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a b s t r a c t

In cereal seeds, mutations in one or more starch synthases lead to decreased amylopectin and increased
amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch
was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A genome copy of
SGP-1. The two lines were determined to carry a 29 bp deletion in the first exon of SSIIa. The SGP-A1 nulls
were crossed with the durum variety ‘Mountrail’ and F5 derived SGP-A1 null progeny lines were treated
with EMS. From each EMS population, one SGP-B1 null mutation was recovered with each being
a missense mutation. Each of the SGP-1 nulls was found to have large increases in amylose content and
reduced binding of SGP-2 and SGP-3 to the interior of starch granules. RNA-Seq was used to examine the
impact the loss of SGP-1 has upon other starch biosynthetic genes. Significant increases in transcript
levels of several starch biosynthetic genes were observed in SGP-1 nulls relative to Mountrail. The
resultant high amylose durums may prove useful in the creation of value added pasta with increased
firmness and reduced glycemic index.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In bread wheat (Triticum aestivum L.), amylose accounts for
approximately 25% of starch with amylopectin accounting for the
other 75% (reviewed in Tetlow, 2006). The “waxy” proteins (granule
bound starch synthase I) encoded by the Wx genes are solely
responsible for amylose synthesis after the production of ADP-
glucose by ADP-glucose pyrophosphorylase (AGPase) (reviewed
in Tetlow, 2006). In contrast, amylopectin synthesis involves a host
of enzymes such as starch synthases (SS) I, II, III, IV, starch
branching enzymes (SBE) I and II, and starch de-branching enzymes
(reviewed in Tetlow, 2006).

Several starch biosynthetic proteins remain bound to the inte-
rior of starch granules with a subset of these proteins designated
the starch granule proteins (SGPs). Using SDS-PAGE, Yamamori and
Endo (1996) separated the SGPs from bread wheat starch into SGP-
1, SGP-2, SGP-3 and WX. The SGP-1 fraction was further resolved
into SGP-A1, SGP-B1, and SGP-D1 and the associated genes localized

to the homoeologous group 7 chromosomes (Yamamori and Endo,
1996). SGP-1 proteins are isoforms of SSII encoded by the genes
SSIIa-A, SSIIa-B, SSIIa-D on the short arms of group 7 chromosomes
(Li et al., 1999).

A survey of hexaploid wheat germplasm identified lines lacking
SGP-A1, SGP-B1, or SGP-D1 (Yamamori and Endo,1996) which were
crossed to create an SGP-1 null (Yamamori et al., 2000). The SGP-1
null had a 29% increase in amylose content (37.3% null vs. 28.9%
wild-type), deformed starch granules, reduced starch content, and
reduced binding of SGP-2 and SGP-3 to starch granules. These SGP-
1 mutations were later shown to reduce starch binding without
impacting SGP protein expression levels (Kosar-Hashemi et al.,
2007). Lafiandra et al. (2010) reported that SGP-1 null lines cre-
ated from crosses between the durum (Triticum turgidum ssp.
durum) cultivar ‘Svevo’ and hexaploid SGP-A1/B1 null lines
(Yamamori and Endo,1996) had an 89% increase in amylose content
compared to Svevo (43.6% SGP-1 null vs 23% wild-type) as well as
reduced binding of SGP-2 and SGP-3. Elimination of SbeIIa in durum
through RNA interference also resulted in increased amylose
ranging from þ29% to þ200% (24% wild-type vs. 31e75% SbeIIa
RNAi lines) (Sestili et al., 2010b). The very high amylose results
observed by Sestili et al. (2010b) may not be due solely to SbeIIa
expression reduction since SbeIIa mutants have amylose level in-
creases similar to those of SSIIa mutations (28% sbeIIa versus 23%
wild-type) (Hazard et al., 2012).

Abbreviations: FSP, flour swelling power; SGP, starch granule protein.
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To date a detailed expression profile of starch synthesis genes in
an SGP-1 null background has not been reported. RNA-Seq is an
emerging method that allows for gene expression analysis at the
transcript level and, compared to other methods, has a greater
sequencing sensitivity, a large dynamic range, and the ability to
distinguish between differing alleles or isoforms of an expressed
gene (Marioni et al., 2008). RNA-Seq is therefore an ideal method to
determine the effect a null SGP-1 genotype has on expression of
other starch synthesis genes.

Cereals with high amylose content are desirable because they
have more resistant starch. Resistant starch is starch that resists
break down slowly and thus acts more like dietary fiber while pro-
motingmicrobial fermentation (reviewed inNugent, 2005). TheSGP-
1 null alleles (Yamamori and Endo, 1996) were introgressed into the
Italian bread cultivar ‘N11’ and whole grainwas prepared into bread
which was found to have increased resistant starch and decreased
glycemic index relative to standard whole wheat breads (Hallstrom
et al., 2011). Similarly, products prepared from ssIIa barley have
been shown to have a reduced glycemic index and improve bowel
health indices (Bird et al., 2008;Kinget al., 2008). Rats fedSbeIIaRNAi
seeds with an amylose content of w80% also showed significant
improvements in bowel health indices (Regina et al., 2006).

In addition to the positive impact of increased amylose upon
glycemic index, higher amylose might enhance durum product
quality. Pasta that is firmer when cooked is often preferred as it
resists overcooking and high amylose should increase pasta firm-
ness. Our goal here was to develop a high-amylose durum line
through the creation of SSIIa mutations and to examine the effect
an SGP-1 null genotype has on the expression of other starch bio-
synthetic genes.

2. Materials and methods

2.1. Creation and screening of a mutagenized durum wheat
population

Durum wheat accessions obtained from the USDA National
Small Grains Collection (NSGC, Aberdeen, ID) and the International
Center for Agricultural Research in the Dry Areas (ICARDA) were
screened for SGP-1 mutations using SDS-PAGE of SGPs (see below).
From the 200 NSGC Triticum durum core collection accessions
screened, one line, PI 330546, lacked SGP-A1 and none lacked SGP-
B1. From the 55 ICARDA T. durum accessions screened, one line, IG
86304, lacked SGP-A1 and none lacked SGP-B1. These two lines
were crossed independently with the cultivar “Mountrail” (PVP
9900266) (Elias and Miller, 2000) and progeny lines advanced via
single seed descent to the F5 generation. Seed from lines homozy-
gous for the SGP-A1 null trait that had seed and plant character-
istics similar to Mountrail from each cross were then treated with
ethyl methanesulfonate (EMS) as described in Feiz et al. (2009)
with the exception that 0.5% EMS was used and plants were
advanced two generations in the greenhouse to the M1:M2 gener-
ation. Seed from 294 Mountrail/PI 330546 M1 lines and 196
Mountrail/IG 86304 M1 lines were pre-screened for potential SSIIa-
B mutations using the flour swelling power (FSP) test reported by
Martin et al. (2008) who found that increased amylose content is
associated with decreased FSP.

2.2. Starch extraction

For each selected low flour swelling power (FSP) genotype and
parental controls, four seeds were ground in a Braun coffee mill
(Proctor Gamble, Cincinnati, OH) for 10 s and then placed in a 2 ml
microcentrifuge tube along with two 6.5 mm zirconia balls and
agitated for 30 s in a Mini-beadbeater-96. The zirconia balls were

removed from the microcentrifuge tubes and 1.0 ml of 0.1 M NaCl
was added to the whole grain flour and samples were incubated for
30min at roomtemperature. After 30min, a doughballwasmadeby
mixing the wet flour using a plastic Kontes Pellet Pestle (Kimble
Chase, Vineland, NJ) and the gluten ball was removed from the
samples after pressing out the starch. The liquid starch suspension
was then transferred to a new pre-weighed 2.0 ml tube and
0.5mlddH20wasadded to the remnant starchpellet in thefirst tube.
The first tube was vortexed, left to settle for 1 min and the liquid
starch suspension transferred to the second tube. The starch sus-
pension containing tubes were centrifuged at 5000 g and the liquid
was aspirated off. Next, 0.5 ml of SDS extraction buffer (55mM Tris-
Cl pH 6.8, 2.3% SDS, 5% BME, 10% glycerol) was added, the samples
were vortexed till suspended, and then centrifuged at 5000 g. The
SDS buffer was aspirated off and the SDS buffer extraction was
repeated oncemore. Then, 0.5ml of 80% (w/v) CsClwas added to the
starch pellets, samples were vortexed till suspended, and centri-
fuged at 7500 g. The CsCl solution was aspirated off and the starch
pellets were washed twice with 0.5 ml ddH20, and once in acetone
with centrifugation speeds of 10,000 g. After supernatant aspiration,
the starch pellets were left to dry overnight in a fume hood.

2.3. SDS-PAGE of starch granule proteins

To purified starch, 7.5 ml of SDS loading buffer (SDS extraction
buffer plus bromophenol blue) was added per mg of starch. Sam-
ples were heated for 15 min at 70 �C, vortexed, centrifuged for
1 min at 10,000 g, and then 40 ml of sample was loaded in
a 203 � 203 � 0.75 mm 10% (w/v) acrylamide gel prepared using
a 30% acrylamide/0.135% piperazine diacrylamide (PDA) w/v stock
solution. The gel had a 4% w/v acrylamide stacking gel prepared
using a 30% acrylamide/0.8% PDAw/v stock solution. Gels were run
at 25 mA/gel for 45 min and then 35 mA/gel for 3 h and proteins
were visualized by silver staining.

2.4. PCR screening for mutations in SSIIa-A and SSIIa-B

Leaf tissue fromM2 plants suspected of having ssIIa-Bmutations
and parental lines was collected from two-three leaf stage seedlings
and stored at�80 �C. DNAwas isolated from seedlings as previously
described (Feiz et al., 2009). Coding regions of SSIIa-A and SSIIa-B
were amplified and sequenced from duplicate DNA samples using
previously described primers and PCR conditions (Shimbata et al.,
2005; Sestili et al., 2010a). Amplicons were analyzed for single
nucleotide polymorphisms using Seqman Pro in the Lasergene 10.1
Suite (DNASTAR, Madison, WI). The two durum high amylose (DHA)
SGP-1 double mutants discovered were DHA175, from the Moun-
trail/PI 330546 cross andDHA55, from theMountrail/IG 86304 cross.

2.5. Differential scanning calorimetry

For random SGP-A1 wild type and SGP-A1 null F5 derived lines
from Mountrail/PI 330546, DHA175, and DHA55 differential scan-
ning calorimeter (DSC) analysis was carried out using a Pyris 7
Diamond DSC (Perkin Elmer, Norwalk CT, USA) as previously
described (Hansen et al., 2010). Three biological replicates were run
in triplicate for each genotype. Amylose was determined via DSC
using the method described in Polaske et al. (2005).

2.6. Colorimetric amylose determination and total starch
determination

Purified starch from three biological replicates of SGP-A1 wild
type and SGP-A1 null F5 derived lines from Mountrail/PI 330546,
DHA175, and DHA55 was used for amylose analysis. Amylose was
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determined using a colorimetric assay whereby 2 mg of purified
starch was suspended in a 1 mL iodine solution (90% Dimethyl
sulfoxide; 1.52 g/L iodine) in a 2 mL microcentrifuge tube which
was mixed at 1200 rpm at 95 �C for 30 min in a Thermomixer
(Eppendorf, Hamburg, Germany). Samples were allowed to cool
and then 20 mL of sample was removed and placed in a 96-well
plate with 180 mL of ddH2O. Samples were agitated on a plate
mixer at 900 rpm for 2 min and then immediately read at 620 nm
on a SPECTRAmax Plus 384 (Molecular Devices, Sunnyvale, CA). A
standard curve created using purified potato amylose (Sigma, St.
Louis, MO, USA) was used to estimate amylose content. Total starch
was determined onwhole grain flours from three biological reps of
SGP-A1 wild type and SGP-A1 null F5 derived lines fromMountrail/
PI 330546, DHA175, and DHA55 following previously described
methods (Smith and Zeeman, 2006).

2.7. Microscopic analysis of starch granules

Purified starch from SGP-A1 wild type and SGP-A1 null F5
derived lines fromMountrail/PI 330546, DHA175, and DHA55 were
obtained from three biological replicates per sample using the
methods described above. Individual starch samples were placed
on carbon tape which was then sputtered with iridium (20 mA for
30 s) and photographed using a Zeiss Supra 55 VP field emission
gun-SEM (Carl Zeiss Microscopy, Peabody, MA).

2.8. Starch synthesis gene expression analysis via RNA-Seq

To analyze expression levels of starch synthesis genes, devel-
oping seeds 14 days post anthesis were collected from Mountrail,
DHA55, and DHA175 and stored at �80 �C. For each genotype,
developing seeds were collected from three separate plants, with
each plant sample composed of four seeds from the middle of three
different spikes (12 seeds total). Total RNA was extracted from the
immature kernels after pre-grinding in liquid N2 using an RNeasy
Plant Mini Kit (Qiagen, Valencia, CA) after first pre-extracting each
sample to remove excess starch. To accomplish this, one hundred
mg of seed powder was transferred to a pre-chilled 1.5 mL tube and
0.5 mL of RNA extraction buffer (100 mM Tris pH 8.0, 150 mM LiCl,
50 mM EDTA, 1.5% (w/v) SDS, 0.15% (v/v) BME) was added and
sampleswere vortexed until homogenous. Next, 0.25mL of 1:1 (v/v)
phenol-chloroform (pH 4.7) was added and samples weremixed by
inversion followed by centrifugation at 13,000 g for 15 min at room
temperature. The supernatant was transferred to a QIAshredder
spin column and total RNA was extracted per the manufacturer’s
instructions. Total RNAwas quantified and its quality assessed using
a Bioanalyzer (Agilent Technologies, Santa Clara, CA). For RNA-Seq
analysis, one mg of total RNA was used for the creation of cDNA

libraries using TruSeq RNA-Seq library kits (Illumina, SanDiego, CA).
Amplicons from cDNA libraries were sequenced as single 50 bp
reads using a LifeTech SOLiD 5500xl (Life Technologies, Carlsbad,
CA). RNA-Seq data was analyzed using Q-Seq in ArrayStar v5.0
(DNASTAR, Madison, WI). Genes of interest were selected from the
NCBI database for analysis with the match settings in QSeq set to
100% for at least 40 bp with mer minimization turned off. All other
settings were left to default and sequences were normalized using
the Reads Per Kilobase of exon model per Million mapped reads
(RPKM) method. Resultant linear counts were then further nor-
malized to the expression levels of the house keeping gene glycer-
aldehyde-3-phosphate dehydrogenase (Ga3pd). Student’s t-tests
were used to compare expression levels betweenMountrail and the
two ssIIa null genotypes, DHA55 and DHA175.

3. Results

3.1. Screening of EMS mutagenized durum lines

M1 seed from EMS treated SGP-A1 nulls from the crosses of
Mountrail/PI 330546 and Mountrail/IG 86304 was screened indi-
rectly for mutations in SSIIa-B using an FSP test (Table 1). Lines that
had an FSP of less than 6.5 (g g�1) were selected for analysis of SGPs
via SDS-PAGE. One line from the Mountrail/PI 330546 cross,
DHA175 was lacking SGP-A1/B1, SGP-2 and SGP-3 and line DHA55
from the Mountrail/IG 86304 cross had an SGP-B1 band that was
approximately half the intensity of the Mountrail/IG 86304 wild-
type control (data not shown), indicating a potential heterozygote.
DHA55 was confirmed to be an SGP-1 wild type/null heterozygote
using SDS-PAGE of the SGPs from M2:3plants. Starch granule pro-
teins from awild type and SGP-A1 null line derived fromMountrail/
PI 330546, DHA175, and a homozygous SGP-1 double null DHA55
were then analyzed via SDS-PAGE using a dilution series to examine
the effect of the SGP-1 nulls on the binding of other SGPs (Fig. 1). In
both DHA175 and DHA55 the SGP-A1 and SGP-B1 bands were ab-
sent and the SGP-2 and SGP-3 bands were reduced to less than 10%
of the wild-type control. Wx band intensity appeared normal in
both SGP-1 double nulls. In the SGP-A1 null control, none of the
other SGPbands appeared altered. FSP of the SGP-1 double nullswas
significantly lower than their SGP-A1 null sister lines (Table 1).

3.2. Seed characteristics

The SGP-A1 null genotype had reduced individual seed weight
relative to the SGP-A1 wild type control group with even greater
reductions in seed weight in the SGP-1double null (Table 1). The
SGP-1 double null also had reduced seed diameter. Consistent with
the reduced seed diameter was our observation that the SGP-1

Table 1
Flower swelling power, total starch, and seed traits of EMS-derived lines and controls.

Population FSP Nc FSP (g/g)d Total starch Nc Total starch (%)e Seed weight Nc Seed weight (mg)f Seed size (mm)f

SGP-1 wild-typea 24 8.4 � 0.10a 3 57.3 � 2.47a 3 33.2 � 0.51a 2.90 � 0.04a
SGP-A1 nulla 24 7.5 � 0.10b 3 48.5 � 10.58 ab 3 31.7 � 0.71b 2.85 � 0.03a
EMS M1 Mountrail/PI 330546 294 7.3 � 0.29b
DHA175b 2 5.8 � 0.15c 3 39.1 � 6.50b 3 31.6 � 0.76b 2.73 � 0.02b
EMS M1 Mountrail/IG 86304 196 7.7 � 0.05b
DHA55b 2 6.4 � 0.20c 3 38.5 � 3.71b

Means � standard errors followed with the same letter are not significantly different at P < 0.05 based on a students T-test.
a F5 derived lines from Mountrail/PI 330546.
b SGP-1 double nulls.
c N ¼ number of lines used in analysis.
d FSP ¼ flour swelling power measured on whole grain flour in water/flour suspension (g) over weight of flour (g).
e Total starch was determined on whole grain flour.
f Seed weight and size was determined using the single kernel characterization system on three reps of 200 seeds each.
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double null seeds were of similar length to controls but were poorly
filled and wrinkled in appearance. Total starch was reduced in both
the SGP-A1 nulls and the SGP-1 double nulls with the greatest re-
ductions seen in the SGP-1 double nulls.

3.3. PCR screening for mutations in SSIIa-A and SSIIa-B

In the parental SGP-A1 null lines PI 330546 and IG 86304,
a 29 bp deletion in SSIIa-A was discovered in the first exon at po-
sition 145e174 using the primer set Sgp-A1F3/Sgp-A1R3 (Shimbata
et al., 2005). In line DHA175 a point mutation in SSIIa-B was found
in the third exon at position 979 where a G to A transition occurred
using the primer set Sgp-B1F1/Sgp-B1R1 (Sestili et al., 2010a). This

changed the 327th amino acid from aspartic acid (GAT) to aspar-
agine (AAT). In line DHA55, a point mutationwas found in SSIIa-B in
the eighth exon at position 1864 using the primer set Sgp-B1F2/
Sgp-B1R2 (Shimbata et al., 2005). This was also a G to A transi-
tion that resulted in an aspartic acid (GAC) to asparagine (AAC)
change in amino acid 622.

3.4. Microscopic analysis

Starch from the SGP-1 wild-type line had A-type granules that
were smooth and lenticular shaped and B-type granules that were
spherical and smooth (Fig. 2). In the SGP-A1 null, the A-type starch
granules had a range of minor deformities with the B-type granules
similar to those of the wild-type (Fig. 2). In the SGP-1 double null
lines, DHA175 and DHA55, both the A and B type granules were
deformed and less plump than in the wild-type and SGP-A1 null
samples, and had rough or cracked surfaces (Fig. 2).

3.5. Differential scanning calorimetry analysis and colorimetric
amylose content

The gelatinization properties and amylose content of SGP-1
double null and control starches were examined using DSC. The
combined heat scan thermogram shows a clear alteration in the
gelatinization of amylopectin in the SGP-1 double nulls (Fig. 3). The
SGP-1 double nulls also had a significantly lower gelatinization
temperature based on peak temperature and a smaller enthalpy
(Fig. 3, Table 2). These data indicate a disruption in amylopectin
synthesis and/or composition. The second peak around 105 �C
which is associatedwith amylose gelatinizationwas similar in shape
and size across all samples with the SGP-1 double null lines having
cooler gelatinization temperatures and larger enthalpies compared
to the controls (Fig. 3, Table 2). Amylose content in the SGP-A1 null
was unchanged compared to the wild-type control whereas the
SGP-1 doubles null lines had significantly higher amylose content as
determined by both DSC and a colorimetric assay (Table 2).

Fig. 1. SDS-PAGE analysis of starch granule proteins from SGP-1 wild-type (WT) and
SGP-A1 null (A null) F5 derived lines from Mountrail/PI 330546, and SGP-1 double null
lines DHA175 and DHA55. The acrylamide gel was silver stained and a dilution series of
WT was used to create the loading curve. In lines DHA175 and DHA55 the elimination
of both SGP-1 proteins results in reduced binding of SGP-2 and SGP-3.

Fig. 2. Field emission SEM micrograph of starch granules from SGP-1 wild-type and SGP-A1 null F5 derived lines from Mountrail/PI 330546 and SGP-1 double null genotype
DHA175.
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3.6. Starch biosynthetic gene expression analysis

RNA-Seq data from the two SGP-1 double nulls was combined
and compared toMountrail (SGP-1 wild-type) (Table 3). The SSIIa-A
deletion in both SGP-1 double nulls was associated with a dramatic
reduction in SSIIa-A transcripts (Table 3). Due to the high homology
of the SSIIa-A and SsIIa-B genes, the few number of hits detected for
SSIIa-A may have arisen from areas where the two genes are 100%
identical. The two independent point mutations in SSIIa-B did not
produce the same effect as the deletion in SSIIa-A. On the contrary,
there was a significant up regulation of SSIIa-B (Table 3). Significant
up regulation of transcripts in the SGP-1 double nulls was also
exhibited for Wx-A1, SsI-1, SbeI-A, SbeIIa-A, SbeIIa-B, SSIII, the large
subunit of AGPase, and Pho1.

4. Discussion and conclusions

The goal of this investigation was to develop a high-amylose
durum line through the mutagenesis of SSIIa (SGP-1). There is lit-
tle natural variation at this locus as it is a key starch biosynthetic
enzyme and screening of 255 T. durum accessions identified only
two SGP-A1 nulls and no SGP-B1 nulls. Interestingly, the two lines
that were SGP-A1 null, PI 330546 and IG 86304, carried the same

29 bp deletion located in the first exon. This deletion seemingly
produces an unstable mRNA as there was a significant reduction of
its transcript levels in the two SGP-1 double null lines. This is not
the same deletion that was reported by Shimbata et al. (2005) for
the SGP-A1mutant in breadwheat (Yamamori and Endo,1996). The
two separate point mutations created through EMS mutagenesis in
SSIIa-B did not produce the same effect; in fact the expression of
SSIIa-B was significantly higher in the SGP-1 double null lines
compared to the cultivar Mountrail. Neither of the point mutations
in SSIIa-B introduced a stop codon but the amino acid changes in
DHA175 (D327N) and in DHA55 (D622N) were deleterious to the
protein as confirmed by SDS PAGE and the protein prediction
software SIFT (Ng and Henikoff, 2003) which gave values of 0.00
and 0.01 respectively (<0.05 are considered deleterious). Each of
the point mutations also occurred in one of eight highly conserved
regions of starch synthases (Li et al., 1999), DHA175 in region 1 and
DHA55 in region 5, indicating they would likely negatively impact
enzymatic activity.

As shown in previous studies, several pleiotropic effects were
observed as a result of the loss of SSII or SGP-1. As anticipated, the
SGP-1 double null lines had significant increases in their amylose
content from 38% to 50% (þ31%) using DSC and 28e43% (þ54%)
using a colorimetric assay. The discrepancy between amylose
values obtained from the different methods is a common problem
when measuring amylose, and, in general, DSC tends to
overestimate amylose content relative to other methods (Zhu
et al., 2008). The colorimetric values and percent change in amy-
lose are similar to what was observed previously in durum
(Lafiandra et al., 2010) but are higher than those observed in
hexaploid wheat (Yamamori et al., 2000; Konik-Rose et al., 2007).
Seeds from the SGP-1 double null mutants had a “wrinkled”
appearance and, for line DHA175, had a reduced seed size and
weight compared to SGP-1 wild-types (Table 1). This is consistent
with the literature but a more appropriate comparison would be to
create near isogenic lines (NIL) for these mutations as it is possible
that the EMS derived lines carry other mutations that could impact
seed size. In contrast to our findings, it has been shown in a NIL
population that single dose SGP-1 mutations do not impact seed
size (Konik-Rose et al., 2007). Appropriately, the SPG-1 double nulls
also had a reduced overall starch content compared to SGP-1 wild-
types lines (Table 1) as has been reported previously in hexaploid
wheat (Yamamori et al., 2000; Konik-Rose et al., 2007) and barley
(Morell et al., 2003). However, the reduction in total starch was
much more drastic (w45% reduction) than that seen in a hexaploid
wheat (w20% reduction). Again, this could partially be attributed to
the fact that data presented here are between EMS mutants and
non-EMS treated lines as well as different methods were used to
measure total starch.

The two SGP-1 double null lines had altered amylopectin
gelatinization peaks from the SGP-A1 null and wild-type charac-
terized by a decreased enthalpy and reduced gelatinization

Fig. 3. Differential scanning calorimetry thermogram of starches from SGP-1 wild-type
and SGP-A1 null F5 derived lines from Mountrail/PI 330546, and SGP-1 double null
lines DHA175 and DHA55. SGP-1 double null lines show an altered amylopectin
gelatinization profile that occurs at cooler temperatures and has decreased enthalpy
compared to the wild-type and SGP-A1 null controls.

Table 2
Percent amylose and differential scanning calorimetry analysis of SGP-1 double null starches and controls.

ID Amylose (%)a Amylose (%)b Peak 1(�C)a DH1 (J/g)a Peak 2 (�C)a DH2 (J/g)a

Wild-typec 38.0 � 0.6a 28.7 � 3.2a 64.4 � 0.52a 8.6 � 0.72a 103.8 � 0.15a 4.7 � 0.42b
SGP-A1 nullc 39.2 � 2.0a 31.5 � 3.4a 62.4 � 0.44b 7.8 � 0.64a 102.6 � 0.30b 5.0 � 1.06 ab
DHA175 53.6 � 1.1b 44.3 � 5.0b 57.2 � 0.34c 2.8 � 0.46b 102.8 � 0.35 ab 7.2 � 0.25a
DHA55 48.9 � 3.2b 42.8 � 5.2b 56.2 � 0.15c 2.5 � 0.80b 102.0 � 0.40b 6.7 � 0.95 ab
P valued 0.0014 0.0043 <0.0001 0.0002 0.0222 0.1180
LSD (0.05) 6.5 8.1 1.3 2.2 1.0 2.5

Means � standard errors followed with the same letter are not significantly different at P < 0.05 based on a students T-test.
a Parameters were determined from thermograms using Pyris 7 DSC software. Values are the mean � standard errors ( ) of three biological replicates.
b Determined using a iodine colorimetric assay.
c SGP-1 wild-type and SGP-A1 null F5 derived lines came from Mountrail/PI 330546.
d ANOVA P-value.
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temperature (Fig. 3, Table 2). The decreases in enthalpy and
gelatinization temperatures likely result from the higher amylose/
amylopectin ratio. Amylopectin provides ordered structure and
crystallinity while amylose exists in more amorphous form. The
higher ordered structures conveyed by amylopectin require more
energy to disrupt (Vladimir et al., 2004). In line DHA55, the peak for
amylopectin gelatinization was almost too small to distinguish.
Accordingly, the SGP-1 double null lines also had a lower FSP
(Table 1). These results concur with previous findings in bread
wheat (Yamamori et al., 2006; Konik-Rose et al., 2007) and barley
(Morell et al., 2003) and are evidence of a disruption in amylopectin
synthesis, and an increase in starch amylose content. Both A and B
starch granules from SGP-1 double nulls were deformed and as
previously described had rough or cracked surfaces (Yamamori
et al., 2000; Morell et al., 2003; Kosar-Hashemi et al., 2007). In
bread wheat, SGP-1 null lines showed a reduction in B-type starch
granules (Konik-Rose et al., 2007), and while not statistically
determined, we also observed an overall decrease in the amount of
B-type starch granules in the durum SGP-1 double null lines. As
seen in bread wheat (Yamamori et al., 2000), durum wheat
(Lafiandra et al., 2010) and barley (Morell et al., 2003), there was an
almost complete loss of other starch biosynthetic enzymes from the
interior of starch granules, namely SBEII (SGP-2) and SSI (SGP-3),
while GBSSI remained intact. The loss of these proteins however,
did not mean that these proteins were not produced. It has been
shown that in the soluble fraction of the endosperm, SBEII, SSI, and
GBSSI accumulate at normal levels (Kosar-Hashemi et al., 2007;
Morell et al., 2003). It has been hypothesized that SSs, SBEs, along
with other starch biosynthetic enzymes act together in complexes
in the wheat amyloplast and when one of these enzymes is

disrupted, it has significant effects on the other enzymes (Tetlow
et al., 2004) or on their final distribution. In the SGP-1 double
null lines, this is manifested by the lack of entrapment of SSI and
SBEII in the starch granule matrix. Tetlow et al. (2008) demon-
strated that in bread wheat, SBEII, SSI, and SSIIa interact to form
a complex during starch deposition which is controlled by phos-
phorylation. The loss of SSII likely restricts the formation of this
complex and in turn long-chain amylopectin formation and the
entrapment of SBEII and SSI.

Transcript levels of starch biosynthetic genes as measured by
RNA-Seq were not reduced in the SGP-1 double nulls and in some
cases were up-regulated. Wx-A1, SsI-1, SbeI-A, SbeIIa-A, SbeIIa-B,
SSIII, AgpL (large subunit of AGPase), and Pho1 (alpha-1,4-glucan
phosphorylase) transcript levels were increased in the SGP-1
double null lines. The up-regulation of starch biosynthetic genes
after the elimination of a key enzyme has also been observed in
bread wheat where SbeIIa was silenced using RNAi (Sestili et al.,
2010b). Using qRT-PCT, Sestili et al. (2010b) observed increases in
Wx-1, SSIII, Iso1, and Ld1 transcripts but no increase for SsI, SSIIa,
SbeIIb, or SbeI. The increase in starch biosynthetic gene related
transcripts in the durum SGP-1 double null lines was less than
previously observed (Sestili et al., 2010b). However, RNA-seq pro-
vides a more precise assessment of transcript numbers than does
quantitative RT-PCR. The phenomenon of starch biosynthetic genes
being up-regulated when one of the critical genes is absent may
result from increased levels of sugars in the absence of full starch
biosynthesis. As noted above, NILs for these mutations would be
more ideal for studying the effects the SGP-1 null phenotype has on
gene expression whereas the data presented here are between
EMS-treated lines and a non-mutagenized modern cultivar. There

Table 3
RNA-seq expression analysis of starch synthesis genes in developing seeds from SGP-1 null double lines and Mountrail.

Genbank
accession

Gene Mountrailc DHA55c DHA175c SGP-1 nulld SGP-1 Null/WTe

AJ269503 Starch synthase II (Ss2a-A) 876 � 57 75 � 22 44 � 12 59 � 19 0.07***
AJ269504 Starch synthase II (Ss2a-B) 1145 � 117 2477 � 370 2020 � 180 2249 � 297 1.96**
AB019622b Granule-bound starch synthase I (Wx-A1) 4410 � 515 5811 � 341 5723 � 348 5767 � 309 1.31*
AB019623b Granule-bound starch synthase I (Wx-B1) 7180 � 811 8046 � 740 13,039 � 763 10,542 � 1716 1.47
AJ292521 Starch synthase I (SsI-1) 827 � 82 561 � 112 936 � 145 749 � 166 0.91
AJ292522 Starch synthase I (SsI-2) 3158 � 141 4377 � 274 5110 � 311 4744 � 350 1.50**
AF286318 Starch branching enzyme I-A (Sbe1-A) 7329 � 384 11,694 � 1137 14,523 � 962 13,109 � 1299 1.79**
HE591389a,b Starch branching enzyme IIa (Sbe2a-A) 3629 � 190 4699 � 472 5755 � 724 5227 � 641 1.44*
AY740401 Starch branching enzyme IIa-B (Sbe2a-B) 1690 � 104 2442 � 71 2345 � 295 2393 � 195 1.42*
AF258608 Starch synthase III (Ss3) 700 � 27 894 � 69 1036 � 84 965 � 82 1.38*
AY044844a,b Starch synthase IV (Ss4) 21 � 7 37 � 7 47 � 14 42 � 10 1.99
DQ839506 ADP-glucose pyrophosphorylase large

subunit (AgpL)
3083 � 258 6237 � 315 6819 � 503 6528 � 418 2.12***

AF244997 ADP glucose pyrophosphorylase small
subunit (AgpS)

26,631 � 3322 20,690 � 4399 29,136 � 1234 24,913 � 3935 0.94

AJ301647 Isoamylase I (Iso1) 1730 � 74 2211 � 232 2113 � 285 2162 � 235 1.25
EF137375a Limit dextrinase debranching enzyme I (Ld1) 1469 � 85 1416 � 180 2520 � 337 1968 � 424 1.34
EU595762 Alpha-1,4-glucan phosphorylase (Pho1) 1654 � 88 2028 � 53 2449 � 263 2239 � 216 1.35*
U66376 1,4-alpha-D-glucanotransferase 732 � 50 874 � 144 1311 � 157 1093 � 193 1.49
JF736013a,b HMW glutenin subunit (Glu-B1 Bx7) 30,040 � 3463 27,288 � 6732 45,134 � 2445 36,211 � 7236 1.21
HQ61989a LMW glutenin subunit (LMW-5) 675,506 � 98,596 461,181 � 29,247 1,300,483 � 86,856 880,832 � 271,666 1.30
AF262983 Cyclophilin A-2 (Cyp2) 2569 � 234 3183 � 368 2696 � 399 2939 � 376 1.14
AF262984 Cyclophilin A-3 (Cyp3) 954 � 84 1311 � 169 2102 � 241 1706 � 312 1.79*
BK001238a Ribosomal protein L3A-1 (Rpl3a-1) 2539 � 347 1944 � 297 2450 � 182 2197 � 272 0.87
DQ489316a GTP-binding protein (Gbp-1) 573 � 56 702 � 64 791 � 79 747 � 70 1.30
FN429985 Glyceraldehyde-3-phosphate dehydrogenase

(Ga3pd)
25,582 25,582 25,582 25,582 e

JF727656a Ubiquitin-protein ligase/zinc ion binding
protein (Zfp-1)

340 � 69 298 � 31 450 � 61 374 � 65 1.10

U76896 Beta-tubulin 5 (Tubb5) 1387 � 86 1727 � 102 1663 � 219 1695 � 154 1.22

a Tissue of origin was unavailable; all other sequences came from developing endosperms.
b Sequences are from genomic DNA with all introns removed; all other sequences were mRNA derived.
c Mean linear counts � standard errors from three biological replicates after normalization to Ga3pd.
d Data from DHA55 and DHA175 was combined (n ¼ 6).
e Value is the ratio of SGP-1 null counts over Mountrail (WT) counts. Significance was determined from a two-tailed students t-test comparing counts from the combined

SGP-1 nulls (n ¼ 6) and Mountrail (n ¼ 3), *<0.05, **<0.01 and ***<0.001.
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could be additional deleterious mutations that effect starch syn-
thesis gene expression residing in these lines.

Given the high amylose content, altered gelatinization prop-
erties, and decreased FSP of the SGP-1 double nulls presented
here, it is reasonable to assume that there will be significant
impact on their end use quality. In fact, when noodles were made
from the Mountrail/PI 33038 F5 and Mountrail/IG-88905 F5 pop-
ulations, an increase in noodle firmness was associated with the
SGP-A1 null trait (Martin et al., submitted for publication). The
SPG-1 double null lines should produce a more profound effect
upon noodle firmness as the SGP-A1 null lines do not have
increased amylose content. Along with increased noodle firmness,
there is a possibility that these lines will also have potential health
benefits. In both human and animal trials, high amylose bread
wheat and barley with increased resistant starch was shown to
increase overall colon health (Bird et al., 2008; Regina et al., 2006)
and produce a lower glycemic index (Halstrom et al., 2011; King
et al., 2008).
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