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Swine manure is often applied to crop land as a fertilizer source. Odor emissions from land-applied swine
manure may pose a nuisance to downwind populations if manure is not applied with sufficient fore-
thought. A research project was conducted to assess the time decay of odorous volatile organic
compound (VOC) emissions following land application of swine manure. Three land application methods
were compared: surface application, incorporation 24 h after surface application, and injection. Emission
rates were measured in field plots using a small wind tunnel and sorbent tubes. VOCs including eight
volatile fatty acids, five aromatics, and two sulfur-containing compounds were quantified by gas
chromatography-mass spectrometry. In most cases, a first order exponential decay model adequately
described the flux versus time relationship for the 24 h period following land application, but the model
sometimes overestimated flux in the 6—24 h range. The same model but with the time term squared
adequately predicted flux over the entire 24 h period. Three compounds (4-methylphenol, skatole, and
4-ethylphenol) accounted for 93 percent of the summed odor activity value. First order decay constants
(k) for these three compounds ranged from 0.157 to 0.996 h~'. When compared to surface application,
injection of swine manure resulted in 80—95 percent lower flux for the most odorous aromatic
compounds. These results show that VOC flux decreases rapidly following land application of swine

manure, declining below levels of detection and near background levels after 4 to 8 h.

Published by Elsevier Ltd.

1. Introduction

Odor emissions have been of great interest in recent decades.
In fact, odor nuisance generates a significant fraction of the
complaints in air pollution (Shusterman, 1992). The land applica-
tion of municipal biosolids has been shown to emit odor and VOCs,
a concern to neighbors near the land application sites (Laor et al.,
2011; Kim et al,, 2008). Likewise, odor and VOC emissions have
been an issue at animal feeding operations (AFOs), and the issue
has become more prevalent as houses encroach upon areas once
occupied only by agriculture (Chen et al., 1999; Sweeten, 1995).
Odors immediately adjacent to AFOs have been found to be caused
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by VOCs and non-VOCs (ammonia, hydrogen sulfide) emitted from
manure sources as well as other sources such as feed and silage
(Montes et al., 2010; Hafner et al,, 2010; Trabue et al., 2011a, b).
AFOs have been identified as a source of over 200 VOCs to date
(Zhang, 2001; Kai and Schéfer, 2004; Trabue et al., 2011a, b) with
most VOCs at AFOs resulting from incomplete anaerobic degrada-
tion (Mackie et al., 1998). However, there is evidence that only
a small percentage of those compounds are actually responsible for
odor downwind from AFOs and these compounds are VOCs (Wright
et al.,, 2005; Trabue et al., 2011a, b).

Currently, there is little data on the emission of odors and VOCs
from AFOs. However, the recently completed U.S. EPA National Air
Emissions Monitoring Study (NAEMS) was instituted to quantify air
quality emissions from AFOs (Heber et al., 2008; Bereznicki et al.,
2010). The NAEMS study mainly focused on quantifying air emis-
sions from buildings and lagoons, while ignoring other minor
emission sources such as land application of manure. However,
land application of manure can be a major source of odor emission
in rural communities (Brandt et al., 2008; Feilberg et al., 2010a).

This article is a U.S. government work, and is not subject to copyright in the United States.
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Consequently, this study was conducted for the purpose of quan-
tifying odor (i.e., VOC) emission from the land application of
manure. The objectives of the study were the following: 1) deter-
mine how specific VOC emissions decay with time following land
application of swine manure slurry; and 2) compare VOC emissions
using three application methods (surface application, incorporation
by disking 24 h following surface application, and injection).

2. Materials and methods
2.1. Study site

Field experiments were conducted during the summer of 2011
at the University of Nebraska Rogers Memorial Farm located 18 km
east of Lincoln, NE, USA. Soil at the site was classified as an
Aksarben silty clay loam (fine, smectitic, mesic Typic Argiudoll)
(Kettler et al., 2001). The soil contained 15% sand, 57% silt, and 28%
clay with pH of 71 and organic matter content of 4.6%. Air
temperatures at the time of the measurements were 32—38 °C and
relative humidity varied from 50 to 95%.

Swine slurry was land-applied one day per week over a four
week period using three treatments (i.e. TRT 1, 2, 3): TRT 1) surface
application where the slurry was applied to the ground surface,
TRT 2) the slurry was surface-applied followed by incorporation
(disking), and TRT 3) the slurry was injected to a depth of
approximately 11 cm (TRT 3). Disking on TRT 2 occurred 24 h after
manure application so that the soil surface would not be muddy
during tillage. TRT 1 was applied all four weeks. TRT 2 was applied
in week 1 only, and TRT 3 was applied in week 2 only.

2.2. Swine manure slurry

Swine slurry was collected at the USDA Meat Animal Research
Center in Clay Center, Nebraska, USA. Slurry was collected from
a mechanically-ventilated barn (14 m x 59 m) that was stocked
with 280 feeder pigs (mass range 68—120 kg). The pigs were fed
with a corn and soybean-based diet (Table 1). The building had
a pull-plug waste management system that was drained once
a week on Tuesday evening and was then partially filled with water
to 0.5 m depth.

Each week, swine slurry was collected from the pit on Monday
morning at 0900 h and transported to the land application site in
20 L plastic buckets. In week 1, the swine slurry was dipped from
the near-surface of the pit using an 8 L plastic bucket. In weeks 2—4,
the swine slurry was collected from near the bottom of the pit using
a submersible sewage pump. The slurry was pumped into 20 L
plastic buckets and transported to the field site. A subsample of the
swine slurry was analyzed for solids and nutrient analyses at Ward

Table 1
Composition of the diet fed to the pigs during the study.

Percent of total (% dry matter basis)

Ground Corn 80.21
Soybean Meal 16.60
Dicalcium Phosphate 0.45
Limestone 0.80
Salt 0.30
Vitamin Premix 0.20
Trace Minerals 0.20
Phytase 0.05
L-Lysine 0.15
Theronine 0.01
Bacitracin 0.03
Soybean Oil 1.00
Total 100.00

Laboratories (Kearney, NE, USA). Swine slurry nutrient and solids
concentrations are shown in Table 2.

2.3. Land application plots

Small plots (0.75 m x 2.0 m and 0.75 m x 4.0 m) were
constructed using 20 cm wide sheet metal frames driven approxi-
mately 10 cm into the soil. New plots were constructed each week
such that plots would receive swine slurry application only once.
Swine slurry was applied to meet the 1 yr N requirement for corn
(151 kg N ha~! yr~! for an expected yield of 9.4 Mg ha~!). When
calculating manure application rates, it was assumed that the first
year N availability from swine slurry was 70% of the total amount of
nitrogen measured in the slurry.

Swine slurry was weighed at the field site, then land-applied
starting about 1100 h. For the surface broadcast plots, the slurry
was poured evenly across the entire plot area, and the wind tunnel
was placed over a randomly selected location. For the injection
plots, a tillage implement (four sweeps spaced 0.51 m apart) was
passed over the area prior to placement of the metal borders. Swine
slurry was poured into 3 cm diameter plastic pipes inserted 10 cm
into the bottom of one of the slots. The wind tunnel was selectively
placed over a slot area that received the injected slurry.

Because the study plots had been cropped in no-till corn and
remained undisturbed following harvest the previous fall, there
was considerable crop residue on the ground surface. Selected
pieces of residue (corn stalks) were removed from the footprint of
the wind tunnel prior to measuring the flux.

2.4. Wind tunnel flux measurement

The wind tunnel had dimensions of 51 mm (height), 305 mm
(length), and 152 mm (width), with a footprint of 0.046 m? and
internal volume of 2.36 L (Fig. 1). The wind tunnel was constructed
of 50 mm square steel tubing and 44 x 44 mm angle iron with
a 5 mm thick Plexiglas top. The sweep air entered the wind tunnel
through 17 holes (6 mm dia.) in three rows at heights of 17 mm
(6 holes), 30 mm (5 holes), and 43 mm (6 holes) above the base. Air
exited the tunnel through three 10 mm diameter holes equally
spaced at a height of 27 mm above the base of the angle iron at the
opposite end of the tunnel. Sweep air (1 L min~') was supplied via
Teflon® tubing from a compressed zero-grade air cylinder (Linweld,
Lincoln, NE, USA). VOC emission rates have been shown to be
dependent on sweep air flow rate, with higher sweep air flow rates
producing higher VOC emission rates (Parker et al, 2010a).
VOC emission rates are also positively correlated with the
evaporation rate of water. For a sweep air flow rate of 1 Lmin~’, the
equivalent distilled water evaporation rate for this wind tunnel was
1.2 mm d~!, measured using dry zero-grade sweep air in a 138 mm
diameter Petri dish placed in the center of the wind tunnel (Parker
et al.,, 2011).

Table 2
Slurry characteristics and nutrient concentrations of swine slurry.
Week 1 Week 2 Week 3 Week 4

Ammonium (NHy4), ppm N 745.7 728.5 578.5 862.3
Nitrate (NOs3), ppm N 0.7 <0.1 0.3 1.1
Total N (TKN), ppm 809.8 863 628.4 1007
Phosphorus (as P>0s), ppm 1289 3934 279.8 2125
Potassium (as K,0), ppm 630.4 615.0 486.6 772.0
Sulfur (S), ppm 82.6 51.6 63.0 56.7
Sodium Adsorption Ratio (SAR) 4.46 3.87 3.64 5.55
Elect. Cond. (EC), mmho cm™! 7.66 7.74 6.41 9.04
pH 8.0 7.2 7.4 7.6

Total Solids (%) 0.29 0.42 0.32 0.37
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Fig. 1. Photograph of the small wind tunnel being used in the field plots to measure VOC flux shortly after land application of swine slurry. To the immediate left of the wind tunnel
are the two portable vacuum pumps and sorbent tubes being used to collect samples from air as it leaves the wind tunnel, and further left is the rotameter used for metering the
sweep air flow rate. Flow in the wind tunnel is from right to left as indicated by the black arrow.

Following an equilibration time allowing three volumes of
sweep air to pass through the wind tunnel, VOC samples were
collected from the air exiting the wind tunnel. Samples were
collected in stainless steel sorbent tubes (89 mm x 6.4 mm OD,
Markes International Inc., Wilmington, DE, USA) filled with Tenax
TA® sorbent. Prior to use, tubes were conditioned for 30 min at
230 °C. Air was pulled through the sorbent tubes at a flow rate of
75 mL min~! for 10 min using a vacuum pump (Pocket pump 210
series, SKC Inc., Eighty Four, PA, USA).

Flux, J, was calculated on a mass per unit area per unit time basis
(ug m~2 min~") using Eq. (1):

_ VATCair _ % [1]
As As

where V is the average cross-sectional air velocity in the wind
tunnel (m min~!), Ar is the cross-sectional area of the wind tunnel
(m?), Cair is the VOC concentration in the exiting air (ug m—3), and Ag
is the footprint area of the wind tunnel (m?). It should be noted that
the sweep air flow rate, Q (m> min~!), is equal to the average
velocity times the cross sectional area of the wind tunnel (Q = VAr).
As such, the flux density formula derived for the wind tunnel
investigated in this study is essentially identical to that often used
for dynamic flux chambers. The sweep air flow rate entering the
wind tunnel was controlled using a valved rotameter (Omega
Engineering, Stamford, CT, USA). VOC flux was measured 15 min,
30 min, 1 h, 2 h, 6 h (for weeks 3 and 4 only), and 24 h following
land application. Background flux was also measured in week 1 on
four plots that did not receive swine slurry.

J

2.5. Gas chromatography/mass spectrometry analyses

All sorbent tube samples were collected in duplicate and results
were averaged. Sorbent tube samples were analyzed using

a thermal desorption-gas chromatography-mass spectrometry
(TD-GC-MS) system. The TD system was a Markes Unity 2 (Markes
International Inc., Wilmington, DE, USA) with autosampler (Ultra 2,
Markes International, Inc.) coupled to an Agilent GC—MS (7890A/
5975C, Agilent Technologies, Inc., Santa Clara, CA, USA). The system
used an Agilent Innowax, 30 m x 0.25 mm ID capillary column
(polyethylene glycol, 0.25 um film thickness). The column was run
in constant flow of 1.4 mL min~".

Samples were purged at 40 mL min~' for 1 min prior to TD,
desorbed for 10 min at 280 °C with a purge flow of 50 mL min~!
(with no split) and trapped at —10 °C. The cold trap was rapidly
heated to 320 °C and held for 1 min with a carrier gas flow of
20 mL min~!, and 1.4 mL min~! was split and transferred to the
GC—MS. The GC oven temperature program was the following: 1)
initial temp, 40 °C hold 3 min; 2) ramp 8 °C min~! to 230 °C; and
hold 5 min for total run time of 31.8 min.

Samples were analyzed for eight volatile fatty acids (VFA: acetic,
propionic, butyric, isobutyric, valeric, isovaleric, hexanoic, and
heptanoic acid), five aromatic compounds (phenol, 4-
methylphenol, 4-ethylphenol, indole, and skatole), and two
sulfur-containing VOCs (dimethyl disulfide and dimethyl trisulfide).
For calibration, standard solutions were prepared ranging in
concentration from 2.5 to 2500 ng pL~" by diluting known masses
of pure chemicals with methanol. All chemicals and solvents were
FCC grade (Sigma Aldrich, St. Louis, MO, USA). Calibration standards
in methanol were injected (2—10 pL) onto clean sorbent tubes using
a calibration solution loading rig (CSLR, Markes International Inc.,
Wilmington, DE, USA). The liquid calibration standard was intro-
duced through the CSLR injector septum in nitrogen carrier gas
(75 mL min~ ') using a standard GC syringe.

MDLs for each target compound were calculated per U.S. EPA
guidelines as the product of the standard deviation of seven
replicates and the Student’s t-value at the 99% confidence level
(6 df, t = 3.14). The MDLs for all compounds, if expressed on a flux
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Table 3

Summary of compounds quantified in the study, method detection limits, calibration statistics, and background soil emission rates.
Compound MW Retention Min (ng) Max (ng) MDL (ng) MDL? RSDP r? Background®

time (min) (ug m~2 min~") (ug m~? min~")

Phenol 94.1 20.2 5.5 1105 6.0 0.17 0.14 0.99 0.14
4-Methylphenol 108.1 21.1 5.2 1045 4.0 0.12 0.11 0.97 0.13
4-Ethylphenol 122.2 222 5.2 1055 6.0 0.17 0.21 0.97 0.01
Indole 1171 25.2 6.3 1283 35 0.10 0.09 0.99 0.01
Skatole 131.2 25.6 71 1444 4.8 0.14 0.12 0.98 0.01
Dimethyl disulfide 94.2 5.2 53 2742 1.0 0.03 0.04 0.99 0.02
Dimethyl trisulfide 126.2 11.0 5.9 3084 2.1 0.06 0.14 0.99 0.01
Acetic acid 60.0 124 8.0 2602 329 0.96 0.38 0.99 1.63
Propanoic acid 741 13.8 7.5 2485 15.9 0.46 0.89 0.99 0.24
Isobutyric acid 88.1 14.2 7.3 2345 15.1 0.44 0.82 0.99 0.06
Butyric acid 88.1 151 7.3 2401 8.6 0.25 0.87 0.99 0.12
Isovaleric acid 102.1 15.7 7.1 2290 5.9 0.17 0.80 0.99 0.02
Valeric acid 102.1 16.7 71 2342 25 0.07 0.62 0.99 0.04
Hexanoic acid 116.2 181 7.0 2348 2.2 0.06 0.50 0.98 0.03
Heptanoic acid 130.2 19.5 7.0 2278 1.6 0.05 0.25 0.98 0.01

@ MDL for flux based on 10 min sampling time with wind tunnel flow rate of 1 L min~".

1

b RSD = Relative standard deviation (standard deviation/mean) from 7 replications at minimum mass analyzed.
¢ Background emission rate from soil receiving no swine slurry (average of 4 replicates in week 1).

basis, ranged from 0.03 to 0.96 pg m~2 min~! which were similar to
background emission rates measured separately on untreated soils
(0.01-1.63 pg m~2 min~1) (Table 3).

2.6. Regression analyses

Regression was used to fit the flux versus time data to standard
first-order exponential decay curves (Eq. (2)) and modified expo-
nential decay curves (Eq. (3)).

J(t) = Joe= 2]

J(t) = JoeK?) 3]

where J(t) = flux (ug m—2 min~!) at time t (hours), and Jo = initial
flux (ug m~2 min~") at t = 0 h. In Eq. (2), k is the first order decay
constant (hr~!) and the value —k is the slope of the curve In(J)
versus t. A large k value is indicative of a steep decay curve.

Regression coefficients, standard errors, and coefficient of
determination (r*) were calculated for each compound for selected
land application tests. Nonlinear regression techniques were used,
including the PROC NLIN procedure of SAS version 9.2 (SAS
Institute, 2008) and the SOLVER function in Microsoft Excel
(Brown, 2001). The Newton search method algorithm was used for
both SAS and Excel.

Table 4

Although a true r? value is not defined for a nonlinear regression
model, a “pseudo 12" (SAS, 2011; Brown, 2001) was calculated from
the sum of squares (SS) as shown in Eq. (4).

SSresi

2 residual

r°=1-—>2"< 4
SStotal 14]

To determine the mass of each compound emitted per unit area
(ug m2), the area under the curve of Eq. (2) was calculated using
integration over the first 24 h following land application using Eq.

(5):

(—kt)
[JoeH0ar 1= — (5]

-k
2.7. Odor activity value analyses

To assess the relative importance of each individual compound
on odor, the concentrations of individual compounds were con-
verted to their respective odor activity values (OAV). The OAV is
defined as the ratio of the concentration of a single compound to
the odor threshold for that single compound (i.e. single compound
odor threshold, SCOT) (Friedrich and Acree, 1998; Trabue et al.,
2006; Parker et al., 2010b; Patton and Josephson, 1957). Concep-
tually, the larger the OAV, the more likely that compound will
contribute to the overall odor of a complex odor mixture. Scientists

Regression coefficients for flux of individual compounds with time, J(t), using the exponential decay curve of Eq. (2). Swine slurry was applied using the broadcast method at

the rate of 1x the annual nitrogen requirement.

Jo(ug m~2 min~1) k(hr 1) r?

Wk 1 Wk 2 Wk 3 Wk 4 Wk 1 Wk 2 Wk 3 Wk 4 Wk 1 Wk 2 Wk 3 Wk 4
Phenol 0.821 4.02 6.05 8.28 0.069 0.161 0.358 0.214 0.801 0.980 0.953 0.906
4-Methylphenol 10.1 58.2 42.9 60.8 0.996 0.400 0.630 0.297 0.931 0.988 0.971 0.928
4-Ethylphenol 0.378 3.25 2.21 4.05 0.157 0.421 0.434 0.297 0.940 0.973 0.922 0.894
Indole 0.205 0.564 0.633 0.933 0.661 1.19 0.603 0.400 0.875 0.985 0.926 0.923
Skatole 0.298 491 2.48 4.87 0.812 0.838 0.584 0.385 0.854 0.958 0.911 0918
Dimethyl Disulfide 0.405 0.086 1.20 0.073 1.74 0.025 0.831 0.018 0.784 0.845 0.980 0.353
Dimethyl Trisulfide 0.409 0.051 0.609 0.038 5.57 0.064 1.02 0.167 0.816 0.904 0.965 0.615
Acetic Acid 3.06 235 3.73 2.98 -0.011 0.067 0.018 0.005 0.241 0.454 0.106 0.011
Propionic Acid 0.514 8.64 0.988 0.330 —0.006 0.085 0.048 0.0004 0.032 0.526 0.422 0.000
Isobutyric Acid 0.415 2.59 0.341 0.342 -0.013 0.081 0.048 0.072 0.111 0.514 0.547 0.337
Butyric Acid 0.345 3.85 0.574 0.387 0.035 0.086 0.102 0.072 0.453 0.534 0.512 0.192
Isovaleric Acid 0.094 1.89 0.161 0.189 0.074 0.085 0.092 0.099 0.706 0.521 0.462 0.215
Valeric Acid 0.103 0.471 0.069 0.086 0.059 0.089 0.015 0.060 0.760 0.606 0.091 0.263
Hexanoic Acid 0.040 0.061 0.048 0.106 0.031 0.014 -0.007 0.048 0.584 0.342 0.045 0.338
Heptanoic Acid 0.032 0.033 0.028 0.048 0.034 0.018 0.006 0.064 0.366 0.153 0.078 0.876
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Fig. 2. Flux as a function of elapsed time following land application using the surface broadcast method. The first order exponential decay curves provided a reasonable estimate of
flux versus time, with the exception of phenol, 4-methylphenol, and 4-ethylphenol for the 6 h time in week 4 (circled).
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in the food and beverage industries have used OAV extensively in
their research to determine the most important aroma contributors
(Hansen and Schieberle, 2005; Grosch, 1994; Fritsch and Schieberle,
2005).

Because published SCOT values can vary as much as an order of
magnitude, OAV calculation can be difficult. In this research, the
average SCOT values were calculated for each compound using the
numerous values from a compilation of published odor thresholds
(Parker et al., 2010b). Average concentrations were calculated for
each compound in the first 24 h following land application, and then
these values were converted to OAVs by dividing by the SCOT value.
The relative contribution of each compound was calculated by
dividing the OAV for the individual compound by the sum of the OAV
values for all compounds. The idea of summing the individual OAVs
to assess overall odor potential was initially proposed by Guadagni
et al. (1963) and later by Leffingwell and Leffingwell (1991).
However, it should be noted that one of the arguments against the
use of the summed OAVs, and OAV in general, is that it does not
account for possible synergistic or other complex interactive effects
(DiSpirito et al., 1994; Powers, 2001; Zahn et al., 2001).

3. Results and discussion
3.1. Flux decay following application

Regression coefficients and coefficient of determination values
for the first-order exponential decay of Eq. (2) are presented for
each compound by week in Table 4. For the first-order exponential
decay curves, coefficient of determination values were higher for
the aromatic and sulfide compounds (r* = 0.8 to 0.9 typical) than
for the VFAs (r* = 0.1 to 0.7 typical). For the most part, the first order

exponential decay curves adequately described the degradation of
VOC flux from land-applied swine slurry for the first 24 h after land
application (Fig. 2). Likewise, first order exponential decay models
have been used to describe the flux decay of oil-based varnishes
(Lee et al., 2003), wood stains (Tichenor and Guo, 1991), and dry
cleaning chemicals (Tichenor et al., 1990).

For three of the compounds (phenol, 4-methylphenol and
4-ethylphenol) examined in week 4, the first-order exponential
decay curves overestimated the measured flux values at 6 h after
land application. Upon further investigation, we determined that
a modified exponential decay curve in which the time term was
squared (Eq. (3)) resulted in a better fit for the time period from 6 to
24 h on the week 4 data (Fig. 3). This was evident by both larger
values for the modified curves, and a better eyeball fit for the entire
24 h time period (Fig. 3). Because the primary objective of this
study was to determine and predict VOC and odor emissions
following land application of swine slurry, we view the modified
curve as a better predictor of actual flux decay. The standard first
order exponential decay curve would overestimate flux values for
certain compounds in the 4—12 h range following land application.

Both the data and the modified exponential decay models
suggest that VOC emissions after 6—24 h of land application were
near the levels of detection and/or corresponding background
levels shown in Table 3. In addition, based on field observations
there was no swine slurry odor evident at 6 h. Similarly, Hanna et al.
(2000) reported that odor emissions from land-applied swine
manure, as measured by olfactometry with human panelists, were
indistinguishable from the background soil after 24 h. Conversely,
Brandt et al. (2008) reported only a 50% reduction in odor after 24 h
for dairy manure slurry when measured by human panelists using
field olfactometers.
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Fig. 3. A comparison of the standard first order exponential decay model (Eq. (2)) to the modified exponential decay model (Eq. (3)). The modified decay model had an overall better
fit than the standard first order exponential decay model for the compounds of phenol, 4-methylphenol, and 4-ethylphenol.
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Fig. 4. A comparison of flux values for broadcast (surface-applied) versus injected swine slurry. This comparison was conducted on swine slurry collected in week 2.
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Of all the VOCs, 4-methylphenol had the highest initial flux (Jo)
values. These results are similar to those presented by Feilberg
et al. (2010a), who also reported that 4-methylphenol had the
highest concentrations within a static chamber placed above land-
applied swine manure slurry. Three aromatic compounds
(4-methylphenol, indole and skatole) have been reported as those
most responsible for odors at a distance of several kilometers
downwind of AFOs (Wright et al., 2005; Parker et al., 2007; Trabue
et al., 2011b). Of these three compounds, 4-methylphenol is often
implicated as the most important compound, and it has been the
target for odor abatement in swine and beef manure (Eniola et al.,
2006; Govere et al., 2005). This result is likely due to two factors:
1) the production and release of 4-methylphenol is high, and 2)
4-methylphenol has a low SCOT value of 2—5 pg m—3 (Parker et al.,
2010b). For the first order exponential decay curves of Fig. 2, the
decay constants (k values) for 4-methylphenol ranged from
0.297 h™! in week 4 to 0.996 h~! in week 1. The background flux
was 0.13 pg m—2 min~! for 4-methyphenol and 2.2 pg m~2 min~!
for the summed VFAs. The 4-methylphenol flux values decreased
to below detection limits and near background levels after about
8—12 h in week 4, and 6—8 h in week 1 (Figs. 2 and 3).

As discussed further in Section 3.3, the contribution of the VFAs
to the overall odor was very low compared to the aromatic
compounds. For this reason, the flux values from the eight VFAs
were summed as shown in Fig. 2. Regression coefficients for the
individual VFAs are presented in Table 4.

3.2. Effect of land application method

After 24 h, fluxes had decreased to background levels for both
the surface broadcast (TRT 1) and incorporation 24 h following
broadcasting (TRT2), thus preventing any meaningful comparison
between these two treatments. There were, however, considerable
differences in flux between the broadcast (TRT 1) and injection
(TRT 3) methods. As shown in Fig. 4, the flux for the aromatic and
sulfur-containing compounds was considerably less for the injected
slurry (TRT 3) than for the surface broadcast (TRT 1). There were
minimal differences between TRT 1 and TRT 3 for the summed
VFAs. However, the overall impact of the VFAs in terms of odor
emission was low, as discussed further in the next section.

For the aromatic compounds, there was an 80—95% decrease in
the total mass emitted over the 24 h period for the injected manure
(TRT 3) as compared to the surface broadcast (TRT 1) (Table 5). For
the sulfur-containing compounds dimethyl sulfide and dimethyl
trisulfide, injection (TRT 3) resulted in a 24 and 97% decrease,

Table 5

respectively, as compared to the surface broadcast treatment
(TRT 1). There were smaller decreases in VFA flux between the
injected and surface broadcast manure. Although hexanoic and
heptanoic acids showed an overall increase in flux, their emission
rates were at or near their respective MDLS, and thus subject to
high relative error.

For comparison, Brandt et al. (2008) reported 67% lower odor
concentrations for injected dairy slurry than for surface-applied
dairy slurry after 1 h, and 58% after 4 h. Hanna et al. (2000) re-
ported 68—88% reduction in odor emissions as measured by
olfactometry for injected swine manure as compared to surface
broadcast. Feilberg et al. (2011) reported 75—90% reduction in 4-
methylphenol emissions when swine manure was injected.

The depth of injection could have an effect on VOC emissions,
and it seems logical that deeper injection depths would result in
lower emissions. In our research, the manure slurry was injected to
a depth of 10 cm, which is a typical depth of injection for land-
applied manure with current equipment availability. Potential
drawbacks to deeper injection would be the requirement for
heavier injection equipment, larger tractor requirements, and
higher fuel use.

3.3. Odor activity value

Based on the OAV analyses, the compound most responsible for
the overall odor impact from the VOC emissions was 4-
methylphenol. On average, 4-methylphenol accounted for 79.5%
of the summed OAV, followed by skatole, the summed VFAs, and 4-
ethylphenol at 12.3%, 4.8%, and 1.2%, respectively (Fig. 5). The two
sulfide compounds combined accounted for 0.3—2.4% of the OAV
for all the VOCs. The summed VFA flux was dominated by acetic
acid and propionic acid, which comprised 65% and 18% of the
summed VFAs, respectively. Although these two compounds had
the highest concentrations out of all the VFAs, their overall
contribution to OAV was minimal because of their high odor
thresholds. Butyric acid and isovaleric acid accounted for 36 and
46%, respectively, of the total OAV for the VFAs, but still only a small
percentage (<4.8%) of the OAV for all the VOCs.

In comparison, Trabue et al. (2008) reported that butyric acid
made the single largest contribution to OAV (35.2%) in a swine
finishing building with a pull-plug waste management system
(a system similar to the swine building we tested), followed closely
by indole (22.9%) and 4-methylphenol (22.2%). When Trabue et al.
(2008) tested swine manure stored in simulation tanks resem-
bling a deep-pit waste management system, they reported that

A comparison of initial flux (Jo), and k values (from the regressions) for the surface broadcast and injection methods (data from week 2). Also shown is the total mass emitted
per unit area during the first 24 h after application (calculated by integrating the area under the flux versus time regression curves).

Chemical compound Jo (ug m~2 min~ ") k(hr 1)

Total mass emitted per unit area in 24 h period (ug m—2)

Surface broadcast Injection Surface broadcast Injection Surface broadcast Injection % decrease
Phenol 4.02 0.860 0.161 0.331 1497 156 89.6
4-Methylphenol 58.2 7.13 0.401 0.499 8721 858 90.2
4-Ethylphenol 3.25 0.299 0.421 0427 463 42.0 90.9
Indole 0.564 0.035 1.19 0.389 283 5.46 80.7
Skatole 491 0.158 0.838 0.555 351 171 95.1
Dimethyl Disulfide 0.086 0.037 0.025 —0.001 144 109 243
Dimethyl Trisulfide 0.051 0.028 0.064 1.156 46 1.5 96.7
Acetic Acid 235 16.4 0.067 0.080 20087 12711 36.7
Propionic Acid 8.64 9.30 0.085 0.094 5990 5861 2.2
Isobutyric Acid 2.59 2.80 0.081 0.114 1872 1463 21.8
Butyric Acid 3.85 3.10 0.086 0.137 2637 1354 48.7
Isovaleric Acid 1.89 1.79 0.085 0.128 1306 837 359
Valeric Acid 0471 0.446 0.089 0.105 311 251 19.3
Hexanoic Acid 0.061 0.080 0.014 0.025 128 134 -4.7
Heptanoic Acid 0.033 0.035 0.018 0.015 65.1 70.2 =77
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Fig. 5. The relative percentages of odor activity value (OAV) were dominated by 4-methylphenol (avg. 79.5%), skatole (avg. 12.3%), the summed VFAs (4.8%), and 4-ethylphenol

(1.2%). The combined indole, phenol, DMDS and DMTS averaged 2.2%.

indole accounted for the most OAV (69.7%) followed by skatole
(22.3%), 4-methylphenol (4.7%) and 4-ethylphenol (3.0%).

The three compounds 4-methylphenol, skatole, and 4-
ethylphenol accounted for 93.0% of the OAV. VFAs are often impli-
cated as the primary odor causing agents in beef cattle manures
(Spiehs and Varel, 2009), and methods for reducing emissions by
altering the diet have been proposed (Miller and Varel, 2002, 2003;
Archibeque et al., 2005). However, similar to what was reported by
others (Trabue et al., 2008, 2011a; Feilberg et al., 2010b, 2011), this
research suggests that the aromatic compounds are most respon-
sible for odor in swine manure slurry, thus these compounds should
be the target for odor reduction technologies.

3.4. Implications for timing of land application

These results have implications for the timing of land applica-
tion. The results demonstrate that adequate time, on the order of
6—38 h, should be allowed for the VOC flux from the application site
to occur prior to any significant public event, such as a major
holiday event or large weekend gathering. Although the emissions
of VOC decrease substantially after land application, about 6—8 h is
necessary before the emissions approach background levels. This
information, together with anticipated weather conditions such as
wind speed and direction, should help producers make manage-
ment decisions on how and when to properly apply swine manure
and minimize downwind odor impacts.

4. Conclusions
The following conclusions were drawn from this research:

1. VOC emission rates declined rapidly after land application, and
were below levels of detection and near background levels
within 4 to 8 h. In most cases, the first order exponential decay
model adequately described the flux versus time relationship
for the 24 h period following land application, but the model

sometimes overestimated flux in the 6—24 h range. The
exponential decay model with time squared term provided
a better overall fit to the flux versus time data. Among all the
compounds analyzed, a single compound (4-methylphenol)
accounted for 80 percent of the odor activity value. First order
decay constants (k) for 4-methylphenol ranged from 0.297 to
0.996.

2. Injection of swine manure resulted in an 80—95% decrease in
VOC flux as compared to surface application. Because flux had
decreased to near background levels after 24 h (i.e. at the time
of incorporation), no differences were observed between the
surface-applied and incorporation methods. Incorporation
would have to be conducted soon after land application to
make a difference in VOC emissions.

This research showed that the method of land application had
a greater effect on reducing VOC emission rates than did the decay
of flux over time. For example, with surface application it took
about 6 h for the VOC flux to reach 10 percent of the original flux
value, which is equivalent to the same VOC flux at time zero when
the manure was injected. The combining of land application
methods that reduce VOC flux with management factors related to
timing of land application should allow producers to better manage
their land application to minimize downwind odor impacts.
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