University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Research Support Program (INTSORMIL CRSF	INTSORMIL Presentations	International Sorghum and Millet Collaborative Research Support Program (INTSORMIL CRSP)
--	-------------------------	---

12-2010

Improvements in Sorghum Milling Technologies

Martin M. Kebakile National Food Technology Research Centre, martin@naftec.org

Follow this and additional works at: https://digitalcommons.unl.edu/intsormilpresent

Part of the Agronomy and Crop Sciences Commons, and the Food Processing Commons

Kebakile, Martin M., "Improvements in Sorghum Milling Technologies" (2010). *INTSORMIL Presentations*. 24.

https://digitalcommons.unl.edu/intsormilpresent/24

This Presentation is brought to you for free and open access by the International Sorghum and Millet Collaborative Research Support Program (INTSORMIL CRSP) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in INTSORMIL Presentations by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

www.naftec.org

email: mail@naftec.org

National Food Technology Research Centre Endless possibilities in food research

Improvements in Sorghum Milling Technologies

Martin M Kebakile (PhD) martin@naftec.org

Ē

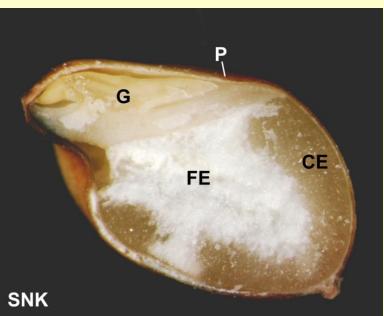
National Food Technology Research

Endless possibilities in food research

Introduction

- Sorghum is staple food for millions in African and Asian countries
- It ranks 5th in production worldwide, but is 2nd most important after maize in Africa
- The crop is adapted to drought conditions and therefore could be a strategic grain for food security in Sub-Saharan Africa

Limitations


- Sorghum has been neglected until recently; Little R&D efforts compared to other common cereals
- Sorghum food industry is non-vibrant (largely traditional products)
- Generally there is lack of suitable sorghum food processing technologies
 - Low production capacity
 - High milling loses
 - **Variable product quality**

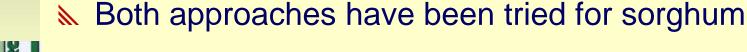
Sorghum milling

Cross section of the sorghum kernel

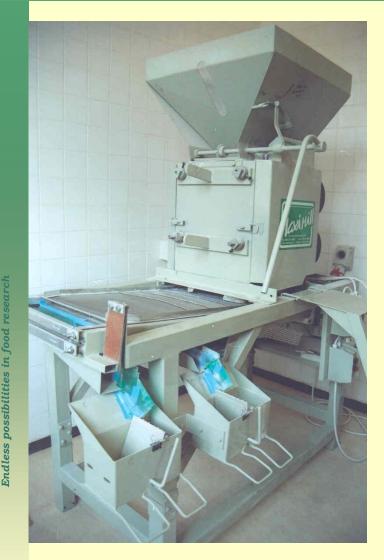
P = Pericarp FE = Floury endosperm CE = Corneous endosperm

G = Germ

Purpose of milling is to;


- Separate the starch-rich endosperm (84 %) from the pericarp (6 %) and the germ (10 %)
- Reduce the "clean" endosperm to small particles (meal)
- Critical considerations efficiency (economics) of milling technology and meal quality

Two basic approaches to cereal grain milling


▶ Break open kernel, then scrape endosperm from bran

- Mainly used for wheat milling (roller milling)
- Multiple grinding and separation steps (sifting, aspiration and gravity separation)
- Pericarp (bran) and germ are first removed by degerming or decortication, then endosperm is reduced to grits or flour
 - ▲ Typically used for maize
 - Conventional Beall-type degerminator cause breakage of sorghum endosperm; bran contamination (integral germ and spherical shape)

Trends in development of milling technologies

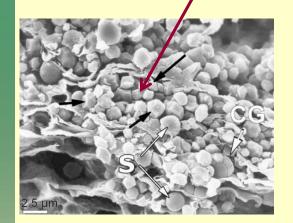
- Perten 1983 Adaption of wheat roller milling technology for sorghum
 - ♦ Uneconomical low yields
 - Products of inferior quality (bran contamination)
- Lately small roller mills (2-3 roller pairs) are gaining popularity
 - Optimisation of milling process with respect to roller gap, tempering, and sieving
 - Improved yields but bran contamination still high

Roller milling cont.

Comparison of milling performance of abrasive decortication and roller milling using 10 sorghum varieties with different physico-chemical properties

Parameter	Abrasive Decortication	Roller Milling
Meal extraction (%)	75.7a	83.7b
Ash (%)	1.18a	1.29b
Oil (%)	2.46a	2.64b
L	84.6b	82.4a
Cab	10.8a	11.6b
hab	70.5b	68.6a

Other considerations;


- ▶ Roller mill narrow particle size distribution; wide for hammer mill
- Roller mill has significantly higher meal output (about 195% higher than abrasive and hammer milling system
- ▲ Roller mill has high energy efficiency (32 kg meal/1kwh), while abrasive hammer mill produced 12.9 kg meal /1kwh

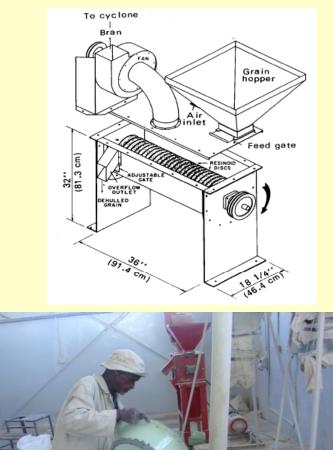
Difficulties with separation of bran

Source: Earp et al (2004)

- Starch granules in mesocarp makes pericarp very friable
- Forms small bran flakes which are difficult to separate from meal
- Bran layer should be toughened to separate as large flakes

Focus on tempering

- ▲ Best tempering moisture content
- ▲ Treatment temperature
- 📐 time

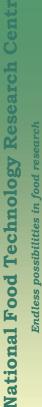


Other technologies considered

- K German Schule
- Swiss Decomatic
- Danish United Milling System
- Prairie Research Laboratory (PRL) Dehuller
- PeriTec system

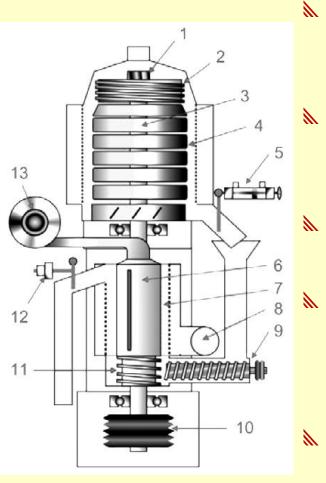
PRL Dehuller and hammer mill

- Canadian PRL dehuller was adapted for local conditions in West, Eastern ad Southern Africa, and India
- Dry grain is decorticated by abrasive carborundum disks revolving at high speed in a barrel (fine bran removed by aspiration)
- Milling package (dehuller & hammer mill) was technically and economically viable
- Gave rise to sorghum industry in the region (service milling for villagers)
- Adequate technical support by RIIC contributed to industry success in Botswana



Endless

Imrpovements in production capacities


- Increasing demand for sorghum meal require higher production capacities
- Attempts to build larger dehullers compromised milling efficiency and meal quality
- Commercial mills now install normal PRL dehullers in series and/or in parallel
- 4-5 dehullers feed one hammer mill
- Typical capacities are 2 to
 2.5 tons per hr

Production capacities

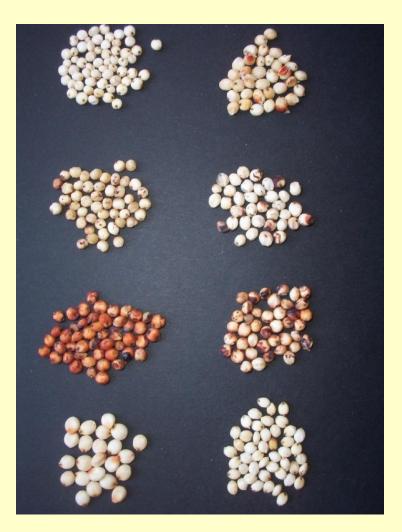
PeriTec system; Used with Satake Corporation's permission

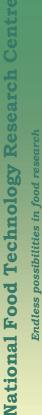
- Some mills now using PeriTec decorticator Vertical Debranner VCW(Satake Corporation)
 - Debrans by abrasion using revolving carborundum wheels and hexagonal slotted screen (stage 1) and friction (stage 2)
- Bran is removed by blowing air through the system from bottom to top outlet
 - Requires conditioning of grain with 1-3%
 moisture (by weight) for 3-5 min before
 debranning permits gradual stripping of
 pericarp layers
- Offers controlled rate of bran removal, uniformly debranned grains and improved power efficiency
- ▲ High input capacities 2 to 10 tons

Endless possibilities in food re

Grain cleaning

Ĕ


 Millers now installing grain cleaning equipment (sieving, aspiration and metal removal)


Necessary for high production capacities

Selection of varieties

- Meal quality varies with sorghum varieties used
- Millers aim to meet consumer demands
- Blending of different varieties commonly practiced
- Typically hard to intermediate endosperm texture preferred
- Light coloured meals with medium course texture preferred in Botswana
- ▲ Taste is also important

Conclusions

- Abrasive decortication is still the only appropriate technology for decorticating sorghum to meet consumer preferences
- Roller milling has potential as an alternative sorghum milling process but still requires optimisation of the tempering process

National Food Technology Research Centre

Endless possibilities in food research

THANK YOU!