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Foot-and-Mouth Disease Virus Modulates Cellular Vimentin for Virus

Survival

D. P. Gladue,® V. O’'Donnell,? R. Baker-Branstetter,? L. G. Holinka,® J. M. Pacheco,? I. Fernandez Sainz,? Z. Lu,® X. Ambroggio,*

L. Rodriguez,® M. V. Borca®

Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, USA? Plum Island Animal Disease Center, DHS, Greenport, New York, USA®; Bioinformatics and

Computational Biosciences Branch, NIAID, NIH, Bethesda, Maryland, USA®

Foot-and-mouth disease virus (FMDYV), the causative agent of foot-and-mouth disease, is an Aphthovirus within the Picornaviri-
dae family. During infection with FMDYV, several host cell membrane rearrangements occur to form sites of viral replication.
FMDY protein 2C is part of the replication complex and thought to have multiple roles during virus replication. To better un-
derstand the role of 2C in the process of virus replication, we have been using a yeast two-hybrid approach to identify host pro-
teins that interact with 2C. We recently reported that cellular Beclin1 is a natural ligand of 2C and that it is involved in the au-
tophagy pathway, which was shown to be important for FMDYV replication. Here, we report that cellular vimentin is also a
specific host binding partner for 2C. The 2C-vimentin interaction was further confirmed by coimmunoprecipitation and immu-
nofluorescence staining to occur in FMDV-infected cells. It was shown that upon infection a vimentin structure forms around
2C and that this structure is later resolved or disappears. Interestingly, overexpression of vimentin had no effect on virus replica-
tion; however, overexpression of a truncated dominant-negative form of vimentin resulted in a significant decrease in viral yield.
Acrylamide, which causes disruption of vimentin filaments, also inhibited viral yield. Alanine scanning mutagenesis was used to
map the specific amino acid residues in 2C critical for vimentin binding. Using reverse genetics, we identified 2C residues that
are necessary for virus growth, suggesting that the interaction between FMDV 2C and cellular vimentin is essential for virus

replication.

Foot—and—mouth disease (FMD), a highly contagious viral dis-
ease of cattle, pig, sheep, goats, and wild cloven-hoofed ani-
mals, is caused by foot-and-mouth disease virus (FMDV), a sin-
gle-stranded positive-sense RNA virus. There are seven serotypes
(A, O, C, Asia, SAT1, SAT2, and SAT3) of FMDV that do not offer
cross-protection (1, 2). Four structural proteins (VP1, VP2, VP3,
and VP4) comprise the infectious nonenveloped icosahedral vi-
rion. The genome has a single large open reading frame (ca. 7,000
nucleotide [nt]), which is translated to make the polyprotein
which is processed by the two viral proteases Lpro and 3C and by
a ribosomal skip mechanism in 2A into the polypeptide products
L, P1-2A, P2 (2B and 2C), and P3 (3A, 3B1-3, 3Cpro, and 3Dpol).
Further cleavage of these regions yields 14 mature virus proteins,
along with several protein intermediates, that are critical for viral
replication (3, 4).

During replication, FMDV causes several rearrangements of
intracellular membranes, resulting in vesicular structures that
contain viral proteins, which are part of the replication complex.
Replication complexes have been associated with many other pos-
itive-strand RNA virus infections (5-11). FMDV has been shown
to modulate the autophagosome pathway through the interaction
of FMDV 2C with a central cell regulator of autophagy, Beclinl
(12). FMDYV 2C, a 318-amino-acid protein, has also been shown
to play a role in disruption of the Golgi-ER secretory pathway
(13). However, it is possible that 2C can play multiple roles in the
process of virus replication and that 2C may interact with several
host cellular factors during infection. To gain insight into possible
cellular factors that could interact with 2C helping to form these
replication structures, we have been utilizing a yeast two-hybrid
approach to identify host cell proteins that interact with 2C. We
recently reported that cellular Beclin1 is a natural ligand of 2C and
that it is involved in the process of autophagy which was shown to
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be important for FMDV replication (12, 14). We now report that
cellular vimentin is also a specific binding partner for viral 2C.
Vimentin is a class III intermediate filament (IF), a predominant
IF in cells of the vascular endothelium. Vimentin has been shown
to be associated with several cellular organelles, including au-
tophagosomes, and to have a role in lysosomal degradation of
proteins (15, 16).

Vimentin has been shown to be important during the replica-
tion cycle of various viruses. It is involved in the process of viral
entry of cowpea mosaic virus (17) and Japanese encephalitis virus
(18) and in the viral egress of bluetongue virus (19). It has also
been implicated in the process of viral replication of vaccinia virus
(20) and dengue virus (21). Although the significance is not clear,
vimentin is cleaved in cells infected with human immunodefi-
ciency viruses (22) and adenovirus type 2 (23), and its transcrip-
tion significantly increases during infection with human T-cell
leukemia virus type I (24). In addition, in cells infected with Afri-
can swine fever virus (25) or iridovirus frog virus 3 (26), vimentin
surrounds virus factories. These vimentin “cage-like” structures
containing viral proteins have been shown to be important for
virus survival (25). It is also possible that vimentin serves a poten-
tial protective host function, as vimentin has been implicated to be
involved in the isolation and clearance of misfolded proteins in
cells (15, 27). In addition, vimentin has a possible involvement in
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the autophagy pathway since it plays an important role in posi-
tioning autophagosomes, lysosomes, and the Golgi complex
within the cell (15).

In this report we further examine the 2C-vimentin interaction
identified by yeast two-hybrid analysis, confirming by coimmu-
noprecipitation that this interaction occurs in FMDV-infected
cells. Immunofluorescence staining in FMDV-infected cells re-
vealed transient formation of a vimentin cage structure that sur-
rounds FMDV protein 2C. Importantly, expressing a dominant-
negative (DN) form of vimentin resulted in the disruption of the
physiological disposition of vimentin and in a significantly de-
creased ability for FMDV to replicate, suggesting that interaction
with vimentin plays an important and necessary role during viral
infection. In addition, the site of interaction in the 2C protein that
is responsible for binding to vimentin was mapped by alanine
scanning mutagenesis. Using reverse genetics it was shown that
changes to amino acid residues of 2C responsible for binding vi-
mentin are clearly detrimental for virus replication. This further
supports the hypothesis that 2C binding to vimentin may play a
significant and necessary role for virus replication.

MATERIALS AND METHODS

Cell lines, viruses, and plasmids. Human mammary gland epithelial cells
(MCF-10A) were obtained from the American Type Culture Collection
(catalogue no. CRL-10317) and maintained in a mixture of Dulbecco
minimal essential medium (DMEM; Life Technologies) and F-12 Ham
media (1:1; Life Technologies, Grand Island, NY) containing 5% heat-
inactivated fetal bovine serum (HI-FBS, Thermo Scientific, Waltham,
MA), 20 ng of epidermal growth factor (Sigma-Aldrich, St. Louis, MO)/
ml, 100 ng of cholera toxin (Sigma-Aldrich)/ml, 10 pg of insulin (Sigma-
Aldrich)/ml, and 500 ng of hydrocortisone (Sigma-Aldrich)/ml.

FMDV type Ol strain Campos (FMDV O1C) was derived from the
vesicular fluid of an experimentally infected steer. The virus was amplified
once in baby hamster kidney-21 (BHK-21) cells, and the titer determined
by plaque assay on (BHK) cells using standard techniques (14).

Plasmids vimentin-HA and vimentin DN-HA were generously do-
nated by Stewart Martin’s laboratory (University of Maryland School of
Medicine, Baltimore, MD). Plasmid phrGFP II-N mammalian expression
vector is commercially available (Agilent Technologies, Santa Clara, CA).

For viral replication studies, MCF-10A cells were plated at a density of
10° per well in a six-well plate (Falcon; Becton Dickinson Labware, Frank-
lin Lakes, NJ). Indicated plasmids were transfected into cells using
FuGene (Roche Applied Science, Indianapolis, IN) according to the man-
ufacturer’s protocol. After 24 h, the cells were infected with FMDV O1C at
the specified multiplicity of infection (MOI) or mock infected. Virus was
allowed to adsorb for 1 h, followed by an acid wash with ice-cold 145 mM
NaCl-25 mM MES (morpholineethanesulfonic acid; pH 5.5) to remove
residual virus particles and the addition of fresh medium containing 0.5%
HI-FCS. Samples were taken at the indicated time points.

Antibodies and reagents. Monoclonal antibody (MAb) 3D10, directed
against the FMDV O1 nonstructural protein 2C, was developed in the Istituto
Zooprofilattico Sperimentale della Lombardia e dell Emilia-Romagna,
Brescia, Italy. The vimentin-specific MAb for staining and coimmunopre-
cipitation was from Sigma-Aldrich (V6630). The MADb specific for the hem-
agglutinin (HA) tag used for Western blot analyses was produced by Millipore
(clone DW2). The actin-specific MAb was from Millipore (MAb1501). Acryl-
amide (Sigma-Aldrich) was made as a 4 M stock in water and diluted in media
to the indicated concentrations. Nocodazole (Sigma-Aldrich) was made as a
40 mM stock and diluted to the indicated concentrations. Cell proliferation
kit I (MTT; Roche catalog no. 11465007001) analysis was performed accord-
ing to the manufacturer’s instructions.

Infection and transfection of cells for immunofluorescence stain-
ing. Subconfluent monolayers of MCF-10A cells grown on 12-mm glass
coverslips in 24-well tissue culture dishes were transfected with the indi-
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cated plasmids. After 24 h, they were infected with FMDV O1C at an MOI
of 10 in minimum essential medium (MEM; Life Technologies, Grand
Island, NY) containing 0.5% HI-FBS, 25 mM HEPES (pH 7.4), and 1%
antibiotics. After the 1-h adsorption period, the supernatant was re-
moved, and the cells rinsed with ice-cold 2-morpholinoethanesulfonic
acid (MES) buffered saline (25 mM MES [pH 5.5], 145 mM NaCl) to
remove unadsorbed virus. The cells were washed once with medium be-
fore fresh medium was added and then incubated at 37°C and 5% CO,. At
the indicated time points after infection, the cells were fixed with 4%
paraformaldehyde (EMS, Hatfield, PA) and analyzed by immunofluores-
cence staining. To express HA-vimentin, HA-DN-vimentin, or green
fluorescent protein (GFP) protein, monolayers of MCF-10A cells were
transfected with 0.5 pg of plasmid DNA using FuGene (Roche, Mann-
heim, Germany), according to the manufacturer’s reccommendations. At
19 to 24 h posttransfection, the cells were infected as described above and
then fixed with 4% paraformaldehyde (EMS) at the appropriate times.

After 15 min of fixation, the paraformaldehyde was removed, and the
cells were permeabilized with 0.5% Triton X-100 for 5 min at room tem-
perature, followed by incubation in blocking buffer (phosphate-buffered
saline [PBS], 5% normal goat serum, 2% bovine serum albumin, 10 mM
glycine, 0.01% Thimersal) for 1 h at room temperature. The fixed cells
were then incubated with the primary antibodies overnight at 4°C. When
double labeling was performed, cells were incubated with both antibodies
together. After being washed three times with PBS, the cells were incu-
bated with the appropriate secondary antibody, goat anti-rabbit immu-
noglobulin G (IgG) (1/400; Alexa Fluor 594 or Alexa Fluor 647; Molecular
Probes), goat anti-mouse isotype-specific IgG (1/400; Alexa Fluor 488 or
Alexa Fluor 594; Molecular Probes), for 1 h at room temperature. After
this incubation, the coverslips were washed three times with PBS, coun-
terstained with the nuclear stain TOPRO-iodide 642/661 (Molecular
Probes) or DAPI (4',6'-diamidino-2-phenylindole; Life Technologies,
Grand Island, NY) for 5 min at room temperature, washed as before,
mounted, and examined using a Nikon Eclipse 90i microscope. The data
were collected utilizing appropriate prepared controls lacking the primary
antibodies, as well as using anti-FMDV antibodies in uninfected cells to
give the negative background levels and to determine channel crossover
settings. The captured images were adjusted for contrast and brightness
using Adobe Photoshop software.

Coimmunoprecipitation of FMDV 2C and vimentin. MCF-10A cells
were grown to 90% confluence and then infected with a MOI of 10 or
mock infected. Cells were lysed at 2.5 h postinfection using protease
inhibitors (Protea Biosciences, Morgantown, WV) and radioimmunopre-
cipitation assay (RIPA) buffer (Teknova, Hollister, CA). For immunopre-
cipitation the protein lysate was incubated with protein G-beads (Sigma-
Aldrich) precoupled to a MAb directed against vimentin (Sigma-Aldrich
V6630). The cell lysate was incubated with anti-vimentin antibody for 2.5
h and then incubated with the antibody and beads overnight at 4°C. The
beads were washed five times using RIPA buffer, and then protein elutes
were collected for each sample and examined by Western blotting probing
for anti-2C (3D10).

Library screening. A bovine cDNA expression library was constructed
(12), where cellular proteins were expressed as GAL4-AD fusion proteins.
The GAL4-based yeast two-hybrid system provides a transcriptional assay
for detection of protein-protein interactions (28, 29). The bait protein,
FMDV O1C 2C protein, was expressed with an N-terminus fusion to the
GAL4-binding domain (BD). Full-length 2C protein (amino acids 1082 to
1399 of the FMDYV polyprotein) was used for screening and for full-length
mutant protein construction. Screening used FMDV 2C as bait and test-
ing of positive clones recovered from the bovine library was done (12).
The vimentin recovered from the library matched bovine vimentin (NCBI
reference sequence NP_776394.2).

Western blot quantification. To quantify Western blots, we used Im-
age] software provided by http://imagej.nih.gov/ij/ (30). Actin was used as
aloading control. To calculate the percentage of vimentin in each sample
the relative density of vimentin was divided by the relative density of actin.
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Site-directed mutagenesis. Full-length pO1Ca (31) or 2C-BD was
used as a template in which amino acids were substituted with alanine,
introduced by site-directed mutagenesis using QuikChange XL site-di-
rected mutagenesis (Stratagene, Cedar Creek, TX) performed according
to the manufacturer’s instructions (12).

Primers were designed using the manufacturer’s primer design program
(https://www.genomics.agilent.com/CollectionSubpage.aspx?PageType
=Tool&SubPageType=ToolQCPD&PageID=15), which limited us to a
maximum of seven amino acid changes and provided the rationale for
deciding on the regions to be mutated.

Construction of mutant FMDV viruses. Plasmid pO1Ca or its mu-
tant version was used as a template for RNA synthesis (12). BHK-21 cells
were transfected with these synthetic RNAs by electroporation (Electro-
cell Manipulator 600; BTX, San Diego, CA) (31, 32). The supernatants
from transfected cells were passed in LF-BK V36 cells until a cytopathic
effect (CPE) appeared or until a minimum of four blind passages was
performed and no evidence of CPE was observed. After successive pas-
sages in these cells, virus stocks were prepared and the viral genome com-
pletely sequenced using the Prism 3730xl automated DNA sequencer (Ap-
plied Biosystems) (31).

Bioinformatic analysis of FMDV 2C. The FMDV 2C amino acid se-
quence was queried with BLAST (33) and HHpred (34) against the PDB
and HHpred PDB70 database, respectively. The BLAST search of the 2C
amino acids sequence against the PDB resulted in a match between resi-
dues 85 and 177 of 2C with residues 4 to 91 of a putative fructose transport
system kinase protein from Silicibacter (Silicibacter fructokinase) with an
E value of 0.17. HHpred identified two viral AAA+ ATPases, the simian
virus 40 large T antigen (simian virus 40 LT) and adeno-associated virus 2
REP40 (Aav2 Rep40) protein, with E values of 2.5E-08 and 2.5E-06,
respectively. For the former, the identified region of homology began at
amino acid 109 of 2C, whereas for the latter, it began at amino acid 18. We
used a structural alignment of the monomeric units of Silicibacter fruc-
tokinase (PDB ID 3C8U), SV40 LT (PDB ID 1SVM), and Aav2 Rep40
(1U0J) and the sequence alignment of 2C with Silicibacter fructokinase
and Aav2 Rep40. These crystal structures were superposed using
LSQMAN, from which a structure-based sequence alignment was ex-
tracted. Alanine scanning blocks 12 and 13 were mapped, respectively, to
the exposed loop preceding helix 0 of the AAA+ domain of the SV40 LT
crystal structure (residues 395 to 400) and the first half of this helix (res-
idues 401 to 407).

RESULTS

FMDV nonstructural 2C protein interacts with the bovine host
protein vimentin. Nonstructural FMDV 2C is a highly conserved
(>85% identity) 318-amino-acid protein, essential for virus rep-
lication (1, 31). This high degree of conservation suggests a possi-
ble essential function during virus infection.

A yeast two-hybrid system (35) was used to identify interac-
tions between host cellular proteins and FMDV 2C protein (12).
An N-terminal fusion of the Gal4 protein DNA-binding domain
(BD) with FMDV 2C protein from FMDV O1C was used as “bait”.
For “prey” we used a custom cDNA library that was derived from
RNA extracted from FMDV-susceptible bovine tissues expressed
as N-terminal fusion of the Gal4 activation domain (AD). Library
screening was performed as described by Gladue et al. (35). One
specific protein binding partner for 2C, vimentin (NCBI reference
sequence NP_776394.2) (Fig. 1A), was selected for further study
due to its potential involvement in the rearrangement of intracel-
lular membranes (36-38) and positioning of autophagosomes
(15, 39), both processes known to be important in FMDV repli-
cation (12-14).

Coimmunoprecipitation and immunofluorescence staining
were used to confirm that the interaction identified using the two-
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FIG 1 Protein-protein interaction of FMDV 2C with bovine vimentin in the
yeast two-hybrid system (A), coimmunoprecipitation (B), and immunofluo-
rescence staining (C). (A) Yeast strain AH109 was transformed with GAL4-
binding domain (BD) fused to FMDV 2C (BD-2C) or a negative control,
human lamin C (BD-LAM). These strains were then transformed with GAL4
activation domain (AD) fused to vimentin (AD-Vim) or T antigen (AD-Tag)
as indicated above each lane. Spots of strains expressing the indicated con-
structs containing 2 X 10° yeast cells were spotted on selective media to screen
for protein-protein interaction in the yeast two-hybrid system: either SD Ade/
His/Leu/Trp plates (ALTH) or nonselective SD_Leu/Trp (_TL) for plasmid
maintenance only. (B) Western blot probing for FMDV 2C (~40 kDa). Input
cell lysate from mock-infected or FMDV-infected (at 2 and 2.5 hpi) prepara-
tions. Coimmunoprecipitation of FMDV 2C from mock-infected or FMDV
O1C-infected (at 2 and 2.5 hpi) cell lysates performed using a MAb specific to
vimentin. (C) Analysis of the distribution of vimentin and FMDV 2C proteins
in MCF-10A cells. Cells were infected or mock infected with FMDV O1C and
processed by immunofluorescence staining as described in Materials and
Methods. FMDV 2C was detected with MAb 3D10 and visualized with Alexa
Fluor 594 (red). Vimentin was detected with MAb V6630 and visualized with
Alexa Fluor 488 (green). Yellow indicates colocalization of Alexa Flour 594 and
488 in the merged image.

hybrid system in yeast actually occurs during FMDV infection of
host cells. Coimmunoprecipitation experiments were performed
using cell lysates from FMDV-infected human epithelial cell line
MCE-10A, an FMDV-susceptible cell line which allows for use of
MAbs recognizing human proteins, and MAbs specifically recog-
nizing FMDYV 2C and vimentin. MCF-10A cells were infected with
an MOI of 1 of FMDV O1C, and samples were harvested at 1.5 to
2 h postinfection (hpi), the time point when 2C is beginning to
accumulate in MCF-10A cells as previously confirmed by Western
blotting (12). MCF-10A cell lysates were collected from infected
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or mock-infected cells and immunoprecipitated with an anti-vi-
mentin MAb (V6630), followed by a Western blot specific for
FMDV 2C protein (3D10). A single band was observed at the
correct molecular mass (40 kDa) for 2C, indicating that 2C and
vimentin interact during FMDV infection, confirming the results
obtained by the yeast two-hybrid methodology (Fig. 1B). Several
attempts were made to do the reverse coimmunoprecipitation
methodology by pulling down FMDYV protein 2C and blotting for
vimentin; however, the vimentin band is masked by a background
band belonging to the immunoglobulin heavy chain of the MAb
used in the immunoprecipitation step, so the results were incon-
clusive.

Vimentin forms a cage-like structure around 2C. To further
confirm that vimentin interacts with 2C during FMDV infection,
we analyzed the location of both proteins at different times postin-
fection by using double-label immunofluorescence in cells that
were infected with FMDV. MCF-10A cells were infected with an
MOI of 10 or mock infected with FMDV O1C. Cells were then
fixed on glass coverslips at 30-min intervals after infection up to 4
hpi and stained using MAbs that exhibit specific fluorescence for
either FMDV 2C or vimentin (3D10 and V6630, respectively). The
results indicated that there was a clear transitory colocalization of
FMDYV 2C and vimentin proteins between 0.5 and 1.5 hpi, with
vimentin forming a cage-like structure around 2C in all cells in-
fected with FMDV (Fig. 1C). Interestingly, similar cage-like struc-
tures formed by vimentin-associated virus proteins have been ob-
served in cells infected with African swine fever virus, vaccinia
virus, and some iridoviruses (25, 40, 41). Therefore, initial results
obtained by yeast two-hybrid showing interaction between virus
2C and cellular vimentin were confirmed in FMDV-infected cells
by two independent methodologies.

Vimentin is degraded in FMDV-infected cells. To determine
whether FMDV infection by itself has an effect on the levels of
vimentin expression, MCF-10A cells were infected with an MOI of
1 with FMDV O1C, and cell lysates were collected every 30 min
during the course of infection up to 4 hpi. Samples were tested by
Western blotting (Fig. 2A), and the expression levels of vimentin
in the cell lysates were quantified using Image] software (obtained
from the National Center for Biotechnology Information) using
the recommended procedure to calculate relative density com-
pared to a treated control (Fig. 2B). Expression of endogenous
levels of actin was used to normalize vimentin values. The results
demonstrated transitory increasing amounts (~20 to 40%) of vi-
mentin in the infected cells between 1.5 to 3 hpi, with a decrease
after 3 hpi. Accordingly, vimentin degradation products (50, 46,
and 29 kDa) began to appear at 2.5 hpi, increasing for the remain-
der of the infection, possibly suggesting that this degradation
could be how the vimentin cage is resolved after the initial forma-
tion around 2C.

Expression of dominant-negative forms of vimentin de-
crease viral yield. To assess the role of vimentin in FMDV repli-
cation we attempted to manipulate the levels of vimentin in in-
fected cells. MCF-10A cells were transfected with either a plasmid
encoding a full-length vimentin gene (HA-vimentin), used to in-
crease cellular levels of vimentin, or a truncated form of the vi-
mentin gene (HA-DN-vimentin, truncated at amino acid residue
134 compared to the full-length vimentin at 466 amino acids) that
acts as a dominant-negative form of vimentin (42—44), to disrupt
vimentin function. Both constructs had an HA tag for detection of
the respective protein products by Western blotting. Cell lysates
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FIG 2 Analysis of vimentin expression in FMDV-infected MCF-10A cells. (A)
Cells were infected with FMDV O1C and at different times postinfection, cell
were lysed in RIPA buffer and assessed by Western blotting with a specific MAb
V6630 vimentin. Full-length Vimentin is ~57 kDa, and the breakdown frag-
ments are 50, 46, and 29 kDa, as indicated by the arrows. Actin (MAb1501) is
shown as a loading control. (B) Quantification of vimentin bands in a repre-
sentative Western blot shown in panel A using Image] analysis software using
actin levels to normalize each sample.

were taken 19 h after transfection and assessed by Western blot-
ting for HA (Fig. 3B), demonstrating the expression of either con-
struct (Fig. 3B). Furthermore, MCF-10A cells overexpressing HA-
vimentin, HA-DN-vimentin or a control plasmid containing GFP
were infected 19 h posttransfection infected with an MOI of 0.1
with FMDV O1C and virus yields in the extracellular medium
were assessed at 0, 5, and 24 hpi. The results demonstrated that
while overexpression of vimentin does not affect virus replication,
cells overexpressing the dominant-negative form of vimentin pre-
sented a significant reduction (>2 logs) in virus titer compared to
cells overexpressing full-length vimentin or an GFP-expressing
control (Fig. 3A).

To determine whether the decrease in viral replication in the
presence of a dominant-negative form of vimentin was related to
the inability of the vimentin cage to form around 2C during infec-
tion, double-label immunofluorescence microscopy against 2C
and vimentin in cells overexpressing truncated forms of vimentin
and infected with FMDV was performed. HA-DN-vimentin-
transfected MCF-10A cells were infected with an MOI of 10 or
mock infected with FMDV O1C. Cells were then fixed on glass
coverslips at the indicated time points and stained using MAbs
that demonstrate specific fluorescence for either FMDV 2C or
vimentin (Fig. 3C). The results indicated that the vimentin cage
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was formed in the presence of a dominant-negative form of vi-
mentin at 0.5 hpi as it happens in a normal viral infection. How-
ever, the vimentin cage, which is normally resolved by 2 hpi, re-
mained unaltered in cells containing the DN form of vimentin at
least until 4 hpi. At 4 hpi, an apparent decrease in the intensity of
2C fluorescence was observed in vimentin cages, with some vi-
mentin cages having undetectable levels of 2C, suggesting that 2C
could be degraded if the cage is not resolved. Therefore, expres-
sion of a DN form of vimentin appears to correlate with perma-
nence of the vimentin cage and a significant reduction in viral
yield.

An intact vimentin but not microtubule pathway is required
for FMDV replication. Vimentin has a radial organization, where
filaments typically extend outward from the cell center and it has
been shown that vimentin structures can move on microtubules
(45, 46). Since expression of truncated forms of vimentin has a
significant effect on virus replication, it is interesting to evaluate
whether the integrity of the endogenous vimentin and associated
structures directly affect FMDV replication. To assess this issue,
we carried out pharmacological experiments using nocodazole
and acrylamide, which specifically disrupt the microtubules and
the vimentin intermediate filament networks, respectively (47,
48). Mock-treated MCF-10A cells present an intact vimentin
structure dispersed throughout the cytoplasm, while in the pres-
ence of nocodazole there was a redistribution of vimentin toward
the nucleus (Fig. 4B). This observation concurs with a previous
study showing that vimentin intermediate filaments are organized
by the microtubule network (48). The addition of acrylamide
causes the disruption of vimentin. This effect was observed in
MCEF-10A cells treated with acrylamide (Fig. 4B).

To test the effect of the changes of vimentin distribution on
virus replication, MCF-10A cells were pretreated for 30 min with
either nocodazole or acrylamide and then infected with an MOI of
0.1 of FMDV OI1C (Fig. 4A). Interestingly, treatment with no-
codazole had no significant effect on viral replication, agreeing
with previous studies (49). However, treatment with 400 wM
acrylamide resulted in a consistent 10-fold decrease in virus titers.
Assessment of cell viability after acrylamide treatment demon-
strated a viability of 94.5% * 0.03%, by using an MTT assay. Thus,
vimentin disruption resulted in decreased virus titers, supporting
the hypothesis that an intact vimentin network is required for viral
replication while disruption of the microfilament network has no
effect on FMDV replication.

Alanine scanning of FMDV 2C reveals binding site for vi-
mentin. To evaluate the importance of the binding between 2C
and vimentin to FMDV replication, we tried to identify amino
acid residues within 2C that directly mediate the interaction with
vimentin. To determine the binding site(s) for vimentin present in
2C, an alanine scanning mutagenesis approach was used. Using
site-directed mutagenesis, 46 mutant 2C proteins were con-
structed (35) in the yeast two-hybrid system to contain a stretch of
seven amino acids that were changed from their native amino acid
to alanine residues (Fig. 5A). Each of these mutated 2C proteins
were assessed in their ability to bind vimentin in the yeast two-
hybrid system. 2C proteins containing mutations in areas 12 and
13 were unable to bind vimentin (Fig. 5B). To ensure that all 2C
alanine mutants were still able to be expressed in the yeast two-
hybrid system, protein Beclin-AD (12) (another host protein that
was detected as a binding partner for 2C) was used as an internal
control. Beclin-AD was able to interact with all 2C mutants lack-
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ing vimentin binding, demonstrating that mutating these areas
specifically interrupted the binding between vimentin and 2C.
Binding between FMDV 2C and host vimentin appears crit-
ical for virus replication. Reverse genetics was used to assess the
effect of 2C mutations identified as critical in mediating the inter-
action between 2C and vimentin. Infectious clones (ICs) of FMDV
O1C (31) containing areas of 2C harboring the same alanine sub-
stitutions shown to alter 2C-vimentin reactivity in the yeast two-
hybrid were constructed. Those IC constructs were then used to
produce the corresponding RNAs by in vitro transcription, which
were then used in cell transfections to produce their respective
FMDYV progeny. Although transfection with parental FMDV O1C
RNA produced viable virus progeny, mutants 2C-12 and 13 (Fig.
5A) consistently produced nonviable virus. It is possible that these
mutations, besides altering the reactivity with vimentin, could be
detrimental to the virus for other as yet unidentified reasons.
Therefore, a more detailed mapping of the area of interaction
between vimentin and 2C was performed with the aim of reducing
the number of amino acids mutated and still disrupt the interac-
tion. The regions in 2C-12 and 13 were further subdivided into
three separate subareas (comprising two to three residues each),
which were individually assessed in their reactivity with vimentin
in the yeast two-hybrid system (Fig. 5C). However, none of the
smaller mutated regions resulted in the lost ability to bind vimen-
tin, suggesting that multiple contact points within the seven resi-
due stretch is needed for disruption of 2C binding to vimentin.

DISCUSSION

The complex cellular pathways and mechanisms that FMDV ma-
nipulates to facilitate viral replication and to evade host defenses
are not completely understood. One potential mechanism FMDV
may use to manipulate the host cell involves interaction with cel-
lular proteins to modify their function, thus changing the natural
cellular pathway. For example, we previously demonstrated that
FMDYV 2C could manipulate the autophagy pathway by binding to
Beclinl, resulting in the inability of autophagosomes to fuse with
lysosomes, favoring virus survival. We report here that FMDV
nonstructural protein 2C binds to host class III intermediate fila-
ment vimentin. A yeast two-hybrid model was used to identify
vimentin as a specific protein binding partner for viral 2C. We also
demonstrated coimmunoprecipitation of 2C with vimentin from
FMDV-infected cell extracts as well as colocalization of 2C with
vimentin in cells infected with FMDV.

The importance of vimentin during viral infection has been
described in a wide range of viruses. For example, in cowpea mo-
saic virus and Japanese encephalitis virus (JEV), surface-expressed
vimentin is necessary for efficient viral entry (18, 50, 51). An in-
crease of vimentin expression is observed during infection with
Hepatitis C virus (HCV) (52), T-cell leukemia virus type I (24)
and rabies virus (RV) (53). Alternatively, during infection with
retroviruses, including human immunodeficiency viruses and bo-
vine leukemia virus (BLV), the viral-encoded protease specifically
cleaves vimentin; however, the function of vimentin cleavage is
still unknown (22, 54, 55). It is possible that vimentin is cleaved to
change the global cell structure or to prevent intracellular cell
signaling as seen with Epstein-Barr virus protein LMP1 which
causes the disruption of vimentin to modulate cell signaling (56).
Studies of other viruses have shown that viral proteins directly
bind vimentin as observed with dengue virus nonstructural pro-
tein 1, where vimentin binding is critical for virus replication (57),
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and in bluetongue virus protein VP2, where binding of vimentin is
necessary for viral egress (19). In African swine fever virus, it has
been shown that vimentin is arranged around viral factories,
forming a cage-like structure, which may aid to isolate viral pro-
teins from the rest of the cell (25).

In previous studies by Armer et al. (5), some degree of vimen-
tin rearrangement was observed with FMDV, but their studies
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were limited to time points late during infection, where they ob-
served a lack of vimentin in areas of the cell cytoplasm where virus
was being produced. We observed that early during infection,
starting at 0.5 hpi, cellular vimentin colocalized and formed a
cage-like structure around FMDV protein 2C, and that later dur-
ing infection this cage-like structure disappeared as viral infection
progressed. We also observed that as infection progressed, vimen-
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FIG 5 Scheme showing FMDYV 2C alanine mutants used in the present study. (A) Each alanine 2C mutant name is followed, in parentheses, by the amino acid
residues mutated for that mutant. All indicated residues were mutated to an alanine. The highlighted 2C mutants represent mutations that resulted in lack of
binding of 2C to vimentin in the yeast two-hybrid system. (B) Yeast strain AH109 was transformed with either GAL4-binding domain (BD) fused to FMDV 2C
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domain (AD) fused to vimentin (Vimentin-AD) or Beclin1 (Beclin1-AD) as indicated above. Strains expressing the indicated constructs containing 2 X 10° yeast
cells were spotted onto selective media to evaluate protein-protein interaction in the yeast two-hybrid system, using either SD—Ade/His/Leu/Trp plates
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tin degradation occurred, possibly explaining the previously ob-
served vimentin rearrangement at late time points during infec-
tion (33).

To determine whether an intact vimentin pathway is required
for FMDV infection, we utilized overexpression plasmids con-
taining either the wild-type or a truncated form of vimentin and
showed that in the presence of truncated vimentin the virus ex-
hibited reduced virus replication. Along with this observation,
cells expressing the truncated vimentin form still contained vi-
mentin cages but, in contrast to what is observed in cells contain-
ing wild-type vimentin, cages were never able to be resolved. It
may be that the formation of the vimentin cage is part of an initial
cellular response to isolate the virus from the rest of the cell, con-
sequently serving as an initial site of replication. If so, then it is
possible that once enough viral replication or viral protein 2C is
produced the vimentin cage may be resolved. However, in the
presence of truncated vimentin one possibility is that 2C gets
bound to the truncated vimentin, and this could affect the ability
for the vimentin cage to be resolved, which could allow the virus
proteins in the vimentin cage to eventually be degraded by the host
cell. However, it is still unclear how the vimentin cage is able to
form in the presence of a dominant-negative form of vimentin; it
is possible that the formation of the cage does not rely on full-
length vimentin or the normal vimentin pathway and that an in-
tact vimentin pathway is only required to resolve the vimentin
cage.

Chemical disruption of vimentin using acrylamide resulted in
decreased viral yield, supporting the hypothesis that an intact vi-
mentin network is required for viral replication. Conversely, in
agreement with previous reports (49), chemical disruption of mi-
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crofilaments using nocodazole does not affect viral replication,
which is surprising since disruption of the microfilament network
also disrupts the vimentin filament network, as noted in Fig. 4B.
However, this fact is not unique to FMDV, since a similar obser-
vation has been seen with dengue virus (21), where the virus re-
quires an intact vimentin network, but not a microtubule net-
work, for efficient viral replication.

Although it appears that the 2C-vimentin interaction is neces-
sary for virus replication and that an intact vimentin pathway is
required for a successful FMDV infection, the precise mechanism
governing vimentin cage formation and its later resolution, allow-
ing FMDV to progress with replication, remains to be elucidated.
During ASFV infection, it has been shown that vimentin recruits
the virus to the microtubule-organizing center (MTOC); how-
ever, the specific reason for this is unknown. As a marker for
MTOC we tested if the vimentin cage colocalizes with y-tubulin;
no clear colocalization with the vimentin cage formed by FMDV
and y-tubulin could be observed (data not shown), suggesting
that the formation of the vimentin cage during FMDV infection
may play a different role than that of the vimentin cage during
ASFV infection. This is in agreement with previous studies from
Armer et al. (5) that show the MTOC remains intact during
FMDV infection while y-tubulin is lost from the MTOC later in
infection, suggesting that the MTOC is not involved in FMDV
replication. Although the precise role played by the formation of
the vimentin cage is unknown, it is possible that its initial forma-
tion is to protect the cell from the accumulation of 2C or, con-
versely, to prevent 2C from being degraded by the cellular defense
machinery. Alternatively, it could also be possible that the vimen-
tin cage may provide a physical scaffold that is required for the
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FIG 6 Mapping the alanine scanning blocks 12 (magenta, labeled) and 13
(pink, labeled) effecting vimentin binding with FMDV 2C to corresponding
regions on the crystal structure of the AAA+ homolog SV40 LT (PDB ID
1SVM) to assess potential accessibility and localize the blocks in the context of
the AAA+ fold. The bound ATP is shown in a yellow/orange and the associ-
ated magnesium ion in green. (A) Richardson diagram of an SV40 LT mono-
mer with bound ATP in stick representation. (B) Accessible surface diagram of
the SV40 LT hexamer with bound ATP as a van der Waals surface. Dashed
white lines give the approximate bounds of one monomer within the hexamer.

initial virus replication, preventing viral proteins from diffusing
out into the cytoplasm. Further work is necessary to better char-
acterize this phenomenon.

To gain some potential insight into how the alanine mutations
in 2C could affect the binding to vimentin, we performed bioin-
formatic analysis to map to corresponding regions of homologous
proteins with known crystal structures to assess potential accessi-
bility and their location in the context of the AAA+ fold. The
regions in 2C responsible for vimentin binding map to a region
that could be potentially exposed in the previously determined
hexameric state of 2C (58), suggesting that these two areas may be
directly accessible for vimentin binding in 2C (Fig. 6). We also
note that the region of SV40 LT corresponding to alanine scan-
ning block 12 makes direct contact with ATP in the SV40 LT
crystal structure (59) (Fig. 6). However, in order to determine
exactly how vimentin interacts structurally and functionally with
these potential areas of 2C, further experiments, and perhaps the
crystal structure of FMDV 2C would have to be performed.

The results reported here identify, for the first time, cellular
host protein vimentin as an interaction partner for FMDV viral
protein 2C. This interaction appears to be critical for virus growth
since FMDV genomes harboring 2C mutations that disrupted the
interaction between 2C and vimentin resulted in viruses unable to
replicate in cell cultures. Importantly, the 2C-vimentin interac-
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tion appears to somehow modulate the host cell environment to
allow for viral replication. This presents new possibilities of explo-
ration for FMDV pathogenesis, and perhaps new insights into
how the virus is able to form and later resolve the vimentin cage,
providing novel starting points toward designing novel therapeu-
tic strategies that target the cellular vimentin pathway. In addition,
further work still needs to be done to understand other host pro-
tein-viral protein relationships and how the virus utilizes or avoids
specific cellular pathways for its own survival.
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