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ABSTRACT 
A temperature grid is used for the description of motion in the hydrogen ionization region 

(HIR). This means zones are labeled by temperature rather than mass. Outside the HIR, the 
conventional Lagrangian grid is used, with transitional coordinates at the boundaries. Although 
our final object is to apply this scheme to the nonlinear periodic integration problem, we have 
first constructed a linear version as a test. It is found that periods and growth rates agree very 
well with those calculated using pure Lagrangian coordinates, but the temperature grid scheme 
proves less sensitive to a reduction of zones in the HIR. This property is desirable for the 
nonlinear problem where zoning must necessarily be coarse. As a further test of the temperature 
grid, we formulate the linear work integral in the new coordinates and confirm the consistency 
of the growth rates. Finally, it is shown that the scheme is insensitive to a change in the manner 
in which the transition zones are treated. 
Subject headings: hydrodynamics - stars: interiors - stars: pulsation 

I. INTRODUCTION 

In the modeling of stellar pulsations, fully nonlinear, hydrodynamic codes are necessary, both for detailed 
comparisons with the observed variations of stars and for treating the difficult problem of modal selection. The 
approaches to hydrodynamic modeling in this field have generally been of two sorts. Beginning with the work of 
Christy (1966), many authors have undertaken initial value integrations by which the pulsation is built up gradually 
from small amplitude. In recent years this technique has been improved by the DYN code developed by Castor, 
Davis, and Davison (1977). As described by Davis and Davison (1978) and Davis, Moffett, and Barnes (1981), 
this code has been constructed with a non-Lagrangian, dynamic zoning method in the hydrogen ionization 
region (HIR). By use of this technique, the behavior of the pulsation in the HIR can be described in detail (Adams 
and Castor 1979). However, while initial value integrations can be used effectively in comparing observed light 
and velocity curves with their theoretical counterparts, the method becomes very inefficient in the study of modal 
selection. 

Better suited to the modal selection problem is the second approach which involves a nonlinear periodic 
integration technique (Baker and von Sengbusch 1969; Stellingwerf 1974). This technique was employed by 
Stellingwerf (1975a, b) who tested the stability of single-mode limit cycles and proposed modal selection categories 
on the basis of whether or not linear perturbations corresponding to one of the modes would grow around the 
limit cycle of the other. Although this method is more economical than the usual initial value integrations and 
also allows direct computation of the stability of each mode, there are some discrepancies among the results 
obtained for the same models (Cox, Hodson, and Davey 1976). In at least one case, it was found that differences 
in modal stability could be attributed to differences in driving in the HIR (Cox 1980). Furthermore, the same 
study demonstrated that changes in artificial viscosity (which as a practical matter affects only the HIR) could 
alter modal selection properties. Given these circumstances, it seems desirable to seek an improved treatment of 
the HIR for use in conjunction with a strictly periodic code. 

Following a suggestion by Stellingwerf (private communication), we attempt to use a temperature grid for the 
description of pulsations in the HIR. This means that zones are labeled by their static model temperatures rather 
than masses, and that we follow shells of constant temperature as the pulsation proceeds. Because the HIR 
boundaries are sensitive to the temperature, we can thus confine the HIR within certain zones of the temperature 
grid during the pulsation. To connect the temperature grid region with the ordinary Lagrangian coordinates used 
elsewhere in the model, transition domains must be set up at the upper and lower boundaries of the HIR. 

In the DYN code, the mass rezoning in the HIR is determined essentially to satisfy the Rankine-Hugoniot jump 
conditions which are evaluated from the dynamical properties of two zones: one close to 8000 K and one close to 
15,000 K. On the other hand, in the present scheme, the mass rezoning is set up to assure that zones within the 
HIR retain their static model temperatures. To apply any hydrodynamic scheme to the nonlinear periodic integration 
technique, one must construct the Floquet matrix (e.g., Cox, Hudson, and Davey 1976) for each period. For non-
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Lagrangian codes, zonal masses are not fixed but are related to other physical quantities. Thus, to calculate 
elements of the Floquet matrix, contributions from mass rezoning must be included. Because the DYN code, 
designed for initial value integrations, contains a complicated algorithm for rezoning in the HIR, it is not convenient 
to apply this scheme directly to the strictly periodic integration technique. On the other hand, in the temperature 
grid system, mass motion in the HIR is determined in a relatively simple manner and thus ought to be more 
readily adaptable to the Baker-von Sengbusch-Stellingwerf problem. 

In the present study we construct a linear version of our scheme to demonstrate its characteristics and to 
compare the results with those obtained using a standard Lagrangian grid. In § 2, the fundamental equations are 
derived by using transformations from the Lagrangian grid. In § 3, we formulate the eigenvalue problem in a manner 
similar to that of Castor (1971). In § 4, we discuss the characteristics of our scheme, comparing the present results 
with those generated by a pure Lagrangian system. 

II. TRANSFORMATION 

We begin with the convention Lagrangian equations: 

(~:L. = U, (1) 

(2) 

(3) 

(4) 

(5) 

Following Castor, Davis, and Davison (1977), we use in the temperature grid and transition regions zonal interfaces 
that are fixed not in mass but in some other coordinate denoted by x. We employ the following identity: 

(~L. = (~L - (ix)t(8::'rl(8~'L· (6) 

Herefis any physical variable, and M., the mass within a distance r of the center, is a function of x and t. 
Combining equation (6) with equations (1)-(5) gives 

(8M.) (8r) _ (8M.) U + (8r) (8M.) 8x t 8t x - 8x t 8x t 8t x' 
(7) 

(8M.) (8U) = _ G~. (8M.) _ 4nr2(8P) + (8U) (8M.) , 8x t 8t x r 8x t 8x t 8x t 8t x 
(8) 

(8M.) [(8E) + p(8V) ] __ (8L.) + [(8E) + p(8V) ] (8M.) 8x t 8t x 8t x - 8x t 8x t 8x t 8t x' 
(9) 

(8M.) V = ~ (4n r3) , 8x t 8x 3 t 
(10) 

(8M.) L. = _ 4(4nr2Va (8T4 ) . 

8x t 3K 8x t 
(11) 

Equations (7)-(11) are now converted to finite difference form. As in Castor, Davis, and Davison (1977), the spatial 
zoning is indicated by a subscript which is a half-odd integer for zonal quantities and an integer for interface 
quantities. The index increases with radius. Thus I = 1 denotes the lower boundary, and the interface (N + 1) denotes 
the surface. Then, the equations become 

(8rI) 1 (8MI-1/2 8MI+1/2) DM2I at = DM2I UI +"4 (rI+I - rI-I) 8t + 8t ' (12) 

(13) 
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1 ) (OM1 + 1/2 ) +"2 [(EI+1+1/2 - E1-1+1/2) + PI+1/2(Jj+ 1+ 1/2 - Jj-1+1/2] ot ' (14) 

(15) 

40" ( 2)2( 4 4) DM21Ll =-3 4nrl T I - 1/2 - T1+1/2 , 
Kl 

(16) 

where 

DM11+1/2=MI+1-Ml, DM21=-t(DM11-1/2+DM11+1/2)' (17) 

To perform nonlinear calculations, the time derivatives also must be converted to finite difference form. 
So far, we have not specified the general coordinate, x. In what follows we outline a procedure whereby the 

temperature grid is used in the HIR, while outside of this region, the Lagrangian grid is adopted. 
Putting 

we obtain the following equation 

[~ oT + (r3 _ 1) ~ OV] (OMr) = (OMr) [~(OT) _ (r3 _ 1)! (op) _ ~ (OS) ] . (19) 
T ox V ox t ot x ox t T ot x P ot x Cv ot x 

Here we used a thermodynamic identity which is given in our system as 

(~~L = TCv[~(~~L -~(~~)t(o::t-1(O~r)J 
+PV(XT-1)[-!(OP) _~(OV) (OMr)-l(OMr) ] + (OE) (OMr)-l(OMr) . 

P ot x V ox t ox ot x ox t ox ot x 

Converting to difference form and using the time derivative of equation (10): 

HB1 OMl-1+1/2 + HB1 OMI+1/2 + HB1 OM1+1+1/2 
1,1 ot 1,2 ot 1,3 ot 

= DM11 1/2 [~(OT) + 4n(r3 - 1)1+1/2 (rf 1 Orl+1 _ rf orl) _ 1 (OS) ] (20) 
+ T ot 1+ 1/2 Jj + 1/2 DM11+ 1/2 + ot ot (Cv)1+ 1/2 ot 1+112 ' 

where 

HB11,l = -t(r3 - 1)1+1/2, 

HB1 =! ['1/+1+1/2 - '1/-1+112 + (r _ 1) Jj+ 1+ 1/2 - Jj-1+1/2] 
1,2 2 T. 3 1+1/2 V. ' 1+1/2 1+1/2 

HB11,3 = -t(r3 - 1)1+1/2 . (21) 

This equation determines the mass change of the (I + -t) shell in terms of changes in the temperature, the radius, 
and the entropy. In the HIR, whose zonal boundaries are indicated as IE [IAF' IBF], we use equation (20) with 
(oT/ot) = 0 for determination of the mass flow. On the other hand, above and below the HIR, where special 
techniques are not needed, it is simpler and more efficient to employ the usual Lagrangian grid (oM/ot) = O. We 
thus have the problem of connecting the regions of different coordinates, and for this purpose use the following 
equation instead of equation (20): 

F1 . HB1 oM1-1+1/2 + HB1 OMI+1/2 + F1 . HB1 oMI+ 1+ 112 
I 1,1 ot 1,2 ot I 1,3 ot 

_ F2 . DM1 [4n(r 3 - 1)1+ 112 (2 orl+ 1 2 orl) 1 (OS) ] 
- I 1+1/2 rl+1--- rl- - - . 

Jj+ 1/2 DM11+ 1/2 ot ot (Cv)1+ 1/2 ot 1+ 1/2 
(22) 
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Here Fl/ and F2/ are weight functions by which the different regions are connected smoothly. For IE [IAF' I BF], 
we set Fl/ = F2/ = 1 in equation (22). This means that the temperature grid is used in this region. To set up 
transition domains both below and above the temperature grid region, we use a smooth function which changes 
from zero to 1 for I E [lA, IAF] and from 1 to zero for IE [IBF' IB]. Thus we have Lagrangian coordinates for 
zone numbers 1< IA and I> IB, and the temperature grid for IE [IAF' IBF]. In the transition domains 
(I E [lA, IAF], IE [IBF' I B]), both mass and temperature are allowed to vary. Consistent with these boundaries we 
now slightly redefine the HIR to consist of I E [lA, I B]. 

III. EIGENVALUE PROBLEM 

To make sure our scheme works well, we apply it to the linear nonadiabatic eigenvalue problem and compare 
our results with those obtained with a pure Lagrangian scheme. We note that in general the present technique 
allows simultaneous perturbation of the static values of both mass and temperature. 

To begin, we linearize equations (12)-(16) and equation (22). The linearly perturbed quantities are indicated by 
the prefix b. We replace brio bS1+1/2, and bM1+1/2 with XI, Yj, and ZI defined as follows: 

( )1/2 [ l(rI+l-rI-l)(~ ~ )] XI = DM2/ brI - 4 DM21 uMI- 1/2 + uM1+ 1/2 , 

Yj = 1'1+ 1/2 bS1+ 1/2 , 

ZI = bM1+ 1/2 . 

Then, in terms of these variables, we get from equation (15) 

(23) 

(24) 

(25) 

(bP) = DRII,IXI + DRII,2X1+1 + DR2/,IZI-l + DR2I,2Z/ + DR2/,3 Z 1+1 , (26) 
P 1+1/2 

where DRII,I and DRII,2 are just DRI,I and DRI,2 as defined by Castor (1971), and DR2/,I, DR2I ,2, and DR2I,3 
are given by 

_ 1 r4n:r}h+l-r/-l)_~V.] 
DR2I,1 - DMl1+1/2 J.i+1/2 4DM2/ 2 1+1/2 , 

(27) 

DR212 = 4n: [r}(r1+1 - rI-d _ r}+1(r1+2 - rI)] , 
, 4DMl1+ 1/2 J.i +1/2 DM21 DM21+ 1 

(28) 

DR2 _ 1 [~v. _ 4n:rT+l(r1+2 - r/)] 
13- 1+1/2 . 
, DMl1+1/2 J.i+1/2 2 4DM21+1 

(29) 

From thermodynamic identities, we obtain the perturbations for l' and P: 

(b1') = (r3 - 1)1+1/2(DRII,IX I + DRII,2X1+1 + DR2I,IZI-l + DR2I,2 Z1 
l' 1+1/2 

+ DR2I,3 Z1+ d + EX21 + 1/2 Z/ + [p(r ~ - 1 )] Yj , 
1+ 1/2 

(30) 

(bP) = (r 1)1+ 1/2(DRl/,IX/ + DRI/,2 X1+ 1 + DR2I,IZI-l + DR2I,2 ZI 
P 1+ 1/2 

+ DR2I,3 Z1+ d + (XT)1+ 1/2 EX21+ 1/2 Z/ + (eXT1') Yj . 
v 1+1/2 

(31) 

where (r3 - 1) and r 1 have the usual meaning, XT = (0 In Plo In 1')p, and EX2 is defined as: 

[1 d1' 1 dV] dV [d In l' (d In 1') ] 
EX2I+1/2 = TdM+(r3 -1)VdM =dM' dlnV- dlnV Gd • 

(32) 

The linearization of equation (16) gives the following equation: 

EX2 _1 [_1_(11+1+1/2 -11+1/2 + 11+112 -11-1+1/2) 
1+ 1/2 -"2 11 + 1/2 DM21+ 1 DM21 

+ (P3 - 1)1+1/2 (J.i+1+1 /2 - J.i+1/2 + J.i+1/2 - J.i-l+1/2)]. 
J.i +1/2 DM21+ 1 DM2/ 

(33) 
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where the BL1 and BL2 values are just the same as defined by Casto.r (1971) except that we use the T4 harmo.nic 
mean between KI -1/2 and KI + 1/2 to. calculate the shell o.pacity KI (Christy 1964; Sto.bie 1969). 

To. search fo.r no.rmal mo.des, we assume that the time dependence is expo.nential. Using the linearized equatio.ns 
(12), (13), and (14), we o.btain finally 

W 2X 1 = G1 I • 1X I - 1 + G1 I • 2 X 1 + G1 I • 3 XI+1 + G2I • 1 }[-1 + G2I • 2 }[ 

+ G3I,1ZI- 2 + G3 I • 2 ZI-1 + G3J,3 ZI + G3 I •4 ZI+ 1 , 

iw}[ = K1 I • 1X I - 1 + K1 I •2 X 1 + K1 I •3 XI+1 + K1 I •4 XI+2 

+ K2I • 1 }[-1 + K2 I •2 }[ + K2 I •3 }[+1 

+ K3 I • 1Z 1 - 2 + K3 I • 2 Z I - 1 + K3 I • 3 Z 1 + K3 I •4 Z I + 1 + K3 I • S ZI+2· 

Here w is the co.mplex eigenfrequency. Similarly equation (12) is co.nverted to. 

(34) 

(35) 

(36) 

Outside the HIR, ZI will be zero., and so. we can so.lve equatio.ns (34) and (35) with the same bo.undary co.nditio.ns 
used in a pure Lagrangian scheme. To. so.lve equatio.n (36) fo.r ZI, we o.nce mo.re set ZI = 0 o.utside the HIR. In 
practice, we so.lve alternately the band matrix o.f equatio.ns (34) and (35) fo.r X I and }[, and the tridiago.nal matrix 
o.f equatio.n (36) fo.r ZI, beginning with equatio.ns (34) and (35) in the HIR with ZI = 0 as a first guess. Abo.ut 
10 iteratio.ns are needed to. get fo.ur-figure accuracy for the gro.wth rates. 

IV. RESULTS AND DISCUSSION 

We apply equatio.ns (34}-(36) to. the mo.dels designated by numbers 3, 7, 10, and 13 in Baker and Kippenhahn 
(1965). Co.nvectio.n is co.mpletely neglected in o.ur analysis. The Lo.s Alamo.s o.pacities are used in the fo.rm o.f 
Stellingwerf's (1975a, b) analytical expressio.n. The mass cho.sen fo.r all mo.dels is 7 M 0' and the chemical co.mpo.sitio.n 
is X = 0.60, Y = 0.36, Z = 0.04. The envelo.pes extend from a surface with o.ptical depth, = 0.001 to. a lo.wer bo.undary 
which is just less than 0.10 o.f the stellar radius. 

The mo.dels are co.nstructed in such a way that the HIR is finely zo.ned. Figure 1 displays the typical zo.ning and 
the HIR. We use the temperature grid fo.r tho.se zones who.se temperature satisfies the relatio.n 0.7 :s; 1[ + 1/2 :s; 1.7 in 
units o.f 104 K. On bo.th sides o.f this regio.n, lie the transitio.n do.mains which are characterized by 0.6 :s; 1[ + 1/2 :s; 0.7 
and 1.7 :s; 1[ + 1/2 :s; 1.8, respectively. Thus, the HIR in this case is defined as co.nsisting o.f tho.se zo.nes who.se static 
temperature satisfies 0.6 :s; 1[ + 1/2 :s; 1.8. 

2.0 

18 

HI-I -----i 
0.5 H HeI 

10.0 10.6 10.8 11.0 

k (M s -M)(in units of 1024gml 

FIG. I.-Typical zoning for the HIR and surrounding regions. Ms is the total mass of the star. The marks indicate zonal boundaries. 
I A and I B give the boundaries of the HIR. The actual H I and He I ionization zones are shown at the bottom. 
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TABLE 1 

ZONING CHARACTERISTICS (Model 7) 

Total Number Number of Zones 
Type of Zones in HIR AT(%) 

c .............. .. 57 13 14 
S .............. .. 112 25 6 
F ............... . 183 41 4 
FF ............ .. 247 55 2 

The weight functions F1J and F2J used here are as follows: 

F1J =F2J =1.0exP (-2 ~+1/2-~A+1/2) (forIE [IA,IFA])' 
~A+1/2 - ~FA+1/2 

F1 J = F2J = 1.0 (for I E [IFA' I FB]) , 

351 

F1 J =F2J =1.0exP (-2 ~B+1/2-~+1/2) (forIE[IFB,IB]). (37) 
~B+ 1/2 - ~FB+ 1/2 

Although F1J and F2J are independent weight functions, we put F1 J = F2J for simplicity in the linear version. 
To check the effects of fine zoning on the calculated results, four kinds of zoning were tested for the same model. 

The zoning characteristics are summarized in Table 1. The zoning becomes finer along the sequence: C, S, F, FF. 
The last column expresses the temperature difference from one shell to the next in the HIR. The zoning types S and C 
would be typical for a linear nonadiabatic analysis and a nonlinear hydrodynamic calculation respectively. 

The fundamental period Po and the period ratios and growth rates up to the fourth overtone are summarized 
in Table 2 for the Baker and Kippenhahn (1965) models with S type zoning. The growth rate 11 is defined as 
-41COJJOJ., where OJr and OJi are the real and imaginary parts of the complex frequency OJ. For comparison, Table 2 
presents the corresponding results obtained with the pure Lagrangian grid, designated by L. Although there are slight 
differences in some of the entries, the overall agreement is very good. 

In Table 3 we display the same quantities for C type models. One notices the tendency for the coarsely zoned 
models to have slightly larger periods as well as less driving (or greater dissipation). The latter effect is much more 

TABLE 2 

BAKER AND KIPPENHAHN SERIES (S MODELS) 

Model Po '10 PdPo '11 P 2/Po '12 P3/p(} '13 P4/Po '14 

3 ............... 16.231 +5.8 0.6990 +3.7 0.5141 -8.2 0.4031 -16.0 0.3299 -17.4 
3L ............. 16.233 +5.7 0.6992 +3.3 0.5143 -8.9 0.4033 -17.0 0.3301 -18.3 
7 ............... 11.345 +3.2 0.7100 +6.6 0.5397 -4.3 0.4286 -18.2 0.3530 -24.2 
7L ............. 11.346 +3.1 0.7102 +6.3 0.5400 -4.6 0.4290 -18.6 0.3533 -24.4 
10 .............. 8.954 +0.8 0.7145 +4.6 0.5538 -2.1 0.4440 -17.7 0.3686 -27.3 
IOL ............ 8.955 +0.8 0.7147 +4.4 0.5541 -2.4 0.4443 -17.9 0.3688 -27.1 
13 .............. 7.207 -1.2 0.7186 +0.3 0.5649 -2.6 0.4575 -17.2 0.3832 -28.7 
13L ............ 7.208 -1.2 0.7188 +0.0 0.5651 -2.9 0.4577 -17.2 0.3835 -28.2 

NOTE.-Po is given in units of days; '1, in units of 10- 2. 

TABLE 3 

BAKER AND KIPPENHAHN SERIES (C MODELS) 

Model Po '10 PdPo '11 P2/Po '12 P3/Po '13 P4/Po '14 

3 .............. 16.320 +5.4 0.6993 +3.7 0.5172 -7.6 0.4060 -15.8 0.3332 -17.8 
3L ............ 16.328 +4.9 0.7002 + 1.4 0.5181 -10.4 0.4070 -19.4 0.3341 -21.2 
7 .............. 11.412 +2.8 0.7099 +5.8 0.5418 -4.4 0.4308 -18.3 0.3555 -24.8 
7L ............ 11.416 +2.4 0.7107 +4.7 0.5429 -5.7 0.4301 -19.5 0.3568 -25.0 
10 ............ 9.013 +0.5 0.7149 +3.5 0.5560 -2.5 0.4464 -17.5 0.3716 -27.3 
10L ........... 9.016 +0.3 0.7155 +2.8 0.5569 -3.5 0.4476 -17.8 0.3726 -26.1 
13 ............ 7.255 -1.3 0.7192 -0.4 0.5666 -3.1 0.4594 -16.7 0.3858 -28.4 
13L ........... 7.257 -1.4 0.7197 -1.0 0.5676 -3.9 0.4605 -16.6 0.3867 -26.4 

NOTE.-Po is given in units of days; '1, in units of 10- 2. 
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pronounced in the Lagrangian scheme than it is when the temperature grid is used. Figure 2 shows this situation 
in more detail. The growth rates obtained in both schemes are plotted against the degree of fineness of the zoning. 
Although the growth rates agree rather closely in the F F case, the discrepancy between two results becomes large 
as the zoning grows coarser. This tendency is especially noticeable for the case of C type zoning. It is clear from 
Figure 2 that, for every case displayed, the coarsely zoned temperature grid provides a better estimate of the 
finely zoned growth rate than does the coarsely zoned pure Lagrangian scheme. 

To further investigate this question, we construct the pulsational work integral for the temperature grid scheme. 
We begin by writing the integral in fully nonlinear form (Cox and Giuli 1968): 

(dd~) = ~ (dt f P :t (~L,dMr . (38) 

Transforming to our general coordinate system, we have 

IdW) =! (dt f PV [_ ~ (op) _ (0 In V) (OMr) -l(OMr) ] (OM.) dx \ dt II 0 x P at x ox t ox at x ox t 

= - - dt PV -- - dx + PV -- - dx . 1fn [f (10P)(OMr) f OlnV(OMr)] 
II 0 x P at ox x ox at (39) 

To evaluate (dW/dt) in the linear theory, P, p, and Mr are expanded to first order in the perturbations and terms 
up to second order are retained in the integrand. We find 

I dW) = _! fn dt [f Pv(OP) ~ (OP) oMr dx \ dt II 0 x P at P ox 
+ f PV d In V (OP) (OOM')dX + f PV d In P (Op) (OOMr)dX] . 

x dx P at x dx p . at (40) 
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FIG. 2.-Dependence of the growth rate (in units of 10- 2 ) on the fineness of zoning. The symbols for the degree of fineness are the same 
as in Table 1. Solid lines, temperature grid; dashed lines, pure Lagrangian grid. 
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The ratio of the imaginary part to the real part of the eigenfrequency should be related to the pulsational work 
integral in the following way (Castor 1971): 

/ dW)/K ~ _ 4nwi , 
\ dt Wr 

(41) 

where K is the pulsation energy, which for the present scheme is given by: 

K=!f (or)2 dMr=!f [(or) _(olnr) (OMr)-1(OMr)]2(OMr)dX. 
2 M, ot M, 2 x ot x ox t ox t ot ox t 

(42) 

Using equations (40) and (42), we confirm equation (41) for our models, thus demonstrating the self-consistency 
of the present results. 

Moreover, by evaluating the integrand of equation (40) (that is, the differential work), we can investigate the 
seat in the models of the difference in the growth rates between the temperature grid and pure Lagrangian 
formulations. Figure 3 shows the difference in the differential work ~Wr (temperature grid minus pure Lagrangian) 
normalized by K versus zone number for the first overtone of model 7C. As one might expect, the major difference 
comes from the HIR and some adjacent zones. 

As an additional test of our scheme, we have solved the eigenvalue problem by using another set of weight 
functions in place of those given by equation (37). In particular, the temperature grid region and the Lagrangian 
grid region are connected by linear (rather than exponential) weight functions in the transition zones. We find that 
the change in weighting affects our models negligibly. Thus the temperature grid formulation does not seem sensitive 
to the precise manner of treating the transition domains. 

Finally, we have tested the effects of the width of the temperature grid region on the eigenvalues. We find that 
changes in the lower boundary of the HIR between 1.6 and 2.0 in 11 + 1/2 yield negligible changes in the 
eigenvalues. On the other hand, the tridiagonal matrix in equation (36) cannot be properly solved when the inner 
boundary of the HIR is set much lower than 11+ 1/2 = 2.0. At the moment, the origin of this problem remains 
unclear. 

v. CONCLUSION 

Our linear tests of the temperature grid indicate that it performs well in calculating periods and growth rates 
and is less sensitive to coarse zoning than is a pure Lagrangian scheme. This property should be advantageous in 
nonlinear calculations and particularly in the modal selection problem where small differences in growth or switching 
rates could have important effects on modal stability. In future work we plan to study these questions in detail 
by constructing a temperature grid system designed for use in nonlinear, strictly periodic integrations. 
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FIG. 3.-Difference in the differential work between the temperature grid and the pure Lagrangian. The extent of the HIR is indicated 
by a bar. 
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