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s u m m a r y

The Office of Hydrologic Development (OHD) of the National Oceanic and Atmospheric Administration’s
(NOAA) National Weather Service (NWS) conducted the second phase of the Distributed Model Intercom-
parison Project (DMIP 2). After DMIP 1, the NWS recognized the need for additional science experiments
to guide its research-to-operations path towards advanced hydrologic models for river and water
resources forecasting. This was accentuated by the need to develop a broader spectrum of water
resources forecasting products (such as soil moisture) in addition to the more traditional river, flash flood,
and water supply forecasts. As it did for DMIP 1, the NWS sought the input and contributions from the
hydrologic research community.

DMIP 1 showed that using operational precipitation data, some distributed models could indeed per-
form as well as lumped models in several basins and better than lumped models for one basin. However,
in general, the improvements were more limited than anticipated by the scientific community. Models
combining so-called conceptual rainfall-runoff mechanisms with physically-based routing schemes
achieved the best overall performance. Clear gains were achieved through calibration of model parame-
ters, with the average performance of calibrated models being better than uncalibrated models. DMIP 1
experiments were hampered by temporally-inconsistent precipitation data and few runoff events in the
verification period for some basins. Greater uncertainty in modeling small basins was noted, pointing to
the need for additional tests of nested basins of various sizes.

DMIP 2 experiments in the Oklahoma (OK) region were more comprehensive than in DMIP 1, and were
designed to improve our understanding beyond what was learned in DMIP 1. Many more stream gauges
were located, allowing for more rigorous testing of simulations at interior points. These included two new
gauged interior basins that had drainage areas smaller than the smallest in DMIP 1. Soil moisture and
routing experiments were added to further assess if distributed models could accurately model basin-
interior processes. A longer period of higher quality precipitation data was available, and facilitated a test
to note the impacts of data quality on model calibration. Moreover, the DMIP 2 calibration and verifica-
tion periods contained more runoff events for analysis. Two lumped models were used to define a robust
benchmark for evaluating the improvement of distributed models compared to lumped models. Fourteen
groups participated in DMIP 2 using a total of sixteen models. Ten of these models were not in DMIP 1.

This paper presents the motivation for DMIP 2 Oklahoma experiments, discusses the major project ele-
ments, and describes the data and models used. In addition, the paper introduces the findings, which are
covered in a companion results paper (Smith et al., this issue). Lastly, the paper summarizes the DMIP 1
and 2 experiments with commentary from the NWS perspective. Future papers will cover the DMIP 2
experiments in the western USA mountainous basins.

Published by Elsevier B.V.

1. Introduction

1.1. Background

The Office of Hydrologic Development (OHD) of the National
Oceanic and Atmospheric Administration’s (NOAA) National
Weather Service (NWS) conducted the second phase of the Distrib-
uted Model Intercomparison Project (DMIP 2). The first phase of
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DMIP (hereafter called DMIP 1) proved to be a landmark compari-
son of lumped and distributed models in the southern Great Plains
of the USA (Smith et al., 2004a; Reed et al., 2004). Twelve groups
participated in DMIP 1, including researchers from China,
Denmark, Canada, New Zealand, and universities and institutions
in the USA. Models ranged from conceptual representations of
the soil column applied in various computational elements, to
more comprehensive physically-formulated models based on
highly detailed triangulated representations of the terrain. Results
from DMIP 1 activities were published in a special issue of the
Journal of Hydrology in October, 2004 (Smith et al., 2004a).

DMIP 1 provided valuable guidance to the NWS research-to-
operations program for improved hydrologic models for river and
water resources forecasting. For example, follow-on work from
DMIP 1 led to the deployment in February, 2007 of the first distrib-
uted model for operational forecasting in the NWS (Schmidt et al.,
2007; Cooper, 2004; Shultz and Corby, 2004). The NWS distributed
model has shown cases of improved operational river forecasts
(e.g., Jones et al., 2009). At the same time, the results of DMIP 1 al-
lowed the NWS to implement the distributed model with realistic
expectations regarding distributed model improvement compared
to lumped models. In addition, the NWS and other participants
used DMIP 1 to identify model shortcomings and improve their
models (e.g., Mascaro et al., 2010; Ivanov et al., 2008; Gassman
et al., 2007; Koren et al., 2010, 2006; Di Luzio and Arnold, 2004).
The DMIP 2 Oklahoma (OK) experiments were conducted between
2005 and 2007, concluding with a participants’ workshop at NWS
headquarters in September, 2007.

The purpose of this paper is to introduce the overall scope of
DMIP 2 and provide background information for other papers in
this special issue. Additional details can be found on the DMIP 2
website: http://www.nws.noaa.gov/oh/hrl/dmip/2/. While DMIP 2
encompassed two geographic domains, this paper focuses on the
research-to-operations questions and experiments in the Okla-
homa region basins. Subsequent papers will address the issues
and experiments in the western DMIP 2 basins.

This paper is organized as follows. Section 2 introduces the need
for DMIP 2 from an NWS perspective followed by a discussion of
science issues and knowledge gaps. Also highlighted are the differ-
ences compared to DMIP 1. The pertinent science-to-operations
questions are listed in Section 3. The test basins are described in
Section 4. Data for DMIP 2 are described in Section 5. Section 6 pre-
sents the modeling experiments. The models used in DMIP 2 are
described in Section 7. Section 8 introduces the results covered
in Smith et al. (this issue) and then Section 9 summarizes the paper
and discusses NWS perspectives.

2. Need for DMIP 2

2.1. NWS motivation

As with DMIP 1, the NWS realized the need for an accelerated
phase of science experiments to guide its implementation of ad-
vanced hydrologic models for river, flash flood, and water re-
sources forecasting. This was accentuated by the need to develop
a growing list of water resources forecasting products in addition
to the more traditional river, flash flood and water supply forecast-
ing mission (NWS, 2004; McEnery et al., 2004). The need for water
resources forecasting is based on end-user requests and the recom-
mendations of the National Research Council (NRC) that point to
hydrologic forecasting as one of the ten ‘grand challenges’ in
environmental sciences in the next generation (NRC, 2000). For
example, the NWS is very interested in producing high spatial
resolution soil moisture products (Koren et al., 2006; Moreda
et al., 2005) which have been shown to be economically beneficial

(e.g., Georgakakos and Carpenter, 2006; Torell et al., 2011). To this
end, the NWS sought input from the hydrologic research
community.

Smith et al. (2004a) listed a set of initial requirements for NWS
operational distributed modeling. We expand that list here as
additional background for the DMIP 2 Oklahoma experiments.

(a) The distributed model should be computationally feasible in
real time. Any model used at NWS offices for operational
forecasting must run efficiently.

(b) The model should be amenable to manual and/or automatic
data assimilation to keep model states on track.

(c) It should be amenable to uncertainty analysis via ensembles
or other means. The NWS is actively implementing
approaches to quantify the uncertainty of their lumped-
model river forecasts (e.g., Seo et al., 2010). Distributed mod-
els will need to fit into such a framework.

(d) The distributed model should have effective parameter esti-
mation and calibration schemes that expedite model imple-
mentation. Efficient schemes are necessary given that the
NWS must implement models for river, flash flood, and
water resources prediction for the entire Nation. Efficient
schemes also enhance the use of the model calibration pro-
cess as an effective step in training operational hydrologic
forecasters (Smith et al., 2003).

(e) The distributed model should perform at least as well in an
overall sense as the current operational lumped model,
while providing improvements in basin outlet simulations
in cases of pronounced spatial variability of precipitation
and basin features.

(f) The distributed models should provide accurate hydrologic
information at ungauged points. For example, distributed
models calibrated at the basin outlet should provide accu-
rate estimates of soil moisture at interior ungauged
locations.

After DMIP 1, the NWS developed a version of its research dis-
tributed model that could be used in operations and made it avail-
able to NWS River Forecast Centers (RFCs) in February 2007 for
river stage forecasting. To date, the distributed model has been
used in the non-snow southern portions of the USA. Expanded
operational deployment of distributed models into other parts of
the USA requires that the NWS investigate issues not covered in
DMIP 1 such as high spatial resolution snow accumulation and
melt, sparse data networks, orographically enhanced precipitation,
rapidly varying terrain features, and others.

2.2. Scientific background

While DMIP 1 served as a successful comparison of lumped and
distributed models, it also highlighted problems, knowledge gaps,
and topics that needed to be investigated. Moving forward after
DMIP 1, OHD believed there was a continued need to provide the
academic community with an opportunity to test research models
using operational quality data, providing a means to identify tech-
niques that may be suitable for operational forecasting. Even be-
yond DMIP 2, OHD intends to maintain the data availability so
that DMIP 2 participants and others may use them for future re-
search and development.

The new aspects of the Oklahoma experiments in DMIP 2 were
designed to advance our knowledge beyond what was learned
from DMIP 1. In DMIP 2, ten models participated that were not
in DMIP 1, providing the scientific and operational community
with an expanded set of results on the comparison of lumped
and distributed models (see Smith et al., this issue). Moreover,
DMIP 1 was limited by a relatively short data record containing
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only a few significant rainfall–runoff events during the verification
period from which statistics could be computed and inferences
made. Thus, the need remained for further DMIP 1-like testing in
order to more rigorously evaluate the hypotheses related to
lumped and distributed modeling. At the launch of DMIP 2, several
years of more recent data were available to support such compar-
isons. Also, DMIP 1 was somewhat hampered by the quality of the
multisensor estimates of observed precipitation. These data prob-
lems led some DMIP 1 participants to report problems with cali-
bration (Reed et al., 2004). The quality of these multisensor data
has been much studied in the DMIP 2 basins and elsewhere (e.g.,
Westcott et al., 2008; Xie et al., 2006; Jayakrishnan et al., 2004;
Stellman et al., 2001; Young et al., 2000; Wang et al., 2000; Smith
et al., 1999; Johnson et al., 1999) and researchers have identified
problems such as underestimation and non-stationarity resulting
from changes in the raw data processing algorithms (Young
et al., 2000; see also ‘About the Multisensor (NEXRAD and gauge)
Data’, http://www.nws.noaa.gov/oh/hrl/dmip/2/docs/about_mult-
isensor.pdf). These known deficiencies were exacerbated by the
typically short period of record of the multisensor precipitation
products. Avoiding these problem-prone periods often leaves an
insufficient period of high-quality data for model calibration. To
alleviate these problems, work is underway to generate a consis-
tent high-quality reanalysis of the radar multisensor precipitation
estimates (Nelson et al., 2010, 2006). DMIP 2 did not use precipita-
tion data from three early years with known underestimation
problems but included data from more recent years.

One of the greatest challenges of distributed modeling is the
prediction of hydrologic variables over a range of spatial scales
and at ungauged interior locations. To address this challenge, a dis-
tributed model should reasonably well represent the heterogene-
ities of watershed properties through its modeled processes,
structure and parameters. Unfortunately, limitations in the avail-
ability of spatial data often reduce model evaluation to a simple
comparison of modeled and observed streamflow at the gauged
outlet (Reed et al., 2004) and greatly impede an evaluation of the
spatial correctness of model parameters and outputs.

If distributed models can reliably represent processes at basin
interior points, then these models can be used to generate products
such as flash-flood forecasts or spatially variable information such
as soil moisture estimates for agriculture (e.g., Georgakakos and
Carpenter, 2006; Torell et al., 2011). Alternatively, success at mod-
eling interior points provides confidence that the models are pro-
ducing the right answer at a stream gauge for the right reasons
upstream (Kirchner, 2006). For example, Koren et al. (2008)
demonstrated that calibration using soil moisture observations in

addition to streamflow can result in more confidence in the a pos-
teriori model parameters because more basin processes are being
represented.

DMIP 1 attempted to address this challenge through blind sim-
ulations of nested and basin interior observed discharges at a lim-
ited number of sites. Reed et al. (2004) reported that some DMIP 1
models had success at predicting interior streamflow without spe-
cific calibration at that point. DMIP 2 revisited this question but
enhanced the investigation in two ways. First, more interior stream
gauges were located in the study basins. Table 1 shows the new
stream gauges for DMIP 2. The gauge on the Illinois River south
of Siloam Springs, Arkansas (AR) allowed us to forego using the
data from the USGS gauge at Watts, OK used in DMIP 1. The Watts
gauge is downstream of the ruins of a dam and small lake known as
Lake Frances on the Illinois River. Analysis of the streamflow at the
gauges upstream (Siloam Springs) and downstream (Watts) of this
dam showed regulation effects which may have complicated the
analyses of model results (see Section 4.2.2).

Moreover, DMIP 2 expanded the analysis of interior process rep-
resentations to include spatial comparisons of simulated and ob-
served soil moisture. Investigations using soil moisture data have
typically been hampered by a lack of reliable observations orga-
nized at a high spatial resolution. While much work has been done
to estimate soil moisture from satellites, these methods are cur-
rently limited by observations of only the top few centimeters of
the soil surface. The test basins in DMIP 1 are mostly contained
in Oklahoma, offering an opportunity to use the soil moisture
observations from the Oklahoma Mesonet (Brock et al., 1995; Ill-
ston et al., 2004). In this network, over 100 soil moisture sensors
were installed at depths of 5, 25, 60, and 75 cm. These depths were
selected to enhance agricultural and meteorological modeling,
facilitate drought monitoring, and to generate research-quality
data sets. Appendix A presents more details regarding the sensors
and data. Recent work has shown the validity of using these data to
detect droughts (Illston et al., 2008; Illston et al., 2004, 2003; Ill-
ston and Basara, 2002), evaluate distributed model performance
(Koren et al., 2006), and for multivariable calibration of lumped
models (Koren et al., 2008) as well as for other major studies
(e.g. NLDAS, Mitchell et al., 2004). Koren et al. (2006) presents a
comparison of computed and observed soil moisture using the
Mesonet data. Fortin (1998) provides a good example of such
experiments with the Sacramento model. Schaake et al. (2004) in-
ter-compared NLDAS model-generated soil moisture fields with
each other and with available observations. The NLDAS soil mois-
ture estimates were generated on a 1/8th degree grid, which is
too coarse for the planned NWS water resources forecast products.

Table 1
USGS stream gauges and basin drainage areas for the Oklahoma region basins. The italized areas denote additional gauges that were not used in DMIP 1.

No USGS no Name DMIP-2 ID Latitude (�) Longitude (�) Area (km2)

1 7332500 Blue R. nr Blue, OK BLUO2 33.99694 �96.24803 1233
1a 7332390 Blue R. near Connerville, OK CONNR 34.38333333 �96.60027778 419.6
2 7196500 Illinois River near Tahlequah OK TALO2 35.92286889 �94.9235658 2484
3 7197000 Baron Fork at Eldon OK ELDO2 35.92120028 �94.8385633 795
4 7196973 Peacheater Creek at Christie OK PEACH 35.95480806 �94.6963369 65
5 7196000 Flint Creek near Kansas OK KNSO2 36.1864725 �94.7068914 285
6 7195500 Illinois River near Watts OK WTTO2 36.13008 �94.57216 1645
7 7194800 Illinois River at Savoy AR SAVOY 36.10313567 �94.34437763 433
8 7189000 Elk River near Tiff City Mo TIFM7 36.63146139 �94.5868886 2258
9 7188653 Big Sugar Creek near Powell MO POWEL 36.615872 �94.182222 365
10 7188885 Indian Creek near Lanagan MO LANAG 36.599275 �94.44965 619
11 7194880 Osage Creek near Cave Springs AR CAVES 36.28146623 �94.22798384 90
12 7195000 Osage Creek near Elm Springs AR ELMSP 36.22202302 �94.28854149 337
13 7195430 Illinois River South of Siloam Springs AR SLOA4 36.10869244 �94.53355206 1489
14 7195800 Flint Creek at Springtown AR SPRIN 36.25563475 �94.43394 37
15 7195865 Sager Creek near West Siloam Springs OK WSILO 36.2017483 �94.6052206 49
16 7196900 Baron Fork at Dutch Mills AR DUTCH 35.880092 �94.486606 105
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Observed soil moisture data were taken from the Illinois State
Water Survey. These data were collected twice per month. Schaake
et al. (2004) found better agreement between observed and simu-
lated ranges of water storage variability than between observed
and simulated amounts of total water storage. Despite the spatial
density limitations of the Oklahoma Mesonet, (e.g., one sensor
per county) and other issues (Illston et al., 2004; Basara and Craw-
ford, 2000) it is prudent to perform experiments to understand the
real value of these currently available data and work towards
developing requirements for future sensor deployment.

Reed et al. (2004) noted the uncertainty in the performance of
DMIP 1 models in the smallest basin (65 km2) and called for tests
with nested basins of various sizes. We addressed this need in
DMIP 2 by locating two interior basins with drainage areas of 39
and 45 km2.

Continued research is necessary to develop and refine distrib-
uted models and their parameter estimation and calibration
schemes. Effective schemes are especially critical for operational
deployment of distributed models for real-time forecasting. We
consider parameter estimation and calibration as distinct but
linked processes (Reed et al., 2004; Koren et al., 2003b; Madsen,
2003; Refsgaard, 1997). For the DMIP 2 experiments, we define
parameter estimation as the derivation of a priori estimates of
model parameters from physical properties of the basin such as
soil texture. Calibration is the process of refining the a priori (or
other initial) parameters so that an acceptable level of error is
achieved between simulated and observed hydrologic variables.
In DMIP 2, participants were asked to generate uncalibrated and
calibrated simulations at basin outlets and at blind interior points.
Participants were free to use any parameter estimation/calibration
scheme they desired, resulting in a wide array of approaches. The
improvement gained by model calibration is quantified in the dis-
cussion of DMIP 2 results (Smith et al., this issue). The following
paragraphs highlight some of the issues and recent advances in
these areas.

Parameter estimation approaches for lumped models tend to be
hydrograph driven with some physical reasoning (e.g. Anderson
(2002) for the SAC-SMA). On the other hand, efforts to parameter-
ize distributed models tend to put more emphasis on physical rea-
soning, but researchers have found that results can still be
improved through hydrograph-driven calibration (e.g., Reed et al.,
2004).

Model parameter estimation has received a great deal of atten-
tion in recent years, aided by the development of soil texture and
other data sets of physical basin attributes. Examples here include
the derivation of a priori estimates of the parameters for the SAC-
SMA model (Anderson et al., 2004; Koren et al., 2000), the Precip-
itation Runoff Modeling System (PRMS, Leavesley et al., 2003), the
Hydrologic Research Center Distributed Hydrologic Model (HRC-
DHM, Carpenter and Georgakakos, 2004), a version of the Variable
Infiltration Capacity (VIC) model (Abdulla et al., 1996), a version of
TOPMODEL, (Ao et al., 2004) and others. A priori parameter estima-
tion schemes produce spatially consistent parameter sets (Bastidas
et al., 2003; Seibert and McDonnell, 2003). Moreover, a priori
parameterization schemes provide a cost-effective and physically
realistic approach to model implementation for operational
forecasting.

Calibration techniques for distributed models are less mature
compared to lumped models due to the large number of parame-
ters involved and our incomplete knowledge of the actual physical
processes in the heterogeneous landscape. Calibration approaches
that are both efficient and take full advantage of available physical
data continue to be elusive in spite of the high level of activity in
this arena (Campo et al., 2006). Approaches developed to date
can be placed into one of several groups. First, one strategy is to
use scalars to uniformly adjust (automatically or manually) the

parameters in each grid or computational element in a watershed
(e.g., McMillan et al., 2008; Francés et al., 2007; Koren et al., 2003c,
2004; Eckhardt et al., 2005; Bandaragoda et al., 2004; Leavesley
et al., 2003; Giertz et al., 2006; Jinkang et al., 2007; White et al.,
2003). This approach is acutely dependent on the use of effective
a priori parameterization schemes based on physical basin charac-
teristics to reduce the high dimensionality of the problem (Reed
et al., 2004; Leavesley et al., 2003; Koren et al., 2000, 2003b,
2004; Senarath et al., 2000). The premise of using scalar adjust-
ment factors is that there is value in preserving the spatial varia-
tion of the physical information as reflected in a model’s
parameters and is predicated on the ability to generate meaningful
a priori model parameters from soils and other physical data sets.
Koren et al. (2004) and Carpenter and Georgakakos (2004) advo-
cate an additional check when calibrated lumped parameters are
available. In this step, the distributed a priori parameters are scaled
to agree with the lumped calibrated parameters.

Another approach is to calibrate models by focusing on events
having spatially non-uniform rainfall (e.g., McMillan et al., 2008;
Ivanov et al., 2004). In such cases, only the parameters of the ‘ac-
tive’ computational elements (i.e., receiving rainfall) are adjusted.
Similarly, Mascaro et al. (2010) and Vivoni et al. (2006) conducted
studies in which a ‘nested basin’ calibration approach was used for
the basin above the USGS gauge on Baron Fork at Eldon, OK (DMIP
2 identifier ELDO2). In these studies, sub-basin- and event-specific
calibration was performed to focus on the impacts of nowcasting
and ensemble forecasting. Starting with the long term basin-outlet
calibration at ELDO2 from Ivanov et al. (2004) for DMIP 1, the
parameters were adjusted in a ‘nested basin’ or ‘multistream
gauge’ approach in which the parameters of the two sub basins
were modified prior to calibrating the main basin response in
two events.

Still others attempt to use multivariable and multisite measure-
ments (e.g., hydrographs and aquifer height, Madsen and Kristen-
sen, 2002); hydrographs and sedimentographs (Kalin and
Hantush, 2006) in a multiple-objective minimization framework.
Step-wise calibration of individual processes has also been devel-
oped (Vieux and Moreda, 2003; Rousseau et al., 2003). Campo
et al. (2006) used automatic calibration to determine parameters
to fit two objective functions: minimizing the error in simulated
gauged flow and soil saturation indexes. Recent advances in perfor-
mance measures include the use of pattern agreement measures
such as the Hausdorf metric (Tcherednichenko et al., 2004; Basti-
das and Li, 2004; Marron and Tsybakov, 1995), the earth movers
distance (Kim et al., 2010) and the Information Mean Squared Error
(IMSE, Wealands et al., 2004) to minimize the differences between
observed and simulated time-varying spatial patterns of hydro-
logic variables.

Regularization is an approach to reduce the dimensionality of
the calibration problem. In simple terms, regularization (some-
times called a ‘bottom-up’ approach) is a strategy that utilizes
additional information about the model parameters to construct
constraints in the form of equations to simplify an ill-posed inverse
problem (e.g., Pokhrel et al., 2008; Marce et al., 2008). Doherty and
Skahill (2006) used regularization in the simultaneous calibration
of five subwatershed models. Their method allowed for inter-sub-
watershed parameter variation, and achieved better flow simula-
tion than without such parameter variation. ‘Top-down’
approaches such as regionalization have also been used to param-
eterize distributed models (e.g., Gotzinger and Bardossy, 2007).
Other studies highlight progress towards computationally feasible
approaches which, when combined with effective a priori parame-
ters, regularization schemes or other methods to reduce problem
dimensionality, can be used to optimize distributed model param-
eters in practical applications (e.g., Kuzmin et al., 2008; Goswami
and O’Conner, 2007; Bastidas and Li, 2004).
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Yet another major need is the testing of models in a ‘pseudo-
forecast environment’ with forecast-quality forcing data. Such tests
are a logical complement to the process simulation experiments in
DMIP 1. While much work has been done to evaluate the improve-
ments realized by distributed models in historical simulation
mode, the NWS also needs to investigate the potential gains when
used for hydrologic forecasting. The well-documented model inter-
comparsion experiment of the World Meteorological Organization
(WMO, 1992) highlighted the testing of models in a forecasting
environment. One of the conclusions of that workshop was that
good simulation (process) models are necessary for longer lead-
time forecasts. In DMIP 1, process models were tested in simula-
tion mode and thus satisfied this conclusion from the WMO exper-
iment. Initial DMIP 2 plans called for a forecast test component as a
natural complement to the process experiments in DMIP 1. Georg-
akakos and Smith (1990) argued for such an experiment as follow-
on work to the WMO model comparisons of the 1980s, stating that
the rainfall input component of the input uncertainty contributes
the most to prediction uncertainty. The need for a forecast compo-
nent in DMIP 2 is mentioned here but we will wait to execute this
experiment and report on its findings at a future date.

Continued work is needed to address the question: can basins
be identified a priori that would show gains from distributed mod-
els compared to lumped models for forecasting at the basin outlet.
(We have already commented on the ability of some distributed
models to provide useful information at interior points). Such iden-
tification procedures might help guide operational agencies in the
efficient implementation of distributed models. While this ques-
tion was not explicitly investigated via DMIP 1 modeling instruc-
tions, it was nonetheless a good opportunity to explore this
question. Smith et al. (2004b) and Koren et al. (2003a) used the
DMIP 1 observed streamflow and precipitation data in an attempt
to derive diagnostic indicators to assess the potential benefit of dis-
tributed models before the model is applied. Distinct differences in
precipitation spatial variability and basin behavior were identified.
Yet, no threshold values of the indices could be derived. DMIP 2 ad-
dressed this question by providing several more years of observed
precipitation and streamflow data to continue the types of empir-
ical analyses performed by Smith et al. (2004b), Koren et al.
(2003a) and others. Li and Sivapalan (2011) used these data to
investigate the spatial variability of runoff generation in the Illinois
River basin. They noted counter-intuitive behavior in that basin re-
sponse times were slower under wet (saturation excess runoff)
conditions than under dry (subsurface flow dominated) conditions.
In light of these and other studies, continued work is necessary to
understand the interaction of spatial variability of precipitation,
basin features, and runoff generation to warrant the use of a dis-
tributed model.

3. Science questions

The following science questions were proposed for the Okla-
homa region experiments of DMIP 2. Some of these were repeated
from DMIP 1 in order to evaluate them given longer archives of
higher quality data than were available in DMIP 1. The science
questions are framed for the interest of the broad scientific com-
munity and in most cases include a corollary to address the distrib-
uted modeling requirements for NWS and other operational
forecast agencies (e.g., Rousseau et al., 2003).

Can distributed hydrologic models provide increased simulation
accuracy compared to lumped models? This question was one of
the dominant questions in DMIP 1. Reed et al. (2004) found that
lumped models outperformed distributed models in more cases
than distributed models outperformed lumped models. The spe-
cific question for the NWS mission is: under what circumstances

should NWS use distributed hydrologic models rather than (or in
addition to) lumped models to provide hydrologic services?

What simulation improvements can be realized through the use of
a more recent period of radar precipitation data than was used in
DMIP 1? What is the impact of calibrating a distributed model with
temporally inconsistent multisensor precipitation observations? One
of the issues faced in DMIP 1 was the time-varying biases of the
multisensor precipitation data (Reed et al., 2004) which affected
the simulations in the model calibration and verification periods.
DMIP 2 did not use the problematic 1993–1996 period of radar
data. Simulations and analyses were based on the period starting
in 1996. For the NWS, the question is whether using this later
(and less bias-prone) period of data can lead to improved calibra-
tions and simulations.

Can distributed models reasonably predict processes such as runoff
generation and soil moisture re-distribution at interior locations? At
what scale can soil moisture models be validated given current models
and sensor networks? For the NWS, the corollary question is: can
distributed models provide valuable, spatially-varied estimates
and operational predictions of soil moisture, soil temperature
and runoff?

In what ways do routing schemes contribute to the simulation suc-
cess of distributed models? Can the differences in the rainfall–runoff
transformation process be better understood by running computed
runoff volumes from a variety of distributed models through a com-
mon routing scheme? One of the recommendations from DMIP 1
was to separate the comparisons of routing and rainfall runoff
techniques (Reed et al., 2004). Such experiments are necessary
complements to validating distributed models with interior-point
flow and soil moisture observations in an attempt to generate
‘the right results for the right reasons.’ Lohmann et al. (2004,
1998) present large scale examples of such a test.

What is the potential for distributed models configured for basin
outlet simulations to generate meaningful hydrographs at interior
locations for flash flood forecasting? Inherent in this question is
the hypothesis that better outlet simulations are the result of accu-
rate hydrologic simulations at points upstream of the gauged out-
let. This question is repeated from the DMIP 1 experiments. Reed
et al. (2004) identified reasonable performance for small ungauged
areas. For the NOAA/NWS, the question is: can distributed runoff
and flow predictions for small, ungauged locations be used to im-
prove upon the existing NWS flash flood forecasting procedure?

What combination parameter estimation schemes and calibration
strategies seem to be most effective and what is the level of effort re-
quired? As in DMIP 1, the DMIP 2 modeling instructions specified
that participants were to generate uncalibrated and calibrated sim-
ulations. For operational agencies, it is important to weigh any
simulation improvements gained in the process of calibration
against the effort required.

Two additional science questions were identified in the DMIP
Science Plan. Unfortunately, we were not able to address them in
DMIP 2. Nonetheless, they are included here for the interest of
the scientific community.

What is the performance of (distributed) models if they are cal-
ibrated with observed precipitation data but use forecasts of precip-
itation? Is there a forecast lead time at which the distributed and
lumped model forecasts converge? How far out into the future
can distributed models provide better forecasts than currently used
lumped models? Because forecast precipitation data have a lower
resolution and are much more uncertain than their observed coun-
terparts, the benefits of distributed models may diminish for long-
er lead times.

What combinations of physical characteristics (shape, feature het-
erogeneity) and rainfall variability warrant the use of distributed
hydrologic models for improved basin outlet simulations compared
to lumped models? Can basins be identified beforehand that would
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realize gains from distributed model application? The corollary
question for the NWS is: at what river forecast points can we ex-
pect distributed models to effectively capture essential spatial var-
iability so as to provide better simulations and forecasts than the
current lumped model?

4. Description of test basins

4.1. Overview

Fig. 1 shows the two major geographic regions for the experi-
ments conducted in DMIP Phase 2. As seen in Fig. 1, the Oklahoma
region and basins in DMIP 1 were used in DMIP 2. Two neighboring
basins in the western USA were selected as good candidates for
distributed model tests in hydrologically complex areas. The wes-
tern DMIP 2 basins are mentioned here with the intent of providing
a more complete description of the western basin experiments in a
planned journal paper.

4.2. Oklahoma region

As in DMIP 1, the Blue River, the Elk River, and the Illinois River
basins were used for specific tests regarding lumped and distrib-
uted models. Table 1 and Fig. 2 present the additional stream
gauges identified for use in DMIP 2. For tests related to soil mois-
ture, DMIP 2 used a ‘synthetic basin’ encompassing the entire state
of Oklahoma with its Mesonet series of soil moisture observations
shown in Fig. 3 and described in Appendix A. Smith et al. (2004a)
present a description of the Illinois, Elk, and Blue River basins
and the rationale for their selection for lumped and distributed
model comparisons. Readers are referred to Smith et al. (2004a)
for the details of these basins so as to avoid undue repetition here.
However, recently-obtained background information on two of the
basins is provided here.

4.2.1. Blue River at Blue, OK
The Blue River basin has a unique shape and response charac-

teristics among the Oklahoma region basins, and displayed benefits
from distributed modeling in DMIP 1 (Reed et al., 2004). However,
several DMIP 1 and 2 participants noted odd behavior in this basin,
such as rapidly rising and falling hydrographs and water balance

problems. We conjectured the presence of additional processes
that complicate the response of the basins, and have since obtained
information which sheds lights on the complex response (Osborn,
2009; OWRB, 2003; Fairchild et al., 1990). As shown in Fig. 4, the
upper reaches of the Blue River are underlain by the Arbuckle-
Simpson aquifer, and thus are affected by sinkholes and compli-
cated by sections that gain and lose water. Moreover, the largest
spring in Oklahoma (Byrd’s Mill Spring, USGS gauge 07334200) re-
moves water from the basin and discharges it to the northeast. This
spring discharges about 0.57 m3 s�1 and is the primary source of
water for the city of Ada, OK (Osborn, 2009). Fig. 4 also shows
the numerous springs above Connerville, OK. Finally, the location
of the Blue River is apparently controlled by lithological variability
and not by the potentiometric surface (Todd Halihan, OK State U.,
personal communication).

4.2.2. Illinois River at Siloam Springs, AR
The USGS gauge on the Illinois River at Watts, OK used in DMIP

1 was not used in DMIP 2 as it is downstream from a weir and ruins
of a small dam. Instead, DMIP 2 took advantage of the newly in-
stalled gauge just upstream at Siloam Springs, OK to avoid any
attenuating effects of the structure. The drainage area of this basin
is only slightly smaller than the Illinois River at Watts, OK
(1489 km2 versus 1645 km2). Fig. 5 compares the observed hourly
streamflow at the gauges downstream (Watts) and upstream (Si-
loam Springs) of this weir and ruins for a storm event in June,
2000. The initial peaks on the rising limbs of the hydrograph show
the effects of flow entering the main channel from tributaries
downstream of the structure and just upstream of the Watts gauge.
However, the main Watts hydrograph peaks lower and later than
the main Siloam Springs hydrograph, indicating that the structure
has at least some attenuating effects on the flow.

5. Data

OHD encouraged participation in DMIP 2 by providing data sets
(or links to them), processing algorithms, test cases, and documen-
tation. Some of these data are repeated from DMIP 1 (e.g., DEM
data). The following sections highlight the changes and additions
for DMIP 2.

Distributed Model

Intercomparison 

Project (DMIP)
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Arkansas

Missouri
Kansas

Elk River
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Blue River
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2. Soil Moisture
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Fig. 1. The geographic scope and hydrologic investigations in DMIP 2.
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5.1. Multisensor precipitation data

One of the goals in DMIP 2 was to provide a more consistent
data set of multisensor precipitation observations. In DMIP 1, the
period of data was from May, 1993 through July, 2000, encompass-
ing an interval of known underestimation and algorithmic changes
from 1993 to 1996 (Reed et al., 2007, 2004; Young et al., 2000; see
also ‘About the Multisensor (NEXRAD and gauge) Data’, http://
www.nws.noaa.gov/oh/hrl/dmip/2/docs/about_multisensor.pdf).
To avoid these problematic data in DMIP 2, a later period was se-
lected from the archive of operational radar-gauge precipitation
from the NWS Arkansas-Red Basin River Forecast Center (ABRFC).
Data were provided from October 1, 1995 to September 30, 1996
for a ‘warm-up’ period to allow participants’ models to stabilize

before the calibration period of October 1, 1996 to September 30,
2002. The verification period spanned from October 1, 2002 to Sep-
tember 30, 2006. Whereas the ABRFC relied on the Stage III algo-
rithm for radar precipitation estimation prior to 1996, they
adapted the use of a locally-developed algorithm Process1 (P1) to
create the vast majority of the multisensor precipitation products
starting in late 1996. In Stage III, the multisensor precipitation
products for individual radars are combined near the end of the
process to cover an entire RFC domain. In P1, the radar-only precip-
itation fields are first combined to cover the RFC area, followed by
bias correction with gauge observations to derive a multisensor
precipitation estimate. Young et al. (2000) provide a thorough
description of the Stage III and P1 processes. The Hydrologic Rain-
fall Analysis project (HRAP) grid defines the spatial resolution of
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Fig. 2. Location of DMIP test basins and interior computational points in the Oklahoma, Missouri, and Arkansas area. Note that additional gages have been located for DMIP 2.
The red line indicates the outline of the TALO2 basin. The yellow shaded area is the SLOA4 basin and the green shaded area is the KNSO2 basin. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

No soil moisture data
Soil Moisture data
Blue River basin
Illinois River basin
Basin boundary

0 60 120

Kilometers

Fig. 3. Location of Oklahoma Mesonet sites as they relate to the test basins in DMIP 2.
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these precipitation estimates. Nominally, the HRAP grid size is
4 km by 4 km, but the actual cell size varies with latitude. Inter-
ested readers are referred to Green and Hudlow (1982) and Reed
and Maidment (1999) for more information about the HRAP grid
definition.

5.2. Flow direction data

Flow direction grid files at several resolutions (or links to the
agencies that provide them) were provided for the convenience
of any participants who wished to use them. In these grids, each
cell contains an integer indicating one of eight possible flow direc-
tions. The 30-m DEM flow direction grids were produced by the
National Severe Storms Laboratory (NSSL) using the Jenson and
Domingue (1988) algorithms implemented via commercial GIS
software.

Although 30-m flow directions are more accurate and were
used to derive the basin boundaries provided on the DMIP 2 web

site, 400-m flow directions grids were also provided. The 400-m
flow direction grids were derived using 400-m DEMs and digitized
streamline files. Flow direction grids for the HRAP and ½ HRAP grid
cells used to map multisensor precipitation data were derived
using DEM data and DEM derivatives using the method described
by Reed (2003).

5.3. Observed streamflow

Provisional observed hourly discharge data were obtained from
USGS personnel in Oklahoma, Arkansas, Kansas, and Missouri.
These data were quality controlled at OHD by checking against
the published mean daily flow data from the USGS. Suspect data
were set to missing. The data were converted to Greenwich Mean
Time (GMT) to correspond to the multisensor precipitation data.

5.4. Cross section data

In addition to the bridge cross section data used in DMIP 1, sur-
veyed cross section information were provided for 26.4 km on Flint
Creek and 56.3 km on the Illinois River from near the Watts gauge
downstream to the Tahlequah gauge. These data were obtained
from a study for the Southwestern Electric Power Co. by the con-
sulting firm Freeze and Nichols.

5.5. Meteorological data

Two sources of meteorological data were provided in DMIP 2 so
that participants could compute daily estimates of potential evap-
oration if desired. The first source was the North American Regio-
nal Reanalysis (NARR) data set (Mesinger et al., 2004, 2006). This
data set was selected primarily as it covered the basins in both
the Oklahoma and western regions and has been used in other
studies (e.g., Lei et al., 2007). The NARR data are a long term, con-

Fig. 4. The location of the Arbuckle-Simpson aquifer showing the Blue River and Byrd’s Mill Spring. Blue dots indicate the location of springs. The red arrow indicates the
direction of flow from Byrd’s Mill Spring out of the Blue River basin. The USGS stream gauge at Connerville, OK is shown. Copyright: Oklahoma Water Resources Board.
Reproduced with permission.
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sistent, assimilation-based climate dataset for the North American
domain. The data are available at a 3 h temporal resolution and a
32 km spatial resolution. The data are generated via a ‘frozen’ ver-
sion of the Eta regional numerical weather prediction model com-
bined with the Noah land surface model. The data cover the 25-
year period 1979–2003, and are being continued in near-real time
as the Regional Climate Data Assimilation System (R-CDAS). Data
assimilated into the model consist primarily of free atmospheric
variables such as upper-air temperature, pressure heights, and
humidity from rawinsondes, dropsondes, and satellite retrievals.
Output fields include surface variables such as precipitation, tem-
perature, wind, relative humidity, and radiative fluxes.

In addition, OHD provided a link to the surface downward short
wave (SW) radiative flux data from the NOAA National Environ-
mental Satellite, Data, and Information Service (NESDIS). These
data are derived from GOES satellite observations. The NESDIS
SW data are stored and distributed using a server at the University
of Maryland, College Park.

As in DMIP 1, climatic monthly mean values of potential evap-
oration (PE) were also provided in mm/day for the study basins.
These values were derived from free water surface (FWS) evapora-
tion maps contained in NOAA Technical Report 33 (Farnsworth
et al., 1982) and mean monthly station data in NOAA Technical Re-
port 34 (Farnsworth and Thompson, 1982).

5.6. Location of Oklahoma Mesonet sites

DMIP 2 provided a list of the latitude/longitude coordinates of
the Oklahoma Mesonet stations. The participants generated simu-
lations of volumetric soil moisture for two depth ranges at these
locations for analysis. While OHD obtained the observed soil mois-
ture values from the Mesonet organizers, these were not made
available to participants as they are proprietary. Appendix A con-
tains details of the soil moisture sensors used in the Mesonet.

5.7. Soil texture information

In addition to the State Soil Geographic (STATSGO) data pro-
vided in DMIP 1, OHD provided a link to finer resolution county-le-
vel soil information called the Soil Survey Geographic (SSURGO)
data set. The SSURGO data are typically available at a scale of at
least 1:24,000. They are approximately ten times the resolution
of STATSGO data in which the soil polygons can be on the scale
of 100–200 km2.

6. Overview of modeling experiments

DMIP 2 defined specific modeling tests to investigate the sci-
ence questions discussed earlier. Participants were required to fol-
low explicit instructions for generating the required simulations. A
brief overview is provided here while the full modeling instruc-
tions can be found in http://www.nws.noaa.gov/oh/hrl/dmip/2/
docs/ok_modeling_instructions.pdf. In the papers that follow in
this special issue, readers can refer to this site for the interpreta-
tion of results.

In all experiments, participants were required to use the opera-
tional multisensor precipitation data provided via the DMIP 2 web
site. This requirement was established to help NWS evaluate the
models when forced with operational (versus research)-quality
data. As in DMIP 1, no state updating was allowed. Model runs
were generated in historic simulation mode in order to evaluate
the basic ability of models to simulate basin processes.

6.1. Simulation experiments: lumped and distributed models

These tests essentially followed the DMIP 1 Project Design and
Modeling Instructions (Smith et al., 2004a). Calibrated and un-cal-
ibrated simulations from participants’ distributed models were
tested against observed streamflow and corresponding lumped-
model simulations. Models were to be set up so that simulations
were generated at the gauged outlet and at specific gauged points
in the basin interior. However, no calibration was allowed using
the interior flow data in order to evaluate the predictive capability
of distributed models at ungauged points. As in DMIP 1, partici-
pants’ streamflow simulations were evaluated against observed
hourly flow data as well as the lumped model simulations from
the NWS operational Sacramento Soil Moisture Accounting Model
(SAC-SMA; DMIP 2 acronym LMP) and the lumped simulations
from the French participants at Centre d’etude du Machinisme
Agricole du Génie Rural des Eaux et Forêts; (CEMAGREF; DMIP 2
acronym CEM). A ‘‘warm-up’’ period from October 1, 1995 to Sep-
tember 30, 1996 was specified to allow model states to stabilize.
The calibration period extended from October 1, 1996 to Septem-
ber 30, 2002, while the verification period spanned the period of
October 1, 2002 to September 30, 2006.

6.2. Comparisons of computed and observed runoff volumes and soil
moisture

For this experiment, participants were instructed to set up and
execute their models over an area encompassing the Oklahoma
Mesonet shown in Fig. 3. Participants could execute their models
at any resolution, but were required to convert soil moisture (daily
average) and runoff estimates to the HRAP grid scale (4 � 4 km).
Participants were asked to generate daily grids of these two quan-
tities. Soil moisture content simulations were requested at the 0–
25 mm and 25–75 mm depth ranges for comparison with observed
data. The models were only to perform water balance computa-
tions without any routing. To simplify the application of the mod-
els over such a large domain, participants were instructed to use a
priori parameters with no calibration. A ‘‘warm-up’’ period from
October 1, 1995 to December 31, 1996 was allowed. The evaluation
statistics were computed over the period spanning from January 1,
1997 to December 31, 2002.

Our intent was to conduct soil moisture tests using data com-
monly and widely available for operational hydrologic forecasting.
As such, the CONUS-scale STATSGO dataset was selected for model
parameter estimation. A dominant soil texture grid was derived at
the HRAP resolution from the CONUS STATSGO data set. Vertically,
the dominant texture is representative of the upper zone of the
Sacramento model, which most often corresponds to a physical
depth somewhere between 0–20 and 0–30 cm. This data set as
well as the two derived soil properties (1) saturation volumetric
water content (porosity) and, (2) residual volumetric water con-
tent (wilting point), were provided via the ‘STATSGO Soil Data for
Oklahoma Soil Moisture Experiment’ link on the DMIP2 ‘Data’
web page. The porosity and wilting point data were derived using
the method of Cosby et al. (1984). Participants were requested to
use these data sets for their models if at all possible.

Statistical analyses were conducted over watershed scales and
not at specific points. Comparison analyses were performed on a
soil moisture saturation ratio SR calculated as:

SR ¼ h� hr

hs � hr

where h is volumetric water content, hr is residual volumetric water
content (or wilting point), and hs is the saturation volumetric water
content (or porosity).
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6.3. Common channel routing scheme

This experiment was designed to address the science question in Sec-
tion 3 derived from the DMIP 1 recommendation to separate the routing
and rainfall–runoff comparisons (Reed et al., 2004). In this experiment,
participants were asked to generate unrouted runoff depth time series
that would subsequently be routed through a common routing scheme.
Participants were asked to generate runoff depths (aggregated to 1 h
time step) at the HRAP scale for distinct 2–3 month periods for the Blue
and Tahlequah Rivers. The participants were allowed to use whatever
basin discretization for their models, but were required to average the
runoff volumes to the 4 km HRAP scale. The OHD distributed model
using kinematic hillslope and channel routing was used to route the par-
ticipants’ runoff volumes. Participants’ surface runoff was routed using
overland routing before it entered the channel. Subsurface flow was as-
sumed to enter directly into the channel. For models that did not have
two runoff components, routing was performed as only surface or sub-
surface runoff depending on the participant’s desire. Participants were
asked to specify which routing they preferred if they submitted a com-
bined runoff value, and were allowed to determine which of their runoff
components were to be routed using hillslope or channel routing with-
in the OHD distributed model.

6.4. Impact of inconsistent precipitation data on model calibration

This experiment was for returning DMIP 1 participants, who
were asked to generate simulations using the DMIP 2 period of
multisensor precipitation data but with their DMIP 1 calibrated
parameters. Following this step, the returning DMIP 1 participants
could re-calibrate their model parameters using the DMIP 2 data.

7. Participants and models

The NWS was very encouraged by the level of participation in
DMIP 2. Some DMIP 1 participants returned with revised or new
models, while several new groups chose to participate as seen in Ta-
ble 2. A wide variety of models was represented in DMIP 2. CEMAG-
REF contributed the widely-used lumped conceptual GR4J model. As
in DMIP 1, NWS/OHD used the HL-RDHM model, but the gridded
SAC-SMA component was modified to include physically-based
treatment of frozen ground and soil moisture (Koren et al., 2006,
2007). The Noah land surface model was used by NCEP/EMC as in

DMIP 1. Noah computes a comprehensive suite of surface energy
and water fluxes to provide lower boundary conditions for NWS
operational numerical weather prediction models. The University
of Illinois used the THREW model, which is an REW-based approach
to solving mass, momentum, and heat balance equations. The Wu-
han University model LL-III couples equations of two-dimensional
transient subsurface flow and one-dimensional forms of unsteady
overland, channel, and ground water flow. The University of Okla-
homa contributed simulations from Vflo™. This model computes
infiltration rate and saturation excess runoff. It solves the surface
flow equations using a finite difference scheme in time and a finite
element method in space. The Agricultural Research Service (ARS)
used the SWAT model as in DMIP 1. SWAT combines a semi-distrib-
uted rainfall/runoff scheme with Muskingum channel routing for
analysis of flow from agricultural areas. The Danish Hydraulics Insti-
tute (DHI) contributed simulations from two modeling system:
MIKE SHE and MIKE 11. In both systems, DHI used conceptual rain-
fall–runoff models with dynamic wave channel routing. The Univer-
sity of California at Irvine (UCI) used a semi-distributed application
of the SAC-SMA. Sub-basin runoff volumes were converted to
streamflow with unit hydrographs, followed by kinematic channel
routing. The University of Arizona contributed two sets of simula-
tions. The first set was generated using a gridded SAC-SMA model
with Muskingum routing in the University of Arizona Distributed
Hydrologic Model (DHM-UA). A second set of simulations was gen-
erated using a version of HL-RDHM to investigate parameter calibra-
tion strategies. The University of Nebraska adopted the Hydrologic
Simulation Program-FORTRAN (HSPF) model in a gridded format.
The Imperial College of London used a semi-distributed model with
a rainfall/runoff component based on the work of Moore (1985). A
new participant in DMIP 2, the Vrije University of Brussels used
the WetSpa model. WetSpa is a gridded rainfall–runoff model with
diffusive wave channel routing. The University of Alberta at Edmon-
ton contributed simulations with the semi-distributed physically-
based hydrologic model DPHM-RS. The companion results paper
presents more information about the participants’ models as do
the other papers in this Special Issue.

8. Evaluation of results and expected outcomes

A companion results paper written by all DMIP 2 participants
(Smith et al., this issue) presents the results and conclusions for

Table 2
DMIP 2 participating institutions and models.

Group and DMIP 2 acronym Model and Primary Reference Model in
DMIP 1?

1 National Weather Service Office of Hydrologic Development (OHD) HL-RDHM. Modified SAC-SMA with kinematic hillslope and channel
routing (Koren et al., 2004)

Yes

2 DHI Water and Environment, Denmark (DH1, DH2) 1. MIKE 11 (Butts et al., 2004) Yes
2. MIKE SHE (Butts et al., 2004) No

3 U. of Arizona (AZ1, AZ2) 1. DHM-UA (Pokhrel et al., 2008). Semi-distributed SAC-SMA
and Muskingum routing

No

2. HL-RDHM (Koren et al., 2004) No
4 National Centers for Environmental Prediction Environmental

Modeling Center (EMC)
Noah land surface model (Ek et al., 2003). Computes energy and
moisture fluxes for numerical weather models.

Yes

5 U. of Oklahoma (UOK) Vflo™ (Vieux, 2004) Finite element in space solution to surface water
equations.

No

6 USDA Agricultural Research Service and Blackland Research and
Extension Center of Texas A&M University System (ARS)

SWAT (Di Luzio and Arnold, 2004) Yes

7 Vrije U. Brussels, Belgium (VUB) WetSpa (Liu and De Smedt, 2004) No
8 Hydraulic and Electrical College of Wuhan University, China (WHU) LL-III (numerical hydrodynamic, Li, 2001) Yes
9 U. California at Irvine (UCI) Semi-distributed SAC-SMA (Khakbaz et al., 2011. Note: this is a revised

version of the semi-distributed SAC-SMA by Ajami et al., 2004)
Yes

10 Imperial College of London (ICL) Semi-distributed conceptual using approach of Moore (1985) No
11 U. of Nebraska at Lincoln (NEB) HSPF (Ryu, 2009) No
12 U. of Illinois (ILL) THREW (Tian et al., 2006) No
13 CEMAGREF, France (CEM) GR4J lumped conceptual (Perrin et al., 2003) No
14 U. of Alberta, Canada (UAE) DPHM-RS (Biftu and Gan, 2001) No
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the Oklahoma region experiments. As in DMIP 1, widely accepted
statistical measures were used to analyze participants’ simulations
over a range of periods, flow intervals and events. Readers are re-
ferred to Smith et al. (2004a) for a discussion of these statistical
measures. Model performance for events was also investigated.
From our discussions at the DMIP 2 results workshop in September
2007, the NWS team (and the DMIP 2 participants) proposed a set
of primary statistical measures to be stressed in the calibration of
operational models. These are discussed in the companion DMIP 2
results paper (Smith et al., this issue).

The DMIP 2 Oklahoma experiments extended our understand-
ing of distributed model performance in uncomplicated basins
with perhaps the best quality of operational multisensor precipita-
tion estimates available. The results strengthened the conclusions
of DMIP 1 and showed that distributed models are making strides
towards achieving their potential. The percentage of model-basin
cases showing improvement of distributed models compared to
lumped simulations at basin outlets and interior points was 18%,
24%, and 28%, for runoff volume, peak flow, and peak timing,
respectively. These values correspond to 14%, 33%, and 22% respec-
tively, in DMIP 1. While there may not seem to be much gain com-
pared to DMIP 1 results, the DMIP 2 values were based on more
precipitation-runoff events, more model-basin combinations (148
versus 51), more interior ungauged points (9 versus 3), and a
benchmark comprised of two lumped model simulations. Thus,
we believe that the DMIP 2 findings are more robust.

Two distributed models were able to provide reasonably good
soil moisture simulations; however the streamflow simulation per-
formance of one model was markedly better than the other. DMIP
2 also highlighted the need for consistent precipitation data for
model calibration. Another important finding from DMIP 2 is that
while calibration of model parameters provided improved perfor-
mance for most models, calibration alone was not able to greatly
improve performance beyond that achieved using a priori parame-
ters. In addition, some uncalibrated models were able to out-per-
form some calibrated models, highlighting the strength of several
model/parameterization combinations.

As with DMIP 1, participants are leveraging the DMIP 2 project
and its data to investigate ideas not explicitly identified. As de-
scribed earlier, Li and Sivapalan (2011) investigated the relation-
ship between the spatial heterogeneity of runoff generation
mechanisms and event runoff scaling behavior. Pokhrel and Gupta
(in press) used the DMIP 2 data sets to investigate the role of pre-
cipitation and basin variability given only the basin outflow
hydrograph.

9. Summary

The Oklahoma DMIP 2 project was formulated as a logical com-
plement to the experiments in DMIP 1. The NWS recognized the
need for additional science experiments to guide its research-to-
operations path towards advanced hydrologic models for river and
water resources forecasting. The DMIP 2 experiments were more
comprehensive than those in DMIP 1. Many additional interior
stream gauges and data were identified in these basins to evaluate
the ability of distributed models to predict interior flow. These addi-
tional gauged points included interior basins that were smaller than
in DMIP 1. We also tested the ability of distributed models to gener-
ate soil moisture fields. Fourteen groups submitted simulations
using 16 models. Ten of these had not participated in DMIP 1. As in
DMIP 1, the models ranged in type, complexity, spatial application
scale, and parameter estimation-calibration techniques.

Taken together, the results from the Oklahoma experiments in
DMIP 1 and 2 have provided a robust view of the state of distrib-
uted modeling with operational precipitation data at typical NWS

basin scales. Over 20 models participated in the two phases of
DMIP in the Oklahoma region.

The combined results from DMIP 1 and 2 in the Oklahoma re-
gion show that spatially distributed hydrologic modeling is
advancing. In a practical way, DMIP has confirmed that spatially
distributed hydrologic modeling should and will continue to play
a major role in NWS river and water resources forecasting. The
DMIP results also highlighted the need to have realistic perfor-
mance expectations as distributed models are operationally imple-
mented. While the improvements of distributed models compared
to lumped models for basin outlet simulations may not be (yet) as
great as once anticipated, the ability of distributed models to
match or exceed a lumped model while providing information at
interior ungauged points is nonetheless an encouraging and nota-
ble achievement.

Of course, the DMIP experiments have had limitations. We are
grateful for the participation of many agencies and institutions,
especially considering that specific funding support was not avail-
able through DMIP. In hindsight, however, funding may have fos-
tered more complete participation in specific tests such as the
soil moisture and routing experiments.

Moving ahead, distributed modeling results need to be explored
in light of the uncertainty in model parameters, model structure,
and input data. Such experiments should be performed in ex-
panded tests such forecasting/hindcasting to note he benefits of
distributed modeling at different forecast lead times. Continued
work is needed to develop data assimilation approaches. Moreover,
continued research, development, and testing of distributed mod-
els are needed in complex areas of the mountainous western
USA. As mentioned before, two basins in the western USA were se-
lected for DMIP 2 evaluations of lumped and distributed models in
complex regions with highly variable terrain, orographic enhance-
ment of precipitation, snow accumulation and melt, and data
quantity issues. The results of these experiments will be published
in forthcoming papers.
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Appendix A. Soil moisture measurements from the Oklahoma
Mesonet

The Oklahoma Mesonet was established in the early 1990s as an
automated network of meteorologic observing stations spread
throughout that state. The Mesonet consists of over 100 stations
or roughly one station per county. The goals established for this
network were to operate these stations in real time, observe nine
meteorologic variables, transmit these observations in real time,
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and relay the data to a central site for collection, quality control,
and storage for use and dissemination (Illston et al., 2004; Brock
et al., 1995).

Soil moisture sensors were installed starting in 1996 at approx-
imately 60 sites, followed by installation at an additional 43 sites in
1998 and 1999. Campbell Scientific 229-L soil moisture sensors
(CSI 229-l, Campbell, 2010) are installed at depths of 5, 25, 60,
and 75 cm. These depths were selected to enhance agricultural
and meteorologic modeling, facilitate drought monitoring, and to
generate research-quality data sets. The CSI-229-L consists of ther-
mocouples as temperature sensors and a resistor to function as a
heating element. The CSI-229-l measures the change in tempera-
ture before and after a heat pulse is introduced. From the measured
temperature differences, soil water content, soil matric potential,
and fractional water index can be calculated (Schnieder et al.,
2003; Basara and Crawford, 2000).

Basara and Crawford (2000) identified discrepancies in the
near-surface (5 and 25 cm) and deep layer (60 and 75 cm) soil
moisture observations. They theorized that the installation method
for the sensors at the two deepest layers contains a fundamental
flaw that could lead to measurement errors in certain circum-
stances. The CSI-229-L sensors at these depths were installed at a
45� angle from the vertical, allowing soil water to flow down the
instrument wire to moisten the sensor without affecting the
remainder of the soil layer. However, they noted that the installa-
tion error affects less than one percent of all the soil moisture
observations between 1996 and 1999. They recommended that fu-
ture sensors be installed horizontally at the deeper layers.

Illston et al. (2004) compared the upper layer (5 and 25 cm) soil
moisture observations from the CSI-229-L to soil core samples at
40 sites during an extended drying phase. The authors concluded
that the CSI-229-L performed fairly well.

The upper bound of the soil moisture content is limited by the
accuracy of the Campbell Scientific 229L sensor. Temperature
observations from this sensor are converted to soil water potential
using empirical relationships (Schnieder et al., 2003). Given that
the lower limit of the observed values of the temperature reference
is approximately 1.4 �C, the equation for computing soil water po-
tential does not return values much moister that �0.10 bars. Thus,
the range of the soil moisture observations is from 0.1 to 10 bars.
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