peptides and proteins	62
2.4.2.	Anti-gp120 mono clonal antibodies	63

2.6.	In vivo functionality of synthetic peptide	
	/ peptide constructs	65

Chapter 3

Results

3	3.1. Design, synthesis and characterization of synthetic peptide		
	co	nstructs	67
	3.1.1.	Design and synthesis	67
	3.1.2.	Analysis and characterization	69
3	.2. M	EIV3b4-induced humoral immunity	88
	3.2.1.	Immunization and sera collection of experimental and control animals	88
	3.2.2.	The effect of Freunds adjuvant on types of immunizations employed	88
	3.2.3.	Cellular proliferation	93
	3.2.4.	Assessment of virus neutralizing ability of antibodies.	94
3	.3. Ad	ditional antigens and further modified MEIs	95
	3.3.1.	Anti-MEIV3b4 antibody detection	95

67

3.4. Whole protein and peptide induced antibodies	96
3.4.1. Polyclonal antibodies to comparison peptides and proteins	96
3.4.2. Anti-gp120 monoclonal antibodies	96
3.4.3. Solid phase MEIV3b4 construct-based ELISA	98
3.5. Galanthus nivalis ELISA	98
3.6. In vivo functionality of synthetic peptide	
/ peptide constructs	100
Chapter 4 Discussion	106
4.1. Design, synthesis and characterization of synthetic peptide constructs	107
4.2. MEIV3b4-induced humoral immunity source	112
4.3. Additional antigens and further modified MEIs	114
4.4. Whole protein induced antibodies	116
4.5. Galanthus nivalis	117
4.6. In vivo functionality of synthetic peptide/peptide constructs	117
4.7. Shortcomings and future prospects	122
Chapter 5	124

References

Appendix

Abbreviations

Å	Amstrong
ACN	acetonitrile
AGM	African green monkey
Ahx	aminohexanoic acid
AIDS	acquired immunodeficiency syndrome
ANC	antenatal clinic
APC	antigen presenting cell
BSA	bovine serum albumin
CDC	centers for disease control
CE	capillary electrophoresis
CFA	complete Freunds adjuvant
СНО	Chinese hamster ovary
CMV	cytomegalovirus
ConA	concanavalin A
DCCD	dicyclohexylcarbodiimide
DNA	deoxyribonucleic acid
ELISA	enzyme linked immunosorbent assay
env	envelope
FBS	fetal bovine serum
FA	Freunds adjuvant
FCS	fetal calf serum
FIV	feline immunodeficiency virus

FMDV	foot and mouth disease
Fmoc	9-flournylmethloxycarbonyl
gag	group specific antigen
gp	glycoprotein
HAART	highly active anti-retroviral therapy
HCl	hydrochloric acid
HEC	hypervariable epitope construct
HF	hydrogen fluoride
HIV	human immunodeficiency syndrome
HPLC	high performance liquid chromatography
HSP	heat shock protein
HTLVIII	human T-cell lymphotropic virus type 3
IFA	incomplete Freunds adjuvant
IFN	interferon
Ig	immunoglobulin
IM	intramuscular
IP	intraperitoneal
KLH	keyhole limpet hemacyanin
KS	karposi's sarcoma
LAV	lympadenopathy-associated virus
LC-ESMS	liquid chromatography electrospray mass
	spectrometry
LTR	long terminal repeats

mA	milliAmps
MAP	multiple antigenic peptide
MAPS	multiple antigen peptide systems
MHC	major histocompatibility complex
MS	mass spectrometry
МТСТ	mother-to-child transmission
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
	tetrazolium bromide
MVA	modified vaccinia Ankara
NAIDS	National Institute of Allergy and Infectious
	Diseases
NCI	National Cancer Institute
NIH	National Institute of Health
NK	natural killer (cells)
nm	nanometers
nt	nucleotides
NZW	New Zealand White (rabbit)
O.D.	optical density
OI	opportunistic infection
ORF	open reading frame
PAGE	polyacrylamide gel electrophoresis
РВМС	peripheral blood mononucleocytes
PBS	phosphate buffered saline

РСР	Pneumocystis carinii pneumonia		
PDB	Protein data bank		
PHD	Profile fed neural network systems from		
	HeiDelberg		
PML	progressive multifocal leukoencephalopathy		
PND	principle neutralizing determinant		
pol	polymerase		
PVDF	polyvinylidene difluoride		
RAU	Rand Afrikaans University		
RNA	ribonucleic acid		
RP-HPLC	reversed-phase HPLC		
RT	reverse transcriptase		
SC	subcutaneous		
SCID	severe combined immune defiency		
SISA	Simple Interactive Statistical Analysis		
SDS	sodium dodecyl sulfate		
SHIV	simian/human immunodefiency virus		
SIV	simian immunodefiency virus		
TB	tuberculosis		
tBoc	<i>tert</i> -butyloxycarbonyl		
TFA	trifluoroacetic acid		
TLC	thin layer chromatography		
TMB	3,3'5,5'-Tetramethylbenzidine		

TN	Tris NaCl
U.S.A	United States of America
VEE	Venezuelan equine encephalitis
WHO	World Health Organization

List of Figures

<u>Chapter 1</u>

Figure 1.1. Primate lentivirus phylogenetic relationships	9
Figure 1.2. Schematic representation of the HIV structure illustrating major viral	
components.	11
Figure 1.3. HIV-1 genome	12
Figure 1.4. HIV life cycle	16
Chapter 2 UNIVERSITY	

Figure 2.1. Schematic representation of the derivation of the MEIV3b4 sequence	47
Figure 2.2. Schematic representation of the complete structure of MEIV3b4	49
Figure 2.3. Schematic representation of the complete structure of poly-L-MEI	50
Figure 2.4. Theoretical representation of b-MEI-s	52
Figure 2.5. Peptide sequence of the CCD4 peptide	53

<u>Chapter 3</u>

Figure 3.1. Hydrophobicity plot of the most hydrophilic sequence represented by

the MEIV3b4 construct 72

3.2. Hydrophobicity plot of the least hydrophilic sequence represented by	
the MEIV3b4 construct	73
Figure 3.3. Helical wheel of the most hydrophilic sequence represented by the	
MEIV3b4 construct	74
Figure 3.4. Helical wheel of the least hydrophilic sequence represented by the	
MEIV3b4 construct	75
Figure 3.5. Percentage amino acid composition of the MEIV3b4	76
Figure 3.6. The theoretical charge of the MEIV3b4 construct as a function of pH	
Figure 3.7. LC-ESMS spectrum of the 108 sequences presented by the linear non-	
conjugated MEIV3.	80
Figure 3.8. The LC-ESMS spectrum of the MEIV3b4	
Figure 3.9. HPLC chromatogram of the MEIV3 construct	82
Figure 3.10. Hydrophobicity plot of the consensus sequence of the b-MEI-s construct	83
Figure 3.11. Helical wheel of the b-MEI-s construct	84
Figure 3.12. LC-ESMS spectrum of the b-MEI-s construct	86
Figure 3.13. HPLC chromatogram of the b-MEI-s construct	87
Figure 3.14a. The response of anti-MEIV3b4 antibodies against MEIV3b4 as antigen	
Figure 3.14b. The comparison of subcutaneous and intraperitoneal immunizations	
Figure 3.14c. The response of anti-MEIV3b4 antibodies against MEIV3b4 and HIV-1	
subtype C whole virus.	91
Figure 3.15. Proliferation of negative control and MEIV3b4 mouse splenocytes in	
response to MEIV3b4 as stimulus	93

Figure 3.16. Proliferation of splenocytes isolated from MEIV3b4-immunized rabbits

	in response to MEIV3b4 and control protein	94
Figure 3.17.	SDS electrophoretogram of anti-gp120 mAb produced in	
	hybridoma cells	97
Figure 3.18.	The response of anti-peptide antibodies against their inducing peptide	
	constructs	102
Figure 3.19.	Response to the four synthetic peptide constructs by plasma antibodies	
	from different sources within Gauteng, South Africa	103
Figure 3.20.	Response to the four synthetic peptide constructs by plasma antibodies	
	from Venda and Puerto Rico	104

List of Tables

<u>Chapter 1</u>

Table 1.1. HIV/SIV proteins and their corresponding size, function and localization	
Table 1.2. AIDS defining conditions	20

Chapter 3

Table 3.1. Summary of selected properties and characteristics of the synthetic peptide	e and
peptide constructs utilized	69
Table 3.2. Kyte-Doolittle hydrophobicity values assigned to each amino acid and	
the MEIV3b4 sequences of most and least hydrophilicity	70
Table 3.3. Theoretically derived characteristic values of the MEIV3b4 construct	76
Table 3.4. The effect of adjuvant on immunization style	88
Table 3.5. End point titers of mouse and rabbit antibodies in response	
to various antigens	95

Table 3.6. Summary of the stimulation indices (S.I.) obtained as a measure	
of cell proliferation	98
Table 3.7. Antibody titers of patient plasma against the four synthetic	
peptide constructs.	101

Abstract

Multiple epitope immunogens (MEI) mimic the variability of the

V3 loop of HIV-1 subtype C

Raymond Hewer

Promoter:Dr. Debra MeyerDepartment:Department of Chemistry and BiochemistryDegree:M.Sc. Biochemistry

Hypermutation of the viral genome has been cited as a leading difficulty in the development of an effective human immunodefiency virus type 1 (HIV-1) vaccine. The high number of errors made by the reverse transcriptase (RT) enzyme and the absence of RT proofreading mechanisms during HIV-1 replication leads to HIV-1 nucleotide sequence drift most frequently observed in the envelope (env) gene and expressed in env gene products. A multiple epitope immunogen (MEI) was designed and synthesized to mimic the hypervariability observed within the third variable (V3) region of HIV-1 subtype C (Hewer and Meyer, 2002). Anti-MEI humoral immunity induced in mice and rabbits, produced antigen-recognizing antibody titers of ≤ 5000 in enzyme linked immunosorbent assays (ELISA) and stimulation indices (SI) of 7 in cell proliferation assays. Plasma polyclonal antibodies collected from HIV / AIDS patients in Southern Africa and Puerto Rico recognized the MEI antigen at antibody titers of \leq 5000. In comparative studies, results obtained with the MEI surpassed those obtained using other peptides representing variable and conserved regions. Immunogenic constructs representing multiple viral protein sequences, such as the MEI, can be beneficial components of preventative and therapeutic HIV-1 vaccines.

Samevatting

Meervoudige epitoop immunogene (MEI) boots die varieërbaarheid van

die V3 gebied van HIV-1 subtipe C na

Raymond Hewer

Studieleier:	Dr. Debra Meyer
Departement:	Department of Chemistry and Biochemistry
Graad:	M.Sc. Biochemistry

Hiperverandering van die virus genotipe was gesiteer as `n vername afwykings is veroorsaak deur die reverse transcriptase (RT) ensiem en die afwesigheid van die RT proeflees meganismes gedurende HIV-1 replikasie lei tot HIV-1 kern sekwensie drif, hoofsaalklik waargeneem in die envelope (env) gene en weergegee in envelope gene produkte.'n multiple epitope immunogens (MEI) was ontwerp en saamgestel om die hipervariansie, waargeneem in die 3de variant (V3) streek van HIV-1 subtipe C (Hewer en Meyer, 2002), na te boots. Anti-MEI humoral immuniteit geinduseer in muise en konyne, produseer antigen herkenbare teenliggaam titers van \leq 5000 in ensieme-bind immunosorbent assays (ELISA) en stimulasie indices (SI) van 7 in sel struikelblok in die ontwikkeling van `n effektiewe menslike immunoeffektiewe virus tipe 1 (HIV-1) entstof. Die hoe aantal proliferasie toetsing. Plasma polyclonal teenliggaam versamel van HIV / AIDS pasiente in Suider Afrika en Peurto Rico herken die MEI antigen by teenliggaam titers van ≤5000. In vergelykende studies, resulte verkry met die MEI, oortref die vekry deur die gebruik van peptide weergegee in veranderlike en konserwatiewe streke. Immunogenic samestellings weergegee deur meervoudige virale proteïen volgorde soos die MEI, kan voordelige komponente van voorkomende en terapeutiese HIV-1 entsof wees.