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Numerical modeling of sediment flushing from Lewis and Clark Lake 
 

Jungkyu AHN1, Chih Ted YANG2, Paul M. BOYD3, Daniel B. PRIDAL4, and John I. REMUS5 
 
 

Abstract 
Lewis and Clark Lake is located on the main stream of the Missouri River. The reservoir is formed behind 

Gavins Point dam near Yankton, South Dakota, U.S.A. The Lewis and Clark Lake reach extends about 40 km 
from the Gavins Point dam. The reservoir delta has been growing since the closure of Gavins Point dam in 1955 
and has resulted in a 21% reduction of storage within the maximum pool of the reservoir. Among several sediment 
management methods, drawdown flushing has been recommended as a possible management technique. The 
engineering viability of removing sediments deposited in the lake should be examined by numerical modeling 
before implementing a drawdown flushing. GSTARS4 was used for this study and calibrated by using measured 
data from 1975 to 1995. Channel cross-section changes and amount of flushed sediment were predicted with four 
hypothetical flow scenarios. The flushing efficiencies of all scenarios were estimated by comparing the ratios 
between water consumption and flushed sediment during flushing. 
 
Key Words: Drawdown flushing; Flushing efficiency, GSTARS computer model, Reservoir sedimentation, 

Sediment transport, Lewis and Clark Lake 
 
 
1 Introduction 
The Lewis and Clark Lake is located on the main stream of the Missouri River in U.S.A as shown in Fig. 1. The study 

reach of 110 km extends from Gavins Point dam to Fort Randall dam. Lewis and Clark Lake covers approximately 40 
km at full pool. There are three main tributaries, i.e., the Niobrara River, Bazile Creek, and Ponca Creek. These three 
tributaries supply a large amount of sediment to the river system and form the reservoir delta which has been growing 
since the closure of Gavins Point dam in 1955. The braided pattern of the reservoir delta is shown in Fig. 2. As of 2007, 
about 21% of storage within the maximum pool of the reservoir has been lost due to sedimentation. The delta continues 
to expand, resulting in the loss of reservoir capacity, increased the risk of flooding, and reduction of recreational access. 
Fan and Morris (1992) classified hydraulic methods to manage reservoir sediment deposition as: 
1. Sediment routing during floods. 
2. Drawdown flushing. 
3. Emptying and flushing. 
4. Venting density current. 
Wang and Hu (2009) summarized sedimentation management strategies implemented in China and analyzed 

advantages and disadvantages of each method. Drawdown flushing is the most suitable for the Lewis and Clark Lake 
sediment management due to the very small capacity / inflow ratio, relatively deep gates, and ability to control flows 
from Fort Randall dam (USACE, 2002). 
The Generalized Sediment Transport model for Alluvial River Simulation version 3.0 (GSTARS3) by Yang and 

Simões (2008) can be used to evaluate the sedimentation processes without significant water surface changes. However, 
GSTARS3 may not be applicable to unsteady flow conditions, because it is not a truly unsteady flow model. GSTARS4 
(Yang and Ahn, 2011) was developed for the simulation of flushing studies, because it has the capability for quasi-
steady and truly unsteady flushing simulations. 
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Fig. 1  Overview of Lewis and Clark Lake 

 

     
Fig. 2  Reservoir delta of Lewis and Clark Lake 

 
Sediment transport capacity was computed by using Yang’s unit stream power sediment transport formulas for sand 

(1973) and for gravel (1984), respectively. Yang’s 1973 equation was also used for fine materials such as silt and clay 
in this study. 
This paper summarized the simulated and predicted lake geometry changes, and the amount of sediment flushed from 

the reservoir with four hypothetical flushing scenarios. 
 
2 Calibrations using historic data  
GSTARS4 was calibrated by simulating the historic record of management of the reservoir operation from 1975 

through 1995. The measured bed profile from 1975 was used as the initial boundary condition for the simulation.  
Fifty-seven cross-sections surveyed in 1975, 1995 and 2007, respectively, along the 110 km of the study reach between 
Fort Randall and Gavins Point dam were available for this study.  
Using measured cross-section in 1975 as the initial channel boundary, GSTARS4 was run with the hydraulic and 

sediment data for 20 years of record in an attempt to match the 1995 measurements. Figure 3 shows three measured 
thalweg bed profiles. The development of reservoir delta moves gradually toward the reservoir regime. However, 
scouring occurred due to the operation of Fort Randall dam in the upper river regime. At about 40 – 65 km upstream of 
Gavins Point dam, the thalweg bed profile changed faster than that in other parts due to sediment supply from the three 
tributaries, primarily from the Niobrara River.  
Water discharge from Fort Randall dam and water surface elevation on Lewis and Clark Lake at Gavins Point dam 

were used as upstream and downstream boundary conditions, respectively. In Fig. 4, water surface elevation varies 
between 367 m and 369 m. Although the unsteady effect may not be significant, both steady and unsteady flow routings 
were conducted for comparison. 
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Fig. 3  Measured thalweg elevation 

 

 
Fig. 4  Flow boundary conditions 

 
It is assumed that sediment transport rate at the first upstream cross-section is under equilibrium condition without bed 

change. Sediment inflow from the upstream is calculated from Yang’s 1973 sand and 1984 gravel sediment transport 
equations by assuming that sediment inflow is the same as the computed sediment transport capacity.  
Gradation of bed material size along the study reach was surveyed in 1975 and 2007, respectively. The measured 

results were used for the 20-year calibration and flushing simulation, respectively. Water and sediment inflows from the 
three tributaries, i.e., the Niobrara River, Ponca Creek, and Bazile Creek, were considered for the modeling. Daily water 
discharges of the three tributaries were available. Sediment inflows from the tributaries were computed by using the 
following sediment rating curve of the Missouri River (USACE, 1993)  

799.22
, 1045.5 latlats QQ −×=            

(1) 
where Qs,lat = sediment inflow from a tributary in t d-1, and Qlat = water discharge from a tributary in m3 s-1. 
The size distribution of sediment inflow from the three tributaries must be included in the simulation. 157 sediment 

samples of sediment transported in the Niobrara River were collected between 1973 and 1984. Sieve analysis was 
conducted for all 157 samples as shown in Fig. 5. It was assumed that three tributaries have the same size distribution as 
shown in Fig. 5. 
Roughness coefficients were calibrated by comparing observed and computed water surface profiles. The calibration 

of roughness coefficient in this study focused on long term channel geometric change. 
Chow (1959) recommended Manning’s n value of 0.025 – 0.100 for natural rivers wider than 100 ft. Three values, 

0.02, 0.04, and 0.06, were tested for this study. Figure 6 shows comparisons of 20-year profiles between the measured 
and simulated thalweg elevation using various Manning’s n values. The simulated result does not show significant 
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difference with respect to various n values. Table 1 shows the comparisons of the goodness-of-fit between measured 
and simulated thalweg elevations by the root-mean-square (RMS) calculated by 
 

 
Fig. 5  Particle size distribution of sediment load assumed for all tributaries 

 

 
Fig. 6  Unsteady simulation using various Manning’s n 

 
Table 1  RMS with respect to roughness coefficient 

Manning’s n RMS (m) 
0.02 2.16 
0.04 2.08 
0.06 2.17 
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where Zc and Zm = computed and measured thalweg elevation, respectively, i = cross-section index, and N = total 
number of cross-section. 
Table 1 indicates that n = 0.04 is the most reasonable value with the lowest RMS value. n = 0.04 was selected for the 

entire reach because the thalweg bed elevation profile is not very sensitive to changing n values for long term 
simulations. 
There are delay effects for non-equilibrium sediment transport (Yang and Simões, 2002). GSTARS4 model uses the 

method developed by Han (1980) to simulate the delay effect. 
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where C i  = concentration of sediment in transportation at cross section i, itC , = sediment transport capacity at cross 
section i computed from Yang (1973) for sand and Yang (1984) for gravel transport formulas, ω = fall velocity, q = 
discharge of flow per unit width, =Δx distance between cross section, and =α  recovery factor.  
Han and He (1990) recommended a α  value of 0.25 for deposition and 1.0 for entrainment. Yang and Marsooli 

(2010) suggested that the recovery factor is a function of sediment size.  

ξ
εα

d
=                    (4) 

where ε, and ξ = site-specific coefficients, and d = sediment diameter.  
The simulated long term results were not very sensitive to the variation of site-specific coefficients. For fine sediment, 

silt or clay, the second and third terms of the right hand side of Eq. (3) are not close to zero. For coarse sediment, sand 
or gravel, those two terms are close to zero. The recovery factor is sensitive to very fine materials, such as those in the 
Yellow River. However, recovery factor is not very sensitive for the Missouri River.  
Δt = 1 hr and n = 0.04 was used for GSTARS4 for 20 years of simulation. Both quasi-steady and unsteady simulations 

were conducted for comparison. Figure 7 shows the comparison of thalweg profiles. Unsteady and quasi-steady 
simulations have nearly the same results because the unsteady effect was not significant in case of normal reservoir 
operation from 1975 to 1995. However, unsteady effects are considered for drawdown flushing, which may experience 
faster changes in discharge and water surface elevation. 
 

 
Fig. 7  Comparison of thalweg elevation profile 

 
Figure 8 shows that the measured and unsteady flow simulated cross sections are close to each other except Fig. 8 (b), 

where the braided channels exist. 
 
3 Flow boundary conditions for drawdown flushing 
GSTARS4 with steady and unsteady flow simulation capabilities was tested with the field data of 1975 and 1995. 

Sediment flushing efficiency was evaluated with four flow scenarios using the current 2007 survey data. The four flow 
scenarios are summarized in Table 2. Scenarios 1, 2, and 3 prediction of sediment flushing are based on upstream and 
downstream discharges of specified duration. Scenario 4 was designed to flush the mean annual sedimentation in the 
Lewis and Clark Lake of about 3.2×106 m3. 
Gavins Point dam spillway has 14 bays at elevation of 359.66m (1,180ft) with adjustable radial sluice. Scenario 3 in 

Table 2 was designed to test the concept of lowering half of the gates approximately 3.0 m (10.0 ft) to increase flushing 
efficiency. A synthetic rating curve was developed to predict the discharge with the modified spillway.  
Spillway rating curves for existing and modified spillway were used for the downstream boundary condition. The 

rating curve for the existing spillway is 
Hs = 0.0231Qo

0.66 + 359.66                          (5) 
where Hs = water stage at the spillway in m.  
Similarly, the modified spillway rating curve is  

Hs = 0.0532Qo
0.5837 + 356.62             (6) 

Equation (5) was applied for scenarios 1, 2, and 4 and Eq. (6) was used for scenario 3. 
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(a) 95.5 km upstream of Gavins Point dam                             (b) 52.5 km 

       
(c) 23.2 km                 (d) 12.1 km 

Fig. 8  Comparison between measured and unsteady simulated cross sections 
 

Table 2  Description of four flow scenarios 
Discharge (m3 s-1) 

For initial lake drain* For main flushing* For reservoir refilling* Scenario 
no. 

Gavins Point 
dam spillway 

Days of main 
flushing 

Qi
** Qo

*** Qi Qo Qi Qo 
1 Existing 8 1,557 2,265 4,842 4,984 2,124 1,699 
2 Existing 10 425 1,133 2,350 2,492 991 566 
3 Modified 8 1,557 2,265 4,842 4,984 2,124 1,699 

4 Existing Until 3.2×106 m3of 
sediment flushed 425 1,133 2,350 2,492 991 566 

* In all cases, combined tributary inflow from three tributaries is 142 m3 s-1 (= 5,000 ft3 s-1) through out the entire operation. Total 
inflow for each scenario is the upstream discharge plus tributary inflow. 

** Qi = discharge from the upstream boundary. 
** Qo = discharge at the downstream boundary, spillway at Gavins Point dam. 

 
Each drawdown flushing operation consists of three stages: initial draining of the lake, main flushing, and reservoir 

refilling. The reservoir was drained first to increase flushing efficiency by lowering lake water surface elevation. The 
lake would be restored at the end of flushing operation. The initial water stage at the spillway was assumed at 368.20 m 
for all scenarios. 
Timing and duration of the flushing peak must be matched with the initial draining and refilling to prevent extreme 

changes in lake stage. When draining the lake, gates must be opened gradually to prevent a short duration extreme flood 
below the dam. During refilling, the gates must be closed at a rate not to cause overtopping. 
The detailed flow hydrograph for flow scenario 1 is shown in Fig. 9 (a) and Table 3.  
The initial draining of the lake will be conducted from 0 to 7 days. The discharge at both the upstream and 

downstream were used as boundary conditions for the initial draining. At day 7, water surface elevation at Gavins Point 
dam is approximately 362.71 m.  
After the initial lake draining, Gavins Point dam spillway gates will be fully open. The rating curve for the existing 

spillway, Eq. (5), was used as the downstream boundary condition. The incoming discharge controlled by the operation 
of Fort Randall dam is shown in Fig. 9 (a) and Table 3 (a). Flushing discharge of 4,842 m3 s-1 was maintained for 8 days 
during the main flushing.  
After the main flushing, upstream discharge at Fort Randall dam will be decreased gradually until the upstream 

discharge reaches 2,124 m3 s-1 from day 16 to 17. After the main flushing, the upstream discharge will be reduced first 
and spillway gates at Gavins Point dam will be closed later. The downstream discharge reduction will lag the reduction 
at Fort Randall dam to prevent exceeding the maximum pool of Lewis and Clark Lake. 
Upstream and downstream discharges were maintained at 2,124 and 1,699 m3 s-1, respectively for refilling. Flushing 

scenario 1 was completed in 25 days.  The water surface elevation at Gavins Point dam was then returned to the initial 
stage. 
Flow boundary conditions of flow scenarios 2 and 3 are similar to that of scenario 1. Figures 9 (b) and (c) show 

discharges and operations at both upstream and downstream boundaries for scenario 2 and 3. 
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Flow scenario 4 has eight days of operation to flush approximately the mean annual sedimentation volume of 3.2×106 
m3. Eight days of operation was determined by trial-and-error. The initial draining of the lake lasts only 6 hours and 
both upstream and downstream discharges should be increased. The duration of the main flushing is very short and 
reservoir refilling follows. Detailed operation of scenario 4 is shown in Fig. 9 (d). 
 

       
(a) Scenario 1                             (b) Scenario 2 

       
(c) Scenario 3                               (d) Scenario 4 

Fig. 9  Upstream and downstream discharges for flow scenarios 
 

Table 3(a)  Upstream discharge of flow scenario 1 
Operation time in days Discharge (m3 s-1) Remarks 

0 1,557 Beginning of scenario 1 
0 - 7(168hr) 1,557 Maintain discharge 

7 (168hr) - 8(192hr) 1,557 ~ 4,842 Start increasing discharge by 141.58 m3 s-1 per hour 
8(192hr) - 15.8(380hr) 4,842 Maintain discharge 

15.8(380hr) - 16.7(400hr) 4,842 ~ 2,124 Start decreasing discharge by 141.58 m3 s-1 per hour 
16.7(380hr) - 25(600hr) 2,124 Reservoir refilling 

 
Table 3(b)  Operation of the downstream spillway for flow scenario 1 

Operation time in days Spillway operation Discharge (m3 s-1) Remarks 
0  2,265 Beginning of scenario 1 

0 - 7(168hr) Maintain 2,265 m3 s-1 of discharge 2,265  
7 (168hr) Open spillway gates fully 2,265  

7(168hr) - 17.9(429hr) Let the water flow through spillway 2265-4984 Discharge increases and 
decreases gradually 

17.9(429hr) - 18.3(440hr) Start closing spillway gates 3,115-1,699 Reduce discharge from 
3,115 m3 s-1 by 141.58 m3 s-1 per hour

18.3(440hr) - 25(600hr) Maintain 1,699 m3 s-1 of discharge 1,699 Reservoir refilling 
 
The stability criteria for steady simulation (Yang and Simões, 2002) is 

1≤
Δ
Δ

x
tck                                                                                    (7) 

where =kc kinematic wave speed of the bed change, tΔ = time step, and xΔ = distance used in the computation. 
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The stability criteria for unsteady flow by Ahn (2011) and Yang and Ahn (2011) is 

1≤
Δ
Δ

x
tceu                                                                                    (8) 

where  

η
v

eu
bvCc −= 22)1(1

)1(
Fr−−

−
β
β                                                                     (9) 

where b = a site specific constant, v = flow velocity, vC = sediment concentration, η  = volume of sediment in a unit bed 
layer volume (one minus porosity), β = 5/3 when the Manning’s equation is used, and Fr = Froude number 
 
4 Prediction of flushing efficiency 
GSTARS4 has the capability of simulating the channel geometry changes in a semi-two dimensional manner by using 

stream tube concept (Yang and Ahn, 2011). Three stream tubes were used to consider lateral variation of scour and 
deposition in the channel. Unsteady flow simulations were conducted with four flushing scenarios.  
Scenarios 1 and 3 have almost the same operation, such as the same water discharge for the main flushing, initial lake 

drain, and refilling. The difference between the two scenarios is that the existing spillway is used for scenario 1 and the 
modified spillway used in scenario 3. When the spillway gates are fully open, Eqs. (5) and (6) should be used for the 
existing and modified spillway, respectively. Enhancement of flushing efficiency by spillway modification was 
evaluated by comparing the results of the two scenarios. Scenario 3 has more scour between 0 - 30 km upstream the 
Gavins Point dam as shown in Figs. 10 and 11. Scenarios 1 and 3 have almost identical bed profile for the initial drain. 
However, scenarios 3 has more scour during the main flushing. More sediment can be flushed out with scenario 3 than 
that of scenario 1, as shown in Fig. 12, because the modified spillway has lower water surface elevation than the 
existing one.  
 

 
Fig. 10  Bed elevations of scenario 1 and 3 

 
Comparison between flushing discharges were made between scenario 1 and 2. Scenario 1 has slightly more sediment 

flushing than scenario 2 with more scour between the edge of the reservoir delta and the mouth of the Niobrara River as 
shown in Fig. 13, Figs. 14 (a), and (b). Total amount of flushed sediment and water surface change of scenarios 1 and 2 
are shown in Fig. 15. Scenario 1 has more sediment flushing throughout entire operation. Both scenarios ended with 
water surface elevation of 367 m ~ 368 m, which is close to the initial water stage at the spillway.  
Scenario 4 was designed to flush mean annual sedimentation of 3.2×106 m3 in the Lewis and Clark Lake. Fig. 16 

shows some scour around the edge of the reservoir delta. Figure 17 shows that water surface dropped for the main 
flushing and recovered at the end of operation. The main flushing of scenario 4 should be started without full water 
surface drop to limit the flushed sediments to the annual sedimentation volume. The main flushing started when the 
water surface elevation at the downstream boundary was about 366 m, as shown in Fig. 17. Other scenarios with full 
water surface drawdown have lower than 366 m at the initial drain. 
Total amount of flushed water and sediment for all four scenarios are summarized in Table 4. 416 kg m-3 for clay, 

1,120 kg m-3 for silt, and 1,550 kg m-3 for sand were used to convert sediment from weight to volume (Yang, 1996 and 
2003). Flushing efficiency was evaluated by considering flushed water / sediment ratio. 
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(a) At 23.4 km from Gavins point dam                                       (b) 19.4 km 

 

      
(c) 14.7  km                                               (d) 6.9 km 

Fig. 11  Cross section changes of scenarios 1 and 3 
 

 
Fig. 12  Water surface elevation at Gavins Point dam spillway  

and cumulative flushed sediment of scenario 1 and 3 
 

 
Fig. 13  Bed elevations of scenario 1 and 2 
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(a) At 49.7 km from Gavins Point dam                  (b) 24.1 km 

 

          
(c) 21.6 km                                   (d) 13.1 km 

Fig. 14  Cross section changes of scenarios 1 and 2 
 

 
Fig. 15  Water surface elevation at Gavins Point dam spillway  

and cumulative flushed sediment of scenario 1 and 2 
 

          
Fig. 16  Bed elevations of scenario 4  Fig. 17  Water surface elevation at Gavins Point dam spillway 

and cumulative flushed sediment of scenario 4 
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Table 4  Summary of amount of water and sediment discharged through the Gavins Point dam spillway 
Cumulative sediment transport  

past Gavins Point dam Scenario no. Total operation
days 

Cumulative water 
past Gavins Point 

dam (108 m3) (106 ton) (106 m3) 

Ratio of discharged 
water / sediment 

1 25 64.8 90.4 117.7 55.1 
2 25 32.8 65.3 84.9 38.7 
3 25 65.1 161.8 210.4 30.9 
4 8 7.6 3.5 4.7 163.1 

 
Scenario 3 required the least water consumption of 30.9 m3 of water to flush 1 m3 of sediment. Without considering 

the modification of spillway, scenario 2 was most effective. Between scenarios 1 and 2, water consumption decreased 
by 49% while total sediment flushing decreased by only 28%. 
Figure 18 shows simulated mass balance plots of all scenarios. Most scour occurred between the downstream edge of 

the reservoir delta and the mouth of the Niobrara River, where the majority of sediments have deposited. There were 
some depositions below the reservoir delta for all scenarios. It was found that there was less sediment deposition in the 
lake with the modified spillway by comparing Fig. 18 (a) and (c). Modification of the spillway reduces the water 
surface elevation in the main flushing operation by approximately 2 m, as shown in Fig. 12, resulting in more sediment 
transport through the Gavins Point dam spillway. 
 
5 Summary and conclusions 
GSTARS4 was applied to Lewis and Clark Lake sedimentation and flushing studies. The model calibration of 

Manning’s n was conducted with simulations using historic data from 1975 to 1995. Simulated results with quasi-steady 
and unsteady flows are similar and it was concluded that unsteady effect is not significant for the common reservoir 
operation. Stability criteria for steady and unsteady flow simulations are given in this paper. 
 

       
(a) Scenario 1                 (b) Scenario 2 

       
(c) Scenario 3                               (d) Scenario 4 

Fig. 18  Mass balance plot 
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The efficiency of flushing operation in Lewis and Clark Lake was predicted with four flow scenarios by comparing 
flushed water / sediment ratio computed from unsteady simulation. The modification of spillway, lowering half of the 
spillway gates by 3 m, flushes more sediment by lowering water surface elevation during the main flushing. 
Comparison between scenarios with and without the modification of spillway concluded that spillway with lowered 
crest increases sediment flushing efficiency. Increasing the main flushing discharge flushes more sediment but appears 
to reduce sediment flushing efficiency. 
The GSTARS4 simulations predicted that most scour will occur on the reservoir delta. Some scour sediment will not 

be flushed through the spillway but will deposit in the open reservoir as a part of flushing process. There would be less 
remaining sediment with lower spillway crest.  
Sedimentation is dominant for the normal reservoir operation while erosion is dominant for a flushing operation. 

However, there was some scour in the upstream reach, just downstream of Fort Randall dam, during 20 years of 
simulation. During flushing operations scour of sediment occurs where sedimentation was dominant during the 20 years 
of simulation. Deposition occurs just upstream of Gavins Point dam as expected.  The numerical model was applied for 
the 110 km long reach where both scour and deposition coexist regardless of reservoir operation scheme.  The simulated 
and predicted results are reasonable based on the U.S. Army Corps of Engineers experiences and records. The results 
learned from this study may be applicable to other reservoirs for flushing sedimentation. 
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