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Abstract 

There is considerable research relating the structure of Boolean networks to their state space dy-
namics. In this paper, we extend the standard model to include the effects of thermal noise, which 
has the potential to deflect the trajectory of a dynamical system within its state space, sending it 
from one stable attractor to another. We introduce a new “thermal robustness” measure, which 
quantifies a Boolean network’s resilience to such deflections. In particular, we investigate the im-
pact of structural homogeneity on two dynamical properties: thermal robustness and attractor den-
sity. Through computational experiments on cyclic Boolean networks, we ascertain that as a ho-
mogeneous Boolean network grows in size, it tends to underperform most of its heterogeneous 
counterparts with respect to at least one of these two dynamical properties. These results strongly 
suggest that during an organism’s growth and morphogenesis, cellular differentiation is required if 
the organism seeks to exhibit both an increasing number of attractors and resilience to thermal noise.  

Keywords: Boolean networks, cellular automata, dynamical systems, noise, robustness

1. Introduction 

Since the seminal work of Von Neumann [1], the subject of cellular automata has received considerable 
and continued attention (see [2, 3] for brief surveys). Understanding how the structure of a cellular net-
work impacts its behavior as a dynamical system is crucial to determining how networks should be built, 
how they evolve over time, and how they can be made to grow while still exhibiting desired dynamical 
properties. 

Biological networks (e.g. neural networks) are typically subject to a Darwinian preferential selection 
process, and are seen to exhibit evolution over long time scales. It is reasonable to expect that this selec-
tion process would be based not only on the structural properties [4] of networks, but on their dynamical 
properties as well [5]. Previous researchers have consideredmeasures such as landscape ruggedness [6, 7] 
and redundancy [8] in evaluating dynamical systems. In this work, the dynamical property we consider is 
the robustness of a dynamical system’s attractors against thermal noise from the environment. We refer to 
this property, formally defined in Section 3, as thermal robustness.  Thermal or Johnson-Nyquist noise man-
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ifests as non-deterministic point mutations in the state of individual cells of the organism. Such noise ef-
fectively deflects the trajectory of the system within its phase space, and can cause it to leave a stable orbit 
of one attractor by throwing it instead into the basin of a different attractor. 

In addition to evolution over long time scales, biological networks also exhibit cellular differentiation 
over short time scales, particularly during morphogenesis, when changes in the cellular structure fre-
quently arise from symmetry breaking during growth. One striking example of this occurs in the inner 
cell mass of a blastocyst, which goes on to form the diverse and specialized tissues of the human body. In 
this work, we explore the impact of cell differentiation on the thermal robustness of a network. 

In our investigations we shall consider Boolean networks comprised of cells whose instantaneous state 
is either 0 or 1. Such networks have been the subject of considerable research since their introduction by 
Kauffman [9] as plausible models of genetic regulatory networks. Although Boolean networks are typi-
cally considered in terms of the well-charted class of potentially dense random Boolean “NK” networks 
[10], here we consider the more restricted class of linear cyclic networks. Such one dimensional automata 
have received considerable attention themselves [11], and are already known to exhibit a significant range 
of the phenomena observed in their more general NK counterparts [12]. We assume that the dynamic 
evolution in our networks is given by synchronous deterministic rules; it is well-known that asynchro-
nous behavior with small temporal tolerances can be transformed into synchronous behavior [13]. Our 
approach is computational, based on simulations grounded in a formal mathematical model that builds 
upon existing research in the area of synchronous Boolean networks and cellular automata. Determining 
network dynamics is a computationally intensive endeavor, and data collected from the somewhat more 
accessible class of synchronous, cyclic, Boolean networks is used here to draw conclusions about the gen-
eral relationship between structural homogeneity, attractor density, and robustness to thermal noise. 

2. Mathematical Preliminaries 

Structure. We consider organisms whose cellular structure may be modeled as an undirected cyclic 
graph C = (V, E) of size n, whose vertices are considered “cells,” and are enumerated V = {v0, …, vn−1}. 
Each cell vi in V is connected in cyclic order to two neighbors, so that E = {(vi, vi+1 (mod n)) | i = 0, …, n − 1}. 
Microscopic cellular behavior within an organism is modeled by fixing a function f : V → F  that assigns to 
each cell v ∈ V, a function f (v) from F = {g : {0, 1} × {0, 1} → {0, 1}}, the set of all binary Boolean functions; 
note that |F| = 22·2 = 16. The action of f at a vertex vi can be thought of as a truth table mapping vi’s left 
and right neighbors’ current state, to vi’s state at the next time step. 

 s(vi−1, t)  s(vi, t)  s(vi+1, t)  s(vi, t + 1) 

 0  *  0 b0 
 0  *  1 b1 
 1 *  0 b2 
 1  *  1  b3 

Since each of the bits b0, b1, b2, b3 must be either 0 or 1, in what follows, we will frequently use the 
4-bit binary string b0b1b2b3 to name the function f . Together, the pair (C, f ) define the microscopic struc-
ture of the organism. An organism is said to be homogeneous if |Im( f )| = 1; otherwise it is said to be 
heterogeneous. 

State. Since at each instant, a cell can have a value of either 0 or 1, the instantaneous state of the organ-
ism is specifiable as a function V → {0, 1}. The state of the organism over (discrete) time may then be rep-
resented by a function s : V × N → {0, 1} where s(vi, t) is the state of cell vi ∈ V at time t. Since cell vi behaves 
(across all time) according to function f (vi), and all cells are assumed to operate synchronously, the state 
of the organism evolves over time according to the following law: 

s(vi, t + 1) = f (vi) (s(vi−1 (mod n), t), s(vi+1 (mod n), t)) 

for each i = 0, . . . n − 1 and t ≥ 0. Informally, the state of the organism’s constituent cells evolves accord-
ing to the rule specified by Boolean function operating at that cell, together with the current state of its 
two adjacent cellular neighbors. We denote the subset of cells whose state is “on” (i.e. 1) at time t as  
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s+(t) = {v ∈ V | s(v, t) = 1}. Note that to identify the system’s state it suffices to know s+(t), since we can 
infer that the remaining cells are in state 0. In what follows, we will frequently identify the state of the 
organism at time t with the subset s+(t) ⊂ V. 

Dynamics. The macroscopic dynamics of the organism are represented as a directed graph S = (2V, D) 
whose vertex set consists of all possible states of the organism (i.e. the power set of V), and whose edge set 
D includes every ordered pair (X, Y) for which s+(t) = X ⇒ s+(t + 1) = Y. Informally, S is a directed graph 
representing the organism’s phase space, in which (X, Y) is an edge if it can be said that whenever the or-
ganism is in state X at time t, it is necessarily (absent noise) in state Y at time t + 1. 

For any pair of states X, Z ⊂ V, we say that X  Z if there exists k ≥ 1 and a sequence of states Y0, Y1, 
…, Yk ⊂V satisfying Y0 = X, Yk = Z, and (Yi, Yi+1) ∈ D for i = 0, . . . , k − 1. Informally, X  Y means there is 
a path from X to Y in the graph S. We define X ≈R Y whenever both X  Y and Y  X. To say that X ≈R Y 
means that in S there is both a path from X to Y, and a path from Y to X; this implies that X and Y are part 
of the same attractor cycle. 

A state X ⊂ V is said to be “on an attractor” if X  X. Let A ⊂ 2V be the set of all states that are on an 
attractor. Since ≈R  defines an equivalence relation on A, it is possible to consider the quotient set [A] = 
A/R, wherein each c ∈ [A] represents an attractor whose constituent states are given by cR. Conversely, 
given a state X ⊂ V, if X ∈ A, we denote the corresponding attractor as [X]. Thus A is simply the subset of 
the organism’s phase space that constitutes attractor cycles, and the remaining states in 2V\A constitute 
tributaries which form the basins of attraction. If X ∈ A, then [X] denotes the attractor that X lies in. The 
number of attractors in the dynamics of the organism is denoted 

 = |[A]|

3. Models of Thermal Noise and Thermal Robustness 

Thermal Noise. We encode the effects of environmental thermal noise on an organism’s dynamics us-
ing an undirected graph N = (2V, M) whose vertex set consists of all possible states, and whose edge set M 
is defined in terms of single bit mutations in state: (X, Y) ∈ M ⇔  |(X ∪ Y)\(X ∩ Y)| = 1. Informally, a mu-
tation is an edge which connects from two states that differ only by 1 bit. For example, a 3-celled organism 
whose state is 0, 0, 1 has three possible mutations edges that connect to states 1, 0, 1, and 0, 1, 1, and 0, 0, 0. 
A mutation represents a nondeterministic state transition that occurs when thermal noise induces one of 
the organism’s cells to “flip” state from 0 to 1 or from 1 to 0. The graph N is thus easily seen to be isomor-
phic to a |V|-dimensional hypercube. 

Thermal robustness. Given an attractor c ∈ [A], we consider m(c) = {(X, Y) ∈ M | X ∈ cR, (X, Y) ∈ M} 
to be the possible mutations of c. We focus on mutations out of attractors (and disregard mutations out 
of basins of attraction), because over long time scales and in the absence of thermal noise, an organism 
spends almost all of its time spinning in its attractors. Out of the set of mutations m(c), the subset that re-
turns to cR is denoted r(c) = {(X, Y) ∈ m(c) | Y  X} ⊆ m(c). 

We define the thermal robustness of attractor c to be ρ(c) = |r(c)|/|m(c)|. This quantity, being equal to the 
fraction of mutation edges leaving c that return back to c, is an estimate of the probability that a random mu-
tation will throw the organism out of attractor c. We define the mean thermal robustness of the organism as 

ρ =  1  ∑ ρ(c)  
                                                                                           c ∈ [A]

Figure 1. The phase space of a homogeneous network (left) and a heterogeneous one (right).  
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Informally, this quantity captures the organism’s resilience to noise-induced deflections in its state space 
trajectory that cause it to leave an otherwise stable attractor. In Figure 1 we see examples of what the 
phase space of two organisms looks like at size n = 9. Blue edges are used for attractor cycles, while black 
edges denote tributaries; mutations r(c) that return to the same attractor are in green, while those in m(c)\
r(c) causing deflections to a different attractor are in red. 

4. Results 

In what follows, we shall examine how the homogeneity (or heterogeneity) of an organism’s structure (C, f ) impacts 
its dynamics, both in terms of its (expected) number of attractors , and its thermal robustness ρ. 

4.1. Homogenous Networks 
The two graphs of Figure 2 describe the number of attractors  in homogeneous cyclic networks of in-

creasing size. Note that since |F| = 16, for each size n there are only 16 possible distinct types homoge-
neous organisms. The 16 curves corresponding to these 16 types have been segregated into two graphs: 
The graph on the left shows homogeneous organisms whose structure is defined by f (V) in {0000, 0001, 
0111, 1111}. In these 4 organisms we see that  remains bounded as the organisms grow in size—that is, 
it is either a constant 1, or it oscillates between 2 and 3. In contrast, the graph on the right shows how the 
number of attractors  changes for homogeneous organisms whose structure is defined by f (V) in {0010, 
0011, 0100, 0101, 0110, 1000, 1001, 1010, 1011, 1100, 1101, 1110}. For these 12 organisms, we see that the 
number of attractors _ grows unboundedly as these organisms become larger. 

Based on the results of these simulations we found it useful to define two classes of homogeneous or-
ganisms. A homogeneous organism (Cn, f ) will be said to be of Class 1 if its number of attractors  remains 
uniformly bounded by some constant b as it grows n → ∞. Alternately, an organism will be said to be of 
Class 2 if for all constants b, there exists a size nb at which the number of attractors  exceeds b. Informally, 
homogeneous organisms are designated as Class 1 if they exhibit a bounded number of attractors, and 
are designated Class 2 otherwise. A growing organism might seek an increasing number of attractors as it 
grows, since attractors represent distinct dynamic equilibria for the system. 

Having partitioned homogenous organisms on the basis of attractor density in this manner, we now 
turn to the question of thermal robustness. Figure 3 displays thermal robustness ρ for growing homoge-

Figure 2. Homogeneous organisms with bounded (left) and unbounded (right) numbers of attractors.  

Figure 3. Robustness of homogeneous organisms of class 1 (left) and 2 (right).  



h e t e r o g e n e i t y  a n D  i t s  i m p a C t  o n  t h e r m a l  r o b u s t n e s s  a n D  a t t r a C t o r  D e n s i t y      19

neous Class 1 organisms. The graph shows a constant ρ = 1 corresponding to the organisms which exhib-
iting  = 1 attractor; this is expected, since having just one attractor implies that thermal noise can pose no 
threat to the organism’s dynamic behavior at the level of attractors. In contrast, we see that, when suffi-
ciently large, homogeneous Class 1 organisms whose number of attractors  is bounded between between 
2 and 3, have ρ = 0.5. The graphs show that during growth, the 4 homogeneous Class 1 organisms main-
tain relatively high thermal robustness. 

By comparison, Class 2 homogeneous organisms exhibit decreasing thermal robustness, with lim inf ρ 
tending to a value < 0.2 (the exceptions which prevent this from being a uniform limit are two functions 
who for size 2i spike to ρ = 1 but  = 1). The graphs of Figure 3 thus show that while growing, the 12 ho-
mogeneous Class 2 organisms are unable to consistently maintain high thermal robustness, since this dy-
namical property is seen to tend to a value < 0.2. 

4.2. Heterogenous Networks 
Given the dichotomous choice faced by homogeneous organisms with respect to numbers of attractors 

 and thermal robustness ρ, here we examine whether a departure from the homogeneity condition can 
serve to relieve the organism from this bind. Unfortunately, the number of distinct heterogeneous organ-
isms is |F||V| = 16n, which is too large to explore exhaustively for all but small values of n. Therefore, in 
order to estimate expected  and ρ for heterogeneous organisms of size n, we sample the space of hetero-
geneous organisms of size n by constructing random functions f : V → F. To select 1,000 random hetero-
geneous organisms, for example, we choose 1,000 random functions f1, …, f1000. Each fk assigns to cell v ∈ 
V a randomly chosen binary Boolean function from the 16 choices available in F . In effect, each cell in the 
organism is operating a randomly generated truth table. The likelihood that this sampling procedure will 
generate a homogeneous organism is 16−n+1, which tends to 0 for large n. 

In Figure 4 we see the mean number of attractors ̄ and the mean thermal robustness ρ̄  for 1,000 ran-
domly selected heterogeneous organisms of each size. The graph on the left shows that the expected num-
ber of attractors ̄ increases unboundedly with increasing size, in contrast to the limitations exhibited by 
Class 1 homogeneous organisms. The graph on the right shows that the expected robustness ρ̄  approaches 
0.5, a value that is superior to the < 0.2 limiting experienced by Class 2 organisms, and comparable to the 
high robustness exhibited by Class 1 organisms.   

Figure 4. Attractors and robustness in heterogeneous organisms.  

Figure 5. Exploring the relative benefits of heterogeneity on robustness.  
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4.3. Further Comparisons 
In the previous section we considered the expected number of attractors and expected robustness of 

heterogeneous organisms. It is problematic, however, to argue on the basis of expected values alone, that 
a departure from homogeneity is in the interests of a growing organism. We interpret ”interests” to mean 
growth in number of cellular units and number of attractors, without significant decline in thermal ro-
bustness. Here we consider the distribution of the random variables  and ρ more carefully, to determine 
if this is in fact the case. 

In Figure 5 the chart on the left shows the proportion of homogeneous organisms (both Class 1 and 
Class 2) whose thermal robustness lies in each of the three bands: the low band: 0.0 ≤ ρ ≤ 0.2, the middle 
band: 0.2 < ρ ≤ 0.8, and the high band: 0.8 < ρ ≤ 1. The analogous breakdown for heterogeneous organisms 
is shown in the chart on the right. Here we see that only the four Class 1 homogeneous organisms main-
tain uniform ρ > 0.2; the rest suffer from poor robustness as they grow. In contrast, the chart on the right 
shows that even though the expected thermal robustness ρ̄  of heterogeneous organisms decreases as their 
size increases, the relative proportion of heterogeneous organisms for which robustness is very poor ρ ≤ 
0.2 is insignificant. 

In Figure 6 the chart on the left estimates the probability that the robustness ρ of a randomly chosen 
heterogeneous organism (of a given size) will be greater than the robustness achieved by all Class 2 or-
ganisms (of corresponding size). What we see is that except for sizes of the form 2i (a set of measure 0), 
this probability tends to 1. The chart on the right side of the figure shows the expected number of cycles ̄, 
for just those heterogeneous organisms whose robustness ρ outperforms the robustness of all Class 2 or-
ganisms of the corresponding size. Disregarding organisms of size 2i (a set of measure 0), the expected 
number of attractors exhibited by these robustness-favored heterogenous organisms is seen to grow 
unboundedly. 

5. Conclusion 

In Part 4.1 of this investigation we saw that as an organism grows, it faces only two possible options if 
it remains homogeneous. If it chooses to be a Class 1 organism, then it will enjoy high thermal robustness 
ρ but suffer from bounded numbers of attractors . On the other hand, if it opts to be a Class 2 organism, 
then it can enjoy unbounded numbers of attractors , but will suffer from low thermal robustness ρ. 

In Part 4.2 of this investigation we saw that as heterogeneous organisms grow in size, the expected 
number of attractors  is unbounded, and expected thermal robustness ρ is high. Thus heterogenous or-
ganisms are, on average, able to have their cake and eat it too. They circumvent the dilemma of the homo-
geneous organisms which we found were unable to grow and exhibit both increasing numbers of attrac-
tors  and high thermal robustness. 

In Part 4.3 of this investigation, we saw that a randomly chosen heterogeneous organismis very likely 
to outperform its homogenous Class 2 counterparts of equivalent size with respect to robustness. More-
over, such robustness-favored heterogenous organisms typically enjoy increasing numbers of attractors 
as they grow. Therefore, if an organism requires an increasing number of attractors as it grows, and high 
thermal robustness is naturally preferred, then heterogeneous organisms will be selected. 

Figure 6. Heterogeneity makes it easy for a growing organism to achieve good robustness and increasing numbers of 
attractors.  
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