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RESEARCH ARTICLE Open Access

Towards defining the chloroviruses: a genomic
journey through a genus of large DNA viruses
Adrien Jeanniard1, David D Dunigan2,3, James R Gurnon2, Irina V Agarkova2,3, Ming Kang2, Jason Vitek2,
Garry Duncan4, O William McClung4, Megan Larsen4,5, Jean-Michel Claverie1, James L Van Etten2,3*

and Guillaume Blanc1

Abstract

Background: Giant viruses in the genus Chlorovirus (family Phycodnaviridae) infect eukaryotic green microalgae. The
prototype member of the genus, Paramecium bursaria chlorella virus 1, was sequenced more than 15 years ago,
and to date there are only 6 fully sequenced chloroviruses in public databases. Presented here are the draft
genome sequences of 35 additional chloroviruses (287 – 348 Kb/319 – 381 predicted protein encoding genes)
collected across the globe; they infect one of three different green algal species. These new data allowed us to
analyze the genomic landscape of 41 chloroviruses, which revealed some remarkable features about these viruses.

Results: Genome colinearity, nucleotide conservation and phylogenetic affinity were limited to chloroviruses
infecting the same host, confirming the validity of the three previously known subgenera. Clues for the existence of
a fourth new subgenus indicate that the boundaries of chlorovirus diversity are not completely determined.
Comparison of the chlorovirus phylogeny with that of the algal hosts indicates that chloroviruses have changed
hosts in their evolutionary history. Reconstruction of the ancestral genome suggests that the last common
chlorovirus ancestor had a slightly more diverse protein repertoire than modern chloroviruses. However, more than
half of the defined chlorovirus gene families have a potential recent origin (after Chlorovirus divergence), among
which a portion shows compositional evidence for horizontal gene transfer. Only a few of the putative acquired
proteins had close homologs in databases raising the question of the true donor organism(s). Phylogenomic
analysis identified only seven proteins whose genes were potentially exchanged between the algal host and the
chloroviruses.

Conclusion: The present evaluation of the genomic evolution pattern suggests that chloroviruses differ from that
described in the related Poxviridae and Mimiviridae. Our study shows that the fixation of algal host genes has been
anecdotal in the evolutionary history of chloroviruses. We finally discuss the incongruence between compositional
evidence of horizontal gene transfer and lack of close relative sequences in the databases, which suggests that the
recently acquired genes originate from a still largely un-sequenced reservoir of genomes, possibly other unknown
viruses that infect the same hosts.
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Background
Viruses in the family Phycodnaviridae, together with
those in the Poxviridae, Iridoviridae, Ascoviridae,
Asfarviridae and the Mimiviridae are believed to have a
common evolutionary ancestor and are referred to as
nucleocytoplasmic large DNA viruses (NCLDV) [1-3].
Members of the Phycodnaviridae consist of a genetically
diverse, but morphologically similar, group of large
dsDNA-containing viruses (160 to 560 kb) that infect
eukaryotic algae [4,5]. These large viruses are found in
aquatic environments, from both terrestrial and marine
waters throughout the world. They are thought to play
dynamic, albeit largely undocumented roles in regulating
algal communities, such as the termination of massive
algal blooms [6-8], which has implications in global geo-
chemical cycling and weather patterns [9].
Currently, the phycodnaviruses are grouped into 6 ge-

nera, initially based on host range and subsequently sup-
ported by sequence comparison of their DNA polymerases
[10]. Members of the genus Chlorovirus infect chlorella-
like green algae from terrestrial waters, whereas members
of the other five genera (Coccolithovirus, Phaeovirus,
Prasinovirus, Prymnesiovirus and Raphidovirus) infect
marine green and brown algae. Currently, 24 genomes of
members in four phycodnavirus genera are present in
Genbank. Comparative analysis of some of these genomes
has revealed more than 1000 unique genes with only 14
genes in common among the four genera [4]. Thus gene
diversity in the phycodnaviruses is enormous.
Here we focus on phycodnaviruses belonging to the

genus Chlorovirus, referred to as chloroviruses (CV).
These viruses infect certain unicellular, eukaryotic, ex-
symbiotic chlorella-like green algae, which are often
called zoochlorellae; they are associated with either the
protozoan Paramecium bursaria, the coelenterate Hydra
viridis or the heliozoon Acanthocystis turfacea [11].
Three such zoochlorellae are Chlorella NC64A, recently
renamed Chlorella variabilis [12], Chlorella SAG 3.83
(renamed Chlorella heliozoae) and Chlorella Pbi
(renamed Micratinium conductrix). Viruses infecting
these three zoochlorellae will be referred to as NC64A-,
SAG-, or Pbi-viruses.
Since the initial sequencing of the prototype CV, Para-

mecium bursaria chlorella virus 1 [13,14], more than 15
years ago, only 5 more whole-genome sequences of CVs
have been reported [15-17]. These 6 sequences reveal
many features that distinguish them from other NCLDV
including genes encoding a translation elongation factor
EF-3, enzymes required to glycosylate proteins [18],
enzymes required to synthesize the polysaccharides
hyaluronan and chitin, polyamine biosynthetic enzymes,
proteins that are ion transporters and ones that form ion
channels including a virus-encoded K+ channel (desig-
nated Kcv) [19], a SET domain-containing protein

(referred to as vSET) that dimethylates Lys27 in histone
3 [20,21], and many DNA methyltransferases and DNA
site-specific endonucleases [22,23]. Moreover, the evolu-
tion of large DNA viruses is subject to intense debate.
Questions include, how did this vast gene diversity arise?
Are genes captured from organisms or viruses, or did
genome reduction occur from a larger ancestor? Here
we address these questions by sequencing and compa-
ring the genomes of 41 CVs infecting 3 different green
algal species.

Results and discussion
Terrestrial water samples have been collected through-
out the world over the past 25 years and plaque-assayed
for CVs. The viruses selected for sequencing (Figure 1)
were chosen from a collection of more than 400 isolates
with the intention of evaluating various phenotypic char-
acteristics and geographic origins as indicators of diver-
sity; an equal number of isolates infecting each of the
three hosts were selected. However, this selection of vi-
ruses does not represent a biogeographic survey.
The viral genomes were assembled into 1 to 39 large

contigs (with an average length of 40 Kb), had cumu-
lated sizes ranging from 287 to 348 Kb and an average
read coverage between 27 and 107 (Table 1). Contig ex-
tremities often contained repeated sequences that inter-
fered with the assembly process and precluding
obtaining a single chromosome contig. Two virus assem-
blies contained a large number of contigs – i.e., Fr5L
and MA-1E containing 22 and 39 contigs respectively.
In fact, >90% of the Fr5L and MA-1E sequences were
contained in 5 and 9 large contigs, respectively, which is
similar to the number of large contigs in the other virus
assemblies. The remaining contigs were small (<1 kb for
the majority) and showed strong sequence similarity
with reference genomes, which suggests that they did
not arise from contamination. Like the previously se-
quenced CVs, the G + C content of the newly sequenced
genomes was between 40% and 52%. Moreover, the G + C
content was highly homogeneous and specific among vi-
ruses infecting the same host: i.e., NC64A, Pbi and SAG
viruses had a median G + C content of 40%, 45% and 49%,
respectively with low standard deviation in each group
(<0.14%).
Gene prediction algorithms identified 319 to 381

protein-encoding genes (CDSs) in each genome, of
which 48% were given a functional annotation. Further-
more, each genome was predicted to contain between 5
and 16 tRNA genes. These features resemble the 6 previ-
ously sequenced CV genomes that had 329 to 416
protein-encoding genes and 7 to 11 tRNA genes [14-16].
However, we cannot rule out the possibility that a small
number of genes may be missing if their location coin-
cides with the gaps in the CV genome assemblies. We
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attempted to complete the assembly of 6 of the incom-
pletely assembled viruses by PCR-sequencing across
gaps. However, in many cases, repetitive sequences in
adjacent contigs made it difficult to synthesize suitable
primers. Since we had >20X depth of coverage in non-
repetitive regions, we suspect that the gaps were actually
sequenced during the genomic sequencing phase of the
project but that the assembly software discarded reads
containing repetitive sequences that it was unable to

confidently align with sequences at the ends of contigs.
Nonetheless, we successfully sequenced 16 of 28 gaps
among the 6 viruses and the gap sizes ranged from 1 to
634 nts. Thus the gaps are predicted to be very small.

Core and host-specific proteins in CVs
Predicted CV proteins were organized into 531 clusters
of two or more orthologous proteins plus 101 singleton
CV proteins (Additional file 1: Table S1). The largest
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Figure 1 Phylogenies of chloroviruses and algal hosts. A: ML tree of chloroviruses based on a concatenated alignment of 32 core protein
families (7762 gap-free sites). The phylogenetic tree was computed using the WAG + G + I substitution model. Branch support was estimated
from 1000 bootstrap replicates. We only show bootstrap values < 90%. Ostreococcus viruses serve as an outgroup to root the tree. B: ML tree of
algal hosts based on 18S RNA alignment (2266 gap-free sites). The phylogenetic tree was computed using the GTR + G + I substitution model. All
interior branches received maximal support (100%). Parachlorella spp. are used as outgroup.
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protein family contained 429 members, which were simi-
lar to intron-encoded endonucleases.
The core protein family set consisted of 155 protein

families shared by all the CVs, which represent 56% of
the average protein family content of CVs; the majority
(66%) of those proteins have an annotated function.
Thirty-eight core protein families were also ubiquitous
in four Ostreococcus viruses [24-27], which are members
of the genus Prasinovirus that are closely related to the

chloroviruses; these core proteins include the NCLDVs
hallmark genes (DNA polymerase B, major capsid pro-
tein, primase-helicase, packaging ATPase and trans-
cription factor TFII) [2]. The remaining 117 CV core
protein families grouped into a variety of functions, with
a preponderance of proteins associated with the virion
particle (i.e., capsid proteins), degradation of the host
cell-wall (i.e., alginate lyase, chitinase and chitosanase),
DNA replication, transcription and protein maturation.

Table 1 General features of the sequenced chlorovirus genomes

Virus Host # Contigs Genome size
(Kb)

Sequence
coverage

% GC # protein
genes

# tRNA
genes

# protein
families

Genbank accession
number

AN69C NC64A 8 332 29x 40 362 10 278 JX997153

CviKI NC64A 8 308 55x 40 336 14 271 JX997162

CvsA1 NC64A 9 310 36x 40 342 14 272 JX997165

IL-3A NC64A 3 323 50x 40 349 12 273 JX997169

IL-5-2s1 NC64A 9 344 65x 41 379 8 281 JX997170

KS1B NC64A 7 287 46x 40 319 13 257 JX997171

MA-1D NC64A 9 339 45x 41 371 11 288 JX997172

MA-1E NC64A 39 336 27x 40 376 14 269 JX997173

NE-JV-4 NC64A 8 328 41x 40 352 11 276 JX997179

NY-2B NC64A 5 344 59x 41 371 8 281 JX997182

NYs-1 NC64A 9 348 64x 41 381 7 286 JX997183

AP110A Pbi 6 327 27x 44 348 9 269 JX997154

Can18-4 Pbi 11 329 52x 45 357 10 271 JX997157

CVA-1 Pbi 8 326 36x 45 346 9 270 JX997159

CVB-1 Pbi 8 319 90x 44 346 10 272 JX997160

CVG-1 Pbi 7 318 48x 45 333 9 262 JX997161

CVM-1 Pbi 5 327 48x 44 341 9 268 JX997163

CVR-1 Pbi 11 329 39x 45 351 9 268 JX997164

CZ-2 Pbi 11 305 39x 45 340 10 262 JX997166

Fr5L Pbi 22 302 58x 45 345 11 257 JX997167

NE-JV-1 Pbi 8 326 45x 47 337 3 265 JX997176

NW665.2 Pbi 6 325 62x 44 350 8 263 JX997181

OR0704.2.2 Pbi 8 313 53x 45 344 7 261 JX997184

Br0604L SAG 2 295 65x 49 346 9 272 JX997155

Can0610SP SAG 1 307 61x 49 341 13 267 JX997156

Canal-1 SAG 4 293 50x 51 336 10 277 JX997158

GM0701.1 SAG 4 315 71x 48 362 10 272 JX997168

MN0810.1 SAG 6 327 57x 52 343 9 268 JX997174

MO0605SPH SAG 3 289 107x 49 323 11 271 JX997175

NE-JV-2 SAG 4 319 40x 48 346 13 271 JX997177

NE-JV-3 SAG 3 298 63x 49 334 12 268 JX997178

NTS-1 SAG 4 323 35x 48 364 7 271 JX997180

OR0704.3 SAG 5 311 49x 49 342 13 272 JX997185

TN603.4.2 SAG 3 321 28x 49 351 9 276 JX997186

WI0606 SAG 7 289 58x 50 329 11 271 JX997187
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These enzymatic functions and structural proteins form
the backbone of CV metabolism that enable them to
propagate, spread from host to host, enter into the cell,
and regulate the cellular machinery to promote virus
replication.
In addition, orthologous protein families were identi-

fied that are ubiquitous to viruses infecting one of the
algal hosts (i.e., NC64A, SAG or Pbi) but absent in all
the other CVs. These proteins are presumably involved
in the mechanism of host recognition and specificity.
The host-specific protein sets were much smaller both
in terms of size and number of predicted functions. We
identified 11 orthologous clusters specific to NC64A vi-
ruses, of which 2 have annotated functions, including an
aspartate carbamoyltransferase involved in de novo pyr-
imidine biosynthesis in the plastids of land plants [24],
and an homolog to a plant thylakoid formation protein
involved in sugar sensing and chloroplast development
[25]. This suggests that the adaptation of CVs to the
NC64A host might require a more intricate control of
the chloroplast and nucleotide biosynthesis by the
NC64A viruses. The NC64A viruses have the most
biased nucleotide composition of all the CVs (i.e., 40%
G + C), which may explain why these viruses require a
higher degree of control of the available nucleotide pool.
Pbi and SAG viruses had 6 and 9 host -specific core
genes, respectively, none of which have known func-
tions, making it difficult to predict the mechanisms
underlying host specificity.
Eight protein families had an opposite conservation pat-

tern; they were systematically absent in viruses infecting
the same algal host but were present in all the other CVs.
Four of them had a predicted function: SAG and NC64A
viruses lack an ankyrin repeat domain-containing protein
and a glycosyltransferase, respectively. Pbi viruses lack
GDP-D-mannose dehydratase and GDP-L-fucose synthase
that catalyze two consecutive steps in the biosynthesis of
GDP-L-fucose. GDP-L-fucose is the sugar nucleotide
intermediate in the synthesis of fucosylated glycolipids,
oligosaccharides and glycoproteins [28]. These two en-
zymes exist in all the other sequenced phycodnaviruses
that infect green algae, including Ostreococcus viruses,
Micromonas viruses, and Bathycoccus viruses. The long
ancestry of GDP-D-mannose dehydratase and GDP-L-fu-
cose synthase suggests that GDP-L-fucose is an important
metabolite in the general metabolism of phycodnaviruses
that infect green algae. Thus the loss of these two cor-
responding genes in the Pbi virus lineage may be regarded
as a significant evolutionary step that could mark spe-
cialization to the host. However, experimental evidence in-
dicates that two sequenced Pbi viruses, MT325 and
CVM-1, have fucose as one of the components of their
major capsid protein (Tonetti et al., personal communica-
tion), indicating that even in the absence of the viral-

encoded proteins, Pbi viruses obtain GDP-L-fucose from
their host. The loss of the two genes was perhaps made
possible by either a greater availability of fucose in the
cytoplasm of the Pbi host or a lesser need for fucose by
the virus.
The remaining 443 protein clusters had scattered dis-

tributions among CVs infecting the three algal hosts. In
contrast to the core CV protein set, these protein sets
included a significant number of proteins potentially in-
volved in cell-wall glycan metabolism and protein gly-
cosylation, ion channels and transporters, polyamine
metabolism, and DNA methytransferases and DNA re-
striction endonucleases. The different combinations of
dispensable genes existing in the CVs are presumably
the origin of the phenotypic variations observed between
them such as efficiency of infection, burst size, infection
dynamics, nature of protein glycans, and genome methy-
lation [11].

Novel protein genes
One hundred and sixty-six clusters totaling 403 proteins
did not have an orthologous member in any of the re-
ference viruses. The corresponding genes are thus seen
for the first time in CV and encode potential new func-
tionalities. Only 22 new clusters had a match in a public
database, the rest of the proteins were annotated as
“hypothetical protein.” Furthermore, only 6 clusters were
homologous to proteins annotated with functional at-
tributes (Additional file 2: Table S2). They include a
fumarate reductase possibly involved in anaerobic mito-
chondrial respiration [29], and five proteins with generic
functional annotation: acetyltransferase, SAM-dependent
methyltransferases, nitroreductase, glycosyl hydrolase
and helicase.

Phylogeny
Phylogenetic relationships between the sequenced CVs
and Ostreococcus viruses were determined from an ana-
lysis of the concatenated alignment of 32 protein fam-
ilies encoded by a single gene in each genome.
Ostreococcus viruses were treated as an outgroup to root
the phylogenetic trees. These genes represent a subset of
the “core” CV genes and are mostly involved in basic
replication processes. The resulting maximum likelihood
(ML) phylogenetic tree is shown in Figure 1A. All
branches are associated with high bootstrap values
(>90%) except for those containing very similar viruses,
for which the exact timing/order of separation events
could not be resolved unambiguously. Phylogenetic trees
were also inferred by Neighbor Joining (NJ) and Ma-
ximum Parsimony (MP) methods using the same se-
quence dataset (Additional file 3: Figure S1 and
Additional file 4: Figure S2). The MP tree had a topology
identical to the ML tree while the NJ tree differed by 5
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branches associated with low bootstrap values in both
the ML and MP trees. In addition, a ML phylogenetic
tree of the algal hosts was reconstructed (Figure 1B)
from their 18S RNA sequences using Parachlorella spe-
cies as the outgroup on the basis of a previous phylogen-
etic study of Chlorellaceae [12].
The phylogeny study revealed three important features

about CV evolution. First, although the CVs were iso-
lated from diverse locations across 5 continents, the
phylogenetic trees show that viruses infecting the same
algal host always clustered in monophyletic clades. This
suggests that the most recent common ancestor of each
virus subgenus already infected the same algal host
lineage as today’s representatives and that the evolution-
ary events that led viruses to adapt and specialize to a
given host occurred only once in their history. Second,
the branching pattern of the three main virus clades
does not follow the phylogeny of their algal hosts, which
rules out the simplest co-evolution scenario whereby the
algae and virus lineages separated in concert. Instead,
the phylogenetic evidence strongly suggests that the CVs
have changed hosts at least once in their evolutionary
history. Finally, while most of the newly sequenced CVs
are a close relative of previously sequenced CVs, the
basal and isolated phylogenetic position of virus NE-JV
-1 within the Pbi virus clade make it the first representa-
tive of a new subgroup of CVs that was previously un-
known. NE-JV-1 only shares 73.7% amino acid identity
on average with the other Pbi viruses in the 32 core pro-
teins used for phylogeny reconstruction. For compari-
son, the within-clade average protein sequence identity
was 92.6%, 95.0% and 97.4% identity for NC64A, SAG
and Pbi (excluding NE-JV-1) viruses, respectively. Be-
tween clades, the protein sequence identity ranged from
63.1% (NC64A vs. Pbi viruses) to 70.6% (Pbi vs. SAG
viruses).

Genome organization and gene colinearity
Figure 2 indicates that gene order is highly conserved
among viruses infecting the same algal host, with only a
few readily identifiable localized rearrangements, includ-
ing inversions and indels (see below). Note that the order
of contigs in assemblies was determined by maximizing
sequence colinearity with the reference genomes. Indeed,
16 gaps were sequenced among six of the new viruses, the
primers of which were designed based on the co-linearity
of the previously sequenced chloroviruses; however, we
cannot eliminate the possibility that additional inversion
events exist if their boundaries precisely coincide with the
contig ends. The high conservation of gene order con-
trasts strongly with the low residual gene colinearity bet-
ween genomes from viruses infecting different algal hosts.
The largest conserved genomic regions between CVs
infecting different hosts encompassed 32 colinear genes.

This observation is consistent with the reported high level
of gene colinearity between the genomes of PBCV-1 and
NY-2A, two NC64A viruses, as well as between those of
MT325 and FR483, two Pbi viruses, but not between
NC64A viruses and Pbi viruses [15,17]. We only found
one exception to this rule: although the NE-JV-1 virus
infects Pbi cells, its gene order is different from that of
other Pbi infecting viruses. This lack of gene colinearity is
consistent with the basal phylogenetic position of NE-JV-1
within the Pbi virus clade (Figure 1A). NE-JV-1 also has
no long-range conserved gene colinearity with NC64A vi-
ruses or SAG viruses. This overall lack of colinearity with
reference genomes was an issue when ordering the NE-JV
-1 contigs between each other using the maximal se-
quence colinearity criterion. Thus, the order of contigs in
the presented NE-JV-1 assembly must be taken with cau-
tion. In contrast, although the NC64A viruses also form
two separate phylogenetic sub-groups – one sub-group
contains PBCV-1 and the other NY-2A – genomes from
both sub-groups share an almost perfect gene colinearity
as exemplified by the dot-plot comparison between CviKI
(PBCV-1 sub-group) and NYs-1 (NY-2A sub-group).
Gene order in Mimiviridae genomes is conserved

toward the center of the genomes while significant dis-
ruptions of gene colinearity occur at the chromosome
extremities [30]. This same conservation pattern occurs
in Poxviridae genomes [31] suggesting that these two
families of large DNA viruses, despite their considerable
differences, might have evolved under common evolu-
tionary processes linking replication and recombination.
In contrast, no obvious differences were observed in the
levels of conservation between the center and extre-
mities of the CV genomes, suggesting a different me-
chanism of genome evolution in this viral clade. The
levels of divergence between the colinear genomes of
Mimiviridae and Poxviridae were comparable to the
level of divergence between the most distant CV ge-
nomes that share no conserved gene colinearity; e.g.,
DNA polymerase proteins had 64% identical residues be-
tween Mimivirus and Megavirus (Mimiviridae) and 65%
identical residues between deerpox and variola viruses
(Poxviridae) [30], while the most divergent CV DNA
polymerase protein pair shared 64% identical residues
between the SAG virus OR0704.3 and NC64A virus
MA-1D. Taken together, these observations suggest that
at comparable genetic distances, genome rearrangements
were more frequent in CVs than in Mimiviridae and
Poxviridae.
Some spontaneous antigenic variants of PBCV-1

contained 27- to 37-kb deletions in the left end of the
330-kb genome [32]. Although these mutant viruses sta-
bly replicate in the C. variabilis host in laboratory con-
ditions, albeit with phenotypic variations compared to
the PBCV-1 wild type strain, it was unknown if such
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mutants existed in natural populations. The NC64A
virus KS1B isolated in Kansas, USA contained a 35-kb
deletion in the left end, when compared to the PBCV-1
wild type. This finding suggests that the deleted region
that encompasses 29 ORFs in the PBCV-1 genome
is dispensable in a natural environment. The missing
PBCV-1 ORFs encode 2 capsid proteins, a pyrimidine
dimer-specific glycosylase and 26 putative proteins with
unknown function (Additional file 5: Table S3). Thus the
KS1B virus may have altered capsid and DNA repair
capability. Further study is required to determine if the

KS1B genotype is common and stably fixed in the na-
tural population or if it is a rare mutant that was sam-
pled by chance or if it results from a recent mutation
that occurred during maintenance of the virus in the
laboratory.

Origin of the CV genes
Reconstruction of ancestral genomes using the maxi-
mum parsimony method predicts that the last common
ancestor of all sequenced CVs encoded at least 297 pro-
tein families (Figure 3A), including 155 core CV protein

Figure 2 Dot-plot alignments of ten newly sequenced Chlorovirus genomes. Each dot represents a protein match between two viruses
(BLASTP e-value < 1e-5) from genes in the same orientation (black) or in reverse orientation (gray). Best BLAST matches are shown with
larger dots.
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families plus 142 families that were lost in one or more
modern CV genomes. This result suggests that the last
common CV ancestor had a gene pool size slightly big-
ger than the extant viruses that encode 257 to 288 pro-
tein families (Table 1). The ancestral families account for
82% to 88% of the protein repertoire in the modern CVs.
One hundred and five ancestral CV proteins also had
homologs in other NCLDV genomes and were poten-
tially inherited from an even older NCLDV ancestor;
however, 335 (53%) of the 632 predicted chlorovirus pro-
tein families could not be traced back to the CV ances-
tor, which most probably also infected chlorella-like
hosts. A fraction of them were presumably encoded in
the ancestral genome and subsequently lost in all of the
NC64A, Pbi and SAG viruses, so that their occurrence
in the common ancestor could not be established using
the parsimony criterion. Furthermore, we cannot rule
out that some of the ORFan genes (ORF without match
in sequence databases and the other chlorovirus sub-
genera) are erroneous predictions. Sequence randomi-
zation between non-ORFan genes indicates that on ave-
rage less than 1 ORF >300 bp in size can be obtained by
chance in a chlorovirus genome; 185 non-ancestral pro-
tein families were encoded by ORFs that have a median
length >300 bp. Alternatively, the corresponding genes
could have been gained after the divergence of the main
CV clades. There are three known mechanisms that can
lead to gene gain: duplication of existing genes, capture
of genes from other genomes through horizontal gene
transfer (HGT) and creation of new genes from non-
coding sequences de novo. Although gene duplicates
exist in the CVs, they were not considered in subsequent
analyses because in-paralogs were aggregated into
existing orthologous clusters in the construction of the
protein families.

Non-ancestral genes
The oligonucleotide frequency in a sequence is known
to be species-specific and can be used as a genomic sig-
nature [33]. Since DNA transfers originate from species
with a compositional signature different from that of the
recipient species, significant deviation of a signature
between ORFs and the rest of the genome may signal
recently transferred DNA. For each virus we constructed
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Figure 3 Characteristics of Chlorovirus protein families. A:
Distribution of protein families in the ancestral and non-ancestral
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index (CDI) in gene families. The number of gene families in a
category is given in parentheses. Distribution means are shown by a
red cross; medians are shown by horizontal lines in boxes. C:
Distribution of genomic locations of non-ancestral gene families. For
each family, we recorded the average genomic location for gene
members that occur in colinear genomes.
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a five-order non-homogeneous Markov chain model of
nucleotide frequency in the ORFs that were identified as
being vertically inherited from the last common CV an-
cestor (i.e., ancestral ORFs). This model was used to
compute a compositional deviation index (CDI) for an-
cestral and non-ancestral ORFs. The distributions of
CDI values shown in Figure 3B differed significantly be-
tween ancestral and non-ancestral ORFs (Kruskal–Wal-
lis test p < 0.0001 and Steel-Dwass-Critchlow-Fligner W*
test p < 0.0001 between each pairwise combination of
ancestral and non-ancestral CDI subsets). On average,
non-ancestral ORFs had lower CDI values meaning that
their nucleotide composition tends to exhibit a poorer
fit to the nucleotide frequency model. This trend was
true irrespective of the identification of homologs in da-
tabases or not. Furthermore, the distributions of CDI
values for long (>300 bp) and short (<300 bp) ORFan
families were not significantly different (Mann–Whitney
test p ~0.99). This suggests that at least a fraction of the
non-ancestral genes, including the genes with no
recognizable homologs in the database, have been cap-
tured by HGT from genomes with distinct nucleotide
compositional biases and that this event was sufficiently
recent so that the difference in nucleotide composition
is still visible.
To test this hypothesis, phylogenetic trees were

reconstructed from 35 of the 54 non-ancestral protein
families that had significant matches in Genbank. For
the remaining 19 protein families, no reliable phylogen-
etic tree could be generated due to the scarcity of hom-
ologous sequences or too high sequence divergences
between homologs. Most of the 35 phylogenetic trees
were not conclusive as to the exact evolutionary history
of the viral genes (Phylogenetic trees are shown in
Additional file 6: Figure S3 and a summary of the inter-
pretations is shown in Additional file 7: Table S4): In
many cases, CV proteins had relatively deep branches in
the tree implying that if the hypothesis of a recent HGT
is supportable, sequences of the donor genome or its
close relatives are not available in databases. Moreover,
cellular homologs were sometimes sporadically distrib-
uted among eukaryotes, bacteria and sometimes viruses,
and phylogenetic trees exhibited major discrepancies
with the accepted phylogeny of the organism. Altogether
these results suggest that these proteins are encoded by
genes that were frequently exchanged between cellular
organisms and between cellular organisms and viruses.
In nine of the phylogenetic trees the CV proteins
branched as a sister group to green algae or land plants.
However, in only one case did the CV proteins directly
branch on the C. variabilis branch, i.e., a tree topology
consistent with a recent HGT between viruses and hosts.
This HGT was readily identified as a capture of the algal
dUDP-D-glucose 4,6-dehydratase gene by SAG viruses

because the viral protein clade branched within the
green algal phylogenetic sub-tree (CL0780 in Additional
file 6: Figure S3). Thus, except for this obvious case, the
origin of the green algal-like viral genes is unclear. Three
alternative scenarios can explain this incongruence: (i)
CVs captured green algal genes during infection of other
algae that are distantly related to these hosts. However,
this hypothesis is not consistent with the apparent speci-
ficity of CVs for one of the three algal strains. (ii) CVs
captured genes from their “natural” algal host(s) but
these genes have been lost in the genome of the model
strain C. variabilis NC64A. (iii) CVs captured genes
within the algal host from other parasites or symbionts
(viruses or bacteria) that contain green algal genes. In
fact, 18 phylogenetic trees placed CV proteins in a sister
position to bacteria. For six of the concerned protein
families, homologs were also found in phages or other
DNA viruses.
Thus, although the non-ancestral genes exhibit specific

compositional features suggesting this subset is enriched
in sequences with a potential extraneous origin, a major-
ity of them (281 families) have no identifiable homolog
in the databases, and for those that do (54 families), only
a few produced a phylogenetic tree where the clade of
the donor organism could be identified with a reaso-
nable degree of confidence. Thus, if the hypothesis of ac-
quisition by HGT is supported for the non-ancestral CV
genes, they must originate from a DNA fraction that is
under-represented in public databases.
Finally, we investigated the location of the non-ancestral

genes within the CV genomes. The non-ancestral genes
are evenly distributed across the CV genomes (Figure 3C).
This contrasts with the cases of Mimiviridae and
Poxviridae, which have genus- and species-specific genes
clustered toward the extremities of their genomes,
whereas the conserved genes are clustered in the middle
[30,34]. This result reinforces the apparent differences bet-
ween the evolution of CV genomes and that of the mem-
bers of other NCLDV clades.

Gene exchanges with the algal host
Previous studies attempted to identify genes of cellular
origin in CV genomes [35]. It was estimated that 4 to 7%
of CV genes are of bacterial origin, and an additional 1
to 2% were acquired from the plant lineage [36] though
interpretation of the results was subject to controversy
[37]. These low numbers put into question the real sig-
nificance of HGT in CVs; however, the genome of the
host for the NC64A viruses was not sequenced at the
time of these previous studies. Since the release of the
C. variabilis genome sequence [38], no systematic study
of gene exchanges between CVs and the algal host has
been undertaken. It should be noted that the SAG virus
host, C. heliozoae, and Pbi host, M. conductrix, have not
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been sequenced. However, their close phylogenetic rela-
tionships with the host for the NC64A viruses permit
using the C. variabilis genome as a proxy for the other
host species. The above analysis of the non-ancestral
protein families already identified a case of gene acquisi-
tion by SAG viruses from the host; we completed this
study by investigating the phylogenetic affinities in the
ancestral protein family subset.
Out of the 297 ancestral families, 42 had significant

matches with C. variabilis homologs. Subsequent phylo-
genetic analysis identified seven families where the viral
protein clades branched next to C. variabilis homologs,
reflecting potential HGT between viruses and the host
(Additional file 8: Figure S4). For two of them, the likely
direction of HGT could be inferred as a capture of the
algal gene by the CV ancestor based on the placement of
the CV branch within the green algae clade. These 2 genes
encode a translation elongation factor EF-3 (CL0450) and
an unknown protein (CL0511). In yeast, EF-3 interacts
with both ribosomal subunits and facilitates elongation
factor EF-1-mediated cognate aminoacyl-tRNA binding to
the ribosomal A-site [39]. Thus, capture of the algal EF-3
gene may help CVs by enhancing protein biosynthesis
during infection. For the 4 remaining families (chitin
deacetylase, chitinase and 2 unknown proteins), C. varia-
bilis is the only plant organism to share these viral genes;
thus their vertical inheritance from an ancestor is more
unlikely as this would imply many subsequent gene losses
among the other descendants of the plant ancestor. An
alternative scenario involves gene captures by the algal
host from the virus genome. Although no lysogenic cycle
has yet been identified among CVs, some members of the
phycodnavirus family are known to integrate into the host
genome [40]. Thus, these algal genes may correspond to
remnants of ancient integrated genomes of unknown ly-
sogenic viruses.
Altogether, these results suggest that the CVs and their

hosts did not frequently exchange genes. Overall, only 3
genes showed evidence of capture through host-to-virus
exchanges and in 4 other genes the opposite scenario is
more likely (virus-to-host exchange). Furthermore, 2 of
the host-to-virus exchanges occurred before the diver-
gence of the CVs (i.e., in ancestral protein families),
suggesting that they could have contributed to the early
adaptation of viruses to their algal host. Thus, although
large viruses are often presented as mainly evolving by
recruiting genes from their hosts, this conjecture does
not hold true for the CVs.

Conclusion
One of the most striking findings from this study is that
more than half of the CV predicted protein families are
encoded by genes of recent extrinsic origin (after
Chlorovirus divergence) – most of which are also ORFans.

The proportion of non-ancestral genes in individual CV
genomes is substantial–12% to 18% of the protein fam-
ilies–though this proportion is similar to atypical genes of
likely extrinsic origin in bacterial genomes [38]; however
clues as to the potential donor genomes are lacking. The
algal host cytoplasm is probably the sole milieu where the
viral genome is accessible for recombination and acquisi-
tion of extrinsic genes. Consequently horizontally trans-
ferred genes can arise from 3 potential sources: (i) host
DNA, (ii) bacterial DNA, and (iii) DNA from other (per-
haps distantly related) viruses competing for the same
algal host.
Our study shows that the capture (and fixation) of

algal host DNA has been rare in the evolutionary history
of CVs and cannot explain the vast majority of non-
ancestral CV genes. Furthermore, we believe that bacte-
rial DNA is not a major source of extrinsic genes in
CVs: if non-ancestral genes were mainly of bacterial ori-
gin we would expect that the proportion of ORFans in
the non-ancestral gene data set to be comparable to the
proportion of ORFans in bacterial genomes. Estimated
frequencies for ORFans in bacterial genomes vary bet-
ween 7% for the most recent estimates [41] to 20–30%
for estimates made early in the history of genome ana-
lysis [42], when only the first organisms had been se-
quenced. These frequencies are significantly below the
frequency of ORFans in the non-ancestral CV protein
family dataset (from 141/195 = 72% if we only consider
“long” ORFans to 281/335 = 84% if we consider all pre-
dicted genes).
Thus if the conjecture of acquisition by HGT is true

for the non-ancestral CV genes, they must originate
from a still largely un-sequenced reservoir of genomes.
The biological entities that match best with this charac-
teristic are the viruses themselves. Viruses are by far the
most abundant entities in aquatic environments and we
are only now realizing the extraordinary range of global
viral biodiversity [8]. Thus, we suspect that the apparent
incongruence between compositional evidence of HGT
and lack of donor (or close relative) sequences in the da-
tabases reflect the fact that non-ancestral CV genes
arose from recombination with other unknown viruses
that infect the same hosts. However, this does not rule
out alternate hosts that could be underrepresented in
the existing databases as possible donors.

Methods
Virus isolation and storage
The set of viruses used in this study were collected at
different times over several years from various terrestrial
waters around the world (see Additional file 9: Table S5).
The water samples were evaluated for plaque-forming
viruses on the specific algal host, and the plaque isolates
were chosen based on phenotypic characteristics of
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interest or for geographic distribution purposes. The
intention was to evaluate a broad spectrum of chloro-
viruses with approximately an equal number infecting
each of the three algal hosts. The plaque isolates were
plaque purified at least two times, then amplified in
liquid culture for the purposes of virus purification using
the method previously described [14]. The purified
viruses were plaque assayed to determine the number of
infectious particles and stored at 4°C.

DNA isolation
Viral DNA was purified from virions that had been
treated with DNase I (10 units/ml in 50 mM Tris–HCl
pH 7.8/1 mM CaCl2/10 mM MnCl2 at 37°C for 1 hr),
using the UltraCleanWBlood DNA Isolation Kit (MO
BIO Laboratories, Carlsbad, CA). The DNA was evalu-
ated for quantity and quality by measuring absorbance
at 260 and 280 nm with a Thermo Scientific NanoDrop
2000 spectrophotometer, and by measuring fluorescence
of dye-augmented DNA using the PicoGreen and a
Qubit fluorometer (Invitrogen, Carlsbad, California).

Genomic library preparation and sequencing
Genomic libraries were constructed from pairs or trip-
lets of pooled viral genomic DNA. A schematic repre-
sentation of the multiplexed sequencing pipeline is
shown in Additional file 10: Figure S5. Using the Roche
Rapid Library Preparation method for GS FLX Titanium
chemistry (Roche 454 Life Sciences, Branford, Connec-
ticut), sample DNA was fragmented by nebulization.
DNA fragments were end repaired with polynucleotide
kinase and T4 DNA polymerase, then purified by size
exclusion chromatography. Selected DNA fragments
were ligated to a Rapid Library Multiplex Identifier
(MID) adaptor designed for GS FLX Titanium chemis-
try. The MID adaptors were designed with a unique
decamer sequence to facilitate multiplex sequencing
with the 454 technology, such that the resulting library
reads can be reliably sorted after sequencing using SFF
software tools. MID adaptor ligated DNA fragments
were again size selected by chromatography, quantified
with a TBS-380 mini-fluorometer (Promega, Madison,
Wisconsin). The Rapid Library quality was assessed with
an Agilent Bioanalyzer High Sensitivity DNA chip
(Agilent Technologies, Santa Clara, California). The
average fragment length was between 600 bp and 900 bp,
with the lower size cut-off at less than 10% below 350 bp.
Pooled DNAs were titrated to obtain the optimal copies
per bead (cpb). After titration, 3 cpb was chosen as the
best DNA and bead ratio and corresponding amounts of
DNA were added to the subsequent emPCR reactions.
EmPCR was performed with the 454/Roche Lib-L (LV)
kits following manufacturer's protocol for the Roche 454
GS FLX Titanium.

Sequence assembly and gene prediction and annotation
All of the viral DNA genomic libraries, as emPCR prod-
ucts, were sequenced through two duplicated multiplex
runs on a Roche GS FLX Titanium sequencer. 454 image
and signal processing software v.2.3 generated a total of
2,434,736 PassedFilter reads after removing reads under 40
bp in length. The raw data from the 454-pyrosequencing
machine were first processed through a quality filter and
only saved sequences that met the following criteria: i)
contained a complete forward primer and barcode, ii)
contained no more than one “N” in a sequence read where
N is equivalent to an interrupted and resumed signal from
sequential flows, iii) reads were 200 to 500 nts in length,
and iv) reads had a average quality score of 20. Using SFF
tools implemented in the 454 GS-Assembler 2.3, each read
was trimmed to remove 3’ adapter and primer sequences
and was parsed by a MID adaptor barcode. The corres-
ponding QUAL file also was updated to remove quality
scores from reads not passing quality filters. This proce-
dure allowed the unambiguous assignment of 2,429,860
reads of 384-bp on average to the corresponding genomic
libraries
Separate assembly for each library was performed by

the MIRA assembler version 3.2.0 using the following
parameters: --job = denovo, genome, accurate, 454 -DP:
ure = yes -CL:emrc = yes -AL:mo = 50 -ED:ace = yes.
Overall a total of 1557 contigs containing 2,330,493
reads were generated.
The resulting contigs were assigned to their corre-

sponding viruses and ordered between each other by
alignment against reference viral genomes, e.g. PBCV-1,
NY-2A, and AR158 for NC64A viruses [GenBank:
JF411744, DQ491002, DQ491003], ATCV-1 for SAG
viruses [GenBank:EF101928] and MT325 and FR483 for
Pbi viruses [GenBank:DQ491001, DQ890022].
A first list of putative ORFs was constructed using the

GeneMarkS program (using the -lo and -op options)
[43]. A list of potential ORFs (size >60 codons) occur-
ring in the intergenic regions between GeneMarkS pre-
dicted genes was compiled. These potential ORFs were
added to the predicted gene list only if they had a signifi-
cant match (BLASTP e-value < 1e-5) in the Genbank
non-redundant (nr) database, omitting matches in the
Chlorovirus genus. Predicted proteins were functionally
annotated based on match against multiple sequence
databases, including Swissprot, COG, Pfam and nr da-
tabases using an e-value threshold of 1e-5 for both
BLASTp and HMMer searches. tRNAs genes were pre-
dicted using the tRNAscan-SE program, ignoring
pseudo- and undetermined-tRNAs.

Protein clustering
Putative orthologous protein pairs were first identified
using the reciprocal best BLASTp hit criterion and
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assembled into orthologous clusters by the single-
linkage clustering method. Putative orthologous proteins
of four sequenced Ostreococcus viruses were also in-
cluded in the clustering scheme to serve as an outgroup
in subsequent analyses. In-paralogs (resulting from the
duplication of a protein gene after divergence of two
viral lineages) were assigned to existing orthologous
clusters if their alignment scores with one protein of a
cluster were greater than any of the alignment scores
between this protein and the other members of the
cluster.

Phylogenetic analysis
Phylogenetic analysis was performed using the following
general pipeline: homologous sequences were searched in
databases using the BLAST EXPLORER tool [43].
Multiple-sequence alignments were performed using the
MUSCLE program [44], followed by manual edition, and
removal of gaped sites and poorly aligned regions. Phylo-
genetic trees were reconstructed using the PHYML pro-
gram (Maximum likelihood) [45] and Mega 4 (Neighbor
Joining and maximum parsimony) [46]. Statistical support
for branches was assessed using 1000 bootstrap datasets.

Chlorovirus ancestor gene content
Given the phylogeny of the sequenced CV shown in
Figure 1A, protein families that contained at least one
member in one of the NC64A viruses and at least one
member in one of the Pbi viruses or SAG viruses were
considered as being inherited from the last common CV
ancestor. A total of 290 protein families were identified
as “ancestral” by this procedure. In addition, 7 protein
families that are a sister group to homologs in NCLDV
in phylogenetic ML trees were considered to be
inherited from the last common ancestor. Thus the gen-
ome of the last common CV ancestor was inferred to
encode at least 297 protein families.

Compositional deviation index
To distinguish between intrinsic and extrinsic genes, a
compositional deviation index (CDI) was computed. The
CDI score reflects how much the nucleotide compos-
ition of an ORF deviates from that of a reference set of
ancestral ORFs. Thus, an extrinsic ORF integrated into
the genome is distinguished from the recipient genome
sequences by the nucleotide composition, unless the
donor and recipient species are close relatives with simi-
lar nucleotide compositional biases. Ancient transferred
genes may be indistinguishable, because the nucleotide
composition of horizontally transferred genes generally
converges with that of the recipient genome by mutation
pressure. Thus, this procedure preferentially detects re-
cent horizontally transferred genes for which the com-
positional convergence process has not been completed.

Our method for computing CDI scores was largely
inspired from earlier works on gene finding [47] and
extrinsic DNA identification [48]; these two references
contain detailed explanations of the statistical framework
and construction of the model. A non-homogenous
Markov model for ancestral coding nucleotide sequences
was defined by four components: P0, the initial probabil-
ity vector for starting k-bp tuples j in ancestral ORFs,
and P1, P2, P3, three transition matrices that define the
probability that a k-tuple j whose first nucleotide occu-
pies respectively the f = 1st, 2d or 3th position in a codon,
is followed by one of the four possible nucleotides (i).
The likelihood of finding an ORF of length l given the
model is:

PðORF CODancj Þ ¼ P0 j1ð ÞP1ðikþ1 j1
�
� ÞP2ðikþ2 j2

�
� ÞP3 ikþ3 j3

�
� �

. . . Pf il jl�k

�
� ���

Numerical values of the parameters of the model (P0,
P1, P2 and P3) were derived from the count of k-tuples
Nj and (k + 1)-tuples N(j,i) in the training sequence set
containing all ancestral ORF of a CV. That is, initiation
probabilities were taken as the frequencies of k-bp tuples,
and transition probabilities were equal to N(j,i)

f /N(j)
f . The

order of the Markov chains was set to five (k = 5) to avoid
an overfitting of the parameters.
For each ORF, the CDI value was computed as follows:

first the mean and standard deviation (SD) of P(ORFr|
CODanc) for 100 random coding sequences emitted from
the Markov chain model was determined. The random
sequences had the same length that the ORF for which
CDI was computed. The CDI was calculated according
to the formula:

CDIORF ¼ PðORF CODancj Þ � �PðORFr CODancj Þ
SDP ORFr CODancj Þð

The expectation is CDI = 0 for ORFs with nucleotide
compositions that fit with the model for ancestral coding
nucleotide sequences, while ORFs whose nucleotide
composition significantly deviates from the model shall
have CDI ≠ 0.

Additional files

Additional file 1: Table S1. 632 Chlorovirus protein families.

Additional file 2: Table S2. Example of orthologous protein clusters
viewed for the first time in Chloroviruses.

Additional file 3: Figure S1. Neighbor joining tree of the reference
concatenated alignment. The NJ tree of chloroviruses is based on a
concatenated alignment of 32 core protein families (7762 gap-free sites).
Phylogenetic distances were computed using the WAG + G + I
substitution model. Branch support was estimated from 1000 bootstrap
replicates. We only show bootstrap values < 90%. Branches that differed
from the ML and MP trees are colored in red.

Additional file 4: Figure S2. Maximum parsimony tree of the reference
concatenated alignment. The MP tree of chloroviruses is based on a
concatenated alignment of 32 core protein families (7762 gap-free sites).
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Phylogenetic tree was computed using the close-neighbor-interchange
method. Branch support was estimated from 1000 bootstrap replicates.
We only show bootstrap values <90%.

Additional file 5: Table S3. PBCV-1 genes missing in the KS1B genome
as the result of a 35Kb deletion.

Additional file 6: Figure S3. 35 phylogenetic trees of non-ancestral
Chlorovirus protein families. Trees were reconstructed using the ML
method using the WAG + G + I substitution model. Interior branch
support was estimated by the approximate likelihood ratio test (aLRT).
For the sake of clarity, we only show branch support for important
clades. Taxon names are colorized according to taxonomic information:
Chlorovirus (red), chlorophytes (dark green), streptophytes (light green),
eukaryote (violet), prokaryote (pink) and DNA virus (blue). Genbank gi
numbers are given after species names. Protein family ID and functional
annotation are given above each tree. )

Additional file 7: Table S4. Sister groups to non-ancestral Chlorovirus
proteins based on 35 phylogenetic trees shown in Additional file 7: Figure S3.

Additional file 8: Figure S4. Phylogenetic trees showing potential HGT
between chloroviruses and Chlorella. Trees were reconstructed using the
ML method using the WAG + G + I substitution model. Interior branch
support was estimated by the approximate likelihood ratio test (aLRT).
For the sake of clarity, we only show branch support for important
clades. Taxon names are colorized according to taxonomic information:
Chlorovirus (red), chlorophytes (dark green), streptophytes (light green),
eukaryote (violet), prokaryote (pink) and DNA virus (blue). Genbank gi
numbers are given after species names. Protein family ID and functional
annotation are given above each tree.

Additional file 9: Table S5. Attributes of the sequenced chloroviruses.

Additional file 10: Figure S5. Schema of the multiplexed sequencing
strategy.
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Table S2: Examples of orthologous protein clusters viewed for the first time in Chloroviruses. 

Cluster ID Putative function 
CL0049 Fumarate reductase 
CL0462 Acetyltransferase 

CL0875 
SAM-dependent 
Methyltransferase   

CL0940 Nitroreductase 
CL0963 Glycosyl hydrolase 
CL1018 Helicase 

 



Pbi NE-JV-1
Pbi OR0704.2.2
Pbi CZ-2
Pbi Fr5L

Pbi MT325 Ref
Pbi Can18-4

Pbi CVM-1
Pbi AP110A
Pbi CVR-1
Pbi CVA-1
Pbi CVG-1
Pbi NW665.2
Pbi FR483 Ref
Pbi CVB-1

SAG MN0810.1
SAG Canal-1
SAG GM0701.1

SAG Br0604L
SAG TN603.4.2
SAG NTS-1
SAG OR0704.3
SAG Can0610SP
SAG NE-JV-2
SAG NE-JV-3
SAG ATCV1 Ref
SAG MO0605SPH
SAG WI0606

NC64A NYs-1
NC64A NY-2B
NC64A AR158 Ref
NC64A MA-1D
NC64A IL-5-2s1
NC64A NY2A Ref

NC64A PBCV1 Ref

NC64A KS1B
NC64A AN69C
NC64A IL-3A
NC64A NE-JV-4
NC64A MA-1E
NC64A CvsA1
NC64A CviKI

OtV2
OlV1

OtV1
OsV5

88

74

88

80

0.2

NC64A KS1B

NC64A AN69C

NC64A IL-3A

NC64A NE-JV-4

NC64A MA-1E

NC64A CvsA1

NC64A CviKI

59

71

48

0.002

SAG OR0704.3
SAG Can0610SP

SAG NE-JV-2
SAG NE-JV-3

SAG ATCV1 Ref
SAG MO0605SPH
SAG WI0606

29

59

83

0.002

Pbi OR0704.2.2
Pbi CZ-2

Pbi Fr5L
Pbi MT325 Ref

Pbi Can18-4
Pbi CVM-1

Pbi AP110A
Pbi CVR-1
Pbi CVA-1

Pbi CVG-1
Pbi NW665.2

Pbi FR483 Ref
Pbi CVB-1

73

61

7124

45

86

73

0.005

Figure S1



Pbi NE-JV-1
Pbi Fr5L
Pbi CZ-2
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Pbi MT325 Ref
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SAG Canal-1
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SAG NTS-1
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SAG Can0610SP
SAG NE-JV-2
SAG ATCV1 Ref
SAG NE-JV-3
SAG WI0606
SAG MO0605SPH

NC64A NY2A Ref
NC64A NYs-1
NC64A NY-2B
NC64A AR158 Ref
NC64A MA-1D
NC64A IL-5-2s1

NC64A PBCV1 Ref
NC64A CME6
NC64A AN69C
NC64A IL-3A
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NC64A KS1B
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NC64A CvsA1
NC64A MA-1E

OtV1
OsV5

OlV1
OtV2

77
64
68
78

85

61

41

58

57

27
19

60

65

87

40

86

41

66

87

500

Figure S2



Table S3 : PBCV-1 genes missing in the KS1B genome as the result of a 35Kb deletion 

PBCV-1 gene name Predicted function 

A002L Unknown protein 

A002bL Hypothetical protein 

A002cR Hypothetical protein 

A003R Unknown protein 

A005R Unknown protein 

A007/008L Unknown protein 

A009R Unknown protein 

A010R Capsid protein 

A011L Capsid protein 

A014R Unknown protein 

A018L Unknown protein 

A025/027/029L Unknown protein 

A034R Protein kinase 

A035L Unknown protein 

A037L Unknown protein 

A039L Unknown protein 

A041R Unknown protein 

A044L Unknown protein 

A048R Unknown protein 

A049L Unknown protein 

A050L 
Pyrimidine dimer-specific 

glycosylase 

A050aL Hypothetical protein 

A051L Unknown protein 

A053R Unknown protein 

A058L Hypothetical protein 

A057aR Hypothetical protein 

A060L Unknown protein 

A061L Unknown protein 

A063L Unknown protein 

 



SAG NE-JV-2 387R.1
SAG NE-JV-3 352R.1
SAG ATCV1 Ref Z300R
SAG NTS-1 395R.1
SAG WI0606 380R.1
SAG TN603.4.2 350R.1
SAG Br0604L 357R.1
SAG GM0701.1 358R.1
SAG MO0605SPH 363R.1
SAG Can0610SP 359R.1
SAG OR0704.3 359R.1
SAG MN0810.1 384R.1

SAG Canal-1 347R.1
Pbi MT325 Ref M030R
Pbi CVA-1 045R.1
Pbi CVR-1 051R.1
Pbi CVM-1 057R.1
Pbi AP110A 058R.1
Pbi CVB-1 060R.1

Pbi Fr5L 080R.1
Pbi CZ-2 052R.1
Pbi OR0704.2.2 056R.1
Pbi Can18-4 051R.1

Pbi NE-JV-1 807L.1
Chlorella variabilis 307104568

Asterochloris sp. scaffold 0002
Coccomyxa subellipsoidea C169v2-07739

Ectocarpus sillicosus Ecto-07825
Physcomitrella patens Physco-29421

Francisella noatunensis 387886307
Francisella tularensis 56707304

Cellulophaga lytica 325285705
Niastella koreensis 375144067

Roseiflexus castenholzii 156742020
Streptococcus uberis 222152715

Streptococcus pyogenes 50913810
Streptococcus porcinus 332523187
Streptococcus pseudoporcinus 313890262
Streptococcus agalactiae 22537793
Streptococcus agalactiae 77410628

Clostridium botulinum 251777627
Clostridium botulinum 168180808
Clostridium perfringens 110800394

Weissella cibaria 332638137
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15

98

90

78

86

98

78

100
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100
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90

89
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89

64

54

99

45

98
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71

97

75

47

100

0.2

Figure S3

CL0466: MIP family channel protein



SAG ATCV1 Ref Z544R
SAG NE-JV-3 648R.1
SAG NTS-1 681R.1
SAG MO0605SPH 625R.1
SAG WI0606 651R.1
SAG Can0610SP 658R.1
SAG OR0704.3 639R.1
SAG NE-JV-2 672R.1
SAG Br0604L 631R.1
SAG TN603.4.2 625R.1
SAG GM0701.1 629R.1

SAG Canal-1 576R.1
SAG MN0810.1 689R.1

Chlorella variabilis 307110009
Chlamydomonas reinhardtii 159487407

Volvox carteri 302844237
Coccomyxa subellipsoidea C-169 384250729

Coccomyxa subellipsoidea 384246811
Chlorella variabilis 307104751

Ostreococcus lucimarinus 145356123
Ostreococcus lucimarinus 145356112
Ostreococcus tauri 308813917

Micromonas pusilla 303276052
Micromonas sp. RCC299 255073829

Ostreococcus tauri 308804527
Selaginella moellendorffii 302762504
Physcomitrella patens 168028758
Physcomitrella patens 168054569

Arabidopsis thaliana 15218420
Arabidopsis thaliana 15231926
Arabidopsis thaliana 42562732

Zea mays 212274887
Homo sapiens 7657641

Xenopus tropicalis 301619909
Entamoeba dispar 167395152

Entamoeba histolytica 67482319
Entamoeba histolytica 67473445

Entamoeba dispar 167385482
Thalassiosira pseudonana 224002825
Phaeodactylum tricornutum 219121781

Phytophthora infestans 301101235

44

95

100

99

24
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99

66

88
84

95

99

99

98
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0.2

CL0780: dUDP-D-glucose 4,6-dehydratase
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Magnaporthe grisea 39943078
Thielavia terrestris 367052929
Myceliophthora thermophila 367019110
Neurospora crassa 85119766
Sordaria macrospora 336262926
Sclerotinia sclerotiorum 156054748
Botryotinia fuckeliana 154289525

Ajellomyces dermatitidis 261192647
Uncinocarpus reesii 258577995

Penicillium marneffei 212545713
Aspergillus fumigatus 70983656
Neosartorya fischeri 119484630
Aspergillus clavatus 1 121719922

Coprinopsis cinerea 169847377
Laccaria bicolor 170097978

Schizophyllum commune 302681769
Ustilago maydis 71021775
Cryptococcus neoformans 321258492

Micromonas sp. RCC299 255079238
Micromonas pusilla 303283856

Ostreococcus tauri 308810629
Ostreococcus lucimarinus 145353596
Monosiga brevicollis 167521137

Schizosaccharomyces pombe 19115151
Schizophyllum commune 302681149

Candida glabrata 50289761
Saccharomyces cerevisiae 6322511

Saccharomyces cerevisiae 6320788
Candida glabrata 50292783

Aspergillus oryzae 317144192
Caenorhabditis elegans 71986328
Brugia malayi 170573380
Trypanosoma cruzi 71400421

Leishmania major 72547421
Cyanophora paradoxa 23026

Fusobacterium ulcerans 317064548
Fusobacterium varium 340759139
Fusobacterium periodonticum 291461012

Anaerococcus prevotii 257065655
Lactobacillus salivarius 301300680

Paenibacillus dendritiformis 374605926
Phytophthora infestans 301105655

Pbi CZ-2 917L.1
SAG Canal-1 886R.1
SAG NE-JV-3 981R.1
SAG WI0606 962R.1
SAG MO0605SPH 943R.1

Chlorella variabilis 307106539
Volvox carteri Volvox-03388

Chlamydomonas reinhardtii Chlamy-05482
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32

98
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89

100

80
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47
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92

99
64

99
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80
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86

100

88

99

100
100

89

51

100
93

99

99

85
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78

83

100

80
99

98

0.2

CL0049: NADH-dependent fumarate reductase
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NC64A AR158 Ref C174R
NC64A IL-5-2s1 068R.1
NC64A NYs-1 188R.1
NC64A NY-2B 210R.1
NC64A IL-5-2s1 069R.1
NC64A NYs-1 189R.1
NC64A NY-2B 209R.1

NC64A KS1B 086R.1
NC64A PBCV1 Ref A133R
NC64A CME6 156R.1
NC64A AN69C 151R.1
NC64A MA-1E 151R.1
NC64A CviKI 144R.1
NC64A CvsA1 150R.1
NC64A NE-JV-4 156R.1
NC64A IL-3A 147R.1

NC64A NY2A Ref b184R
NC64A MA-1D 087R.1
NC64A MA-1D 088R.1

Micromonas pusilla 303286071
Micromonas sp. RCC299 255075137
Ostreococcus sp. RCC809 01146
Ostreococcus lucimarinus 145344894

Ostreococcus tauri 308801781
Asterochloris sp. 05704

Volvox carteri 302852549
Chlamydomonas reinhardtii 159471025

Coccomyxa sp. C-169 384250113
Chlorella variabilis 307108772

Physcomitrella patens 168043272
Physcomitrella patens 168037112

Arabidopsis thaliana 18399513
Oryza sativa 125558787

Picea sitchensis 116782547
Selaginella moellendorffii 302807588

Vaucheria litorea 375332109
Synechococcus sp. 260436777

Prochlorococcus marinus 159903384
Prochlorococcus marinus 33862947

Synechococcus elongatus 56750022
Cyanothece sp. 220910509

Lyngbya majuscula 332705256
Microcoleus vaginatus 334116992
Oscillatoria sp. 300866330

Nostoc punctiforme 186685250
Anabaena variabilis 75910773

Acaryochloris marina 158338004
Arthrospira platensis 291567260

cyanobacterium 284929212
Cyanothece sp. 126658461

Crocosphaera watsonii 67921410
Synechocystis sp. 16330615

Microcystis aeruginosa 166367182
Synechococcus sp. 86606816
Gloeobacter violaceus 37520969
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CL0624: THYLAKOID FORMATION 1
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Ectocarpus siliculosus 299473287
Phytophthora sojae 348673261

Albugo laibachii 325194309
Aureococcus anophagefferens 323456648

Ichthyophthirius multifiliis 340503507
Eimeria tenella 357016983

Neospora caninum 325120767
Toxoplasma gondii 237842517

Volvox carteri 302851966
Chlamydomonas reinhardtii 159483353

Chlorella variabilis 307102822
Asterochloris sp. 05063

Coccomyxa sp. C-169 384249120
Micromonas pusilla 303288994

Micromonas sp. RCC299 255082616
Physcomitrella patens 168038485

Picea sitchensis 116785703
Selaginella moellendorffii 302756413

Arabidopsis thaliana 18406032
Arabidopsis thaliana 15231105

Physcomitrella patens 168030338
Oryza sativa 323388859

Pbi NE-JV-1 174L.1
SAG GM0701.1 621L.1

SAG MN0810.1 681L.1
SAG Canal-1 566L.1

SAG TN603.4.2 613L.1
SAG Br0604L 623L.1

SAG NE-JV-2 661L.1
SAG Can0610SP 648L.1
SAG ATCV1 Ref Z533L
SAG WI0606 639L.1

SAG NE-JV-3 634L.1
SAG NTS-1 669L.1
SAG OR0704.3 630L.1
SAG MO0605SPH 616L.1
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CL0778: unknown function
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SAG NE-JV-3 983L.1
SAG OR0704.3 1017L.1
SAG ATCV1 Ref Z838L
SAG WI0606 964L.1
SAG MO0605SPH 945L.1
SAG Canal-1 889L.1

Pbi CZ-2 002R.1
Pbi OR0704.2.2 006R.1
Pbi Fr5L 035R.1
Volvox carteri 302848362

Chlamydomonas reinhardtii 158270845
Spirochaeta africana 383791581

Herpetosiphon aurantiacus 159901278
Roseiflexus castenholzii 156740149

Nitrosococcus halophilus 292491694
planctomycete KSU-1 386813384

Opitutus terrae 182413606
Opitutaceae bacterium 373851403

Monosiga brevicollis 167525050
Rhodothermus phage 30044005

Mycobacterium phage Che12 109392503
Mycobacterium phage L5 9625480
Mycobacterium phage Pukovnik 192824226

Mycobacterium phage Peaches 282598656
Rhodococcus phage RER2 372449936

Lactobacillus delbrueckii 385814879
Lactobacillus amylovorus 315037275

Nitratifractor salsuginis 319957107
Sulfurovum sp. 386284286

Nitratiruptor sp. 152990561
Dictyostelium purpureum 330844781
Dictyostelium discoideum 66801255

Phytophthora infestans 301118661
Naegleria gruberi 290993049

Anabaena variabilis 75907892
Thermosynechococcus elongatus 22298870

Prochlorococcus marinus 123968251
Clostridium sticklandii 310659559
Acetonema longum 338814919
Alkaliphilus metalliredigens 150392202

Alkaliphilus oremlandii 158319503
Halanaerobium sp. sapolanicus 312142435

Clostridium difficile 255316678
Clostridium beijerinckii 150017380

Paenibacillus elgii 357010323
Brevibacillus brevis 226310972
Thermus phage 157265425
Thermus phage 157265307

Azorhizobium caulinodans 158425213
Roseobacter phage 9964628
Labrenzia alexandrii 254505314

Waddlia chondrophila 297620575
Candidatus Protochlamydia amoebophila 46445745
Parachlamydia sp. 282892477
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CL0796: ribonucleoside-triphosphate reductase
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Piriformospora indica 353242932
Glycine max 356535196

Vitis vinifera 296080941
Zea mays 226493526

Selaginella moellendorffii 302774525
Pbi CVB-1 281R.1
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Fischerella sp. 354568186
Microcoleus chthonoplastes 254413095

NC64A CviKI 069R.1
NC64A MA-1E 070R.1
NC64A CvsA1 025R.1

Cyanophora 00145 Cyanophora 00145
Asterochloris sp. Aster-07288
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Prevotella nigrescens 340350644
Prevotella intermedia 387132232

Prevotella micans 373499515
Prevotella disiens 303236718

Prevotella pallens 340351937
Prevotella melaninogenica 288801573
Prevotella sp. C561 345883033
Prevotella melaninogenica 302345014

Prevotella histicola 357043602
Prevotella sp. 383812071
Prevotella amnii 307565749

Prevotella bivia 282858438
Acinetobacter sp. 50083841

NC64A AN69C 065R.1 NC64A AN69C 065R.1
NC64A IL-3A 060R.1 NC64A IL-3A 060R.1
NC64A NE-JV-4 074R.1 NC64A NE-JV-4 074R.1
NC64A KS1B 09R.1 NC64A KS1B 09R.1

NC64A PBCV1 Ref A064R NC64A PBCV1 Ref A064R
Coccomyxa subellipsoidea 384249525
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CL0063: unknown function

CL0978: unknown function

CL0375: glycosyltransferase
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Arcanobacterium haemolyticum 297571693
Actinomyces odontolyticus 154509613
Actinomyces sp. 320532386

Actinomyces viscosus 326771957
Gardnerella vaginalis 388063331

Mobiluncus curtisii 315655006
Alcanivorax sp. 254427510
Alcanivorax borkumensis 110834558

Limnobacter sp. 149925589
marine actinobacterium 383806858

Nostoc punctiforme 186682475
Mycobacterium marinum 183981752

SAG TN603.4.2 1019R.1
marine actinobacterium 383806746
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SAG Br0604L 190L.1
SAG TN603.4.2 200L.1

SAG WI0606 206L.1
SAG MO0605SPH 203L.1
SAG NTS-1 210L.1
SAG NTS-1 211L.1

SAG GM0701.1 198L.1
SAG MN0810.1 226L.1

Pbi FR483 Ref N176R
Pbi CVG-1 196R.1
Pbi MT325 Ref M173R

Prochlorococcus marinus 157413755
Candidatus Pelagibacter 71083270

Cyanophage 326781953
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NC64A MA-1E 591L.1
NC64A CviKI 481L.1
NC64A CvsA1 498L.1

Caulobacter crescentus 16125360
Patulibacter sp. 367470983
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CL0940: Nitroreductase

CL0065: unknown function

CL0879: unknown function
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Shewanella woodyi 170726349
Halobacillus halophilus 386713297

Cyanophage 326781949
Fusobacterium periodonticum 262066744

Roseburia intestinalis 291534687
Bacteroides sp. 336405564

Bacteroides ovatus 160883767
Bacteroides xylanisolvens 295087215
Bacteroides sp. 336404717
Bacteroides eggerthii 218128514

Bacteroides ovatus 336415870
Campylobacter jejuni 384448660

Campylobacter lari 222823347
Helicobacter pullorum 242310103
Helicobacter bilis 237751100

Flavobacterium johnsoniae 146298111
Denitrovibrio acetiphilus 291288583

Helicobacter winghamensis 237752406
Bacteroides fragilis 60683140

Campylobacter upsaliensis 315637958
Campylobacter upsaliensis 57505527
Azospirillum lipoferum 374999544

Agrobacterium vitis 222148914
Maricaulis maris 114571013
Brevundimonas sp. 254417925
Brevundimonas diminuta 329888505

Zymomonas mobilis 338708055
Magnetospirillum magnetotacticum 46200690

Magnetospirillum magneticum 83309255
bacterium Ellin514 223938227

Nitrosopumilaceae archaeon 329766637
Prochlorococcus marinus 157413754

SAG Br0604L 186R.1
SAG TN603.4.2 194R.1
SAG GM0701.1 193R.1

SAG NTS-1 205R.1 SAG
SAG MN0810.1 221R.1

Pbi FR483 Ref N177L
Pbi MT325 Ref M174L
Pbi CVG-1 197L.1

SAG WI0606 201R.1
SAG MO0605SPH 198R.1

Pseudomonas syringae 330959932
Pseudomonas syringae 237797528

Yersinia enterocolitica 50982343
Enterobacteriaceae bacterium 317491665

Leptotrichia buccalis 257126881
Oribacterium sp. 363900343

Oribacterium sp. 363897931
Butyrivibrio proteoclasticus 302669519
Clostridium sp. 283795736

Clostridium hathewayi 358062026
bacterium Ellin514 223938201

Clostridium symbiosum 323694844
Clostridium symbiosum 323484622

Enterococcus faecium 257879959
Paenibacillus sp. 334134435

Bradyrhizobium sp. 365884216
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CL0878: dTDP-glucose pyrophosphorylase /HAD superfamily hydrolase
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Phage 148609438
Escherichia coli 345391063
Shigella dysenteriae 320172932
Escherichia coli 378067331
Escherichia coli 218703091
Escherichia coli 324117943
Escherichia coli 330908667
Enterobacteria phage 19549035
Escherichia coli 323965397

Enterobacter mori 354724325
Escherichia coli 386245419
Escherichia coli 193064850

Citrobacter sp. 237731137
Citrobacter freundii 365101667

Klebsiella oxytoca 376400371
Pantoea vagans 308186460

Xenorhabdus bovienii 290474297
Xenorhabdus nematophila 300724259

Vibrio sp. 262403655
Vibrio cholerae 153818467

NC64A NY-2B 007R.1
NC64A IL-5-2s1 006R.1
NC64A MA-1D 09R.1
NC64A NY2A Ref B010R

Prevotella timonensis 282881331
Campylobacter showae 255321947
Crocosphaera watsonii 67921543

Crocosphaera watsonii 357264967
Cyanothece sp. 172039381

uncultured euryarchaeote 255513890
Bacillus sp. 313667091
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SAG ATCV1 Ref Z752L
SAG OR0704.3 886L.1
SAG NE-JV-3 875L.1

SAG Can0610SP 894L.1
SAG NE-JV-2 905L.1

SAG NTS-1 939L.1
SAG WI0606 855L.1
SAG MO0605SPH 840L.1

SAG TN603.4.2 907L.1
SAG Br0604L 871L.1

SAG GM0701.1 890L.1
SAG MN0810.1 939L.1

SAG Canal-1 785L.1

Pbi NE-JV-1 603L.1
Kytococcus sedentarius 256825656

Synechococcus sp260434725
Flexistipes sinusarabici 336322984

Variovorax paradoxus 239813775
Polaromonas sp. 91789839

Lawsonia intracellularis 94987426
Syntrophobacter fumaroxidans 116750746

Flavobacteriaceae bacterium 255536273
bacterium S5 317050405

Roseibium sp. 307947383
Salinibacter ruber 294507297
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CL0222: DNA methylase

CL0792: mannose-6-phosphate isomerase
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Pbi CVA-1 278L.1
Pbi AP110A 290L.1
Pbi CVR-1 285L.1
Pbi CVG-1 276L.1
Pbi CVM-1 301L.1
Pbi FR483 Ref N241L
Pbi NW665.2 262L.1

Pbi CVB-1 297L.1
Pbi Can18-4 299L.1
Pbi MT325 Ref M241L
Pbi Fr5L 277L.1
Pbi CZ-2 245L.1
Pbi OR0704.2.2 238L.1

SAG MO0605SPH 176R.1
SAG WI0606 179R.1

SAG ATCV1 Ref Z143R
SAG NE-JV-3 171R.1
SAG Can0610SP 166R.1
SAG OR0704.3 174R.1

SAG Br0604L 168R.1
SAG TN603.4.2 173R.1

SAG GM0701.1 174R.1
SAG NE-JV-2 182R.1

SAG MN0810.1 199R.1
SAG Canal-1 184R.1

Pseudoalteromonas tunicata 88860376
Yersinia ruckeri 238753454

Neptuniibacter caesariensis 89094050
Cronobacter phage 383395953

Ochrobactrum anthropi 153008364
Ochrobactrum intermedium 239832954

Brucella suis 23502729
Brucella sp. 306844849
Brucella canis 161619794
Brucella sp. 265982889
Brucella canis 376275528
Brucella melitensis 17986468
Brucella melitensis 229597571
Brucella ceti 261217708

Colwellia psychrerythraea 71281919
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Azoarcus sp. 56477892
Thauera sp. 217969587

Polaromonas naphthalenivorans 121603554
SAG NE-JV-3 869R.1

SAG OR0704.3 879R.1
SAG Canal-1 002L.1

Laribacter hongkongensis 226940312
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CL0482: glutaredoxin-like

CL0055: unknown function
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Tetraodon nigroviridis 47212098
Drosophila melanogaster 24642586

Mixia osmundae 14324 358058556
Melampsora laricis-populina 328851175

Batrachochytrium dendrobatidis 328770277
Dictyostelium purpureum 330796945

Cyanidioschyzon merolae MQ255C
Salpingoeca rosetta 326436853

Aureococcus anophagefferens 01953
Emiliana huxleyi 23420
Ectocarpus siliculosus 04736

fragilariopsis cylindrus 38104
Phaeodactylum tricornutum 03766

Thalassiosira pseudonana 08830
Micromonas pusilla 303284026

Micromonas sp. RCC299 255089511
Ostreococcus sp. CC809 04843

Ostreococcus lucimarinus 145353787
Picea sitchensis 116787230

Oryza sativa 115475541
Arabidopsis thaliana 15215706

Physcomitrella patens 168052057
Selaginella moellendorffii 302814971

Asterochloris sp. 03347
Coccomyxa sp. C-169 384248878

Chlamydomonas reinhardtii 159487733
Volvox carteri 302846628

Chlorella variabilis 307108202
uncultured bacterium 297183309

uncultured bacterium 297181307
Bacillus tusciae 295695964

Sphaerobacter thermophilus 269837874
Acidobacterium sp. 374309506

Anaerophaga sp. 371778022
Anaerophaga thermohalophila 346224587

Dysgonomonas mossii 333377585
Tannerella sp. 365122776

Odoribacter splanchnicus 325281827
Alistipes indistinctus 354605267

Fusobacterium gonidiaformans 315917657
Methanopyrus kandleri 20094916

planctomycete 386810986
Methanosaeta harundinacea 386002488

Methanobacterium sp. 325957868
Thermococcus litoralis 375082501

Thermococcus sibiricus 242398436
NC64A AR158 Ref C204R
NC64A IL-5-2s1 244R.1
NC64A NY2A Ref B222R
NC64A MA-1D 129R.1
NC64A NYs-1 233R.1
NC64A NY-2B 251R.1

NC64A MA-1E 185R.1
NC64A CvsA1 188R.1
NC64A CviKI 181R.1
NC64A AN69C 190R.1
NC64A NE-JV-4 196R.1
NC64A IL-3A 186R.1
NC64A PBCV1 Ref A169R
NC64A CME6 191R.1
NC64A KS1B 119R.1
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CL0739: aspartate carbamoyltransferase
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Cyanidioschyzon merolae CMF073C
Emiliana huxleyi 11017

Methylotenera mobilis 253996075
beta proteobacterium 254468938
Azospirillum brasilense 356877913
Bdellovibrio bacteriovorus 42523474

Myxococcus xanthus 108758503
Laribacter hongkongensis 226939055

Burkholderia gladioli 330817154
Thiothrix nivea 386816575

Azoarcus sp. 358638424
Dechloromonas aromatica 71906823

Rhodopseudomonas palustris 115523973
Phaeospirillum molischianum 381168228

Burkholderia phytofirmans 187921350
Limnobacter sp. 149926900
Methylotenera sp. 297538072
Ramlibacter tataouinensis 337280333

Xylella fastidiosa 15838501
Rhodanobacter thiooxydans 388442485

Rhodanobacter spathiphylli 388435411
Brevundimonas subvibrioides 302381616

Phenylobacterium zucineum 197103516
Pseudonocardia dioxanivorans 331699599

Desulfovibrio magneticus 239906221
Selaginella moellendorffii 302811552

Selaginella moellendorffii 302769740
Oryza sativa 116309316

Selaginella moellendorffii 302755844
Arabidopsis thaliana 22329125

Oryza sativa 218199696
Physcomitrella patens 168000100

Physcomitrella patens 168010263
Arabidopsis thaliana 15226892

Arabidopsis thaliana 145340436
Selaginella moellendorffii 302761370
Physcomitrella patens 168038749

Physcomitrella patens 168034532
Physcomitrella patens 168030488
Physcomitrella patens 168042345

Arabidopsis thaliana 15227701
Arabidopsis thaliana 22330543
Arabidopsis thaliana 15241517

Oryza sativa 218191511
Arabidopsis thaliana 18405433

Selaginella moellendorffii 302802931
Arabidopsis thaliana 4454033

Physcomitrella patens 168047347
Physcomitrella patens 168029429

Physcomitrella patens 168008751
Physcomitrella patens 168067372
Physcomitrella patens 168011781
Physcomitrella patens 168053359

Physcomitrella patens 168004798
Oryza sativa 218201274

Oryza sativa 218202247
Physcomitrella patens 168042504

Physcomitrella patens 168037426
Coccomyxa sp. C-169 384246604

Coccomyxa sp. C-169 384254127
Coccomyxa sp. C-169 384248399

Coccomyxa sp. C-169 384247168
Chlamydomonas reinhardtii 159490294
Chlamydomonas reinhardtii 159484821

Coccomyxa sp. C-169 384251025
Trichoderma atroviride 358389978
Trichoderma virens 358387986

Botryotinia fuckeliana 347827166
Talaromyces stipitatus 242793103

Pbi FR483 Ref N110R
Pbi NW665.2 119R.1

SAG ATCV1 Ref Z696R
SAG OR0704.3 795R.1

SAG MN0810.1 844R.1
SAG GM0701.1 791R.1

SAG TN603.4.2 820R.1
SAG Br0604L 794R.1
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CL0787:Potassium transporter 
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uncultured Flavobacteria bacterium 377345261
Dermacoccus sp. 309810733

Paenibacillus elgii 357015234
SAG MO0605SPH 910L.1
SAG NE-JV-3 947L.1
SAG ATCV1 Ref Z813L
SAG WI0606 928L.1

SAG Can0610SP 976L.1
SAG NE-JV-2 990L.1
SAG OR0704.3 970L.1
SAG MN0810.1 1000L.1

Pbi OR0704.2.2 459R.1
Pbi Fr5L 454R.1
Pbi CZ-2 446R.1

Pbi MT325 Ref M388R
Pbi CVG-1 432R.1
Pbi FR483 Ref N403R
Pbi NW665.2 442R.1

SAG NE-JV-3 259R.1
SAG ATCV1 Ref Z217R
SAG WI0606 278R.1
SAG MO0605SPH 272R.1
SAG NE-JV-2 297R.1

SAG OR0704.3 267R.1
SAG Can0610SP 257R.1

SAG MN0810.1 284R.1
SAG TN603.4.2 267R.1
SAG Br0604L 267R.1

SAG Canal-1 254R.1
Pbi Fr5L 286R.1
Pbi CZ-2 251R.1
Pbi OR0704.2.2 244R.1

Aureococcus anophagefferens 323446931
Cyanophage 8102-4 326782317

Cyanophage Syn19 326783618
Cyanophage M4-259 326783073
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Campylobacter coli 380578453
Campylobacter coli 380514777

Haemophilus paraphrohaemolyticus 387773760
Ralstonia solanacearum 207723081

Pbi CVB-1 338R.1
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CL0989: unknown function

CL0767: unknown function
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Burkholderiales bacterium 375107359
Burkholderia graminis 170695664
Pseudomonas sp. 374706073

Pseudovibrio sp. 254470468
Shewanella sediminis 157373803

Pseudomonas mendocina 146306746
Pseudomonas putida 170722322
Ralstonia metallidurans 94311087

Ralstonia eutropha 116694364
Ralstonia eutropha 73537661

Ralstonia eutropha 113869607
Cupriavidus necator 339327701
Cupriavidus taiwanensis 194291200

Ralstonia eutropha 73543061
Ralstonia metallidurans 94314334

planctomycete KSU-1 386812935
Rickettsiella grylli 160871878

Legionella drancourtii 374260960
Sebaldella termitidis 269122103

Vibrio coralliilyticus 260777156
Vibrio parahaemolyticus 254505356
Vibrio sinaloensis 323496328

Vibrio scophthalmi 343510303
Vibrio vulnificus 320159229
Vibrio campbellii 163800995

Shewanella sp. 113971395
Photobacterium damselae 269104338

Shewanella oneidensis 24371955
Aeromonas veronii 330828935
Shewanella loihica 127513909
Mycobacterium sp. 333989685

Shewanella amazonensis 119773651
Clostridium hylemonae 225570960

Eubacterium limosum 310827740
Roseburia intestinalis 291537761
Pbi NW665.2 005L.1 Pbi NW665.2 005L.1
Pbi FR483 Ref N003L Pbi FR483 Ref N003L
Pbi CVM-1 012L.1 Pbi CVM-1 012L.1

Photobacterium profundum 54308458
Silicibacter pomeroyi 56697869

Polynucleobacter sp. 145589267
Sinorhizobium meliloti 359505436

Synechococcus sp. 33864649
Colwellia psychrerythraea 71281212

Synechococcus sp. 317969397
Rhodobacter sphaeroides 146279212

Roseovarius sp. 149203781
Methylobacterium sp. 170743759

Azorhizobium caulinodans 158422927
Thiocystis violascens 350557212

Alteromonas sp. 372269138
Acidobacteria bacterium 94970983

Sinorhizobium medicae 150396574
Glaciecola nitratireducens 348030795

Glaciecola sp. 221135145
Vibrio cholerae 254225045
Vibrio mimicus 342324837

Photobacterium profundum 90409655
Psychrobacter sp. 380469851
Pseudomonas aeruginosa 296390912
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CL0037: beta-lactamase-like

Figure S3: continued



Burkholderia ubonensis 167587672
Burkholderia gladioli 330815394

Burkholderia multivorans 161524143
alpha proteobacterium 262276758

Enterobacter cloacae 365971058
Labrenzia aggregata 118593290

Selenomonas sputigena 260888434
Selenomonas ruminantium 383755476

Flavobacteria bacterium 126662050
Microscilla marina 124006978

Lachnospiraceae bacterium 336425362
NC64A IL-5-2s1 649R.1
NC64A NY-2B 633R.1
NC64A AR158 Ref C559R
NC64A NYs-1 641R.1
NC64A MA-1D 637R.1
NC64A NY2A Ref B618R

Polynucleobacter necessarius 171463070
Marinomonas sp. 333906881

Marinomonas sp. 333906878
Azospirillum brasilense 356879630
Variovorax paradoxus 319792039

Polynucleobacter sp. 145589982
Coccomyxa sp. C-169 384250804

Oryza sativa 125540118
Oryza sativa 218191088

Selaginella moellendorffii 302793797
Physcomitrella patens 168016522

Arabidopsis thaliana 15225001
Laccaria bicolor 170098274

Coccomyxa sp. C-169 384250204
Coccomyxa sp. C-169 384248645

Micromonas pusilla CCMP1545 303291188
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Pbi FR483 Ref N180L
Pbi CVG-1 200L.1
Pbi MT325 Ref M177L

SAG MN0810.1 400L.1
Brevundimonas diminuta 329889403

Denitrovibrio acetiphilus 291288582
Solibacter usitatus 116619757

Rhizobium sp. 16519759
Sinorhizobium fredii 7677361

Rhizobium etli 190894271
Bradyrhizobium elkanii 386870417

Parachlamydia acanthamoebae 338175097
Methylobacterium sp. 170742201
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CL0561: Glycosyltransferase family 17

CL0876: methyltransferase
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Halanaerobium praevalens 385800750
Desulfosporosinus sp. 345861930

Selenomonas noxia 292670412
Arcobacter sp. 384173501
Helicobacter cinaedi 386762199

Campylobacter coli 380564154
Lyngbya majuscula 332710334

Candidatus Pelagibacter 254456402
Micromonas sp. RCC299 255090080

Sideroxydans lithotrophicus 291614671
Lentisphaera araneosa 149198783

Crocosphaera watsonii 357262675
Cyanothece sp. 172035429
Cyanothece sp. 126660651

Chthoniobacter flavus 196231068
Dechlorosoma suillum 372488448

Desulfovibrio africanus 374299398
Arthrospira sp. 376003419

Nostoc punctiforme 186682846
Trypanosoma brucei 71748214

Trypanosoma congolense 342184557
Trypanosoma cruzi 322820792

Magnetococcus sp. 117926727
Spirochaeta smaragdinae 302337852

Desulfovibrio sp. 347732739
Desulfovibrio vulgaris 218886926

Beutenbergia cavernae 229819699
Streptomyces flavogriseus 357413110

Thermomonospora curvata 269126803
Cylindrospermopsis raciborskii 282901938

Frankia sp. 312200155
Planctomyces brasiliensis 325110496

Mycobacterium intracellulare168479939
Azorhizobium caulinodans 158423143

Haliscomenobacter hydrossis 332662366
Beijerinckia indica 182679760

NC64A IL-3A 056L.1
NC64A NE-JV-4 070L.1
NC64A AN69C 061L.1
NC64A PBCV1 Ref A061L
NC64A CME6 063L.1

Oceanicola granulosus 89070445
Frankia sp. 358457989
Frankia sp. 312196087

Streptomyces sp. 229424429
Streptomyces argenteolus 164690677

Planctomyces limnophilus 296124172
Megavirus courdo7 371943250
Megavirus chiliensis 363540240

Herpetosiphon aurantiacus 159899876
Cyanothece sp. 257061681

Desulfovibrio vulgaris 120586889
Caldilinea aerophila 383761557

Microscilla marina 124005488
Flexibacter tractuosus 313676307

99

86

90

9
50

87

25

100

70

90

4

99

89

92

74

52

87

99

30

87

97

96
92

99

96

82
52

100

97

76

80

71

100

71

93

93

89
58

74
98

83
77

80

86

100

0.2

CL0356: methyltransferase
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Xanthomonas campestris 384427842
Anabaena variabilis 75909889

Chitinophaga pinensis 256421318
Algoriphagus sp. 311746616

Synechocystis sp. 16330872
Caulobacter crescentus 16125360

Moumouvirus Monve 371944702
Haliscomenobacter hydrossis 332664820

Desulfococcus oleovorans 158520544
Rhodopseudomonas palustris 115523134

Methylobacterium nodulans 220924736
Chlamydomonas reinhardtii 159474322

NC64A NY2A Ref B183L
NC64A AR158 Ref c173L

NC64A MA-1D 086L.1
NC64A NYs-1 187L.1
NC64A IL-5-2s1 067L.1
NC64A NY-2B 208L.1
Waddlia chondrophila 297622008
Microcystis aeruginosa 159026840

Crocosphaera watsonii 357261942
Crocosphaera watsonii 357264119

Gloeobacter violaceus 37520162
Nitrobacter winogradskyi 75676585

Flavobacterium johnsoniae 146298088
Natranaerobius thermophilus 188586724
Thiorhodococcus drewsii 345872955

Azospirillum sp. 288959237
Microcoleus vaginatus 334119721
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NC64A IL-5-2s1 197R.1
NC64A MA-1D 558R.1
NC64A NYs-1 075L.1
NC64A NY2A Ref B086L
NC64A NY-2B 094L.1
NC64A AR158 Ref C073L

NC64A CvsA1 135L.1
NC64A MA-1E 049L.1
NC64A CviKI 059L.1

Emiliana huxleyi 05258
Emiliana huxleyi 34792
Aureococcus anophagefferens 323454297

Polynucleobacter sp. 145588438
Polynucleobacter necessarius 171462954

Flavobacteria bacterium 126662054
Hydrogenophaga sp. 388265115

Roseibium sp. 307944938
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CL0607: methyltransferase

CL0533: unknown function
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Tetrahymena thermophila 118396904
Acidovorax sp. 365090789

Phytophthora sojae 348686615
Chlorella variabilis 307103051

Beggiatoa sp. PS 153869450
Pbi Can18-4 212R.1
Pbi CVM-1 222R.1
Pbi CVB-1 221R.1
Pbi NW665.2 189R.1
Pbi FR483 Ref N170R
Pbi CVA-1 205R.1
Pbi CVR-1 210R.1
SAG Canal-1 898L.1

Tetrahymena thermophila 118383037
Tetrahymena thermophila 118369731

Tetrahymena thermophila 118396375
Cyanothece sp. 219883156

Thermovirga lienii 357420460
Spirochaeta sp. 325972461

Pelodictyon phaeoclathratiforme 194336067
Chlorobium phaeobacteroides 189500600

Prosthecochloris vibrioformis 145218909
Pelodictyon luteolum 78186694

Rhizobium leguminosarum 209549929
Sorangium cellulosum 162451816

Anaeromyxobacter dehalogenans 86156860
alpha proteobacterium 163795751

Corynebacterium glucuronalyticum 227488376
Corynebacterium amycolatum 213966178

Corynebacterium matruchotii 225021729
Megavirus courdo7 371944025
Megavirus chiliensis 363540379

Moumouvirus Monve 371944755
Acanthamoeba castellanii mamavirus 351737705
Acanthamoeba polyphaga mimivirus 311977938
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Trichodesmium erythraeum 113477217
Methanobrevibacter ruminantium 288559894

Sinorhizobium meliloti 359502766
Patulibacter sp. 367470702

SAG TN603.4.2 161L.1
SAG Br0604L 158L.1
SAG GM0701.1 161L.1
SAG WI0606 161L.1
SAG MO0605SPH 159L.1

SAG NTS-1 180L.1
Aureococcus anophagefferens 323447135
Aureococcus anophagefferens 323445567
Aureococcus anophagefferens 323447305
Aureococcus anophagefferens 323447858

Aureococcus anophagefferens 323452583
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CL0007: ADP-ribosyl glycohydrolase

CL0875: methyltransferase

Figure S3: continued



marine actinobacterium 383806521
Pbi CVM-1 398R.1
Pbi CVA-1 370R.1
Pbi AP110A 380R.1
Pbi CVR-1 378R.1
Pbi CVG-1 364R.1
Pbi NW665.2 354R.1
Pbi CVB-1 384R.1

Pbi FR483 Ref N331R
Pbi MT325 Ref M324R
Pbi Can18-4 391R.1

Pbi CZ-2 343L.1
Pbi OR0704.2.2 342L.1

Pbi Fr5L 387L.1
Halorhabdus tiamatea 335433550
Halorhabdus utahensis 257052937
Halobacterium sp. 354610437

candidate division TM7 genomosp. GTL1 148927630
Pyrococcus furiosus 18977090
Fervidobacterium pennivorans 383787423

Thermotogales bacterium 387859354
Acholeplasma laidlawii 162448232

Methanothermobacter marburgensis 304315084
Methanothermobacter thermautotrophicus 15678964

Methanobacterium sp. 325959158
Dictyoglomus thermophilum 206901506

Anaerolinea thermophila 320162559
marine actinobacterium 383807051

Dehalococcoides sp. 73748572
Dehalococcoides sp. 147669332
Dehalococcoides sp. 270308075
Dehalococcoides ethenogenes 57234457

Phaeodactylum tricornutum 219113501

Aeromicrobium marinum 311743763
Intrasporangium calvum 317123368
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Flavobacteria bacterium 126663687
Clostridium beijerinckii 150017676

Azospirillum amazonense 347735086
Acidobacterium sp. 374312611

Burkholderia gladioli 330815107
Saccharopolyspora erythraea 291003674

Nocardioidaceae bacterium 326328653
Streptomyces chartreusis 383641484

Streptomyces griseoaurantiacus 329937673
Frankia sp. 312195576

Frankia sp. 358457795
Frankia sp. 158318718

Jonesia denitrificans 256831571
Saccharomonospora cyanea 375101689
Saccharomonospora glauca 384566833

Catenulispora acidiphila 256394360
Glomerella graminicola 310798384

Grosmannia clavigera 320585942
Arthrobotrys oligospora 345562285

Pbi NE-JV-1 050L.1
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CL0489: unknown function

CL0963: glycosyl hydrolase
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Ferroplasma acidarmanus 257076054
Sclerotinia sclerotiorum 156042816
Pyrenophora tritici-repentis 189210840

Burkholderia cenocepacia 170735056
Leptothrix cholodnii 171057511

Gluconacetobacter europaeus 349702767
Chryseobacterium gleum 300775517

Sphingobacterium sp. 326799884
Agrobacterium vitis 222083281

Pbi NE-JV-1 050L.1
Brevibacillus brevis 226312334

Sphingobium chlorophenolicum 334342972
Solibacter usitatus 116620553
Corallococcus coralloides 383453762

Gloeobacter violaceus 37520051
Anaeromyxobacter dehalogenans 86160718

Actinoplanes missouriensis 383779068
Streptomyces sp. 302536518

Gordonia otitidis 377559867
Amycolatopsis mediterranei 300785986

Amycolatopsis sp. 385676852
Candida tenuis 344230000

Listeria grayi 299821153
Lactobacillus plantarum 376010817

Schizosaccharomyces pombe 19113003
Trichoderma atroviride 358397455

Neosartorya fischeri 119485508
Aspergillus fumigatus 70983870

Niastella koreensis 375145804
Saccharomyces cerevisiae 323336519
Exophiala dermatitidis 378731155

Frankia sp. 312197744
Anaeromyxobacter dehalogenans 220916754
Streptomyces sviceus 297199885

Agrobacterium tumefaciens 355534828
Yersinia sp. 383813469

Erwinia billingiae 300716785
Cupriavidus necator 339328398

Starkeya novella 298293411
Gloeobacter violaceus 37521008

Burkholderia xenovorans 91784033
Rhodopseudomonas palustris 90425459

Plautia stali symbiont 329297733
Pseudomonas fluorescens 388003692

Talaromyces stipitatus 242820252
Mycobacterium phlei 383819991

Frankia alni 111221689
Mycobacterium colombiense 342860330

Mycobacterium parascrofulaceum 29616946599
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CL0957: NADH-dependent oxidoreductase
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Nomascus leucogenys 332267665
Zea mays 224035175

Culex quinquefasciatus 170035090

Wolbachia endosymbiont of Drosophila simulans 58697797

Pbi CVA-1 476R.1
Pbi MT325 Ref m414R
Phytophthora sojae 348680930

Aspergillus oryzae 83773287
Neurospora tetrasperma 336467922
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Dictyostelium fasciculatum 328870082
Polysphondylium pallidum 281202089
Microscilla marina 124006205

Pbi FR483 Ref N267L
SAG Canal-1 533L.1

Staphylococcus phage 119658095
Clostridium butyricum 182418196

Bacillus sp. 319645715
Selenomonas ruminantium 383080721
Desulfotomaculum kuznetsovii 333978554

Bacillus pseudomycoides 228991543
Bacillus cereus 229145274
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Planctomyces limnophilus 296124410
Planctomyces limnophilus 296123305

Lyngbya majuscula 332708680
Herbaspirillum seropedicae 300313903

SAG MO0605SPH 177R.1
SAG WI0606 180R.1
SAG Can0610SP 167R.1
SAG NE-JV-2 183R.1
SAG ATCV1 Ref Z144R
SAG NE-JV-3 172R.1
SAG OR0704.3 175R.1
SAG TN603.4.2 174R.1
SAG GM0701.1 175R.1
SAG Br0604L 169R.1
SAG MN0810.1 200R.1

SAG Canal-1 185R.1
Pbi CVA-1 570R.1
Pbi CVM-1 586R.1
Pbi CVR-1 580R.1
Pbi AP110A 576R.1
Pbi CVG-1 549R.1
Pbi Can18-4 595R.1
Pbi MT325 Ref M491R
Pbi NW665.2 563R.1
Pbi FR483 Ref N500R

Gluconacetobacter xylinus 347761339

Gluconacetobacter oboediens 349689244
Beijerinckia indica 182678673

89

99

82
76

96

100

99

0.2

Figure S3: continued

CL0011: unkwown function

CL0056: unknown function

CL0503: unknown function



Table S4: sister groups to non-ancestral CV proteins based on 35 phylogenetic trees shown in Figure 

S3 

Cluster ID Sister group Function 

CL0007 
Tetrahymena thermophila 
(Alveolata) ADP-ribosyl glycohydrolase  

CL0011 Phytophthora sojae (stramenopiles) unknown 
CL0037 Bacteria beta-lactamase  
CL0049 Chlorophyta NADH-dependent fumarate reductase 
CL0055 Bacteria unknown 
CL0056 Mixed eukaryotes and bacteria unknown 
CL0063 Plantae unknown 
CL0065 Bacteria unknown 
CL0222 Bacteria DNA methylase 
CL0356 Oceanicola granulosus (Bacteria) methyltransferase 

CL0375 
Coccomyxa subellipsoidea 
(Chlorophyta) glycosyltransferase  

CL0466 Chlorophyta MIP family channel protein 
CL0482 Bacteria glutaredoxin 
CL0489 Actinobacterium (Bacteria) unknown 
CL0503 Bacteria unknown 
CL0533 Basal unknown 

CL0561 
Polynucleobacter necessarius 
(Bacteria) Glycosyltransferase family 17 

CL0607 Waddlia chondrophila (Bacteria) methyltransferase 

CL0624 Chlorophyta THYLAKOID FORMATION 1; inositol phosphatase-
like protein 

CL0739 Basal aspartate carbamoyltransferase 

CL0767 
Aureococcus anophagefferens 
(diatom) unknown 

CL0778 Viridiplantae unknown 
CL0780 Chlorella (Chlorophyta) dUDP-D-glucose 4,6-dehydratase 
CL0787 Viridiplantae Potassium transporter 
CL0792 Kytococcus sedentarius (Bacteria) mannose-6-phosphate isomerase 
CL0796 Chlorophyta ribonucleoside-triphosphate reductase 
CL0875 Basal methyltransferase 
CL0876 Brevundimonas diminuta (Bacteria) methyltransferase 

CL0878 Prochlorococcus marinus (Bacteria) dTDP-glucose pyrophosphorylase/HAD superfamily 
hydrolase 

CL0879 Prochlorococcus marinus (Bacteria) unknown 
CL0940 Actinobacterium (Bacteria) Nitroreductase  
CL0957 Brevibacillus brevis (Bacteria) NADH-dependent oxidoreductase 
CL0963 Mixed eukaryotes and bacteria glycosyl hydrolase 
CL0978 Streptophyta unknown 
CL0989 Bacteria unknown 

 



Pbi FR483 Ref N733R
Pbi NW665.2 871R.1
Pbi AP110A 867R.1
Pbi CVA-1 876R.1
Pbi CVR-1 881R.1
Pbi CVM-1 870R.1
Pbi CVB-1 836R.1
Pbi CVG-1 837R.1
Pbi Can18-4 886R.1
Pbi MT325 Ref M742R
Pbi NE-JV-1 833R.1

Pbi OR0704.2.2 843R.1
Pbi CZ-2 846R.1
Pbi Fr5L 846R.1

SAG Br0604L 778L.1
SAG TN603.4.2 811L.1
SAG GM0701.1 781L.1

SAG ATCV1 Ref Z679L
SAG NE-JV-3 798L.1
SAG WI0606 777L.1
SAG MO0605SPH 760L.1
SAG NE-JV-2 819L.1
SAG Can0610SP 819L.1
SAG Canal-1 695L.1
SAG OR0704.3 781L.1

SAG MN0810.1 832L.1
NC64A CME6 754L.1
NC64A PBCV1 Ref A666L

NC64A KS1B 659L.1
NC64A AN69C 751L.1
NC64A IL-3A 738L.1
NC64A NE-JV-4 751L.1
NC64A CviKI 709L.1
NC64A CvsA1 729L.1
NC64A MA-1E 818L.1
NC64A AR158 Ref C788L
NC64A IL-5-2s1 919L.1
NC64A MA-1D 895L.1
NC64A NY-2B 906L.1
NC64A NYs-1 901L.1

Chlorella variabilis 307106566
Volvox carteri 302828950

Chlamydomonas reinhardtii 159468233
Volvox carteri 302839196

Coccomyxa subellipsoidea 384249382
Phytophthora infestans 301118066
Albugo laibachii 325186108

Micromonas sp. RCC299 255089455
Micromonas pusilla 303284090

Ostreococcus tauri 308811799
Ostreococcus lucimarinus 145354228
Perkinsus marinus 294942040

Hordeum vulgare 326504612
Hordeum vulgare 326490977
Hordeum vulgare 326498279
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Figure S4

CL0450: translation elongation factor ElF3



NC64A IL-5-2s1 206L.1
NC64A AR158 Ref C057R
NC64A NY2A Ref B070R
NC64A NY-2B 082R.1
NC64A AN69C 040R.1
NC64A IL-3A 036R.1
NC64A CME6 042R.1
NC64A PBCV1 Ref A041R
NC64A CvsA1 118R.1
NC64A MA-1E 031R.1
NC64A CviKI 040R.1
NC64A NE-JV-4 051R.1

NC64A NE-JV-4 198R.1
NC64A AN69C 192R.1
NC64A IL-3A 188R.1
NC64A PBCV1 Ref A171R
NC64A CME6 193R.1
NC64A CvsA1 190R.1
NC64A CviKI 183R.1
NC64A MA-1E 187R.1
NC64A KS1B 121R.1
NC64A NY-2B 254R.1
NC64A AR158 Ref C206R
NC64A IL-5-2s1 246R.1
NC64A NY2A Ref B224R
NC64A MA-1D 131R.1
NC64A NYs-1 235R.1
SAG NE-JV-2 418L.1
SAG OR0704.3 385L.1
SAG MO0605SPH 394L.1
SAG NE-JV-3 385L.1
SAG ATCV1 Ref Z330L
SAG Can0610SP 390L.1
SAG WI0606 411L.1

SAG Br0604L 380L.1
SAG TN603.4.2 379L.1
SAG GM0701.1 388L.1
SAG MN0810.1 414L.1
SAG MN0810.1 415L.1

Pbi MT325 Ref M803L
Pbi NW665.2 943L.1
Pbi AP110A 958L.1
Pbi CVM-1 941L.1
Pbi CVR-1 965L.1
Pbi CVA-1 959L.1
Pbi CVB-1 905L.1
Pbi FR483 Ref N795L
Pbi NE-JV-1 943R.1

Pbi CVG-1 909L.1
Pbi Can18-4 959L.1
Pbi OR0704.2.2 910L.1
Pbi Fr5L 913L.1
Pbi CZ-2 919L.1

NC64A KS1B 197L.1
NC64A KS1B 198L.1

Chlorella variabilis 307104309
Chlorella variabilis 307109825

Chlorella variabilis 307108700
Chlorella variabilis 307108283

Chlorella variabilis 307109995
Chlorella variabilis 307109925

Chlorella variabilis 307106123
Chlorella variabilis 307108594

Chlorella variabilis 307108595
Chlorella variabilis 307109927

Chlorella variabilis 307109675
Chlorella variabilis 307107112

Chlorella variabilis 307110506
Chlorella variabilis 307107040

Ostreococcus lucimarinus 145346415
Ostreococcus tauri 308803725

Micromonas sp. RCC299 255078562
Coccomyxa sp. C-169 384254369

Oryza sativa 115445171
Hordeum vulgare 326515444

Physcomitrella patens 168047752
Medicago truncatula 357494337

Lotus japonicus 388503550
Glycine max 356553585
Glycine max 356501481

Populus trichocarpa 224067960
Ricinus communis 255558716
Vitis vinifera 296086320

Arabidopsis thaliana 15231138
Arabidopsis lyrata 297817194

Zea mays 219362425
Sorghum bicolor 242058681

Hordeum vulgare 326515374
Brachypodium distachyon 357130965
Oryza sativa 125527698

Selaginella moellendorffii 302807975
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CL0511: unknown function



Hydra magnipapillata 221129925
Apis mellifera 48097532

Aedes aegypti 157110972
Drosophila melanogaster 24584685

Apis mellifera 110761344
Anopheles gambiae 158296537

Aedes aegypti 157135601
Drosophila melanogaster 24580511

Apis mellifera 328786648
Aedes aegypti 157110286
Anopheles gambiae 158288941

Apis mellifera 328791955
Drosophila melanogaster 24643826

NC64A AR158 Ref C415L
NC64A IL-5-2s1 495L.1
NC64A NYs-1 487L.1
NC64A MA-1D 359L.1
NC64A NY-2B 476L.1
NC64A NY2A Ref B469L
NC64A CviKI 362L.1
NC64A CvsA1 371L.1
NC64A MA-1E 399L.1

NC64A AN69C 387L.1
NC64A IL-3A 378L.1

Pbi CVB-1 183L.1
Pbi Fr5L 157L.1
Pbi CVM-1 171L.1
Pbi AP110A 158L.1
Pbi CVA-1 156L.1
Pbi CVR-1 163L.1

Pbi NE-JV-1 269R.1
SAG Br0604L 832L.1
SAG TN603.4.2 867L.1
SAG NTS-1 886L.1
SAG GM0701.1 846L.1

SAG MN0810.1 896L.1
SAG Canal-1 743L.1

Chlorella variabilis 307111573
Chlorella variabilis 307108555

Chlorella variabilis 307111096
Chlorella variabilis 307103335

Chlorella variabilis 307104112
Chlorella variabilis 307104113

Chlorella variabilis 307105224
Chlorella variabilis 307104115

Chlorella variabilis 307104114
Chlorella variabilis 307104498

Chlorella variabilis 307104117
Chlorella variabilis 307110538

Chlorella variabilis 307107539
Chlorella variabilis 307104116

Chlorella variabilis 307108087
Chlorella variabilis 307102215

Chlorella variabilis 307109516
Chlorella variabilis 307105835

Chlorella variabilis 307102476
Chlorella variabilis 307102459

Chlorella variabilis 307109494
Chlorella variabilis 307106624

Chlorella variabilis 307109404
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Figure S4: continued

CL0288: chitin deacetylase



Pbi CVA-1 834R.1
Pbi CVB-1 791R.1
Pbi Can18-4 839R.1
Pbi CVG-1 792R.1
Pbi NW665.2 821R.1
Pbi FR483 Ref N690R
Pbi CZ-2 799R.1
Pbi Fr5L 797R.1
Pbi CZ-2 798R.1
Pbi OR0704.2.2 804R.1
Pbi CVR-1 839R.1
Pbi CVM-1 832R.1
Pbi AP110A 828R.1
Pbi MT325 Ref M701R

NC64A NE-JV-4 390L.1
NC64A AN69C 395L.1
NC64A IL-3A 386L.1
NC64A PBCV1 Ref A333L
NC64A CME6 451R.1
NC64A CviKI 370L.1
NC64A CvsA1 380L.1
NC64A MA-1E 407L.1
NC64A KS1B 314L.1

NC64A IL-5-2s1 506L.1
NC64A NY2A Ref B480L
NC64A NY-2B 484L.1
NC64A AR158 Ref C423L
NC64A NYs-1 495L.1
NC64A MA-1D 367L.1

SAG NE-JV-3 431R.1
SAG OR0704.3 431R.1
SAG Can0610SP 442R.1
SAG NTS-1 461R.1
SAG Br0604L 431R.1
SAG TN603.4.2 425R.1
SAG GM0701.1 436R.1
SAG MO0605SPH 435R.1
SAG WI0606 457R.1
SAG NE-JV-2 462R.1
SAG Canal-1 405R.1
SAG MN0810.1 468R.1

Pbi NE-JV-1 734L.1
Chlorella variabilis 307105255

Perkinsus marinus 294877964
Drosophila melanogaster 281366781
Drosophila melanogaster 281366779

Aedes aegypti 157112435
Anopheles gambiae 347966416

Apis mellifera 328783067
Drosophila melanogaster 24648375

Drosophila melanogaster 28572157
Aedes aegypti 157134959
Anopheles gambiae 347966665

Apis mellifera 328784961
Aedes aegypti 157109257
Aedes aegypti 157138219
Anopheles gambiae 347963502

Drosophila melanogaster 320541737
Drosophila melanogaster 24639820
Apis mellifera 328790553
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Figure S4: continued

CN0022: unknown function



Streptomyces pristinaespiralis 297194233
Streptomyces sp. C 302532393

Streptomyces venezuelae 328882636
Streptomyces flavogriseus 357413284

Streptomyces sp. SA3 actE 344999867
Streptomyces lividans 289771461
Streptomyces coelicoflavus 371544275

Streptomyces sp. CCNWNQ0016 345852246
Streptomyces sviceus 297199901

Streptomyces hygroscopicus 386840391
Streptomyces avermitilis 29831795

Streptomyces griseoaurantiacus 329937951
Streptomyces cattleya 357399466

Frankia sp. CN3 358457796
Frankia sp. EuI1c 312195577
Catenulispora acidiphila 256389532

Mycobacterium ulcerans 118616768
Actinoplanes sp. SE50/110 386853093

Chlorella variabilis 307105422

SAG MN0810.1 1003L.1
SAG NTS-1 1039R.1
SAG OR0704.3 994R.1
SAG ATCV1 Ref Z814L
SAG WI0606 929L.1
SAG NE-JV-3 948L.1
SAG MO0605SPH 911L.1
SAG Canal-1 855L.1
SAG Can0610SP 996R.1
SAG NE-JV-2 1008R.1

SAG GM0701.1 963L.1
SAG TN603.4.2 977L.1

SAG Br0604L 942L.1
Pbi NE-JV-1 088R.1

NC64A MA-1D 147R.1
NC64A NYs-1 251R.1
NC64A AR158 Ref C220R
NC64A NY-2B 270R.1
NC64A IL-5-2s1 262R.1
NC64A NY2A Ref B239R

NC64A CviKI 194R.1
NC64A MA-1E 194R.1
NC64A CvsA1 200R.1
NC64A IL-3A 196R.1
NC64A KS1B 132R.1
NC64A NE-JV-4 205R.1
NC64A CME6 203R.1
NC64A PBCV1 Ref A181/182R
NC64A AN69C 204R.1
Pbi FR483 Ref N779R
Pbi NW665.2 921R.1

Pbi CZ-2 902R.1
Pbi Fr5L 897R.1
Pbi OR0704.2.2 895R.1
Pbi CVG-1 896R.1
Pbi CVB-1 890R.1
Pbi MT325 Ref M791R
Pbi CVR-1 948R.1
Pbi CVA-1 942R.1
Pbi CVM-1 927R.1
Pbi Can18-4 944R.1
Pbi AP110A 942R.1
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Figure S4: continued

CL0887: chitinase



Chlorella variabilis 307105015
NC64A IL-5-2s1 032R.1
NC64A MA-1D 034R.1
NC64A NY2A Ref B031R
NC64A NY-2B 035R.1
NC64A AR158 Ref C029R

NC64A MA-1E 005R.1
NC64A CvsA1 011R.1
NC64A CviKI 028L.1

Pbi CVR-1 826R.1
Pbi CVA-1 820R.1
Pbi CVG-1 774R.1
Pbi MT325 Ref M690R
Pbi NE-JV-1 431R.1
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Figure S4: continued

CL0531: unknown function



Table S5: attributes of the sequenced chloroviruses 

Virus Host Attributes and comments (plaque size, plaque 
morphology, gene content, etc.) 

Source of 
isolate 

Date 
collected 

Chlorella variabilis NC64A Virus Isolates 
CviKI Chlorella NC64A from Yamada Lab, Japan; encodes Hyaluronan Synthetase 

and Chitin Synthase  
Kyoto, Japan 1990 

IL-3A Chlorella NC64A Serves as the "null mutant" in the hyaluronan/chitin 
competition series 

IL, USA Oct. 1983 

CvsA1 Chlorella NC64A from Yamada Lab, Japan; encodes 2 Chitin Synthase 
genes (& gfat) 

Sawara, Japan April 1992 

MA-1D Chlorella NC64A see [1] table 2; Small plaque-forming virus MA, USA Aug. 1984 

NYs-1 Chlorella NC64A see [1] table 2; Small plaque-forming virus NY, USA 
(river) 

Aug. 1985 

IL-5-2s1 Chlorella NC64A see [1] table 2; Small plaque-forming virus IL, USA (farm 
pond) 

May 1986 

KS1B Chlorella NC64A Small plaque-forming virus Kansas, USA May 2003 

NY-2B Chlorella NC64A see [1] table 2; Very small plaque-forming virus NY, USA 
(river) 

Aug. 1984 

AN69C Chlorella NC64A Small plaque-forming virus Canberra, 
Australia 

March 1995 

MA-1E Chlorella NC64A see [1] table 2; Gene re-arrangement and insertion in the 
PBCV-1_A250R-homolog locus 

MA, USA Aug 1984 

NE-JV4 Chlorella NC64A regular plaques of medium-to-large size Rowe Bird 
Sanctuary; NE, 
USA 

May 2008 

Chlorella heliozoae SAG 3.83 Virus Isolates 
NTS-1 Chlorella 

SAG3.83 
Alkaline lake isolates, fuzzy plaques Next to Smith 

Lake, NE, USA 
(CLNWR) 

June 2008 

Canal-1 Chlorella 
SAG3.83 

Alkaline lake isolates, fuzzy plaques; does not completely 
lyse a culture 

canal exiting 
Smith Lake, 
NE, USA 
(CLNWR) 

June 2008 

TN603.4.2 Chlorella 
SAG3.83 

First SAG 3.83 virus found in the USA; Large, clear 
plaques;  

Tennessee, 
USA 

April 2006 

WI0606 Chlorella 
SAG3.83 

Normal plaque size and shape; Geographic site Madison 
Wisconsin, 
USA 

July 2006 

Br0604L Chlorella 
SAG3.83 

Normal plaque size and shape; Geographic site St. Paul, Brazil 2006 

GM0701.1 Chlorella 
SAG3.83 

Normal plaque size and shape; Geographic site Guatemala January 2007 

MO0605SPH Chlorella 
SAG3.83 

Cloudy plaques; Geographic site Missouri, USA 2006 

Can0610SP Chlorella 
SAG3.83 

Normal plaque size and shape; Geographic site British 
Columbia, 
Canada 

August 2006 

OR0704.3 Chlorella 
SAG3.83 

Normal plaque size and shape; Geographic site Willamette 
River, 
Corvallis, 
Oregon, USA 

July 2007 

MN0810.1 Chlorella 
SAG3.83 

Normal plaque size and shape; Geographic site 
(abandoned mine) 

Minnesota, 
USA 

August 2008 

NE-JV2 Chlorella 
SAG3.83 

small, irregularly shaped plaques with fuzzy edges Rowe Bird 
Sanctuary; 
Gibbon, NE, 
USA 

May 2008 

NE-JV3 Chlorella 
SAG3.83 

medium sized, irregularly shaped plaques with fuzzy edges Gudmundsen 
Ranch 

May 2008 

  



Virus Host Attributes and comments (plaque size, plaque 
morphology, gene content, etc.) 

Source of 
isolate 

Date 
collected 

Micractinium conductrix Pbi Virus Isolates 
CVA-1 Micractinium Pbi see [2]; Normal plaque size and shape Amӧnau, 

Germany 
1984 

CVB-1 Micractinium Pbi see [2]; Normal plaque size and shape Berlin, 
Germany 

1984 

CVG-1 Micractinium Pbi see [2]; Normal plaque size and shape Gӧttingen, 
Germany 

1984 

CVM-1 Micractinium Pbi see [2]; Normal plaque size and shape Marburg, 
Germany 

1984 

CVR-1 Micractinium Pbi see [2]; Normal plaque size and shape Rauschenberg, 
Germany 

1984 

NW665.2 Micractinium Pbi Small, regularly shaped plaques Norway 1995 

AP110A Micractinium Pbi High plaque numbers; 1 of a collection of 10 "AP" viruses unknown unknown 

Can18-4 Micractinium Pbi Normal plaque size and shape; Geographic site Canada 1995 

CZ-2 Micractinium Pbi Normal plaque size and shape; Geographic site Czech 
Republic 

1995 

Fr5L Micractinium Pbi Normal plaque size and shape; Geographic site France 1995 

OR0704.2.2 Micractinium Pbi Normal plaque size and shape; Geographic site Willamette 
River, 
Corvallis, 
Oregon 

July 2007 

NE-JV1 Micractinium Pbi Small, regularly shaped plaques with fuzzy edges South Platte 
River, 
Nebraska 

May 2008 
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