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Venezuelan Equine Encephalitis Replicon Particles Can Induce Rapid
Protection against Foot-and-Mouth Disease Virus

Fayna Diaz-San Segundo,a Camila C. A. Dias,a,b Mauro P. Moraes,c* Marcelo Weiss,a,b Eva Perez-Martin,a,b Gary Owens,d*
Max Custer,d* Kurt Kamrud,d* Teresa de los Santos,a Marvin J. Grubmana

Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, USAa; Oak Ridge Institute for
Science and Education, PIADC Research Participation Program, Oak Ridge, Tennessee, USAb; Department of Pathobiology and Veterinary Science, University of
Connecticut, Storrs, Connecticut, USAc; AlphaVax, Research Triangle Park, North Carolina, USAd

We have previously shown that delivery of the porcine type I interferon gene (poIFN-�/�) with a replication-defective human
adenovirus vector (adenovirus 5 [Ad5]) can sterilely protect swine challenged with foot-and-mouth disease virus (FMDV) 1 day
later. However, the need of relatively high doses of Ad5 limits the applicability of such a control strategy in the livestock indus-
try. Venezuelan equine encephalitis virus (VEE) empty replicon particles (VRPs) can induce rapid protection of mice against
either homologous or, in some cases, heterologous virus challenge. As an alternative approach to induce rapid protection against
FMDV, we have examined the ability of VRPs containing either the gene for green fluorescent protein (VRP-GFP) or poIFN-�
(VRP-poIFN-�) to block FMDV replication in vitro and in vivo. Pretreatment of swine or bovine cell lines with either VRP sig-
nificantly inhibited subsequent infection with FMDV as early as 6 h after treatment and for at least 120 h posttreatment. Further-
more, mice pretreated with either 107 or 108 infectious units of VRP-GFP and challenged with a lethal dose of FMDV 24 h later
were protected from death. Protection was induced as early as 6 h after treatment and lasted for at least 48 h and correlated with
induction of an antiviral response and production of IFN-�. By 6 h after treatment several genes were upregulated, and the num-
ber of genes and the level of induction increased at 24 h. Finally, we demonstrated that the chemokine IP-10, which is induced by
IFN-� and VRP-GFP, is directly involved in protection against FMDV.

Foot-and-mouth disease (FMD) is a highly contagious viral dis-
ease of cloven-hoofed animals that has significant economic

consequences in affected countries. The infectious agent, FMD
virus (FMDV), is a member of the Aphthovirus genus of the Picor-
naviridae family and contains a single-stranded positive-sense
RNA genome of about 8,500 nucleotides encapsidated by 60 cop-
ies each of four structural proteins (1). FMDV is an antigenically
variable virus consisting of seven serotypes (A, O, C, Asia, and
South African Territories 1, 2, and 3 [SAT 1-3]) and multiple
subtypes (1, 2). In the event of an outbreak in a previously disease-
free country, FMD is controlled by restriction of animal move-
ment, slaughter of infected and in-contact susceptible animals,
and in some cases vaccination with an inactivated whole virus
vaccine followed by slaughter of these animals (1). However, in
countries in which the disease is enzootic, vaccination is used, and
in general these animals are not slaughtered.

Infection of animals with FMDV results in rapid replication
and spread and subsequent shedding of virus into the environ-
ment. Administration of the inactivated vaccine or an experimen-
tal vaccine based on a replication-defective human adenovirus 5
(Ad5) vector containing the FMDV capsid and 3C proteinase cod-
ing regions requires approximately 7 days to induce protective
immunity in animals (3–5). As a result, vaccinated animals ex-
posed to virus within the first 7 days after vaccination are still
susceptible to the disease. To address the need of protecting vac-
cinated animals during this window of susceptibility, we have used
an approach that induces the innate immune response. We have
shown that FMDV replication is inhibited by prior treatment of
cells with interferon type I (IFN-�/�), II, or III (6–8). Based on
this information, we constructed Ad5 vectors containing porcine
type I IFN genes (Ad5-poIFN-�/�) and demonstrated that swine
inoculated with Ad5-poIFN-�/� are protected from challenge

with FMDV A24 Cruzeiro as early as 1 day after Ad5-poIFN-�/�
administration (4, 9, 10). Protection can last for 3 to 5 days (4). We
further showed that this approach is also protective against several
other FMDV serotypes, e.g., O1, Manisa, and Asia-1 (10). How-
ever, when this approach was used to rapidly protect cattle, we
found that only one of six treated animals did not develop vesic-
ular lesions; although all of the other treated animals developed
disease, it was delayed and less severe than that in control animals
(11). More recently, we found that cattle respond best to type III
IFN delivered by an Ad5 vector; in a group of three animals treated
with an Ad5 vector containing bovine IFN-�3 (Ad5-boIFN-�3),
one animal did not develop disease after aerosol challenge with
FMDV O1 Manisa while the other two animals developed disease
6 or 9 days later than the control challenged animals (12).

It is known that animals initially detect pathogens through
pattern recognition receptors (PRRs), molecules that recognize
specific nonhost molecules, e.g., pathogen-associated molecular
patterns (PAMPs), such as single- and double-stranded viral RNA
(13–15). Host PRRs include Toll-like receptors (TLRs), present
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on the plasma membrane or on endosomal membranes, as well as
cytoplasmic soluble receptors. Recognition of PAMPs by PRRs
triggers a series of events, which may differ for each PRR engaged,
and results in the induction of a protective IFN-dependent anti-
viral response. The events involved in the induction of the antivi-
ral IFN response include the activation of a series of transcription
factors, i.e., IFN regulatory factors (IRFs), nuclear factor �B (NF-
�B), etc. Activated IRFs and NF-�B are required for IFN induction
as well as upregulation of additional antiviral genes, some of which
are induced by mechanisms independent of type I IFN (15). So far,
our strategy has been to directly utilize type I, II, or III IFNs to
induce rapid protection through upregulation of various IFN-
stimulated genes (ISGs). However, this approach bypasses the
natural pathway of pathogen induction of the host innate immune
response, including the activation of constitutively expressed and
induced transcription factors. We hypothesize that treatment of
animals with both IFN and various PAMPs may result in a
broader, enhanced, and prolonged antiviral response than with
Ad5-IFN treatment alone.

Venezuelan equine encephalitis virus (VEE) is a positive-sense
RNA virus belonging to the Alphavirus genus, Togaviridae family.
It is an arthropod-borne virus that has been associated with epi-
demics and equine epizootics. Pushko et al. (16) have constructed
VEE replicon particles (VRPs) that contain a defective VEE ge-
nome lacking the genes for the structural proteins. As a result,
while the viral genome is replicated, it is not packaged, and only a
single round of infection occurs. VRPs have been used as vaccine
vectors for various foreign genes (16–18) including FMDV (un-
published data). Recently, Konopka et al. (19, 20) demonstrated
that null VRPs, VRPs lacking any foreign gene, induce an early
innate immune response in mice within 1 to 3 h postinfection
(hpi), resulting in the upregulation of a number of ISGs and the
production of type I IFN protein. Furthermore, null-VRP-inocu-
lated mice are protected from lethal challenge with VEE as early as
6 h after VRP administration as well as 24 h later, and this pre-
treatment induced protection against heterologous challenge with
influenza virus but not vesicular stomatitis virus (VSV) (20).

In this study, we demonstrated that pretreatment of cells with
VRPs containing green fluorescent protein (VRP-GFP) as well as
porcine IFN-� (VRP-poIFN-�) significantly reduced FMDV rep-
lication in infected porcine or bovine cells, and inhibition lasted
for at least 5 days. A number of genes were upregulated after treat-
ment of swine cells with either VRP-GFP or VRP-poIFN-�. We
also examined the effectiveness of VRP treatment in a small-ani-
mal model. Adult C57BL/6 mice, which can be lethally infected
with FMDV, survived challenge when pretreated with VRP-GFP.
The chemokine 10-kDa IFN-�-inducible protein 10 (IP-10) was
significantly upregulated in IFN- or VRP-treated cells and in mice
at early times after VRP treatment, as well as in swine or cattle after
IFN treatment. While 100% of wild-type (WT) mice pretreated
with murine IFN-� (muIFN-�) survived FMDV challenge, only
30% of IP-10 knockout (KO) mice pretreated with muIFN-� were
protected, demonstrating a role for IP-10 in protection against
FMDV.

These results suggest that VRP treatment is an effective ap-
proach to rapidly protect against FMD. In addition, we found that
VRP-induced protection against FMDV requires a functional type
I IFN system that is directly dependent on IP-10.

MATERIALS AND METHODS
Cells and viruses. Porcine kidney cell lines (IB-RS-2 and SK6) and bovine
kidney cells (LF-BK) (21) were used for the experiments. These cells were
maintained in minimal essential medium (MEM; Gibco-BRL/Invitrogen,
Carlsbad, CA) containing 10% fetal bovine serum (FBS; HyClone, Logan,
UT) and supplemented with 1% antibiotics and nonessential amino acids.
BHK-21 cells (baby hamster kidney cells strain 21, clone 13; ATCC CL10)
obtained from the American Type Culture Collection (Rockville, MD)
were used to propagate virus stocks and to measure virus titers. BHK-21
cells were maintained in MEM containing 10% calf serum and 10% tryp-
tose phosphate broth supplemented with 1% antibiotics and nonessential
amino acids (Gibco-BRL/Invitrogen). Murine L929 fibroblasts were
maintained in MEM containing 10% horse serum supplemented with 1%
antibiotics and nonessential amino acids and used to test antiviral activity
of mouse serum after encephalomyocarditis virus (EMCV) infection. Cell
cultures were incubated at 37°C in 5% CO2. FMDV serotypes A12 and
A24 Cruzeiro were used in the experiments. Human 293 cells (ATCC
CRL-1573) were used to generate and propagate recombinant adenovi-
ruses and determine virus titer (22). A certified Vero cell line derived from
a master cell bank prepared from cells obtained from the World Health
Organization was used to generate VRPs. Vero cells were maintained at
37°C in an atmosphere containing 5% CO2. The cells were grown in MEM
supplemented with 5% fetal bovine serum, nonessential amino acids, and
antibiotic-antimycotic solution (Gibco-BRL/Invitrogen).

Replicon construction. The pVEK replicon vector is based on the
current investigational new drug (IND) VEE virus vaccine (TC-83) (18,
23). The poIFN-� and GFP genes were PCR amplified from existing DNA
plasmids (9, 24). Each PCR product coded for XbaI restriction sites at the
5= and 3= end. The PCR products were then cloned into the XbaI site of the
transfer vector pcDNA3.3 (25). The orientations of the poIFN-� and GFP
genes in pcDNA3.3 were determined by restriction analysis, and positive
clones were sequenced to ensure that no errors were introduced into the
gene during PCR amplification. Each of the genes was then subcloned as
an AscI fragment into the AscI site of the pVEK replicon plasmid. The
orientation of the gene was determined by restriction analysis, and clones
in the sense orientation were selected.

RNA transcription, electroporation, and VRP production. The
methods used to in vitro transcribe replicon RNA, electroporate RNA into
Vero cells, and produce and purify VRP vaccines were described previ-
ously (25). The infectious titer (in infectious units [UI]) of VRP-poIFN-�
was determined by immunofluorescence assay (IFA) using goat anti-VEE
nsP2-specific polyclonal antiserum as the primary antibody and donkey
anti-goat Alexa Fluor 488 (Invitrogen) as the secondary antibody on
methanol-fixed cells using a Nikon Eclipse TE300 fluorescence micro-
scope. The infectious titer of VRP-GFP was determined directly from
infected cells without the use of antibody reagents. The VRPs were tested
for the presence of contaminating replication-competent VRP (RCV) us-
ing two blind passages on Vero cells, as described previously (25).

Ad5 vector construction. The Ad5-Blue, Ad5-VSVG (containing the
glycoprotein gene of vesicular stomatitis virus-NJ), and Ad5-poIFN-�
vectors were constructed as previously described (9, 26). Ad5-GFP and an
Ad5 vector containing a small interfering RNA (siRNA) directed against
GFP (Ad5-siGFP) were produced using the pAd5-Blue direct ligation sys-
tem (26). All vectors were purified as previously described and tested for
foreign gene expression in IB-RS-2 cells (27).

Expression of poIFN-�. Vero cells were infected with VRP-poIFN-�,
and 24 h later supernatants were obtained, centrifuged at 14,000 rpm to
remove cellular debris, and filtered through a Centricon-100 filter to re-
move VRPs. Concentrated supernatants were examined for the presence
of IFN protein by Western blot analysis.

Virus infection. Cells were infected with VRPs at a multiplicity of
infection (MOI) of 1 for 1 h washed with MEM, and 1 ml of MEM was
added per well. At various times (see figure legends) the medium was
removed, centrifuged, and filtered through a Centricon-100 filter at 4,000
rpm for 10 min in a Sorvall centrifuge. Samples were stored at �70°C until
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assayed for antiviral activity or the presence of poIFN-� by enzyme-linked
immunosorbent assay (ELISA). The cells were then infected with FMDV
A12 at an MOI of 1 for 1 h, and unabsorbed virus was inactivated by
washing the cells with 150 mM NaCl–20 mM morpholineethanesulfonic
acid (MES) (pH 6.0). MEM was added, and incubation continued for 24
h. Virus was released by one freeze-thaw cycle. As a control, to measure
infectious FMDV remaining after the acid wash, infected cells were frozen
and thawed at 1 h postinfection. FMDV yields were determined by plaque
assay on BHK-21 cells as previously described (5) and expressed by sub-
tracting the titers of virus in cells infected for 1 h from the 24-h titers. The
detection level of this assay is 5 PFU per ml (PFU/ml).

Analysis of mRNA. Total RNA was isolated from SK6 or IB-RS-2 cells,
infected with VRPs or treated with poly(I · C), using an RNeasy isolation
kit (Qiagen, Valencia, CA) following the manufacturer’s directions. RNA
yield and quality were determined in a NanoDrop 1000 spectrophotom-
eter (Thermo Fisher, Waltham, MA) and in a Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA). A quantitative real-time reverse transcription-
PCR (qRT-PCR) assay was used to evaluate the mRNA levels of a number
of porcine genes as previously described (28). Glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) was used as the internal control to nor-
malize the values of each sample. Primer and probe sequences were pre-
viously described (29). Reactions were performed in an ABI Prism 7500
sequence detection system (Applied Biosystems). Relative mRNA levels
were determined by comparative cycle threshold analysis (30) utilizing as
a reference the samples at 0 dpi from the control groups. We considered
genes upregulated only if there was a 2-fold or greater induction.

RNA was also extracted from spleen cells of mice inoculated for 3, 6,
and 24 h with VRP-GFP. Spleens were incubated with RPMI 1640 com-
plete medium containing 10% fetal bovine serum (FBS), L-glutamine,
0.05 M �-mercaptoethanol, and antibiotic/antimycotic solutions. Single-
cell suspensions were obtained by mechanical disruption pressing the
whole spleen through a plastic grid (BD Bioscience, Franklin Lakes, NJ).
Contaminating erythrocytes were removed by lysis with 0.83% ammo-
nium chloride. Single-cell suspensions were washed twice in phosphate-
buffered saline (PBS) and once with complete RPMI 1640 medium, and
cells were counted. A total of 1 � 107 cells were lysed with 700 �l of RLT
buffer (Qiagen) containing �-mercaptoethanol and stored at �70°C until
RNA extraction using an RNeasy isolation kit (Qiagen). qRT-PCR was
performed using the RT2 Profiler PCR modified antiviral response path-
way from SA Bioscience-Super Array (Qiagen), following the manufac-
turer’s instructions from cDNA synthesis to data analysis. Reactions were
performed in an ABI Prism 7500 sequence detection system (Applied
Biosystems). We analyzed a total of 84 genes (Table 1), and only those that
showed changes were reported.

Interferon biological assay. Antiviral activity was evaluated in super-
natants as previously described (4). Samples were diluted and incubated
on IB-RS-2 cells for approximately 24 h. Supernatants were removed, and
the cells were infected for 1 h with approximately 100 PFU of FMDV
serotype A12 and overlaid with gum tragacanth. Plaques were visualized
24 h later by staining with 1% crystal violet. Antiviral activity (U/ml) was
reported as the reciprocal of the highest supernatant dilution that resulted
in a 50% reduction in the number of plaques relative to the number of
plaques in the mock-treated infected cells.

Serum samples of mice inoculated with VRP-GFP at different time
points (3, 6, and 24 h) were collected, and antiviral activity was tested in
L929 cells as previously described (20). Briefly, serum samples were di-
luted 1:10 in medium and acidified to pH 2.0 for 24 h. Following neutral-
ization to pH 7.4, the samples were titrated by 2-fold dilutions and added
to confluent monolayers of L929 cells. Twenty-four hours after the addi-
tion of the serum, IFN-sensitive EMCV (2 � 105 PFU) was added to each
well and incubated at 37°C. At 18 to 24 h postinfection, the remaining cells
were then stained with 1% crystal violet. The percent cytopathic effect
(CPE) in each well was scored by direct observation. The antiviral titers
(IU/ml) were calculated based on the standard curves generated with
commercial IFN-�/�; the endpoint titer was calculated from the dilution

of IFN-�/� required to protect 50% of the cell monolayer from EMCV-
induced CPE.

IFN-� ELISA. An ELISA was performed as previously described (4).
Porcine IFN-� concentrations in SK6 cell supernatants were expressed in
picograms per milliliter and calculated by linear regression analysis of a stan-
dard curve generated with serial 2-fold dilutions of recombinant poIFN-�
(PBL Biomedical Laboratories, NJ). All samples were assayed in duplicate.
Levels of poIFN-� protein of 	200 pg/ml were not considered meaningful.

Serum from mice infected with VRP-GFP at different time points (6
and 24 h) and control mice inoculated with PBS were tested for the pres-
ence of IFN-�, IFN-�, and IFN-� with VeriKine mouse IFN-�, IFN-�,
and IFN-� 2/3 ELISAs (PBL Interferon Source, Piscataway, NJ) following
the manufacturer’s directions. All ELISAs were developed with 3,3=,5,5=-
tetramethylbenzidine (TMB) from KPL (Gaithersburg, MD). The ab-
sorbance at 450 nm was measured in an ELISA reader (VersaMax,
Molecular Devices, Sunnyvale, CA). Cytokine concentrations were
calculated based on the optical densities obtained with the standards
and are expressed in relative levels with respect to the levels observed at
day 0 postinfection.

Mouse challenge studies. C57BL/6 WT or IP-10 KO (C57BL/6 back-
ground) 6- to 7-week-old female mice were purchased from Jackson Lab-
oratory (Bar Harbor, ME) and were acclimated for 1 week. All animal
work was conducted in compliance with the Animal Welfare Act (AWA),
the 2011 Guide for Care and Use of Laboratory Animals, 2002 PHS Policy
for the Humane Care and Use of Laboratory Animals, and U.S. Govern-
ment Principles for Utilization and Care of Vertebrates Animal Used in
Testing, Research and Training (IRAC 1985), as well as a specific animal
protocol (protocol number 204-09-R) reviewed and approved by the In-
stitutional Animals Care and Use Committee (IACUC) of Plum Island
Animal Disease Center (PIADC) (USDA/APHIS/AC certificate number
21-F-0001).

For virus infection experiments, groups of 5 C57BL/6 mice were anes-
thetized with isoflurane (Webster Veterinary, Devens, MA) and immedi-
ately infected subcutaneously (s.c.) in the left/right rear footpad with 104,
105, or 106 PFU of FMDV A24 or O1 Campos or PBS in 50 �l. Animals
were monitored for 7 days, and blood was taken at day 0 and on alternate
days until the end of the experiment. Viremia was determined by plaque
assay on BHK-21 cells as described above.

To test the in vivo effect of VRP-GFP, groups of five mice were anes-
thetized as described above and immediately infected s.c. in the right rear
footpad with 106, 107, or 108 IU of VRP-GFP or PBS in 50 �l. One day after
VRP-GFP treatment, mice were anesthetized and challenged with 5 � 104

PFU/mouse FMDV A24 in 50 �l in the left rear footpad.
In a second experiment, groups of five mice were inoculated with 107

or 108 IU of VRP-GFP and challenged at 6, 24, or 48 h with 5 � 104

PFU/mouse FMDV A24 as above. A PBS-inoculated control group was
challenged with FMDV 24 h later. In this experiment groups of mice were
also inoculated with 108 IU of VRP-GFP and euthanized at 3, 6, or 24 h
later. A control group was inoculated with PBS and euthanized 24 h later.
Serum was obtained, and the spleen was isolated from each animal; red
blood cells were lysed, and the cells were washed. The cells were resus-
pended in RLT buffer (Qiagen). RNA was extracted using an RNeasy
miniprep kit following the manufacturer’s instructions (Qiagen). The se-
rum was examined for the production of a number of proteins by ELISA
(IFN-�, IFN-�, IFN-�, and IFN-�3/2, [all from PBL]), following the
manufacturer’s instructions, and RNA was examined for the induction of
various genes as described above.

Finally, groups of 10 C57BL/6 IP-10 KO mice and WT mice were
treated with 104 U of murine IFN-� (muIFN-�) by intraperitoneal (i.p.)
inoculation and challenged s.c. with 5 � 104 PFU of FMDV A24 at 4 or 18
h after treatment. Ten untreated C57BL/6 WT or IP-10 KO mice were
included as a control group. Animals were monitored for 7 days, and
blood taken at day 0 and on alternate days until the end of the exper-
iment.
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TABLE 1 Complete list of analyzed genes in spleen lymphocytes after treatment of mice with VRP-GFP for different times

Symbol Gene name Other name(s) Description GenBank

Aim2 Gm1313 Ifi210 Absent in melanoma 2 NM_001013779
Atg12 4931423H11Rik A330058M13Rik, Apg12l, Atg12l Autophagy-related 12 (yeast) NM_026217
Atg5 2010107M05Rik 3110067M24Rik, AW319544, Apg5l, Atg5l, C88337, Paddy Autophagy-related 5 (yeast) NM_053069
Azi2 AA410145 AZ2 5-Azacytidine-induced gene 2 NM_013727
Card9 Gm782 Caspase recruitment domain family, member 9 NM_001037747
Casp1 ICE Il1bc Caspase 1 NM_009807
Casp8 CASP-8 FLICE, MACH, Mch5 Caspase 8 NM_009812
Ccl3 MIP-1� AI323804, G0S19-1, LD78�, MIP1-(a), MIP1-�, Mip1a, Scya3 Chemokine (C-C motif) ligand 3 NM_011337
Ccl4 MIP-1B AT744.1, Act-2, Mip1b, Scya4 Chemokine (C-C motif) ligand 4 NM_013652
Ccl5 MuRantes RANTES, SISd, Scya5, TCP228 Chemokine (C-C motif) ligand 5 NM_013653
Cd40 AI326936 Bp50, GP39, HIGM1, IGM, IMD3, T-BAM, TRAP, Tnfrsf5, p50 CD40 antigen NM_011611
Cd80 B71 Cd28l, Ly-53, Ly53, MIC17, TSA1 CD80 antigen NM_009855
Cd86 B7 B7-2, B7.2, B70, CLS1, Cd28l2, ETC-1, Ly-58, Ly58, MB7, MB7-2,

TS, A-2
CD86 antigen NM_019388

Chuk AI256658 Chuk1, Fbx24, Fbxo24, IKBKA, IKK1, Ikka, MGC25325, NFKBIKA Conserved helix-loop-helix ubiquitous kinase NM_007700
Cnpy3 1600025D17Rik 2410050O22Rik, AI413153, CAG4A, ERDA5, PRAT4A, Tnrc5 Canopy 3 homolog (zebrafish) NM_028065
Ctsb CB Cathepsin B NM_007798
Ctsl 1190035F06Rik Ctsl1, MEP, fs, nkt Cathepsin L NM_009984
Ctss Cathepsin S NM_021281
Cxcl10 IP-10 IP10, Ifi10, Scyb10, gIP-10, mob-1, C7, CRG-2, INP10 Chemokine (C-X-C motif) ligand 10 NM_021274
Cxcl11 Cxc11 H174, I-tac, Ip9, Itac, Scyb11, Scyb9b, b-R1, betaR1 Chemokine (C-X-C motif) ligand 11 NM_019494
Cxcl9 BB139920 CMK, Mig, MuMIG, Scyb9, crg-10 Chemokine (C-X-C motif) ligand 9 NM_008599
Cyld 2010013M14Rik 2900009M21Rik, C130039D01Rik, CDMT, CYLD1, EAC,

mKIAA0849
Cylindromatosis (turban tumor syndrome) NM_173369

Dak BC021917 MGC28742 Dihydroxyacetone kinase 2 homolog (yeast) NM_145496
Ddx3x D1Pas1-rs2 Ddx3, Fin14 DEAD/H (Asp-Glu-Ala-Asp/His) box

polypeptide 3, X-linked
NM_010028

Ddx58 RIG-I 6430573D20Rik, C330021E21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 NM_172689
Dhx58 Lgp2 B430001I08Rik, D11Lgp2e, LPG2 DEXH (Asp-Glu-X-His) box polypeptide 58 NM_030150
Fadd FADD Mort1 Fas (TNFRSF6)-associated via death domain NM_010175
Fos cFos D12Rfj1, c-fos FBJ osteosarcoma oncogene NM_010234
Hsp90aa1 86kDa 89kDa, AL024080, AL024147, Hsp86-1, Hsp89, Hsp90, Hspca, hsp4 Heat shock protein 90, alpha (cytosolic), class A

member 1
NM_010480

Ifih1 MDA5 9130009C22Rik, Helicard, Hlcd, MGC90959 Interferon induced with helicase C domain 1 NM_027835
Ifna2 Ifa2 Interferon alpha 2 NM_010503
Ifnar1 Infar CD118, Ifar, Ifrc Interferon (alpha and beta) receptor 1 NM_010508
Ifnb1 IFN-beta IFNB, Ifb Interferon beta 1, fibroblast NM_010510
Ikbkb IKKbeta AI132552, IKK-2, IKK�, IKK2, IKK� Inhibitor of kappaB kinase beta NM_010546
Il12a IL-12p35 Il-12a, Ll12a, MGC151228, MGC151232, p35 Interleukin-12A NM_008351
Il12b Il-12b Il-12p40, Il12p40, p40 Interleukin-12B NM_008352
Il15 AI503618 Interleukin-15 NM_008357
Il18 Il-18 Igif Interleukin-18 NM_008360
Il1b IL-1beta Il-1b Interleukin-1 beta NM_008361
Il6 Il-6 Interleukin-6 NM_031168
Irak1 IRAK AA408924, IRAK-1, IRAK1-S, Il1rak, Plpk, mPLK Interleukin-1 receptor-associated kinase 1 NM_008363
Irf3 IRF-3 C920001K05Rik, MGC91046 Interferon regulatory factor 3 NM_016849
Irf5 mirf5 AW491843 Interferon regulatory factor 5 NM_012057
Irf7 Interferon regulatory factor 7 NM_016850
Isg15 IGI15 G1p2, IP17, Irfp, MGC103144 ISG15 ubiquitin-like modifier NM_015783

MGC130321, MGC18616, UCRP
Jun AP-1 JunC, c-jun Jun oncogene NM_010591
Map2k1 MAPKK1 MEKK1, Mek1, Prkmk1 Mitogen-activated protein kinase kinase 1 NM_008927
Map2k3 AW212142 MEK3, MKK3, Prkmk3, mMKK3b Mitogen-activated protein kinase kinase 3 NM_008928
Map3k1 MAPKKK1 MEKK1, Mekk Mitogen-activated protein kinase kinase kinase 1 NM_011945
Map3k7 B430101B05 C87327, Tak1 Mitogen-activated protein kinase kinase kinase 7 NM_172688
Mapk1 9030612K14Rik AA407128, AU018647, C78273, ERK, Erk2, MAPK2, PRKM2,

Prkm1, p41mapk, p42mapk
Mitogen-activated protein kinase 1 NM_011949

Mapk14 CSBP2 Crk1, Csbp1, MGC102436, Mxi2, PRKM14, PRKM15, p38, p38-
alpha, p38MAPK, p38a, p38alpha

Mitogen-activated protein kinase 14 NM_011951

Mapk3 Erk-1 Erk1, Ert2, Esrk1, Mnk1, Mtap2k, Prkm3, p44, p44erk1, p44mapk Mitogen-activated protein kinase 3 NM_011952
Mapk8 AI849689 JNK, JNK1, Prkm8, SAPK1 Mitogen-activated protein kinase 8 NM_016700
Mavs IPS-1 D430028G21Rik, MGC25836, Visa, cardif Mitochondrial antiviral signaling protein NM_144888
Mefv FMF MGC124344, MGC124345, TRIM20, pyrin Mediterranean fever NM_019453
Mx1 Mx-1 AI893580, Mx Myxovirus (influenza virus) resistance 1 NM_010846
Myd88 Myeloid differentiation primary response gene

88
NM_010851

Nfkb1 NF-KB1 NF-�B, NF-�B1, p105, p50, p50, p105 Nuclear factor of kappa light polypeptide gene
enhancer in B-cells 1, p105

NM_008689

Nfkbia Nfkbi AI462015 Nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha

NM_010907

Nlrp3 AGTAVPRL AII, AVP, Cias1, FCAS, FCU, MGC129375, MWS, Mmig1, NALP3,
Pypaf1

NLR family, pyrin domain containing 3 NM_145827

Nod2 ACUG BLAU, CD, Card15, F830032C23Rik, IBD1, Nlrc2 Nucleotide-binding oligomerization domain
containing 2

NM_145857

(Continued on following page)
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Statistical analyses. Data handling, analysis, and graphic representa-
tion were performed by using Prism, version 5.0 (GraphPad Software, San
Diego, CA), or Microsoft Excel. Statistical differences were determined
using a Student t test.

RESULTS
Synthesis of IFN by VRP-poIFN-�. Previous work has shown
that alphavirus replicon vectors efficiently deliver significant
amounts of foreign proteins into mammalian cells (25). We there-
fore constructed VRPs that express poIFN-� under the control of
the alphavirus 26S promoter element (Fig. 1A). Vero cells were
infected with VRP-poIFN-�, and 24 h later supernatants were
assayed for the presence of active IFN protein. Western blot anal-
ysis revealed high levels of IFN expression (Fig. 1B) which corre-
lated with the detection of significant antiviral activity against
FMDV as measured by a plaque reduction neutralization assay
(unpublished data). To determine if VRP replicons could infect
cells derived from the FMDV natural host, swine (SK6 and IB-
RS-2) and bovine (LF-BK) cell lines were treated with 50 IU of a
reporter VRP-GFP replicon. A similar level of GFP fluorescence
was detected in all three cell lines (Fig. 1C), indicating that they
were equally susceptible to infection with VRPs.

Pretreatment with VRPs inhibits FMDV replication. SK6
cells were infected with either VRP-GFP or VRP-poIFN-�, and at
6, 24, or 48 h posttreatment (hpt) supernatants were removed, and
cells were washed and infected with FMDV A12. After 24 h, virus
yields were determined by plaque assay. The FMDV yield was
reduced greater than 1,000-fold as early as 6 h posttreatment with
VRP-poIFN-� relative to cells treated with medium (Fig. 2A).
A 5-fold reduction was detected in the cells pretreated with
VRP-GFP. Inhibition was significantly increased after 24 h of
VRP-GFP treatment (1,000-fold) and was maintained for at
least 48 h. To examine the duration of protection provided by a
24-h treatment with VRPs, we infected SK6 cells with FMDV at
0, 24, 48, 96, and 120 h posttreatment (Fig. 2B). The level of
inhibition of FMDV remained essentially the same throughout
the experiment. Furthermore, similar results were obtained in
bovine LF-BK cells (unpublished data). These results indicated
that treatment with either VRP-poIFN-� or VRP-GFP can sig-
nificantly inhibit FMDV replication for a considerable length
of time.

The presence of poIFN-� protein was measured by ELISA, and
FMDV antiviral activity was measured by a biological assay. Su-

TABLE 1 (Continued)

Symbol Gene name Other name(s) Description GenBank

Oas2 Oasl11 2=,5=-oligoadenylate synthetase 2 NM_145227
Pin1 0610025L01Rik D9Bwg1161e Protein (peptidyl-prolyl cis/trans isomerase)

NIMA-interacting 1
NM_023371

Pstpip1 CD2BP1 def-2 Proline-serine-threonine phosphatase-
interacting protein 1

NM_011193

Pycard 9130417A21Rik Asc, CARD5, TMS-1, TNS1, masc PYD and CARD domain containing NM_023258
Rela p65 V-rel reticuloendotheliosis viral oncogene

homolog A (avian)
NM_009045

Ripk1 D330015H01Rik RIP, Rinp, Rip1 Receptor (TNFRSF)-interacting serine-
threonine kinase 1

NM_009068

Spp1 2AR Apl-1, BNSP, BSPI, Bsp, ETA-1, Eta, OP, Opn, Opnl, Ric, Spp-1 Secreted phosphoprotein 1 NM_009263
Stat1 2010005J02Rik AA408197 Signal transducer and activator of transcription 1 NM_009283
Sugt1 2410174K12Rik SGT1 SGT1, suppressor of G2 allele of SKP1

(Saccharomyces cerevisiae)
NM_026474

Tank C86182 E430026L09Rik, I-TRAF TRAF family member-associated Nf-kappa B
activator

NM_011529

Tbk1 1200008B05Rik AI462036, AW048562, MGC150301, MGC150302 TANK-binding kinase 1 NM_019786
Tbkbp1 3110043L15Rik ProSAPiP2, SINTBAD TBK1 binding protein 1 NM_198100
Ticam1 AW046014 AW547018, TICAM-1, TRIF Toll-like receptor adaptor molecule 1 NM_174989
Tlr3 AI957183 Toll-like receptor 3 NM_126166
Tlr7 Toll-like receptor 7 NM_133211
Tlr8 Toll-like receptor 8 NM_133212
Tlr9 Toll-like receptor 9 NM_031178
Tnf TNF-� DIF, MGC151434, TNFSF2, TNF-�, Tnfa, Tnfsf1a Tumor necrosis factor NM_013693
Tradd 9130005N23Rik AA930854 TNFRSF1A-associated via death domain NM_001033161
Traf3 AI528849 CAP-1, CD40bp, CRAF1, LAP1, T-BAM, amn Tnf receptor-associated factor 3 NM_011632
Traf6 2310003F17Rik AI851288, C630032O20Rik Tnf receptor-associated factor 6 NM_009424
Trim25 AA960166 AL022677, EFP, Zfp147 Tripartite motif-containing 25 NM_009546
Gusb AI747421 Gur, Gus, Gus-r, Gus-s, Gus-t, Gus-u, Gut, asd, g Glucuronidase, beta NM_010368
Hprt C81579 HPGRT, Hprt1, MGC103149 Hypoxanthine guanine phosphoribosyl

transferase
NM_013556

Hsp90ab1 90kDa AL022974, C81438, Hsp84, Hsp84-1, Hsp90, Hspcb, MGC115780 Heat shock protein 90 alpha (cytosolic), class B
member 1

NM_008302

Gapdh Gapd MGC102544, MGC102546, MGC103190, MGC103191,
MGC105239

Glyceraldehyde-3-phosphate dehydrogenase NM_008084

Actb Actx E430023M04Rik, beta-actin Actin, beta NM_007393
MGDC MIGX1B Mouse Genomic DNA Contamination SA_00106
RTC RTC Reverse Transcription Control SA_00104
Ifng IFN-g Ifg Interferon gamma NM_008337
Ifn7
Ifna4 Ifa4 MGC143607 Interferon alpha 4 NM_010504
Il28ra
PPC PPC Positive PCR Control SA_00103
Aim2 Gm1313 Ifi210 Absent in melanoma 2 NM_001013779
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pernatants from VRP-poIFN-�-treated cells had high levels of
poIFN-� protein (28,000 to 48,000 pg/ml) at both 24 and 48 h,
consistent with significant levels of antiviral activity (3,000 to
6,000 U/ml) (Fig. 2C). Low levels of poIFN-� protein and no

antiviral activity were detected in the supernatants of VRP-GFP-
treated cells at 24 and 48 h.

We have previously reported that Ad5 vectors containing the
gene for poIFN-�/� can sterilely protect swine when challenged 1

FIG 1 (A) Schematic diagram of construction of VRP replicon vectors. Genes were PCR amplified with XbaI restriction enzyme recognition sites engineered at the 5=
and 3= ends (step 1). The genes were cloned into the unique XbaI site in pcDNA3.3. The genes were removed from the intermediate plasmid by digestion with the AscI
restriction enzyme (step 2). The fragments were cloned into the unique AscI restriction site in the pVEK replicon vector (step 3). (B) Expression of poIFN-� in cells
infected with VRP-poIFN-�. Vero cells were infected with 50 IU of VRP-poIFN-�, and 24 h later the supernatant was centrifuged to remove cell debris, filtered through
a Centricon-100 filter, treated at pH 2 overnight, and neutralized to 
pH 7. IB-RS-2 cells were infected at an MOI of 20 with Ad5-poIFN-�, and supernatants were
collected at 
24 h and treated as above. The supernatants were run on a 12% SDS-PAGE gel, transferred to a membrane, probed with a 1:250 dilution of rabbit
anti-poIFN-�, and detected with a 1:2,000 dilution of goat anti-rabbit alkaline phosphatase. Lane 1, molecular size markers; lane 2, Ad5-poIFN-�-infected IB-RS-2 cell
supernatant; lane 3, VRP-poIFN-�-infected Vero cell supernatant; lane 4, supernatant from mock-infected cells. (C) Expression of GFP in cells infected with VRP-GFP.
Different porcine (SK-6 and IB-RS-2) or bovine (LF-BK) cell lines were infected with VRP-GFP for 24 h, and GFP expression was examined.

FIG 2 Effect of VRP or Ad5 infection on FMDV replication in SK6 cells. SK6 cells were infected at an MOI of 1 with either VRP-GFP or VRP-poIFN-� and at
6, 24, or 48 h (A) or 24, 48, 96, or 120 h (B) after VRP infection, supernatants were removed, and cells were washed and subsequently infected at an MOI of 1 with
FMDV A12 for 24 h. Virus yields were determined by plaque assay and are expressed in PFU/ml. (C) Supernatants of SK6 cells infected with VRP-GFP or
VRP-poIFN-� at an MOI of 1 for at 6, 24, or 48 h were examined for the presence of poIFN-� by ELISA (expressed in pg/ml) or antiviral activity by plaque
reduction assay (expressed in U/ml). (D) SK6 cells were treated with various Ad5 vectors including Ad5-Blue, Ad5-GFP, Ad5-siGFP, Ad5-VSVG, and Ad5-
poIFN-�; 6 or 24 h later supernatants were removed, and cells were washed and infected with FMDV A12 at an MOI of 1 for 24 h. Virus yields were determined
by plaque assay and are expressed in PFU/ml. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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day later with FMDV (4, 9, 10). To determine if, similar to VRP-
GFP, Ad5 vectors in addition to Ad5-poIFN-� could inhibit
FMDV replication, we tested various vectors including Ad5-Blue
(an Ad5 vector containing the �-galactosidase � gene fragment
[26]), Ad5-GFP, Ad5-siGFP (containing a GFP siRNA), Ad5-
VSVG (containing the glycoprotein gene of vesicular stomatitis
virus New Jersey which is a known ligand of TLR4) (31), and
Ad5-poIFN-�. SK6 cells were transduced with these Ad5 vectors
followed by infection with FMDV 6 or 24 h later. Only cells pre-
treated with Ad5-poIFN-� reduced the yield of FMDV, with an
approximately 100- to 200-fold decrease at each time point (Fig. 2D),
consistent with the detection of high levels of antiviral activity
(unpublished data). Similar results were obtained in Ad5-trans-
duced bovine LF-BK cells (unpublished data).

IB-RS-2 cells do not respond to VRP-GFP infection.
Konopka et al. (20) have shown that signaling through the IFN-
�/� receptor is required for both antiviral gene induction by VRP
replicons and protection against VEE and influenza virus chal-
lenge. We have previously shown that the porcine cell line IB-RS-2
is sensitive to type I IFN protein but does not express type I IFN
mRNA (6), and thus presumably treatment of these cells with
VRP-GFP would not induce protection from subsequent FMDV
challenge. IB-RS-2 cells were pretreated with VRP-GFP or VRP-
poIFN-� for 24 h and then infected with FMDV immediately or 24
h later. A control experiment was run in parallel in SK6 cells. As
previously shown, FMDV yields in either VRP-GFP- or VRP-
poIFN-�-pretreated SK6 cells were reduced approximately
10,000-fold at both 24 and 48 h compared to yields in an untreated
control (Fig. 3). In IB-RS-2 cells pretreated with VRP-poIFN-�,
FMDV yield was reduced by approximately 2,000-fold at 24 h and
10,000-fold at 48 h. However, in VRP-GFP-pretreated IB-RS-2
cells, there was no reduction in FMDV yield compared to mock-
pretreated cells at either time. These results support the data of
Konopka et al. (20) indicating that a functional type I IFN system
is required for the antiviral response induced by VRPs.

Effect of VRP treatment on gene induction. SK6 and IB-RS-2
cells were treated with VRP-poIFN-� or VRP-GFP for 24 h, and
RNA was extracted and assayed by qRT-PCR for induction of a

number of genes including ISGs and chemokines (Table 2). Treat-
ment of SK6 cells with either VRP resulted in the induction of the
same genes although VRP-poIFN-� generally induced higher lev-
els. However, significant differences between the two VRPs were
detected in the number and levels of genes induced in IB-RS-2
cells. All genes, except for IFN-�3, were more upregulated in VRP-
poIFN-�-treated than in VRP-GFP-treated cells. These included a
number of ISGs (ISG15, Mx1, and OAS), chemokines (IP-10,
CCL2, and CCL5) as well as cytoplasmic PRRs (RIG-I and MDA-
5). As a control of gene induction, we treated each cell line with 10
�g/ml of synthetic double-stranded RNA (dsRNA) [poly(I · C)].
In SK6 cells the number of genes upregulated was the same after
either VRP treatment but for most genes to a lower extent than gene
induction after poly(I · C) treatment. In IB-RS-2 cells poly(I · C) gene
induction mimicked VRP-poIFN-� treatment although the level of
gene induction varied for individual genes (Table 2).

Treatment with VRP-GFP protects C57BL/6 mice against
FMDV infection. To examine the ability of VRP-GFP to induce an
innate protective response against FMDV in vivo, we used an
FMDV mouse model system. Salguero et al. (32) demonstrated
that certain strains of adult mice, including C57BL/6, are suscep-
tible to FMDV when infected subcutaneously in the footpad. In-
fected animals develop a significant viremia and die within a few
days of infection. To confirm that C57BL/6 mice are susceptible to
the strains of FMDV that we use in our lab, we infected groups of
five mice with 104, 105, or 106 PFU of FMDV A24 Cruzeiro or O1
Campos per mouse. Mice infected with 104 or 105 PFU of A24
developed very high levels of viremia, with levels of 107 to 108

PFU/ml (unpublished data), and 80% died by 2 days postchal-
lenge. All animals in the group infected with 106 PFU of FMDV
A24 died by 2 days postchallenge (Fig. 4A). Infection with FMDV
O1 Campos resulted in a more severe phenotype. All mice infected
with 104 PFU of FMDV O1 Campos had high levels of viremia
(unpublished data) and died by 2 days postchallenge, while 100%
of the animals in groups infected with 105 or 106 PFU FMDV died

TABLE 2 Gene expression in IB-RS-2 or SK6 cells after treatment with
poly(I · C), VRP-GFP, or VRP- poIFN-�a

a Numbers in red indicate upregulation (�2) compared with the value for mock-
infected cells.

FIG 3 Effect of VRP infection on FMDV replication in SK6 or IB-RS-2 cells.
SK6 or IB-RS-2 cells were infected at an MOI of 1 with either VRP-GFP or
VRP-poIFN-�; 24 h later supernatants were removed, and cells washed and
subsequently infected with FMDV A12 at an MOI of 1 for 24 h. Virus yields
were determined by plaque assay and are expressed in PFU/ml. *, P � 0.05; **,
P � 0.01; ***, P � 0.001.
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at 1 day postchallenge (Fig. 4B). Based on these results we decided
to use FMDV A24 in subsequent experiments.

Groups of five mice were inoculated with 106, 107, or 108 in-
fectious units (IU) of VRP-GFP or PBS (control group) followed
by challenge 1 day later with 5 � 104 PFU of FMDV A24. All
animals in the control group died between 2 and 3 days after
challenge (Fig. 5A), displaying high levels of viremia (4 � 107 to
7 � 108 PFU/ml) (Fig. 5B). In the group inoculated with 106 IU of
VRP-GFP, 20% died by day 2, and 100% were dead by 3 days
postchallenge (Fig. 5A). In this group, all the animals developed
viremia, but the levels were slightly lower than in the animals of
the control group (Fig. 5B). Interestingly, 100% survival was ob-
served in the groups inoculated with 107 or 108 IU of VRP-GFP.
Furthermore, three of five animals in the 107-IU VRP-GFP group
and only one of five animals in the 108-IU VRP-GFP group devel-
oped viremia at levels 2 to 3 logs lower (104 to 106 PFU/ml) than
the control group (Fig. 5B; also unpublished data). In fact, the
levels of viremia at 2 days postchallenge of the different VRP-GFP-
treated groups were statistically significantly different than the
levels of the control group (106 IU of VRP-GFP, P � 0.05; 107 and
108 IU of VRP-GFP, P � 0.01).

In the next experiment we examined how rapidly and for how
long VRP-GFP-inoculated mice would be protected from subse-
quent FMDV challenge (Fig. 6). Groups of five mice were inocu-
lated with either 107 or 108 IU of VRP-GFP and challenged 6, 24,
or 48 h later with FMDV A24. A control group was inoculated with
PBS and challenged with FMDV 24 h later. As expected 100% of
the animals in the control group died by 3 days postchallenge

(Fig. 6A), and all animals in this group developed levels of viremia
from 1 � 106 to 2.5 � 107 PFU/ml (Fig. 6B). Two out of five mice
in the two groups inoculated with 107 IU of VRP-GFP and chal-
lenged 6 and 48 h later survived (Fig. 6A). In these groups, the
levels of viremia were slightly lower than in the control group (Fig.
6B) although there was not a statistically significant difference,
and one animal in each group never developed viremia (data not
shown). In the group challenged at 24 h, only the animal that
developed viremia (1.3 � 106 PFU/ml) died (Fig. 6B; also unpub-
lished data), and the levels of viremia at 2 days postchallenge were
different from those of the control group (P � 0.05). In contrast,
all groups inoculated with 108 IU of VRP-GFP survived the chal-
lenge (Fig. 6A). Although 6 out of the 15 animals in these groups
developed viremia, the levels were considerably lower than in the
animals that died in the other groups (P � 0.05 to P � 0.01), with
viremia levels, e.g., of 1 � 104 to 3.7 � 105 PFU/ml.

Inoculation of C57BL/6 mice with VRP-GFP induces an IFN-
�-mediated antiviral state. The experiments described above
demonstrated the ability of VRP-GFP to rapidly induce a protec-
tive response against FMDV. Konopka et al. (20) have previously
shown that BALB/c mice infected with null VRPs (replicons that
do not express any foreign gene) display high systemic levels of
biologically active IFN as early as 3 to 6 h postinfection. Further-
more, a robust upregulation of four host antiviral genes was de-
tected in several organs. To determine if VRP-GFP treatment in-
duces a similar response in C57BL/6 mice, groups of animals were
inoculated with 108 IU of VRP-GFP and sacrificed at 3, 6, or 24 h
after treatment. A control group was inoculated with PBS and
euthanized at 24 h. Animals were not challenged with FMDV. Sera
were assayed for antiviral activity and for the production of
muIFNs by ELISA, and gene analysis was performed on RNA ex-
tracted from purified spleen lymphocytes (Fig. 6C and D; Table 3).

Mice inoculated with VRP-GFP developed significant antiviral
activity by 3 h postinfection, reaching a peak at 6 h followed by a
decline at 24 h (Fig. 6C). A similar kinetics was observed for in-
duction of muIFN-� protein (Fig. 6D). However, we did not de-
tect any significant levels of muIFN-�, -�, and -� in the sera of
VRP-treated animals (data not shown), suggesting that all the ob-
served antiviral activity was presumably due to IFN-�.

Effect of VRP-GFP treatment on systemic gene induction in
mice. Pathogens express various PAMPs that are detected by the
host through different PRRs, potentially inducing a number of
pathways that are involved in the host antiviral response. As dem-
onstrated above, VRP inoculation induced a strong IFN response.

FIG 4 Survival curve of C57BL/6 mice infected with different serotypes of
FMDV. Groups (n � 5) of 7-week-old mice were infected with different doses
(104, 105, or 106 PFU) of FMDV serotype A24 (A) or O1 Campos (B) in the rear
footpad. Percent survival was evaluated at the indicated times.

FIG 5 Effect of VRP-GFP treatment on FMDV infection in mice. C57BL/6 mice (n � 5/group) were inoculated with different doses (106, 107 or 108 PFU) of
VRP-GFP in the right rear footpad and challenged 24 h later in the left rear footpad with 5 � 104 PFU of FMDV A24. Disease was followed (A), and serum samples
were collected for 7 days after challenge to assay for viremia (B).
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To identify the genes induced by VRP treatment that may lead to
the protective antiviral response, splenic lymphocytes were iso-
lated from treated animals, RNA was purified, and the expression
of 84 genes was analyzed by real-time RT-PCR using an RT2 Pro-
filer PCR custom-modified antiviral response pathway kit (Table
1). RNA from a PBS-inoculated group euthanized at the begin-
ning of the experiment was used as a control. At 3 h only a few
genes were induced, including the three IFN-� subtypes in our
array and IFN-�, although induction was not statistically signifi-
cant (Table 3). However, by 6 h, a number of genes were statisti-
cally significantly upregulated (fold induction of �2; P � 0.05).
These included the following: (i) PRRs TLR3, TLR7, TLR8, TLR9,
RIG-I, MDA-5, and LPG2; (ii) proinflammatory cytokines inter-
leukin-15 (IL-15), IL-18 and IL-6; (iii) costimulatory molecule
CD86; (iv) transcription factors involved in the IFN pathway in-
cluding IRF7, MYD88, and Stat1; (v) ISGs ISG15, Mx1, and OAS2;
and (vi) chemokines MIP-1�, IP-10, CXCL-9, and CXCL-11 (Ta-
ble 2). No IFNs were upregulated at 6 h. The most upregulated
gene at 6 h was IP-10. Twenty-four hours after treatment, most of
these genes remained upregulated but at reduced levels compared
to levels at 6 h (Table 3). Furthermore, a number of other genes
were induced at this time, including the three IFN-� subtypes and
IFN-�, which were all significantly upregulated, and the type III
IFN receptor subunit present in our array.

IP-10 is directly involved in the type I IFN-induced protec-
tive response. Thus far, we have demonstrated that inoculation of
mice with VRP-GFP induced a strong protective antiviral re-
sponse against FMDV which correlated with increased levels of
IFN-� in serum. This is in accordance with the demonstrated
antiviral and protective effect of type I IFN against FMDV in the
natural host (4, 9, 10). To confirm the antiviral effect of IFN-�
against FMDV in the mouse model, we treated groups of five mice
with 104 U of muIFN-� followed by challenge with 5 � 104 PFU of
FMDV A24 at 4 or 18 h after treatment. Five untreated mice were

included as a control group. As expected, the presence of IFN
protein was detected in serum, with the level peaking at 4 h after
IFN treatment (Fig. 7A) and correlated with detectable levels of
antiviral activity (Fig. 7B). All (100%) of the animals treated with
IFN-� survived FMDV challenge (Fig. 7C). Interestingly, none of
the animals treated 4 h prior to challenge developed viremia, and
only two of five animals in the group treated with IFN-� for 18 h
developed viremia, which was 100-fold lower than that in the con-
trol animals (P � 0.01) (Fig. 7D). These results demonstrated that
recombinant muIFN-� is able to inhibit FMDV replication in
C57BL/6 mice.

In the previous experiment we demonstrated that mice inocu-
lated with VRP-GFP had high levels of IFN-� in sera and induc-
tion of numerous ISGs in splenocytes. Some of these genes might
be involved in the IFN protection conferred against FMDV. IP-10
was the most upregulated gene at 6 h after treatment. This chemo-
kine is of particular interest because we have previously demon-
strated that swine or cattle inoculated with Ad5-poIFN-� or Ad5-
boIFN-�3, respectively, and protected against FMD display
selective upregulation of IP-10 (7, 8, 12, 33). To determine if IP-10
has a role in the IFN-induced protection against FMDV, we
treated IP-10 KO mice (10 per group) with muIFN-� or PBS 4 h
prior to challenge. As controls, we included WT C57BL/6 mice
that were treated similarly. The IFN-treated IP-10 KO mice had
detectable but lower levels of IFN-� and antiviral activity than the
WT IFN-treated mice (Fig. 8A and B, compare with 7A and B).
Ninety percent of PBS-treated WT mice died 2 to 4 days after
challenge (Fig. 8C) and developed high levels of viremia (Fig. 8D).
All WT muIFN-�-treated mice survived FMDV A24 challenge
and did not develop viremia (Fig. 8C and D). In contrast, IP-10
KO mice did not respond to muIFN-� treatment, displaying a
survival rate of 30%, similar to the survival rate of the IP-10 KO or
WT mice treated with PBS (20% and 10%, respectively). Overall,
the levels of viremia were the same for muIFN-�-treated IP-10 KO

FIG 6 Duration of effect of VRP-GFP treatment on FMDV infection in mice. C57BL/6 mice (n � 5/group) were inoculated with different doses (107 or 108 PFU)
of VRP-GFP in the right rear footpad and challenged 6, 24, and 48 h later in the left rear footpad with 5 � 104 PFU of FMDV A24. Disease was followed (A), and
serum samples were collected for 7 days after challenge to assay for viremia (B). Serum of mice was tested for antiviral activity (C) and presence of IFN-� (D) at
different time points (3, 6, and 24 h) after VRP-GFP treatment before FMDV challenge. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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TABLE 3 Gene expression in spleen lymphocytes after treatment of mice with VRP-GFP for different
times

a Numbers in red indicate upregulation (�2) compared with the level in mock-infected animals.
b Numbers in blue indicate downregulation (	0.5) compared with the level in mock-infected animals.
c Cell prolif, cell proliferation.
d Adap, adaptor proteins.
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mice and PBS-treated IP-10 KO or WT mice (Fig. 8D). These
results indicated that in our C57BL/6 mouse model, IP-10 medi-
ates at least one of the IFN-�-induced mechanisms of protection
against FMD.

DISCUSSION

We have previously demonstrated that swine inoculated with
Ad5-poIFN-� are rapidly protected when challenged 1 day later
with FMDV (4, 9, 10). More recently we also showed that treat-
ment of bovines with Ad5-boIFN-�3 can significantly delay and
reduce clinical disease (12). However, in each case the protective
dose is relatively high, limiting the applicability of such a strategy
in the livestock industry. To overcome these limitations, we hy-
pothesized that a broader and more robust innate immune re-
sponse could be obtained by adding to IFN treatment a mimic of
natural viral infection. We found that treatment of cell cultures
with poly(I · C) or swine with poly(IC) stabilized with poly-L-
lysine and carboxymethyl cellulose [poly(ICLC)], both mimics of
dsRNA produced during virus infection, inhibits FMDV replica-
tion and induces a rapid protective response (29). Others have
shown that the baculovirus Autographa californica nuclear poly-
hedrosis virus (AcNPV) can induce a rapid innate immune re-
sponse in animals (34). Recently, Molinari et al. (35) demon-
strated that mice pretreated with AcNPV as early as 3 h and up to
3 days prior to challenge with FMDV survived. The authors spec-
ulated that protection was presumably a result of induction of IFN
but did not directly assay for the initiation of an antiviral response.

In this article we examined the potential of VEE replicons as an
alternative approach to induce rapid protection against FMDV.

Empty VRPs have recently been shown to induce a rapid innate
response in mice and protect against challenge with homologous
VEE virus as well as the heterologous influenza virus but did not
protect against VSV (20). We demonstrated that treatment of the
SK6 swine cell line with either VRP-poIFN-� or VRP-GFP rapidly
inhibited subsequent FMDV replication and that the duration of
inhibition lasted for at least 5 days. In agreement with Konopka et
al. (20), we found that VRP-induced protection requires a func-
tional type I IFN system. Swine IB-RS-2 cells, which do not pro-
duce type I IFN, are not protected from FMDV infection by VRP-
GFP treatment but are protected after VRP-poIFN-� treatment.

Treatment of SK6 cells with either VRP induced a broad array
of genes (17 to 18 of 21 genes examined), but in VRP-poIFN-�-
treated cells the majority of these genes were induced to higher
levels that in VRP-GFP-treated cells (Table 2). It is important to
note that in SK6 cells VRP-GFP as well as poly(I · C) induces the
upregulation of both type I and III IFNs as well as various ISGs.
We previously obtained similar results in bovine cells treated with
poly IC, but treatment of these cells with boIFN-� or boIFN-�3
only upregulated ISGs and not IFNs (8; also unpublished data),
indicating that this new approach is inducing a broader response.

While both VRP-GFP- and VRP-poIFN-�-treated SK6 cells
were protected from subsequent FMDV infection, only superna-
tants from VRP-poIFN-�-treated cells contained significant levels
of poIFN-� protein and antiviral activity at 24 and 48 hpi
(Fig. 2C). However, even supernatants from VRP-GFP- or VRP-
poIFN-�-treated cells containing undetectable or low levels of
poIFN-� protein or antiviral activity could still significantly re-

FIG 7 Effect of IFN-� treatment on FMDV infection in mice. C57BL/6 mice (n � 5/group) were treated with 104 U of muIFN-� and challenged with 5 � 104

PFU of FMDV A24 in the rear left footpad at different times (4 or 18 h) after treatment. Serum of the mice was tested for the presence of IFN-� (A) and antiviral
activity (B). Disease was followed (C) and serum samples were collected for 7 days after challenge to assay for viremia (D). *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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duce virus yield (as much as 1,000-fold) (Fig. 2A and C). These
results suggest that the observed inhibition of viral replication
could be due to a cytokine other than poIFN-� or that the IFN-�
ELISA or our method of measuring antiviral activity is much less
sensitive than the evaluation of a reduction in viral replication.
The gene induction data in Table 2 indicated that poIFN-� and
poIFN-�3 were both upregulated in cells treated with the VRPs. It
should be pointed out, however, that our antiviral assays were
performed in IB-RS-2 cells which we know lack a functional
IFN-� receptor (E. Perez-Martin et al., unpublished data). There-
fore, the absence of antiviral activity at 6, 24, and 48 h in the
supernatants of VRP-GFP-treated SK6 cells and at 6 h in the su-
pernatants of VRP-poIFN-�-treated cells may as well be due to the
presence of low levels of poIFN-�/� proteins undetectable by our
relatively low sensitivity assay or to poIFN-� to which IB-RS-2
cells are insensitive. In any case, all the antiviral activity observed
in vivo in mice was consistent with the detected serum levels of
IFN-�, suggesting that this cytokine primarily mediates the VRP-
GFP-induced effect. However, it is possible that other cytokines
may also be involved.

It has been reported by numerous investigators that adenovi-
rus vectors can induce a very rapid innate immune response both
in cell culture and in mice (36–39). We have also demonstrated
that inoculation of swine with an Ad5-VSVG vector induces a very
rapid systemic antiviral response and high levels of poIFN-� as
early as 4 hpi; but the antiviral response essentially is not detect-
able by 24 hpi, and animals inoculated with this vector are not
protected from FMD when challenged 1 day after administration
(4). Therefore, we examined the ability of various Ad5 vectors,

including Ad5-GFP, to induce an FMDV-protective response in
SK6 and LF-BK cells. Surprisingly, only the Ad5-poIFN-� vector
inhibited FMDV replication (Fig. 2D). Although we currently do
not understand the molecular basis of this difference, the results in
the cell lines used in this study suggest that VRPs have the ability to
induce a more potent protective innate response than Ad5 vectors.

The cell culture results prompted us to examine the effective-
ness of VRP-GFP in protecting adult mice from FMDV infection.
Although it would have been preferable to directly compare the
two constructs used in vitro, we did not use VRP-poIFN-� in these
studies because our cell culture data indicated that poIFN-� was
not effective in mouse cells (unpublished data). Nevertheless, the
main purpose of these experiments was to determine if VRPs are
able to activate a protective innate immune response against
FMDV. Confirming our hypothesis, we observed that mice treated
with VRP-GFP survived FMDV challenge as early as 6 h posttreat-
ment (hpt) and for at least 48 h. As shown by Konopka et al. (20)
and confirmed in our study, the effectiveness of treatment is de-
pendent on the dose of the VRP. After VRP treatment there is a
very rapid rise in antiviral activity, which appears to be attributed
to the induction of muIFN-� since we were unable to detect the
presence of IFN-�, IFN-�, or IFN-�. To confirm this data, we
demonstrated that animals treated with recombinant muIFN-�
and challenged at different times after treatment were completely
protected from FMDV. Similarly to the gene induction data in cell
culture, a number of genes were upregulated in mice treated with
VRP-GFP. As early as 3 hpt several of the 84 genes analyzed were
induced, including the three subtypes of muIFN-� present in our
array as well as IFN-�. Marie et al. (40) have found that muIFN-�4

FIG 8 Effect of IFN-� treatment on FMDV infection in IP-10 KO mice. WT and IP-10 KO mice were treated with 104 U of muIFN-� and challenged with 5 �
104 PFU of FMDV A24 in the rear left footpad at 4 h after treatment. Serum of the mice was tested for the presence of IFN-� (A) and antiviral activity (B). Disease
was followed (C), and serum samples were collected for 7 days after challenge to assay for viremia (D). *, P � 0.05; **, P � 0.01.
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is the most rapidly induced IFN in mouse fibroblasts infected with
Newcastle disease virus, and our results indicate that this subtype
along with muIFN subtypes 2 and 7 were all detectable by 3 hpt. By
6 hpt many genes were induced at a statistically significant level,
including genes with direct antiviral activity, transcription factors,
chemokines, and PRRs. In particular, IP-10 was upregulated over
124-fold. By 24 hpt more genes were upregulated, but the level of
induction of most of the genes first detectable at 6 hpt was re-
duced. Furthermore, type I IFN genes were significantly induced.

In our previous studies in swine and cattle, as well as in the
current mouse study, we demonstrated a significant induction of
IP-10 by type I, II, or III IFN or VRP treatment (12, 33). IP-10 is a
chemokine involved in the recruitment, proliferation, and activa-
tion of natural killer (NK) cells (41). In the swine study we dem-
onstrated that in animals treated with Ad5-poIFN-�, protection
against FMDV challenge correlated with recruitment of dendritic
cells (DCs) and NK cells to the skin and lymph nodes, respectively
(33). Furthermore, 1 day after Ad5-poIFN-� administration,
there was a significant upregulation of IP-10 in the skin and lymph
nodes. Using a mouse model, we confirmed that IP-10 plays a role
in vivo in protecting animals from subsequent FMDV infection.
As expected, less than 20% survival was observed in WT and IP-10
KO mice after FMDV challenge. However, while preadministra-
tion of muIFN-� protected 100% of WT mice against virus chal-
lenge, only 30% survival was observed when IP-10 KO mice were
treated similarly. These results demonstrated that IP-10 plays a
critical role in the IFN-induced protection against FMDV al-
though presumably other ISGs may also be involved in inhibition
of FMDV replication. As mentioned before, we have previously
demonstrated in cell culture that PKR and the OAS/RNase L sys-
tem control FMDV replication (6, 28). It will be useful to examine
the role of additional ISG products in this process. Testing other
KO mice, performing ISG-overexpression or -downregulation
screens, etc., will help elucidate the IFN-dependent mechanisms
of FMDV inhibition.

As we previously demonstrated, administration of Ad5-
poIFN-� sterilely protected swine from FMDV infection (10).
Since our results in cell culture indicate that VRPs containing an
IFN gene induce an enhanced protective response and higher lev-
els of ISGs than VRP-GFP treatment, we plan to initiate studies in
naturally susceptible animals with different doses of VRP-po/
boIFN-�/� and examine their efficacy against FMDV challenge.
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