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abstract: Seed banks are critically important for disturbance spe-
cialist plants because seeds of these species germinate only in dis-
turbed soil. Disturbance and seed depth affect the survival and ger-
mination probability of seeds in the seed bank, which in turn affect
population dynamics. We develop a density-dependent stochastic in-
tegral projection model to evaluate the effect of stochastic soil dis-
turbances on plant population dynamics with an emphasis on mim-
icking how disturbances vertically redistribute seeds within the seed
bank. We perform a simulation analysis of the effect of the frequency
and mean depth of disturbances on the population’s quasi-extinction
probability, as well as the long-term mean and variance of the total
density of seeds in the seed bank. We show that increasing the fre-
quency of disturbances increases the long-term viability of the pop-
ulation, but the relationship between the mean depth of disturbance
and the long-term viability of the population are not necessarily
monotonic for all parameter combinations. Specifically, an increase
in the probability of disturbance increases the long-term viability of
the total seed bank population. However, if the probability of dis-
turbance is too low, a shallower mean depth of disturbance can
increase long-term viability, a relationship that switches as the prob-
ability of disturbance increases. However, a shallow disturbance depth
is beneficial only in scenarios with low survival in the seed bank.

Keywords: disturbance specialist, annual plant, seed bank, stochastic
integral projection model, density dependence, Monte Carlo
simulation.

Introduction

In many plant species dormant seeds persist in the soil
from one to several years (MacDonald and Watkinson
1981; Roberts 1981; Doyle et al. 1986; McGraw 1986; Max-
well et al. 1988; Venable 1989; Doyle 1991; Kalisz and
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McPeek 1992; Jordan et al. 1995; Gonzalez-Andujar 1997;
Edelstein-Keshet 2005; Fenner and Thompson 2005; Pek-
run et al. 2005; Garnier et al. 2006; Sester et al. 2007;
Colbach et al. 2008). By allowing individuals to disperse
through time, these seed banks function to buffer the ef-
fects of environmental variation on population size and
persistence. Such environmental buffering is particularly
important for annual species. Many annual plants are dis-
turbance specialists, germinating only in freshly disturbed
soil (Alexander and Schrag 2003). In these species the
frequency, intensity, timing, and spatial extent of natural
disturbances can greatly influence the probability of ger-
mination and survival of seeds in the seed bank (Froud-
Williams et al. 1984; Claessen et al. 2005a; Moody-Weis
and Alexander 2007; Miller et al. 2011). Disturbances not
only create a more favorable environment for germination
and recruitment by removing more competitive species,
but they also enhance the chance of population persistence
by helping seed bank formation (Alexander et al. 2009).

It has long been known that seed survival and germi-
nation are functions of seed depth in the seed bank
(Moody-Weis and Alexander 2007; and reviewed in Moh-
ler 1993). This knowledge has attracted much attention in
agricultural research, and many models have been con-
structed to explore different plowing regimes to manip-
ulate the distribution of weed seeds in the soil in order to
reduce weed population size in agricultural fields (Doyle
et al. 1986; McGraw 1986; Maxwell 1988; Mohler 1993;
Jordan et al. 1995; Gonzalez-Andujar 1997; Mertens et al.
2002; Pekrun et al. 2005; Garnier and Lecomte 2006; Sester
et al. 2007; van den Berg et al. 2010). However, in addition
to anthropogenic disturbances, many natural processes
move seeds to different soil depths. For example, seeds are
moved from the surface to lower soil depth through earth-
worm cast and mole burial, caching activities of birds,
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rodents, ants, and so on, or seeds may fall down earth-
worm burrows or cavities left after root decay. Seeds are
moved from lower seed depths to the surface through
settling of the soil, digging activities by mammals such as
badgers, black bears, wild pigs, and so on or falling trees
bringing buried seeds up. In this article, we use a stage-
structured population model (Easterling et al. 2000; Cas-
well 2001) to examine the population dynamics of dis-
turbance specialist plants in a natural environment, where
disturbances occur in a much more unpredictable fashion
than those that occur in agricultural fields. To our knowl-
edge, only two articles (Claessen et al. 2005a, 2005b) have
considered disturbances in natural environments that are
random in time, but, in contrast to our article, they do
not explicitly consider disturbance specialist plants.

In this article, we present a model for disturbance spe-
cialist plants in which we assume that germination is pos-
sible only in time steps where there is a disturbance. To
mimic disturbances in a natural environment we incor-
porate the characteristics of a disturbance as a stochastic
process, where in each time step there is a probability h
that the population is disturbed and the distribution of
possible disturbance depths is exponentially distributed
with mean depth of disturbance r. Models considering soil
disturbances caused by different plowing regimes (Doyle
et al. 1986; McGraw 1986; Maxwell 1988; Mohler 1993;
Jordan et al. 1995; Gonzalez-Andujar 1997; Mertens et al.
2002; Pekrun et al. 2005; Garnier and Lecomte 2006; Sester
et al. 2007; van den Berg et al. 2010) can be thought of
as mean-field approximations of models with random dis-
turbances. They consist of deterministic matrices (and thus
integral kernels) and represent the average effect of soil
disturbances. However, in the case of nonlinear relation-
ship, using averages might be inaccurate because the con-
vex transformation of a mean is less than the mean after
convex transformation, and the opposite holds for concave
transformations (Jensen’s inequality). Thus, the long-term
dynamics of mean-field models may not accurately reflect
the dynamics of an associated stochastic model and, hence,
do not always capture variability in natural systems (Tul-
japurkar 1990; Caswell 2001).

The Model

We model the following sequence of events: disturbance,
redistribution of seeds, seed survival, plant recruitment,
and production of new seeds. We consider only distur-
bances which occur after seeds have been dispersed be-
cause disturbances before dispersal have a negligible effect
on the seed bank (Moody-Weis and Alexander 2007). We
model disturbance as a single event in each time step,
which can be thought of as an average of the postdispersal
disturbances to the population in a given year. The life-

history traits of different plants species vary considerably,
and as a consequence, the functional forms we use to
model survival probability, germination probability, and
density dependence do not apply in every case but apply
to a large number of disturbance specialist plant species
(Chancellor 1964; Froud-Williams et al. 1984; Mohler
1993; Sester 2007; Colbach et al. 2008).

Disturbance and Redistribution of Seeds

We model disturbances as independent and identically dis-
tributed stochastic events influencing the population dy-
namics each year. The random disturbances are denoted
by . At each time step t we break into two randomv(t) v(t)
variables, and . Term is a Bernoulli randomv (t) v (t) v (t)1 2 1

variable determining whether or not the population is dis-
turbed, which is equal to unity with the probability of
disturbance h and zero with the probability of no distur-
bance . Given that a disturbance occurs, deter-1 � h v (t)2

mines the depth at which the disturbance affects the seeds
in the population at time t. For example, if ,v(t) p 0.5D
then the disturbance uniformly redistributes all seeds
above one-half of the maximum depth of the seed bank

and leaves the rest of the seed bank([0, D/2]) ([D/2, D])
undisturbed. The depth of a disturbance is modeled as a
truncated exponential distribution with mean depth of
disturbance r. Thus,

1 � exp (�r/r) if r ! D
Pr {v ≤ rFv (t) p 1} p ,1 {1 if r p D

(1)

where is the depth of disturbance. We then define thev2

disturbances with the following equation:v(t)

v(t) p v (t)v (t), (2)1 2

for every . Using this definition, deter-t p 0, 1, 2, … v(t)
mines both the occurrence and depth of disturbance for
each time t. We define the disturbance kernel K at time t
for the disturbance , acting on the population u, asv(t)

v(t)
D

1/v(t) u(y)dy if 0 ≤ x ≤ v(t)�
0K(x, y, v(t))u(y)dy p ,� {

u(x) if v(t) ! x ≤ D
0

(3)

with the convention that the top term on the right-hand
side of equation (3) is equal to zero when . Thev(t) p 0
top term in the right-hand side of equation (3) is modeling
the population u being uniformly redistributed within the
interval , and the bottom term is the population u[0, v(t)]
being left alone within the interval . The dimen-[v(t), D]
sion of K is for all .�1(depth) v(t)
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Survival

Only a fraction of the seeds that do not germinate survive
to the next time step. We make the simplifying assump-
tions that this fraction depends only on the seed’s depth
x in the seed bank (Mohler 1993), that seeds survive at
their lowest rates near the surface of the soil (due largely
to seed predation), and that the likelihood of survival in-
creases as seed depth increases. To model survival as a
function of depth we use the function

s(x) p s (1 � exp (�bx)), (4)0

where is the maximum survival probability of0 ! s ! 10

a seed and b models the incremental gain in survival prob-
ability that occurs through an incremental increase in seed
depth (Mohler 1993). The function s is dimensionless.

Plant Recruitment

We assume that germination occurs only in the presence
of a disturbance, and thus, the germination probability is
a function of ; that is,v(t)

g (x) if v(t) ( 0pg(x, v(t)) p , (5){0 if v(t) p 0

where is the probability of a seed of depth x ger-g (x)p

minating in a given time step, given a disturbance. We
assume that the probability of a seed germinating is such
that seeds germinate at their highest rate near the surface
of the soil, and the likelihood of germination drops as seed
depth increases (Chancellor 1964; Sester 2007). To model
germination as a function of depth we use the function

g p g exp (�ax), (6)p 0

where is the probability of a seed on the surface0 ! g ! 10

of the soil germinating and a models the loss in germi-
nation probability that occurs through an incremental in-
crease in seed depth (Mohler 1993). The function g is
dimensionless.

If conditions are favorable and the seed bank size is
large, it is possible that even disturbance specialist plants
experience density dependence in some years (see, e.g., fig.
3 in Alexander and Schrag 2003). Thus, we explicitly in-
cluded density dependence in our model by assuming that
seedling recruitment decreases with seedling density. We
assume that seedling recruitment follows a Holling type
II functional form (Holling 1959). A derivation of an anal-
ogous relationship for a general plant population is avail-
able in Eager et al. (2012), which utilizes the idea of com-
peting for a finite number of available microsites. The
number of plants that result from x seeds (area)�1 isf(x)
assumed to be

ax
f(x) p . (7)

b � x

The parameter a is the maximum number of adult plants
that can grow in a given area, with dimension plants
(area)�1. Term b (with dimension seeds (area)�1) is the
half-saturation constant, that is, the density of seedlings
that would end up producing half of the maximum pop-
ulation size, . Term f is the only term in the model thata

is density dependent. The dimension of f is plants (area)�1.

Seed Production

We assume that seed production is not affected by plant
density because we show in Eager et al. (2013) that this
would have a negligible effect on the equilibrium popu-
lation, as our model already considers density dependence
in the seedling-to-plant transition. In this example, we do
not model the size structure of the plants explicitly because
we envision annual plants, and the model uses a time step
of 1 year. Each plant produces an average number of seeds
c, which are distributed according to the depth distribution
J. We assume that J is a truncated exponential distribution
with mean (Mohler 1993), which ensures that mostm K 1
seeds are set on the surface of the soil. As a consequence,
most newly created seeds die if there is no disturbance in
the following year. The dimension of c is seeds (plant)�1

and J has dimension (depth)�1.

Integral Projection Model

We construct a stochastic integral projection model (IPM;
Easterling 2000; Ellner 2006; Ellner and Rees 2007; Coul-
son 2012) because we want to include seed depth as a
continuous stage variable. Other articles have treated seed
depth as a discrete variable and constructed matrix models
(Doyle et al. 1986; McGraw 1986; Jordan et al. 1995; Gon-
zalez-Andujar 1997; Claessen et al. 2005a, 2005b; Colbach
et al. 2008; Pekrun et al. 2005; Mohler 2006). However,
model predictions (i.e. long-term growth rates, sensitivi-
ties/elasticities, and transient dynamics) can change as ma-
trix dimensions increase, even when using the same data
set (Easterling et al. 2000; Ellner and Guckenheimer 2006;
Tenhumberg et al. 2009). By using an IPM we do not have
to explore the effect of the number of seed layers on model
predictions.

Our IPM simulates how the distribution of seeds in the
seed bank and the plant population density of an annual
species changes from one year to the next. Let ben(x, t)
the density of seeds in the seed bank at time t between
depths x and and be the density of plants inx � dx p(t)
the population at time t, for . The dimen-t p 0, 1, 2, …
sions of n and p are seeds (depth)�1 (area)�1 and plants
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Table 1: Model parameters

Parameter Value Equation Scenario

Maximum survival s0 .5 (4) Low seed survival
Maximum survival s0 .95 (4) High seed survival
Rate of change in survival b 10 (4) Neutral
Rate of change in survival b 5 (4) Neutral
Maximum germination g0 .95 (6) High germination
Maximum germination g0 .5 (6) Low germination
Rate of change in germination a 10 (6) Neutral
Rate of change in germination a 5 (6) Neutral
Mean depth of dispersal m (which appears in )J(x) .02 (8) Neutral
Holling parameters a, b 40, 50 (7) Low carrying capacity
Holling parameters a, b 400, 500 (7) High carrying capacity
Holling parameters a, b 40, 500 (7) Low establishment
Seed production per plant c 50 (8) Low fecundity
Seed production per plant c 150 (8) High fecundity

Note: Parameter values for simulations of the model in equation (8).

(area)�1, respectively. We assume that all plants in the
population behave like the average plant, so is simplyp(t)
a nonnegative number for all t. The model is therefore

n(x, t � 1) p s(x)[1 � g(x, v(t)]

D

# K(x, y, v(t))(n(y, t) � cJ(y)p(t))dy,�
0

D

p(t � 1) p f g(x, v(t))�{
0

D

# K(x, y, v(t))(n(y, t) � cJ(y)p(t))dydx ,� }
0

(8)

for and . The first line in modelt p 0, 1, 2, … n(x, 0) 1 0
(8) states that the buried seed distribution at time t � 1
results from three processes: redistribution by disturbance
at time t (from the integral involving the kernel K), the
fraction of seeds that do not germinate at time t (from

), and the fraction of seeds that survive from time t1 � g
to (from s). The second line states that the densityt � 1
of plants at time results from three processes: re-t � 1
distribution of seeds by disturbance at time t, germination
of a fraction of these disturbed seeds at time t (from g),
and the recruitment of the seedlings that come from these
germinated seeds (via the function f).

In this article we use simulations to conjecture that as
, the population sequence con-�t r � {[n(x, t), p(t)]}tp0

verges to a stationary random population ,* * T[n(x) , p ]
independent of the nonzero initial population

, which is in agreement with the mathe-T[n(x,0), p(0)]
matical results for other similar stochastic models
(Hardin et al. 1988; Benaim and Schreiber 2009). Thus,
as , we conjecture that the probability distributiont r �
of the population converges (and thus the long-term
population has a constant mean and variance). We per-
form Monte Carlo simulations to analyze how the mean
and variance of the populations change with changes in
the disturbance parameters h (the probability of distur-
bance) and r (the mean depth of disturbance). We also
explore the effect of changing fecundity (seeds per plant)
c, recruitment parameters a and b (from eq. [7]), seed
survival parameters and b (from eq. [4]), and ger-s0

mination parameters and a (from eq. [6]).g 0

Model Analysis

All simulations were done in R (R Core Development Team
2006), using numerical integration techniques explained
in Ellner and Rees (2007), with parameter values listed in
table 1. All computer programs used in our simulations
are provided in a text file in the supplementary material,
available online.1 In our simulation studies we set the max-
imum depth so that shallower depths are repre-D p 1
sented as a proportion of the maximum depth. We con-
sidered a range of different ecological scenarios. The values

and were consistent with figure 3 in Al-a p 40 b p 50
exander and Schrag (2003) for wild sunflower (Helianthus
annuus). Figure S1 (figs. S1–S5 available online) illustrates
for one simulation how the distribution of seeds in the
seed bank changes over time.

For each run we simulated population dynamics for

1 Code that appears in the American Naturalist is provided as a convenience

to the readers. It has not necessarily been tested as part of the peer review.



184 The American Naturalist

10,000 time steps and recorded the total population den-
sity for the seed bank population: kn(7, 10,000)k p1

. We repeated this process 500 times andD n(x, 10,000)dx∫0
calculated the long-term mean,

� kn(x, 10,000)k1

mean p , (9)
500

and variance,

2(kn(x, 10,000)k � mean)1variance p , (10)�
500

of the total seed bank population. Notice that the mean
and variance studied here are means and variances across
simulations and not across time steps, although as ,t r �
these two measurements become equivalent.

An IPM’s population size can asymptote to zero but
never actually reach zero. Thus, we define a quasi-extinc-
tion threshold (the minimum viable population den-
sity) to be , and the quasi-�1kn(7, t, q)k p 50 seeds (area)1

extinction probability as the proportion of simulations100
with initial population density kn(7, 0)k p 500 seeds1

that drop below at .�1 �1(area) 50 seeds (area) t p 1,000
The exact value of the quasi-extinction threshold did not
influence the qualitative predictions of the model. We re-
peated these calculations for evenly spaced com-90 (h, r)
binations in to explore the effect of the prob-[0, 1] # [0, 1]
ability of disturbance h and the mean depth of disturbance
r on the mean and variance of the seed bank size and the
quasi-extinction probability.

Results

Projections of Seed Population Dynamics

Our initial exploratory simulations using various parameter
combinations suggest that the probability of disturbance h
and fecundity c have a crucial impact on population dy-
namics. Figure 1 illustrates four typical population simu-
lations and the trajectories of the associated mean-field
model. To construct the mean-field model we took the arith-
metic average of all possible disturbance kernels and used
that kernel as the disturbance kernel every time step, using
the probability of disturbance h and the mean depth of
disturbance r to weight the likelihood of each disturbance
kernel. This was done to mimic the deterministic (although
sometimes periodic) models used in other articles (Doyle
et al. 1986; McGraw 1986; Jordan et al. 1995; Gonzalez-
Andujar 1997; Mertens et al. 2002; Pekrun 2005; Mohler
2006; van den Berg et al. 2010). Low disturbance frequency
h and low fecundity c always result in quasi-extinction
within ∼1,000 years (fig. 1a). Seeds require a disturbance
to germinate; thus, in the periods between disturbances,
seed density decreases (due to seed mortality). If the time

between disturbances is too long and seed production fol-
lowing a disturbance is too low to offset seed losses due to
mortality, the population eventually becomes extinct. In
contrast, the mean-field model produces a globally stable,
persistent population of ∼ . Increasing�13,000 seeds (area)
c while keeping the h low produces boom-or-bust dynamics
and delayed population extinction for the stochastic model
(fig. 1b, 1c). Plants with high fecundity contribute many
new seeds into the seed bank each time there is a distur-
bance. Thus, seed density is generally sufficiently high
enough for populations to persist for quite some time, even
with long intervals between disturbances (the mean time
between disturbances is a decreasing function of h). How-
ever, when simulating populations over longer time periods,
the seed density eventually decreases below the quasi-
extinction threshold, due to the nonzero probability of a
prolonged streak of years with no disturbance for small h.
In contrast, the analogous mean-field model predicts high
equilibrium seed population sizes (∼5,000 and 6,000

). High c combined with increased h produces�1seeds (area)
fluctuations well above the quasi-extinction threshold (but
generally below the equilibrium of the mean-field model),
even if we extend the simulation interval past the 1,000 time
steps shown (fig. 1d).

Long-Term Mean and Variance of Seed Bank Size

The total seed bank population size is positively correlated
with disturbance frequency, h, and fecundity c (figs. 2, S2).
Reducing density dependence (higher a values) and in-
creasing maximum germination probability also increasesg 0

seed bank size (figs. S3, S4). When maximum seed survival
is low (fig. 2a, 2b) the effect of the mean depth of dis-s0

turbance r depends on the disturbance probability h. If
disturbance frequency is low, increasing disturbance depth
reduces seed bank population size, but disturbance depth
has the opposite effect if disturbance frequency is high. This
is because, as r increases, more newly created seeds are being
brought from the surface of the soil to deeper layers where
germination rarely happens, and seeds are likely to die be-
fore getting back to soil layers (via disturbance) where ger-
mination is more likely. In contrast, when maximum seed
survival is high, deeper soil layers act as safe sites, and hence,
increasing mean depth of disturbance always increases pop-
ulation size, regardless of h (figs. 2c, 2d, S2). In this case
deep soil layers produce a storage effect; that is, they provide
a way of buffering against the effects of years without dis-
turbance. Seed survival as a function of seed depth is also
influenced by the rate parameter b (see eq. [4]), and we can
use this parameter to explore the role of seed survival close
to the surface in producing the nonmonotonic effect of r

on seed bank size. Seed survival is similar close to the surface
for , and for , (fig. S5),s p 0.5 b p 10 s p 0.95 b p 50 0
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Figure 1: Example simulations of the total seed bank population for four scenarios with different probability of disturbance h and fecundity
c. The mean depth of disturbance and the Holling parameters , . The thick black line is the trajectory of the meanr p 0.5 a p 40 b p 50
field model associated with each stochastic model. The disturbance kernels in each mean field model are the same each time step and are
the arithmetical average of the disturbance kernels used in each stochastic model.

but in one case r has a monotonic effect on seed bank
population size, and in the other case the effect is non-
monotonic (cf. fig. 2a, 2b with fig. S2c, S2d), suggesting that
the presence or absence of a storage effect determines
whether a small disturbance depth r can have a beneficial
effect on seed bank population size.

The variance of seed bank size is significantly influenced
by the disturbance probability h and has a roughly par-
abolic shape for most mean depths of disturbance, r (fig.
3). The initial increase of the variance with increasing h
is consistent with an increasing mean seed bank size be-
cause the variance typically increases with the mean (fig.
2). However, when h is sufficiently large, the carrying ca-
pacity of the population imposes an upper bound to the
number of seeds that could be produced within one time

step. This upper bound reduces the variance in seed pro-
duction because the population can only have large fluc-
tuations toward the zero population.

Changes in the other model parameters in-(c, a, b, g , a)0

fluence the minimum disturbance frequency required for
population persistence, but they do not affect the qualitative
model predictions (whether there is a nonmonotonic rela-
tionship between this long-term mean and r; figs. 2, S2–S4).

Quasi-Extinction Probability

Increasing the probability of disturbance h decreases the
quasi-extinction probability, regardless of r (fig. 4). Seeds
need disturbances to germinate, so increasing the distur-
bance frequency increases the total seed bank population
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Figure 2: The natural logarithm of the mean of the total seed bank population as a function of the probability of disturbance h, with
varying mean depth of disturbance r after 10,000 time steps. In all graphs , , , , and . a,a p 40 b p 50 g p 0.95 a p 10 b p 10 c p 50,0

; b, ; c, ; d, .s p 0.5 c p 150, s p 0.5 c p 50, s p 0.95 c p 150, s p 0.950 0 0 0

(fig. 2), which reduces the extinction probability. The
higher the fecundity c, the lower the required h needed to
prevent extinction (fig. 4b, 4d). Interestingly, in some cases
increasing the mean depth of disturbance, r, actually in-
creases the quasi-extinction probability (fig. 4a, 4b). This
happens whenever increasing r decreases mean seed bank
population size (i.e., in the absence of a storage effect).

Discussion

The goal of our model was to isolate the effects of random
disturbances on the long-term, stochastic equilibrium
population dynamics of disturbance specialist plant species
in natural environments. Explicitly incorporating the re-
distribution of seeds in the seed bank is an important part
of this work because seed survival and germination are

determined by seed depth in many systems (Mohler 1993;
Jordan et al. 1995; Gonzalez-Andujar 1997; Mohler et al.
2006; Colbach et al. 2008). The particular shapes describ-
ing how seed survival and germination varies with seed
depth in our model are applicable to a variety of species
(Mohler 1993; Colbach et al. 2008). Our model shows that
population persistence is an increasing function of dis-
turbance frequency, which is consistent with previous em-
pirical work studying the dynamics of disturbance spe-
cialist plants (Moody-Weis and Alexander 2003; Alexander
et al. 2009) and some modeling work studying genetically
modified plants (Claessen et al. 2005a, 2005b) and weed
seeds (Doyle et al. 1986; Gruber et al. 2004).

The novel insight from this work is that there is a trade-
off between missing germination opportunities and stor-
age effect. When disturbances are rare, but deep, there is
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Figure 3: The variance of the total seed bank population as a function of the probability of disturbance h, with varying mean depth of
disturbance r after 10,000 time steps. The parameter values in this figure are the same as those in figure 2.

a high probability of seeds being moved to deeper depths,
where the germination rate is very low. If seed survival in
these deep soil layers is low (e.g., the thistle species Cirsium
vulgare; Tenhumberg et al. 2008), then a seed has a high
probably of dying before it has a chance to reach the
surface of the soil again to germinate. Thus, shallow dis-
turbances are more advantageous for seeds because they
allow them to stay close to the surface and not miss any
germination opportunity. This suggests that in environ-
ments where a population is near the quasi-extinction
boundary, deep disturbances can decrease population vi-
ability because the dynamics when the population is small
often dictates the persistence or extinction of the popu-
lation (Hardin et al. 1988; Benaim and Schreiber 2009).
In contrast, when seed survival in deep layers is high (safe
sites; e.g., the wild sunflower species Helianthus annuus;

Alexander and Schrag 2003; Alexander et al. 2009), seeds
have a high a chance of surviving until the next time they
are brought to the surface of the soil via a disturbance,
even though these events are infrequent. Thus, deep dis-
turbances are beneficial for plants because they move seeds
to safe sites and thereby buffer the population against the
negative effects of long periods without germination op-
portunity (no disturbance). On the other hand, when dis-
turbances are frequent there is always a relatively large
number of seeds on the surface ready to germinate (max-
imum recruitment is limited by density dependence);
hence, even a weak storage effect ( ) is beneficial.s p 0.50

To our knowledge, this article is the first modeling study
evaluating the effect of average depth of disturbance on
population viability. Many models for weed seeds have
considered depth as a stage variable for the seed bank
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Figure 4: Probability of dropping below the quasi-extinction threshold of 50 seeds/area by time , as a function of the probabilityt p 1,000
of disturbance h, with varying mean depth of disturbance r after 10,000 time steps. The parameter values in this figure are the same as
those in figure 2.

(Froud-Williams et al. 1984; Doyle et al. 1986; McGraw
1986; Mohler 1993; Jordan et al. 1995; Gonzalez-Andujar
1997; Mertens et al. 2002; Claessen et al. 2005a, 2005b;
Pekrun et al. 2005; Mohler et al. 2006; van den Berg et
al. 2010), but instead of understanding the effect of average
depth of disturbance on stochastic population dynamics,
these studies have focused on how the yield of agricultural
crops is influenced by different management strategies
(i.e., crop rotation) and tilling regimes. For example,
Claessen et al. (2005a) explored how changes in model
parameters would affect the population growth rate (sen-
sitivity analysis), but the effect of the transition probabil-
ities between the top and bottom layers in the soil was
not included in the analysis. Mertens et al. (2002) and van
den Berg et al. (2010) perform sensitivity and elasticity
analysis of weed population growth rate for Polygonum

persicaria and Persicaria maculosa, respectively, but their
models are deterministic or periodic, not stochastic.

In natural environments, the maximum disturbance
depth is likely to vary between different plant species, and
the spatiotemporal variation in abiotic and biotic factors
is likely to produce variation in mean disturbance depths.
For instance, soil characteristics and precipitation are likely
to influence disturbance depth because in dry loamy soil
it is more challenging for small mammals to dig deep
tunnels, and birds might prefer to cache seeds at a shal-
lower depth than they would choose in moister or sandier
soil. Furthermore, variation in the distribution and com-
position of disturbance agents will influence how deeply
seeds are buried in the soil (relative to the maximum depth
for a specific plant species). Anthropogenic factors might
be important too, as they influence the fire frequency and
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grazing intensity (shallow disturbances). Untangling em-
pirically the interactions between the nature of local dis-
turbance events and the plant’s response to disturbances
(Sousa 1984) is costly, but the results of our model suggest
that these interactions may partially explain spatiotem-
poral variation in species persistence.

Previous models were concerned with evaluating the
outcomes of different tilling regimes as weed management
strategies, using deterministic sequences of disturbances
(Doyle et al. 1986; McGraw 1986; Maxwell 1988; Mohler
1993; Jordan et al. 1995; Gonzalez-Andujar 1997; Mertens
et al. 2002; Pekrun et al. 2005; Garnier and Lecomte 2006;
Sester et al. 2007; van den Berg et al. 2010). In contrast,
we model disturbances as a stochastic process mimicking
disturbance sequences in natural environments. We show
in this article that the predictions of a stochastic model
can be dramatically different from those of a model in-
corporating the average effect of disturbances (fig. 1a pop-
ulation extinction vs. equilibrium seed population size of
∼ ). It is well known that deterministic�13,000 seeds (area)
models typically overestimate population viability (Tulja-
purkar 1990; Caswell 2001), however, rarely is the pre-
dicted difference this large. The enhanced difference that
we see is likely due to the presence of density dependence
in our model. The nonlinear function f modeling seedling
recruitment is concave down in our model (see eq. [7]),
and thus, by Jensen’s inequality, the second part of equa-
tion (8) yields the inequality

D D

E[p(t � 1)] p E f g(x, v(t)) K(x, y, v)� �{ [
0 0

# (n(y, t) � J(y)p(t))dydx]}
D D

≤ f E[g(x, v(t))] E[K(x, y, v)]� �{
0 0

# [E(n(y, t)) � J(y)E(p(t))]dydx ,}
where E is the expected value (mean) with respect to the
stochastic process . The first term refers to the meanv(t)
of the long-term population in our article, while the sec-
ond is the mean field object usually assumed by previous
work for agricultural models.

Conclusion

We developed an integral projection model that mecha-
nistically incorporates the stochastic effect of random, nat-

ural disturbances on population dynamics of disturbance
specialist plants by explicitly considering the continuous
vertical dynamics of seeds in the seed bank and density
dependence in seedling recruitment. Our model suggests
that frequency and intensity of disturbances are important
drivers of the population dynamics. Generally, a high dis-
turbance frequency promotes population persistence, but
the effect of mean disturbance depth on population via-
bility is surprising. If seed survival is low, deep distur-
bances can increase extinction risk of already threatened
populations by reducing seed population size, while in
favorable environments the effect is opposite, and deep
disturbances increase seed population size. Furthermore,
our model suggests that conclusions from agroecosystems
may not always apply to natural systems.
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