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a  b  s  t  r  a  c  t

Leaf  chlorophyll  content  is  an  important  variable  for agricultural  remote  sensing  because  of  its  close
relationship  to leaf  nitrogen  content.  The  triangular  greenness  index  (TGI)  was  developed  based  on
the  area  of  a triangle  surrounding  the  spectral  features  of  chlorophyll  with  points  at  (670  nm,  R670),
(550  nm,  R550),  and  (480  nm, R480),  where  R� is the  spectral  reflectance  at wavelengths  of  670,  550  and
480,  respectively.  The  equation  is  TGI  = −0.5[(670  −  480)(R670 −  R550) −  (670  −  550)(R670 −  R480)].  In 1999,
investigators  funded  by  NASA’s  Earth  Observations  Commercialization  and  Applications  Program  collab-
orated on  a nitrogen  fertilization  experiment  with  irrigated  maize  in  Nebraska.  Airborne  Visible/Infrared
Imaging  Spectrometer  (AVIRIS)  data  and  Landsat  5 Thematic  Mapper  (TM)  data  were acquired  along
with  leaf  chlorophyll  meter  and  other  data  on three  dates  in  July  during  late  vegetative  growth  and  early
reproductive  growth.  TGI  was  consistently  correlated  with  plot-averaged  chlorophyll-meter  values  at
the  spectral  resolutions  of  AVIRIS,  Landsat  TM,  and  digital  cameras.  Simulations  using  the Scattering  by
Arbitrarily  Inclined  Leaves  (SAIL)  canopy  model  indicate  an  interaction  among  TGI,  leaf  area  index  (LAI)
and soil  type  at low  crop LAI, whereas  at high  LAI  and  canopy  closure,  TGI  was  only  affected  by  leaf
chlorophyll  content.  Therefore,  TGI may  be the  best  spectral  index  to  detect  crop  nitrogen  requirements
with  low-cost  digital  cameras  mounted  on  low-altitude  airborne  platforms.

© 2012  Published  by  Elsevier  B.V.

1. Introduction

Agricultural crops have large nitrogen requirements, but the
demand for fertilizer is variable because some nitrogen is supplied
by soil biogeochemical processes (Scharf et al., 2002a; Meisinger
et al., 2008). Uniform rates of fertilization for a single field may
result in large areas having excess nitrogen, which is either leached
into the ground water or lost in gaseous forms (e.g. nitrous oxide, a
greenhouse gas). As a low-cost alternative to plant or soil sampling,
remote sensing of either foliar nitrogen or chlorophyll content may
supply information on the spatial variability of soil nitrogen supply
(Schepers et al., 1996; Scharf et al., 2002a; Gitelson et al., 2005; Fox
and Walthall, 2008; Hatfield et al., 2008; Meisinger et al., 2008).

There are different types of sensors that measure the amount of
reflected solar radiation: from low-cost multispectral to high-cost
imaging spectrometers, from low spatial to high spatial resolution,

∗ Corresponding author. Tel.: +1 301 504 5278; fax: +1 301 504 8931. USDA is an
equal opportunity provider and employer.

E-mail address: Raymond.Hunt@ars.usda.gov (E.R. Hunt Jr.).
1 Deceased.
2 Retired.

and from ground-based to satellite. The forefront of imaging spec-
troscopy is the estimation of leaf chlorophyll content, leaf nitrogen
content, leaf area index (LAI) and other variables by model inver-
sion, including atmospheric and topographic corrections (Botha
et al., 2007; Houborg et al., 2009; Jacquemoud et al., 2009; Kokaly
et al., 2009; Vohland et al., 2010). Newer techniques for estimat-
ing leaf and canopy chlorophyll content use various methods to
determine the geometric area bounded by a spectral reflectance
curve (Oppelt and Mauser, 2004; Haboudane et al., 2008; Delegido
et al., 2010). However, agricultural management generally requires
information within very short windows of time (Moran et al., 1997;
Pinter et al., 2003). Furthermore, it is uncertain that more detailed
information from imaging spectrometers will lead to better deci-
sions for crop nitrogen management, for example, compared to
ground-based on-the-go sensors (Shanahan et al., 2008). Digital
cameras and aerial photography are low-cost methods used for
determining areas with nitrogen deficiency (Blackmer et al., 1996;
Adamsen et al., 1999; Scharf et al., 2002a; Dani et al., 2005). How-
ever, these low-cost methods need better methods to extract the
information desired by managers (Hunt et al., 2005).

Spectral indices are an important method for extracting infor-
mation from remotely sensed data because indices reduce, but do
not eliminate, effects of soils, topography, and view angle (Jackson

0303-2434/$ – see front matter. © 2012 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.jag.2012.07.020
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Table 1
Various remote sensing indices related to vegetation cover and chlorophyll content.

Name Typea Abbrev. Equationb References

Ratio vegetation index (also called
simple ratio)

Red–NIR RVI Rn/Rr Jordan (1969) and Pearson
and Miller (1972)

Normalized difference vegetation
index

Red–NIR NDVI (Rn − Rr)/(Rn + Rr) Rouse et al. (1974) and
Tucker (1979)

Soil  adjusted vegetation index Red–NIR SAVI (1 + 0.5) (Rn − Rr)/(Rn + Rr + 0.5) Huete (1988)
Modified soil adjusted vegetation

index
Red–NIR MSAVI 0.5{2·Rn + 1 − √

[(2·Rn + 1)2 − 8 (Rn − Rr)]} Qi et al. (1994)

Optimized soil adjusted vegetation
index

Red–NIR OSAVI (1 + 0.16) (Rn − Rr)/(Rn + Rr + 0.16) Rondeaux et al. (1996)

Enhanced vegetation index Vis–NIR EVI 2.5(Rn − Rr)/(Rn + 6·Rr − 7.5·Rb + 1) Huete et al. (2002)
Triangular vegetation index Vis–NIR TVI 0.5[120(Rn − Rg) − 200(Rr − Rg)] Broge and Leblanc (2000)
Second  modified triangular

vegetation index
Vis–NIR MTVI2 1.5[2.5(Rn − Rg) − 2.5(Rr − Rg)]/√

[(2·Rn + 1)2 − 6·Rn − 5·√(Rr) − 0.5]
Haboudane et al. (2004)

Chlorophyll vegetation index Vis–NIR CVI Rn·Rr/Rg
2 Vincini et al. (2008)

Green  normalized difference
vegetation index

Green–NIR gNDVI (Rn − Rg)/(Rn + Rg) Gitelson et al. (1996)

Chlorophyll index – green Green–NIR CI-G Rn/Rg − 1 Gitelson et al. (2003)
Normalized green red difference

index
Vis NGRDI (Rg − Rr)/(Rg + Rr) Tucker (1979)

Green leaf index Vis GLI (2·Rg − Rr − Rb)/(2·Rg + Rr + Rb) Louhaichi et al. (2001)
Visible atmospherically resistant

index
Vis VARI (Rg − Rr)/(Rg + Rr − Rb) Gitelson et al. (2002)

Normalized difference red edge
index

RE–NIR NDREI (Rn − Rre)/(Rn + Rre) Gitelson and Merzlyak (1994)

Chlorophyll index – red edge RE–NIR CI-RE Rn/Rre − 1 Gitelson et al. (2003)
MERIS  total chlorophyll index RE–NIR MTCI (R750 − R710)/(R710 − R680) Dash and Curran (2004)
Modified chlorophyll absorption

reflectance index
Red–RE MCARI [(R700 − R670) − 0.2(R700 − R550)](R700/R670) Daughtry et al. (2000)

Transformed chlorophyll
absorption reflectance index

Red–RE TCARI 3[(R700 − R670) − 0.2(R700 − R550)(R700/R670)] Haboudane et al. (2002)

Triangular chlorophyll index Red–RE TCI 1.2(R700 − R550) − 1.5(R670 − R550)·√(R700/R670) Haboudane et al. (2008)
Combined index with TCARI Red–RE–NIR TCARI/OSAVI Haboudane et al. (2004)
Combined index with MCARI Vis–RE–NIR MCARI/MTVI2 Eitel et al. (2007, 2008)
Triangular greenness index Vis TGI −0.5[(�r − �b)(Rr − Rg) − (�r − �g)(Rr − Rb)] Hunt et al. (2011)

a Indices are grouped based on the major wavelengths used: NIR (n, 760–900 nm), red edge of chlorophyll absorption (re, 700–730 nm), red (r, 630–690 nm), green (g,
520–600  nm), blue (b, 450–520 nm), and visible (vis, 450–690 nm). Red–RE and RE–NIR indices typically use narrow bands, whereas Red–NIR and Vis indices may use either
broad  or narrow wavebands. Wavelength ranges for overlapping digital camera bands are: red 580–670 nm,  green 480–610 nm, and blue 400–520 nm (Hunt et al., 2005).

b R� is the reflectance at wavelength �; Rn , Rre , Rr , Rg , and Rb are the reflectances for NIR, RE, red, green, and blue bands, respectively.

and Huete, 1991; Hatfield et al., 2004, 2008; Hatfield and Prueger,
2010). Spectral indices are also an important method for analyzing
imaging spectrometer data (Gitelson, 2012; Zhu et al., 2012). Visible
and near-infrared spectral indices are sensitive to both chlorophyll
content and LAI (Gitelson et al., 2002; Baret et al., 2007), so devel-
opment of better indices with increased sensitivity to chlorophyll
and decreased sensitivity to LAI may  help fertilizer management
for crops.

Most spectral indices today are calculated using ratios or nor-
malized differences of two or three bands (Table 1), although
originally, there was more diversity among spectral indices
(Jackson and Huete, 1991). Broge and Leblanc (2000) developed
the triangular vegetation index (TVI) based on the area of a triangle
with vertices at green, red and NIR wavelengths (Table 1), which
is sensitive to both chlorophyll content and LAI. In order to predict
leaf nitrogen status, Haboudane et al. (2008) created the triangular
chlorophyll index based on green, red and red-edge (710–730 nm)
bands. Red-edge bands are deployed on many satellite sensors
(Eitel et al., 2007; Herrmann et al., 2011; Ramoelo et al., 2012) and
increase sensitivity to chlorophyll content (Gitelson et al., 2005;
Gitelson, 2012). However, red-edge bands are generally not avail-
able on low-cost multispectral sensors, which have broad bands
at visible wavelengths; therefore, a visible-band index called the
triangular greenness index (TGI) was developed (Hunt et al., 2011).

In 1999, a group of investigators funded by the NASA
Earth Observations Commercialization and Applications Program
(EOCAP) pooled resources and conducted a nitrogen fertilization
experiment with irrigated maize at Shelton, NE USA. Using Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) data from

the experiment, derivative indices were evaluated by Estep and
Carter (2005) and other spectral indices were evaluated by Perry
and Roberts (2008).  We  used datasets acquired during this experi-
ment to test the response of TGI to leaf chlorophyll content and to
compare the results with other vegetation and chlorophyll indices.

2. Methods

2.1. Study site and experimental design

On 29 April 1999, maize (Zea mays L) was  planted in an irrigated
64-ha field (40◦45′39′′N, 98◦43′35′′W)  near Shelton, Nebraska, USA
(Fig. 1). The east–west rows were spaced 0.76 m apart and the
average plant density for the field was 8.3 m−2. The dominant soil
types were a Hord silt loam (fine-silty, mixed, mesic, Pachic Haplus-
toll) and a Blendon loam (coarse-loamy, mixed, superactive, mesic,
Pachic Haplustoll). At planting, 20 kg N ha−1 (as liquid ammonium
polyphosphate) was  applied along each planted row at a soil depth
of 5–10 cm.

Twenty plots (75 m × 90 m)  with different levels of applied
nitrogen fertilizer were established along the center of the field
in a randomized complete block design with four replications
(Fig. 2). On 5 June 1999, sidedress fertilizer of 0, 50, 100, 150 or
200 kg N ha−1 (as anhydrous ammonia) was applied to one plot in
each block. During the sidedress fertilization, a mistake was  made
in programming the variable rate applicator; two  applicator passes
in the odd numbered plots received the treatment from the even-
numbered plot directly north (Fig. 2). Two  plots were left bare on
the east and west edges of the field to serve as calibration targets.
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Fig. 1. Location of the field site near Shelton, Nebraska, USA.

To test detection accuracy, there were eight 100-m long plots
established with widths of 8 m,  16 m,  18 m or 24 m,  each with no
sidedress fertilizer (Fig. 2). The remainder of the field was fertil-
ized with 150 kg N ha−1, which was the average amount of fertilizer
applied to maize. Along the north edge of the plot, plots were estab-
lished for which irrigation water was withheld, imposing water
stress (Perry and Roberts, 2008).

Frequent measurements (about a week apart) were made in
each plot starting 24 June 1999. LAI was measured at five locations
per plot with an AccuPAR Ceptometer (Decagon Devices, Pullman,
Washington, USA) using the procedure described by Wilhelm et al.
(2000).  The five locations were at the plot center, and at the center
point of the north-east, north-west, south-west, and south-east
plot quadrants around the plot center. Plant growth stage (Ritchie
et al., 1993) was determined weekly in four rows per plot at 3 loca-
tions per row. Leaf chlorophyll meters (Minolta SPAD-502 meter,
http://konicaminolta.com/products/instruments/spad/index.html)
were used to monitor crop nitrogen status (Schepers et al., 1992;
Varvel et al., 2007). Chlorophyll-meter values were obtained in
four rows per plot, with 30 leaves per row, selected from the
top-most fully expanded leaves with a visible leaf collar.

An ASD FieldSpec Pro FR spectrometer (Analytical Spectral
Devices, Boulder, CO, USA) was mounted in an aerial lift about 18 m
above the ground for canopy measurements during AVIRIS over-
flights on 6 July and 22 July. A 10◦ fore-optic was used to restrict the

Fig. 2. Experimental layout for the nitrogen fertilization experiment in a 64-ha
maize field that had center-pivot irrigation. North is to the top of the diagram.

field of view to 3-m diameter. Measurements of a Spectralon panel
(Labsphere Inc., North Sutton, New Hampshire, USA), also mounted
on the aerial lift, were used to calculate spectral reflectance factors.
All canopy measurements were made between 1000 and 1400 h.
The data were compared to plot averages of chlorophyll meter
values.

On 22 July, four leaves were collected from three sample
locations in each plot for spectral reflectance measurements.
Reflectances were determined using an ASD FieldSpec Pro FR
spectrometer attached to a LiCor (LiCor Inc., Lincoln, NE, USA)
LI-1800-12 integrating sphere. One disk (131 mm2) per leaf was
excised from each leaf, where the leaf was clamped onto the
integrating sphere. The four leaf disks from each sample location
were grouped together, leaf chlorophylls and carotenoids were
extracted with dimethyl sulfoxide, and chlorophyll concentrations
were determined using equations from Wellburn (1994).  Because
the chlorophyll content and chlorophyll meter values were not
measured on the same leaves, the data could not be used to develop
a calibration equation to estimate leaf chlorophyll content from the
chlorophyll meter values. Leaf spectral and chlorophyll data were
also acquired 17 June 1999 (12 days after sidedress fertilization);
however, there were no differences among the plots.

2.2. PROSPECT and SAIL model simulations

Simulations of leaf spectral reflectance and transmittance were
made for various leaf chlorophyll contents from 15 to 85 �g cm−2

using the PROSPECT Version 4 model (Jacquemoud et al., 1996,
2009; Feret et al., 2008). The leaf structure parameter was set at
1.5, the water content was  set at 0.015 g cm−2, and dry matter con-
tent was  set at 0.005 g cm−2, which were about the median values
for maize (E.R. Hunt, unpublished results).

The outputs from the PROSPECT model were used as inputs to
the Scattering by Arbitrarily Inclined Leaves (SAIL) model (Verhoef,
1984). Various LAI were used from 0.01 to 7.0 and a spheri-
cal leaf angle distribution was  assumed. Soil color affects canopy
reflectance and vegetation indices, so the reflectance spectra of two
soils were used in the SAIL model simulations. The first soil was a
mixture of a Hord silt loam and a Blendon loam from Nebraska, USA.
The second soil was  a reddish Gaston (fine, mixed, active, thermic
Humic Hapludult) from North Carolina, USA.

To determine if the Hord/Blendon and Gaston soils represented
a reasonable range of reflectances, a soil spectral library of 785 soil
profiles (4437 samples) was  obtained from the World Agroforestry
Center (ICRAF)–ISRIC World Soil Information (ICRAF–ISRIC, 2010).
The soils are from 58 countries located in Africa, Asia, Europe, North
America, and South America. The spectra were measured with an
ASD FieldSpec FR (Shepherd and Walsh, 2002).

2.3. Development of the triangular greenness index

The triangular greenness index (TGI) estimates chlorophyll con-
centration in leaves and canopies based on the area of a triangle
(Fig. 3) with three points: (480 nm,  R480), (550 nm,  R550), and
(670 nm,  R670). Setting up a three by three matrix, the area of a
triangle is calculated from matrix determinants. After factoring the
terms:

A = ±0.5[(�1 − �3)(R1 − R2) − (�1 − �2)(R1 − R3)] (1)

where A is the triangular area, �1–�3 are wavelengths for the three
points, and R1–R3 are reflectances for the three points, respec-
tively. The order of bands is not important, but the order will affect
whether the result is positive or negative (hence the ± in Eq. (1)).
Starting with red for convenience:

TGI = −0.5[190(R670 − R550) − 120(R670 − R480)] (2)

http://konicaminolta.com/products/instruments/spad/index.html
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where TGI has units of wavelength × reflectance, so using �m
wavelength units or percent reflectance does not affect the value of
TGI, after units are converted. Multispectral sensor bands or digital
camera bands of red, green and blue may  be used instead of nar-
row bands at 670, 550 and 480 nm,  respectively. Then, �1–�3 are the
centers of the wavebands and R1–R3 are the waveband reflectances.

2.4. Remote sensing data and image analysis

AVIRIS data were acquired at high altitude (20-m pixel) on 6
July 1999 and at low altitude (3-m pixel) on 22 July 1999. High
altitude data were also acquired on 25 June 1999; however, visual
inspection of the images showed there was considerable haze on
that date. The AVIRIS data facility from the Jet Propulsion Labora-
tory (Pasadena, CA, USA) provided calibrated radiances. A Landsat
5 Thematic Mapper (TM) image (path 30, row 32) acquired on 16
July 1999 was obtained from the U.S. Geological Survey, EROS Data
Center (Sioux Falls, SD, USA).

The AVIRIS and TM images were atmospherically corrected
to land-surface reflectance using Atmospheric Correction Now
(ACORN) version 5.5 (ImSpec LLC, http://www.imspec.com).
Because the study area was small, the images were not geometri-
cally registered. Instead, each plot center was linearly interpolated
from the edges of the field as seen on the image. The areas in the
odd-numbered plots with the N-application errors were avoided in
the high-altitude and low-altitude AVIRIS data. Data were analyzed
using the Environment for Visualizing Images (ENVI version 4.7, ITT
Visible Information Solutions, Boulder, CO, USA).

3. Results

3.1. Soil analyses and model simulations

In the PROSPECT leaf model simulations, TGI, increased as
the total chlorophyll content decreased from 85 to 15 �g cm−2

(only the results for chlorophyll contents 45 and 15 �g cm−2 are
shown Fig. 3). Both chlorophylls and carotenoids strongly absorb at
480 nm,  so there is little change in reflectance at blue wavelengths
with a reduction in chlorophyll content. Chlorophyll a has a much
higher absorption coefficient at 670 nm compared to 550 nm,  so for

Fig. 3. PROSPECT model simulations of leaf spectral reflectance at chlorophyll
a  + b contents of 15 �g cm−2 (nitrogen deficient) and 45 �g cm−2 (nitrogen suf-
ficient). The triangular greenness index (TGI) is calculated from the area of a
triangle defined by three points: (480 nm,  R480), (550 nm,  R550), and (670 nm,
R670), where R� is the reflectance at wavelength �. The final equation is
TGI = −0.5[190(R670–R550) − 120(R670–R480)]. Multispectral sensors use the center
wavelength and reflectances for the blue, green and red bands.

Fig. 4. SAIL model simulations showing the response of TGI  to leaf area index (LAI)
at  various total leaf chlorophyll (Cab) contents. Two  backgrounds were used for the
simulations: (A) the Hord–Blendon soil found at the study site, and (B) a reddish
Gaston soil.

a decrease in chlorophyll content, the increase at 550 nm is larger
than the increase at 670 nm (Fig. 3).

The mean TGI from the ICRAF–ISRIC soil spectral library was
−0.14 with a standard deviation of 2.05 using narrow bands (data
not shown). Fifty percent of the samples (2203 out of 4437) had
TGI between −1.0 and 1.0. The Hord and Blendon soils had a TGI
of 0.27, whereas the reddish Gaston soil had a negative TGI of −3.5
(Fig. 4). For both soil types, TGI increased rapidly at low values of
LAI up to an LAI of about 1.5–2 (Fig. 4). The LAI-saturated value of
canopy TGI at greater values of LAI was determined only by leaf
chlorophyll content.

Band width affects the value of canopy TGI (Fig. 5). There
were large decreases in TGI for a given leaf chlorophyll content
from the narrow AVIRIS bands, moderate decreases for Landsat
Thematic Mapper bands, and small decreases for the broad, over-
lapping bands of a commercial digital camera (Fig. 5). This was
expected because averaging the green reflectance at 550 nm over a
larger wavelength range reduces the green band reflectance. Fur-
thermore, averaging the red reflectance at 670 nm over a larger
wavelength range increases the red band reflectance.

A sensitivity analysis was conducted to determine optimal
wavelengths for calculation of TGI. When narrow, 10-nm bands
were shifted ±20 nm,  one at a time, there were order of magnitude
changes in TGI. There were also very large changes in TGI when
all three bands were shifted ±20 nm in the same direction. So for
narrow bands, wavelengths at 670, 550 and 480 nm were better for
calculation of TGI. With broad bands, from either Landsat TM or
digital cameras, shifts of the center wavelength ±20 nm had very
little effect on TGI. So for comparison of TGI among sensors, the
red, green and blue wavelengths were kept constant at 670, 550
and 480 nm,  respectively.

http://www.imspec.com/
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Fig. 5. SAIL model simulations showing the response of TGI to leaf chlorophyll
content for three different sensors: (A) a commercial digital camera, (B) Landsat
Thematic Mapper (TM), and (C) the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS). LAI was  3.0 and the background was the Hord–Blendon soil found at the
study site.

3.2. Field and remote sensing data

The experimental maize field was primarily in vegetative
growth on 8 July, tasselling growth stage on 14 July, and silk-
ing stage on 22 July (Fig. 6A). The high-nitrogen plots initially

Fig. 6. Field data summary for three dates: (A) growth stage, (B) leaf area index, and
(C)  leaf chlorophyll meter values. Corn growth stage (Ritchie et al., 1993) is defined
by  the number of mature leaves with visible leaf collars during vegetative growth
(for  this variety, 17 leaves), then tasseling (stage 18), and finally reproductive stage
1  (silking, stage 19).

grew faster than the low nitrogen plots, but by 22 July, there
were only small differences in LAI among the treatments (Fig. 6B).
Except for the low-nitrogen plots (0 kg ha−1 N), there were only
small differences in chlorophyll meter values on 8 and 14 July
(Fig. 6C). However, on 22 July, there were large differences in
chlorophyll meter values among the 50–200 kg ha−1 N treatments,
in part because leaf nitrogen started to be re-allocated for grain
production.

After a histogram stretch, the 0 kg ha−1 N plots were detected in
the high-altitude AVIRIS data acquired on 6 July, both in the true
color (Fig. 7A) and the TGI images (Fig. 7B). The 12-m, 18-m and
24-m wide detection plots were detectable in the images, but the
6-m wide plots were not (Fig. 7A and B). Furthermore, plots 3 and
13 (50 kg ha−1 N, Fig. 1) were also detected, which was  probably
facilitated by the two applicator passes with 0 kg ha−1 N. The other
plots were not visually distinguishable, which was consistent with
the chlorophyll meter data (Fig. 6C).

Only the 0 kg ha−1 N plots were visible in the Landsat TM true
color image after a histogram stretch (Fig. 7C), and were not
detectable in the TGI image (Fig. 7D), except with prior knowledge
of the applied N treatments. Only the 0 kg ha−1 N plots had much
lower chlorophyll meter values on 16 July, so this result was con-
sistent with the field data. None of the narrow detection plots were
distinguishable in either Fig. 7C or D.

The 22 July low-altitude AVIRIS data showed very clear differ-
ences in both the true color image (Fig. 7E) and the TGI image
(Fig. 7F). However, as the leaf chlorophyll-meter data suggest, the
largest differences were between the 0 kg ha−1 N plots and the
other plots. It was not surprising that all eight of the 0 kg ha−1 N
detection plots were visible, because the width of the narrowest
plot was about two  pixels wide for the low-altitude (3-m) AVIRIS
data.

The field spectrometer data acquired from an aerial lift were
not significantly different from the AVIRIS data acquired on either 6
July (Fig. 8A) or 22 July (Fig. 8B). However, the regression lines were
significantly different between the two dates. For both dates, the
linear relationship between TGI and chlorophyll-meter data was
largely determined from the 0 kg ha−1 N plots. Therefore, correla-
tions between any index and chlorophyll-meter data depended on
how well that index separates the 0 kg ha−1 N plots from the other
treatments.

3.3. Comparison of TGI with other spectral indices

The correlation coefficient between plot average leaf chloro-
phyll content and the plot-average chlorophyll-meter data was
0.85 on 22 July 1999. From the leaf spectrometer and integrat-
ing sphere data, only two  spectral indices were not correlated
to leaf chlorophyll content and only four indices were not cor-
related to chlorophyll-meter data (Table 2). In general, indices
based on a near-infrared band, such as the ratio vegetation index
(RVI) or the normalized difference vegetation index (NDVI) were
not as highly correlated with either chlorophyll-meter or total-
chlorophyll data compared to visible-band only indices [TGI,
visible atmospherically resistant index (VARI), normalized green-
red difference index (NGRDI), and green leaf index (GLI)]. Indices
using a red-edge band such as the normalized difference red-
edge index (NDREI) were about equal to visible-band indices
(Table 2). Whereas all of the visible band indices were about equal
using narrow bands, the correlation coefficients were lower for
VARI, NGRDI, and GLI when the data were averaged to simu-
late digital camera bands (Table 2). The correlation coefficients
with TGI remained about the same when spectral resolution was
degraded.

For the high-altitude AVIRIS data acquired 6 July 1999, indices
based on green/near-infrared combinations, indices based on
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Fig. 7. (A) Bands 35 (red), 19 (green) and 12 (blue) of high-altitude AVIRIS data (20-m pixel) acquired on 6 July 1999. (B) Triangular greenness index (TGI) of the high-altitude
AVIRIS data in grayscale, with high TGI (lighter shades) corresponding to low leaf chlorophyll contents. (C) Bands 3 (red), 2 (green) and 1 (blue) of Landsat 5 TM data (30-m
pixel)  acquired on 16 July 1999. (D) TGI of the Landsat 5 TM data in grayscale. (E) Bands 35 (red), 19 (green) and 12 (blue) of low-altitude AVIRIS data (3-m pixel) acquired
on  22 July 1999. (F) TGI of the low-altitude AVIRIS data in grayscale.

Fig. 8. TGI obtained from reflectance spectra obtained using an ASD spectrome-
ter from an aerial lift and AVIRIS imagery for two  dates: (A) 6 July 1999 and (B)
22  July 1999. The linear regressions are not significantly different between the
ASD spectrometer and AVIRIS data for 6 July (P = 0.35) and 22 July (P = 0.20). There
were significant differences between the two dates for both the ASD spectrometer
(P  = 0.018) and AVIRIS (P = 0.050) data.

red-edge/near-infrared combinations and TGI performed better
than red/near-infrared indices (Table 3). Two of the visible-band
indices (VARI and NGRDI) had correlations that reversed from neg-
ative to positive. On 6 July, there were differences LAI among the
treatments (Fig. 6B), so the positive correlations most likely caused
by differences in leaf area index. Hunt et al. (2005) found that
NGRDI was  positively correlated with biomass (and thus LAI) in
other experiments. For the Landsat TM data (Table 4), TGI had the
best correlation with chlorophyll-meter data, followed closely by
green/near-infrared indices such as the green normalized differ-
ence vegetation index (gNDVI) and the chlorophyll index – green
(CI-G).

Similar to the leaf spectrometer data acquired on 22 July, almost
every index was highly correlated with the chlorophyll-meter data
for the low-altitude AVIRIS overflight on 22 July (Table 5). Explo-
ration of the data showed that some novel band combinations
and derivative indices had even higher correlation coefficients. For
example, the first spectral derivative at 570 nm wavelength had a
correlation coefficient of −0.95 (P.C. Doraiswamy, P.M. Zara, and
J.M. McMurtrey, personal communication). However, these novel
indices were not correlated with chlorophyll-meter data on the 6
July AVIRIS high-altitude overflight, and were not highly significant
using either the leaf spectrometer data or SAIL model simulations.

4. Discussion

There were three results that indicated TGI has potential for
nitrogen fertilizer management. The first was the correlations
between TGI and chlorophyll meter/chlorophyll data were consis-
tently among the best spectral indices for the three dates of image
data, leaf spectrometer data, and SAIL model simulations. The sec-
ond is that TGI was not sensitive to changes in LAI above 2.0, so
TGI is a robust indicator of leaf chlorophyll content. This indicates
that canopy closure, and not LAI per se,  was the important canopy
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Table  2
Correlation coefficients (r) among various remote sensing indices from leaf spectral reflectances acquired using an ASD spectrometer and integrating sphere on 22 July 1999.
The  spectrometer data were combined to obtain bands similar to AVIRIS, Landsat TM,  and digital cameras. Chlorophyll data and reflectances were measured on the same
leaves, whereas chlorophyll meter values were the plot averages from the field measurements. For number of samples (N) = 20, critical values of r at  ̨ = 0.05 and 0.01 are
0.433  and 0.549, respectively.

Index AVIRIS bands TM bands Digital camera bands AVIRIS bands TM bands Digital camera bands

Total leaf chlorophyll (�g cm−2) Plot chlorophyll meter values

RVI 0.41 0.51 –a 0.52 0.61 –
NDVI  0.37 0.50 – 0.45 0.51 –
SAVI  0.53 0.56 – 0.40 0.62 –
MSAVI 0.52 0.56 – 0.39 0.62 –
OSAVI 0.55 0.56 – 0.63 0.73 –
EVI 0.55 0.69 – 0.41 0.74 –
TVI 0.46 0.49 – 0.51 0.54 –
MTVI2 0.29 0.43 – 0.39 0.49 –
CVI  0.88 0.86 – 0.88 0.87 –
gNDVI 0.78 0.76 – 0.80 0.79 –
CI-G  0.80 0.77 – 0.83 0.81 –
NGRDI −0.88 −0.88 −0.79 −0.83 −0.81 −0.68
GLI  −0.89 −0.89 −0.80 −0.83 −0.83 −0.78
VARI  −0.86 −0.86 −0.78 −0.79 −0.79 −0.68
NDREI 0.85 – – 0.85 – –
CI-RE 0.83 – – 0.86 – –
MTCI  0.86 – – 0.89 – –
MCARI −0.87 – – −0.85 – –
TCARI −0.86 – – −0.85 – –
TCI  −0.87 – – −0.85 – –
TCARI/OSAVI −0.85 – – −0.84 – –
MCARI/MTVI2 −0.84 – – −0.83 – –
TGI −0.86 −0.86 −0.88 −0.84 −0.84 −0.85

a Not applicable.

variable. The third was the correlations did not depend on the spec-
tral resolution of the sensor, as long as the TGI was not saturated
at high values of leaf chlorophyll content. Spectral indices using
a band at the red edge of the chlorophyll a absorption spectrum
were also consistently among the best spectral indices for estimat-
ing leaf chlorophyll content, as found in other studies (Yao et al.,
2010). With the new commercial satellite systems, red-edge bands
are available for estimating chlorophyll content (Eitel et al., 2007;
Herrmann et al., 2011; Ramoelo et al., 2012). However, broad-band

Table 3
Correlation coefficients (r) between various remote sensing indices and leaf chloro-
phyll meter data for high-altitude AVIRIS data acquired on 6 July 1999. Chlorophyll
meter values were acquired on 8 July 1999. The AVIRIS data were combined to be
similar to the bands of TM and a digital camera. For N = 20, critical values of r at
˛  = 0.05 and 0.01 are 0.433 and 0.549, respectively.

Index AVIRIS bands TM bands Digital camera bands

RVI 0.63 0.71 –a

NDVI 0.61 0.71 –
SAVI 0.40 0.43 –
MSAVI 0.41 0.43 –
OSAVI 0.47 0.53 –
EVI 0.38 0.42 –
TVI 0.27 0.31 –
MTVI2 0.37 0.46 –
CVI 0.81 0.78 –
gNDVI 0.78 0.79 –
CI-G 0.77 0.78 –
NGRDI −0.35 −0.093 0.47
GLI  −0.70 −0.71 −0.60
VARI 0.031 0.38 0.70
NDREI 0.81 – –
CI-RE 0.79 – –
MTCI 0.87 – –
MCARI −0.89 – –
TCARI −0.91 – –
TCI −0.83 – –
TCARI/OSAVI −0.92 – –
MCARI/MTVI2 −0.91 – –
TGI −0.91 −0.93 −0.89

a Not applicable.

red–green–blue data are widely available and low-cost sensors may
not have a red-edge band.

The results were very different between TGI and the normalized
green-red difference index (NGRDI). The basic equation for calcu-
lating the area of a triangle is 0.5 base × height, and the difference
between green and red determines the height of the triangle. Since
the base of the triangle is fixed by the wavelength range, corre-
lations of NGRDI with chlorophyll meter data were expected to be
about equal to TGI. However, NGRDI was more sensitive to changes

Table 4
Correlation coefficients (r) between various remote sensing indices and leaf chloro-
phyll meter data for Landsat 5 TM data acquired on 16 July 1999. Leaf chlorophyll
meter data were acquired on 13 July 1999. For N = 20, critical values of r at  ̨ = 0.05
and  0.01 are 0.433 and 0.549, respectively.

Index TM bands

RVI 0.27
NDVI 0.28
SAVI 0.41
MSAVI 0.41
OSAVI 0.39
EVI 0.44
TVI 0.14
MTVI2 0.18
CVI 0.69
gNDVI 0.75
CI-G 0.74
NGRDI −0.52
GLI −0.49
VARI −0.51
NDREI –a

CI-RE –
MTCI –
MCARI –
TCARI –
TCI –
TCARI/OSAVI –
MCARI/MTVI2 –
TGI −0.78

a Not applicable.
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Table 5
Correlation coefficients (r) between vegetation and chlorophyll indices and leaf
chlorophyll meter data for low-altitude AVIRIS data acquired on 22 July 1999. The
AVIRIS data were combined to be similar to the bands of TM and a digital cam-
era. ASD spectrometer data acquired from an aerial lift has similar correlations. For
N  = 20, critical values of r at  ̨ = 0.05 and 0.01 are 0.433 and 0.549, respectively.

Index AVIRIS TM bands Camera bands

RVI 0.82 0.82 –a

NDVI 0.82 0.82 –
SAVI 0.74 0.64 –
MSAVI 0.76 0.66 –
OSAVI 0.79 0.73 –
EVI  0.73 0.61 –
TVI  0.64 0.50 –
MTVI2 0.72 0.64 –
CVI  0.92 0.91 –
gNDVI 0.89 0.88 –
CI-G 0.90 0.89 –
NGRDI −0.92 −0.89 −0.87
GLI  −0.91 −0.90 −0.89
VARI −0.91 −0.91 −0.84
NDREI 0.76 – –
CI-RE 0.76 – –
MTCI 0.89 – –
MCARI −0.89 – –
TCARI −0.88 – –
TCI −0.89 – –
TCARI/OSAVI −0.89 – –
MCARI/MTVI2 −0.89 – –
TGI  −0.91 −0.91 −0.92

a Not applicable.

in LAI as indicated by comparing the correlations between the high-
altitude and low-altitude AVIRIS data (Tables 3 and 5). Furthermore,
the sensitivity of NGRDI to LAI was found in other studies (Hunt
et al., 2005).

The limitation on TGI, other spectral indices, and chlorophyll
meters for nitrogen management is the requirement that chloro-
phyll content is correlated to fertilizer requirements. Correlations
found for the 6 July AVIRIS image and 16 July Landsat 5 TM image
were mostly caused by the data from the plots with 0 kg N ha−1.
Scharf et al. (2002b) found that nitrogen fertilizer applications
could be delayed during maize vegetative growth (growth stages
V1–V15), but losses in yield occurred when maize reaches repro-
ductive growth stages without sufficient nitrogen. The AVIRIS data
acquired on 6 July indicated that it is possible to use remote sensing
to detect severe nitrogen deficiency (0 kg N ha−1 plots). However, in
this region 150 kg N ha−1 is the typical rate of application, therefore
areas of intermediate N (plots with 50 and 100 kg N ha−1) would
have been missed during the 6 July overflight.

The requirement of TGI for high LAI or canopy closure may
be eliminated with the use of very-high-spatial-resolution sensors
(<10-mm pixels), such as digital cameras, because only pixels that
are pure vegetation need to be analyzed (Scharf and Lory, 2002).
The degradation of spectral resolution by using broad bands is
compensated by the higher spatial resolution. Sensor radiometric
resolution is also important, and 8-bit imagery may  not be suffi-
cient; the radiometric resolution of many digital cameras is greater
with cameras’ native raw image format (Verhoeven, 2010). How-
ever, a potential problem with using digital cameras to calculate
TGI is that the digital numbers are based on camera exposure, and
not spectral reflectance or radiance; hence more research is needed
on radiometric calibration of digital cameras.

Digital cameras may  be operated from light aircraft or small
unmanned aircraft systems (Hunt et al., 2005; Lelong et al., 2008;
Sakamoto et al., 2011; Lebourgeois et al., 2012), which can be
rapidly deployed to acquire data during brief windows of good
weather. Since the area of acquisition is at the field or farm level,
the data can be processed quickly to provide recommendations for

nitrogen application rates. Furthermore, the same digital images
can be examined for other agricultural problems such as insect
damage, plant disease, and high weed density. Often, plant diseases
and other elemental deficiencies reduce leaf chlorophyll content
(Knipling, 1970; Masoni et al., 1996), so high TGI may  be a symp-
tom of problems other than low leaf nitrogen content. However,
acquiring data at very-high spatial resolution will present other
problems for image analyses, such as image registration, because
the pixel size is much less than the accuracy available from most
global positioning systems. A potential solution to these problems
is to analyze each image as a separate plot for monitoring.

5. Conclusions

The triangular greenness index (TGI) was developed to be sen-
sitive to leaf chlorophyll content at the canopy scale and to be
relatively insensitive to LAI. The data acquired during 1999 for
irrigated maize during NASA EOCAP experiment showed that TGI
was among the best spectral indices, including those that use red-
edge bands. Nitrogen must be applied during vegetative growth
to prevent yield losses, which was 6 July in this experiment, but
only the plots with severe nitrogen deficiency (very low chloro-
phyll contents) were detectable. If remote sensing is to be used
for nitrogen management, intermediate levels of chlorophyll con-
tent must be detected reliably. Therefore, TGI may  be the spectral
index by which digital cameras mounted on low-flying airborne
platforms may  be used for a low-cost assessment of crop fertilizer
requirements.
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