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Chapter 1
Introduction

1.1 Review of literature

Thin-walled plates and shells are widely used in the aircraft and space industry.
Moreover, plates and shells are used in various fields of engineering and industry.
This involves the need for the minimization of the cost and weight of plate and shell
structures.

Although the investigation of the elastic plastic behaviour of plates and shells got
its start quite early (for instance, the early results on the elastic plastic bending of
circular and annular plates are due to Hodge [40], Tekinalp [133], [22], Haythorn-
thwaite [34], Cinquini [16], Lamblin et al. [71] and others) there exist only a few
papers on optimization of elastic plastic beams, plates and shells.

The problems of optimization of plates and shells made of pure elastic or of
ideal inelastic materials are studied by many investigators. Optimal designs of elas-
tic plastic beams with piece wise constant thickness are established by Lepik [91]. It
is assumed herein that the beams under consideration are subjected to the distributed
transverse pressure of high intensity. In the subsequent paper by Lepik [92] optimal
positions for additional supports are established for elastic plastic beams. Lellep
and Polikarpus [76], [77] studied the elastic plastic response of circular plates to
distributed loading in the case of the Tresca material. Lellep, Puman, et al. studied
stepped [79] and rotationally symmetric shells [80]. Reviews of these papers can
be found in books and review papers by Banichuk [3], Atkoc̆iūnas [2], Kirsch [61],
Cherkaev [12], Karkauskas, C̆yras, Borkowski [57], Bendsoe [6], Lellep and Lepik
[75], Krużelecki and Życzkowski [66], Rozvany [125].

Kaliszky and Logo [55], [56] investigated the elastic plastic behavior of disks and
developed an optimization method in the case of presence of constraints imposed on
displacements and deformations.

Elastic plastic response of circular and annular plates was studied by Lellep and
Polikarpus [78], [77] in the case of sandwich plates made of a material which obeys
the Tresca’s yield condition. An optimal design of axisymmetric plates subjected
to the uniformly distributed transverse pressure has been established by Lellep and

9

3



10 1 Introduction

Vlassov [81], [82], [83], [84], [85], [86], [87] in the cases of von Mises and Hill’s
yield criteria.

In the present research an optimization technique is developed for circular plates
made of an ideal elastic plastic material obeying von Mises yield condition and the
associated flow law. Necessary optimality conditions are derived with the aid of
variational methods of the theory of optimal control.

Problems of optimization of annular plates have been studied by many authors in
the case of a pure elastic material (see Banichuk, 1991; Dzjuba [160] and others). On
the other hand, there exists an exhaustive list of papers devoted to the optimization of
perfectly plastic plates (see Lellep [73]; Lepik [89], [90]). However, there exist only
a few papers concerning optimization of plates made of elastic plastic materials.
Among such papers one should mention the papers by Lellep and Vlassov [81],
[82], [83], [84], [85], [86], [87].

In this study the method of optimization is extended to annular plates subjected
to the transverse pressure.

Circular and annular plates are of practical interest in mechanical, civil and ocean
engineering where these plates are used as bulkheads of separable sections of sub-
mersibles. A purely elastic design of a structural element made of a ductile material
and loaded by pressures of high intensity may be overly conservative. Thus, it is rea-
sonable to account for the elastic plastic stages of deformation in the direct problem
of determination of the stress strain state of plates as well as in the shape optimiza-
tion of plates.

The foundations of the stress strain analysis of plates and shells made of compos-
ite materials are presented in books by Jones [48], Herakovich [36], Reddy [121],
Vinson and Sierakowski [146], Tittle [134]. Although the elastic plastic analysis of
plates and shells got its start several decades ago (see Hodge [41], Chakrabarty [14],
Kaliszky [54], Sawczuk, Sokół-Supel [129]), new approaches have been developed
during the last years (Kojić, Bathe, [65]). Gorji and Akileh [30] utilized the concept
of the load analogy to obtain non-linear elastic plastic solutions to annular plates
undergoing moderately large deflections.

The problem of determination of the stress-strain state of circular and annular
plates under the transverse pressure has a long history. The first attempts in this di-
rection have been undertaken by Sokolovski [164] and Naghdi [110]. Assuming that
the material corresponds to the von Mises yield condition Naghdi [110] developed
the concept of a deformation-type theory of plasticity and calculated the deflections
of simply supported plates of uniform thickness subjected to the concentrated load
at the center of the plate. Different extensions of the problem and new calculation
algorithms are presented by Lackman [67], Popov et al. [118].

Eason [22] studied the problem of the elastic plastic bending of a circular plate
which is simply supported at its edge and carries a constant load over a central
circular area. The solution is compared with that corresponding to the Tresca yield
hexagon. The solution for Tresca plates have been obtained by Tekinalp [133], also
by Hodge [39].

Later Turvey [136], Turvey and Lim [138], Turvey and Salehi [137] compiled
computer codes for the elasto-plastic analysis of circular plates. The algorithms use
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the constitutive models based on the Ilyshin full-section yield criterion and the von
Mises yield criterion.

Makapatra and Dasgupta [104] developed the mixed finite element method for
axisymmetric elasto-plastic problems.

Upadrasta et al. [139] used a deformation-type theory of plasticity to implement
the method of elastic compensation. The main idea of this method consists in the
iterative modification of elastic properties of the material used in the finite element
codes to simulate plastic yielding. The predictions obtained for simply supported
and clamped plates are compared with the earlier results by Ohashi, Murakami
[114], Lim, Turvey [138] and others whereas a good agreement between various
predictions was observed.

In the present paper the method of optimization of elastic plastic annular plates
is developed. The plates are made of anisotropic materials which obey the yield
criteria of Hill and Tsai-Wu. It is assumed that the plates have a sandwich cross
section whereas the carrying layers are of piece wise constant thickness.

Although the solution of elastic-plastic plate problems got its start several decades
ago ([28], [30], [31]; [124]) there still exists the need for new computer-aided tech-
niques for calculation of elastic-plastic plates (see [146]). The same regards the
problems of optimization of plate and shell structures which have a theoretical and
practical importance as shown in [5]. Some new approaches for optimal design of
steel structures were developed by Farkas and Jármai [25], [26] recently.

Minimum weight problems for axisymmetric plates operating in the range of
elastic plastic deformations were studied by Lellep and Polikarpus [78] in the case
of the material obeying Tresca’s yield condition and the associated flow law. The
case of Von Mises material was investigated by Lellep and Vlassov [82], [84].

The problem governing equations [161] in a tensor form can also be found in
[162] – [163].

Wavelet theory used in current study is presented in [15], [18], [20], [21], [53],
[59], [62], [68], [103], [105], [111], [122], [131], [132], [141], [148], [150]. The
method of solving differential equations using Haar wavelet method was presented
by Lepik [93] – [100], [102]. The solution of optimal control problem solving via
Haar wavelets was also studied by Lepik [101].

1.2 Finite element method

The finite element method (FEM) a numerical procedure for solving mathematical,
mechanical and physical problems governed by differential equations or an energy
theorem is described in numerious monografies and articles [130]. There are two
characteristics that distinguish it from other numerical procedures:

• the method utilizes an integral formulation to generate a system of algebraic
equations;

• the method uses continuous piecewise smooth functions for approximating the
unknown quantity or quantities.
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The second feature distinguishes the finite element method from other numerical
procedures that utilize an integral formulation.

The implementation of FEM can be described as follows:

• A structure is divided into several elements (pieces of the structure).
• The FEM reconnects elements at “nodes” as if nodes were pins or drops of glue

that hold elements together.
• Current process results in a set of simultaneous algebraic equations.

Note here that in case of continuum numerical calculus we have infinite number of
degrees of freedom, in case of FEM it is finite, which gives the origin of the method
name: Finite Element Method. It is also known as a Finite Element Analysis (FEM)
and this numerical method provides solutions to problems that would otherwise be
difficult to obtain.

FEA/FEM has applications in much broader range of areas: fluid and fracture
mechanics, electrostatic and electromagnetics [42], heat flow etc. While this range
is growing, one thing will remain the same in case of classical FEM: the theory of
how the method works.

Before the appearance of FEM it was implicitly assumed that basis functions Nm
of the decomposition

ϕ ≈ ϕ̂ = ψ +
M

∑
m=1

amNm (1.1)

were determined by one expression over the whole domain (manifold) Ω , and inte-
grals in the approximation equations were calculated over the whole Ω .

An alternative approach is to divide domain into a number of disjoint subdo-
mains called elements Ω e and construct the piecewise approximation ϕ̂ separately
onto each subdomain. Then, basis functions of the approximation can also be deter-
mined piecewise by applying different expressions for the different subdomains Ω e,
which are composed the whole region Ω , i.e.

⋃
E

Ω e = Ω . Then, definite integrals

from approximation equations can be obtained by summing the values of weighting
functions Wl and W l of each subdomain (or element):∫

Ω

WlRΩ dΩ =
E

∑
e=1

∫
Ω e

WlRΩ dΩ ,

∫
Γ

W lRΓ dΓ =
E

∑
e=1

∫
Γ e

W lRΓ dΓ ,

(1.2)

where ∑
E
e=1 Ω e = Ω and ∑

E
e=1 Γ e = Γ . Here E is a number of subdomains (ele-

ments) and Γ e are the parts of the subdomain Ω e boundary which lies onto domain
boundary Γ . Hence, Γ e summing should be done only by elements Ω e which have
a common boundary section.

If subdomains have rather simple form and their approximation functions basises
are determined simultaneously, it will be a good idea to use presented approach in
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case of domains which consists of such subdomains. This idea of classical FEM is
well-known as a method for numerical solution of field problems.

Let us consider the fundamental concepts of the implementation of the method.
Generally, many engineering and theoretical phenomena can be expressed by “gov-
erning equations” and “boundary conditions”. Let L(φ) + f = 0 be a governing
equation written as the ordinary or partial differential equation and B(φ)+g = 0 be
a boundary condition obtained from the theories of fluid mechanics, elasticity and
plasticity or electrostatic and electromagnetics, etc. Usually we have a set of differ-
ential equations which cannot be solved by hand. So, it is reasonable to try to apply
the FEM to result in the set of simultaneous algebraic equations[

K
]︸︷︷︸

Property

{
u
}︸︷︷︸

Behavior

=
{

F
}︸︷︷︸

Action

(1.3)

In the different fields of research property matrix K, behavior and action vectors u
and F , respectively, called as shown in Table 1.1.

Table 1.1 Notations in different research field

Property
[
K
]

Behavior
{

u
}

Action
{

F
}

Elasticity stiffness displacement force
Thermal conductivity temperature heat source
Fluid viscosity velocity body force
Electrostatic dialectric permittivity electric potential charge

According to Segerlind [130] the use of the finite element method can be subdi-
vided into five following steps.

1. Discretization of the region. It is very difficult to obtain the algebraic equations
for the entire domain. That is why one has to discretize the region by dividing the
domain into a small, simple elements. Generally, a field quantity is interpolated
by a polynomial over an element. Then, adjacent elements share the degree of
freedom at connection nodes. This includes locating and numbering the node
points, as well as specifying their coordinates’ values.

2. Specification of the approximation. The order of the approximation, linear or
quadratic, must be specified and the equations must be written in terms of the
unknown nodal values. An equation is written for each element.

3. Derivation of the system of equations, i.e. put all the elements together. When
using Galerkin’s method, the weighting functions for each unknown nodal value
are defined and the weighted residual integral is evaluated. This generates one
equation for each unknown nodal value. In the potential energy formulation, the
potential energy of the system is written in terms of the modal displacement and
then it is minimized. This gives one equation for each of the unknown displace-
ments.

4
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4. Solvution of the sytem of equations
[
K
]{

u
}
=
{

F
}

. As the result, unknown
variables at nodes are defined.

5. Calculation of quantities of interest:
{

u
}
=
[
K
]−1{F

}
. These quantities are usu-

ally related to the derivative of the parameter and include the stress components,
and heat flow and fluid velocities.

Summarising briefly, it can be noted that classical FEM/FEA approach uses:

• the concept of piecewise polynomial interpolation;
• by connecting elements together, the field quantity becomes interpolated over the

entire structure in piecewise fashion;
• a set of simultaneous algebraic equations at nodes.

Professor Oliver de Weck and Dr. Il Young Kim [147] have classified the advan-
tages and disadvantages of classical FEM technique as shown in Table 1.2.

Table 1.2 Advantages and disadvantages of FEM

Advantages Disadvantages

1. The FEM can readily handle very complex
geometry

2. The FEM can handle a wide variety of prob-
lems of different nature

3. The FEM can handle complex restraints
4. The FEM can handle complex loading

1. A general closed-form solution, which
would permit one to examine system re-
sponse to changes in various parameters, is
not produced.

2. The FEM obtains only ”approximate” solu-
tions, ”inherent” errors are unavoidable.

3. Mistakes by users can be fatal.

It is impossible to quote nowadays the date or the author of the invention of
the FEA/FEM, and since the historical approach to the problem lies outside of the
current research, it is reasonable to adduce hereby only a brief history of FEM eval-
uation based only onto undeniable facts and irrefutable arguments [147], [155].

• Initially, FEA/FEM was more engineering than a scientific tool originated from
the need to solve complex elasticity and structural analysis problems in civil and
military industry. In the late 1960s and early 1970s, the FEM was still applied to
a wide variety of engineering problems.

• Method development initially traced back to the works by A. Hrennikoff (1941)
and R. Courant (1943): Hrennikoff discretized the domain by implementing a lat-
tice analogy; Courant utilized the Ritz method of numerical solution to vibration
systems. By M. J. Turner et al. in 1956 there was established a broader definition
of numerical analysis with the focus onto stiffness and deflection of complex
structures.

• The new impetus for FEA/FEM development was obtained in the 1960s and 70s
due to the results received by J. H. Argyris (University of Stuttgart), R. W. Clough
(US Berkeley), O. C. Zienkiewicz (University of Swansea), R. Gallagher (Cor-
nell University), etc.
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Fig. 1.1 FEM evolution till nowadays
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• The term “finite element”was first coined by Clough in 1960. In the early 1960s,
engineers used the method for approximate solution of problems in stress analy-
sis, fluid flow, and other areas.

• The first book on the FEA/FEM by O. C. Zienkiewicz and Chung was published
in 1967.

• The development of the most known commercial FEM software packages was
originated in the 1970s: NASTRAN (NASA, 1971), ABAQUS (1978), ANSYS
(1970); ADINA (1974), etc.

• Fig. 1.1 presents the look of O. C. Zienkiewicz (see [155]) onto the process of
FEA/FEM evolution which led to the present day concepts of finite element anal-
ysis.

During the years 1990 – 2013, the main activities in FEA/FEM research were in
FEA/FEM coupling with other numerical technologies to provide methods with pos-
sibility to pre-define the result precision and in coupling FEM mostly with boundary
element method (BEM), wavelet analysis and with neural networks [33]. Detailed
description and implementation of FEM is presented in [60], [69] – [71], [130],
[153] – [159].

FEM was used in analysis and optimization of thin-walled elastic plastic struc-
tures by Kac̆ianauskas and C̆yras [51]. In the paper by Kac̆ianauskas et al. [52]
parallel discrete element simulation was employed.

Fast development of parallel and high powered computing (HPC) inspires the
development of parallel versions of FEM. Due to high importance of the HPC in the
optimization part of current research we will discuss the main parallel computing
results and their coupling with FEM in the separate subsection.

1.3 Parallel computing with finite element method

The serial finite element method (FEM) discussed in the previous subsection ap-
pears to be a strong tool for solving direct problems in engineering and mechanics,
yet insufficient for optimization problems, which follows from the fact that CPU
clock frequencies are no longer increasing due to the physical restrictions. So, the
speed-up of the computation can be obtained only by using multiple cores. Paral-
lel programming is required for utilizing multiple cores and allow application to
use more memory applying old models to new length and time scales. Thus, it, in
its turn, inspired the new impetus for existing numerical methods coupling with
recently appeared parallel computation technologies, which nowadays have led to
such well-known parallel programming technologies as MPI [109], OpenMP [115],
OmpSs, OpenPALM, CUDA [17], OpenCL, OpenACC [149], PGAS (partitioned
global address space) languages (like UPC, CAF, Chapel, X10), etc. For description
of mostly used programming languages see [23], [32], [119], [120], [128], [119],
[143], etc. For FEM it led to the separate parallel-FEM algorithm creation within
the last 15 years of the FEM evaluation. Over the last five years, a strong trend in
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FEA/FEM development has been FEM implementation by using the possibilities
provided by active HPC (High Performance Computing) development.

Furthermore, the main parallel programming facts will hereby be indicated as
well as FEM algorithm main parallelization techniques applying to the current re-
search.

Definition 1.1. Parallel computation means executing tasks concurrently, where
each task encapsulates a sequential program and local data, and its interface to its
environment and the data of those other tasks is remote.

Definition 1.2. Data dependency means that the computation of one task requires
data from another task in order to proceed.

Solution methods for a linear system can be devided into two main classes: direct
methods and iterative methods. Gaussian elimination is the main algorithm for direct
methods and in general direct methods are the methods with a fixed number of
operations.

Iterative methods, in its turn, can be divided into so-called preconditional Krylov
subspace methods (Conjugate Gradient (CG), Conjugate Gradient Squared (CGS),
Generalized Minimal Residual (GMRES), Transpose-Free Quasi-Minimal Resid-
ual (TFQMR), Biconjugate Gradient Stabilized (BiCGStab), Generalized Conju-
gate Residual (GCR), etc.), multilevel methods (Geometric Multigrid (GMG) and
Algebraic Multigrid (AMG)) and methods based on a combined idea of the last two
mentioned method branches. In a general case, iterative method parallelisation de-
pends on solver implementation, for example, some implementation description of
ElmerFEM solvers and preconditioning strategies given in [128].

At present, there exist two main classes of parallel FEA/FEM implementation:
one is based on domain decomposition methods and the other is based on multi-
grid methods. Currently, the main representatives of domain decomposition meth-
ods with the focus on parallel FEM implementation are ILU (incomplete LU fac-
torization) in parallel (see [37], [44], [45], [58], [117]), additive Schwarz [140], and
FETI (finite element tearing and interconnect). In case of multigrid methods we
mostly consider algebraic [35], [108], [151] and geometric multigrid methods [43],
but algebraic multigrid methods are more popular because in many cases geometric
multigrid can not be applied due to the fact that we have no a set of appropriate
hierarchical meshes while algebraic multigrid approach uses only matrix [K] to ob-
tain the projectors and the coarse level equations. Due to Non-disclose agreements
(NDA) and export restrictions on HPC technologies main algorithms mentioned in
current chapter are not quoted. Kacimi et al. coples ILU with wavelets for precon-
ditioning [24].

Available numerical releases and representation of the ILU parallel algorithms
([37], [44], [45], [58], [113]), moreover, the same parallelization algorithm can of-
ten be presented in different ways depending on system requirements, for example,
ILU parallelization algorithm developed by D. Hysom and A. Pothen [46] can be
presented either in the form suitable for the message passing computational envi-
ronments or as the algorithm represented in equivalent serial formulation.

5
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1.3.1 Equivalent sequential version of PILU algorithm

During the last decades the demand for the computational power. Owing to the com-
plexity of the problems, the non-linearity of the geometry or material behaviour,
the need to solve larger and more complex problems within reasonable time has
reached more and more towards physical limitations of single processor supercom-
puters. Consequently, in the field of research the concept of parallelization turned
out to be of utmost importance. There were two different ways in those days to ap-
proach a large scale problems with parallel computers: existing computers mostly
under *IX-like OS connected to the distributed network via standard paralleliza-
tion/clustering software based on MPI (Message Passing Interface) and PVM (Par-
allel Virtual Machine), which nowadays is transformed into a modern GRID com-
puting idea (multi-core machines can also be added to Grid without restrictions of
any kind) from one side, and multi-core/multi-thread based supercomputing in the
mid-1990s based on multi-core computing, which is a standard nowadays due to the
usage of multi-core/thread CPU-s and GPU-s with implementation from multi-core
PC up to supercomputer releases based on high performance computing technolo-
gies. Note here, that both mentioned technologies can be combined.

As a rule, currently, parallelization implementations and algorithms strictly de-
pend on available hardware and software, and must not be portable in an easy way,
which is one of the reasons why there are a lot of versions of parallel multigrid and
algebraic multigrid algorithms.

Consider here in brief parallel AMG algorithm developed by S. Meynen, A.
Boersma and P. Wriggers [108]. Assume that the problem is parallelized by us-
ing a self defined data decomposition onto a parallel computer with a distributed
memory.

The provided algorithms [108] based on different methods have been developed
to solve large algebraic systems of equations on parallel computers, e.g., on the con-
jugate gradient method (see Meyer, Haase and Langer [107]), on Schur-complement
decomposition (introduced by Meyer [106]) and the resulting PCG methods can be
preconditioned with a hierarchical basis (Yserantant [152]). Additional information
on an overlapping domain decomposition [50] and multigrid techniques with hier-
archical grid structure can be found, for example, in (Bastian and Wittum [4], Jung
and Langer [49]).

1.3.2 Multigrid algorithms

Multigrid methods have been applied to the problems in elasticity by Braess [8],
Peisker, Ruse and Stein [116]. Nowadays, it is, in fact, one of the standards for the
modern fluid dynamic software. The related techniques are very efficient, however,
they need special mesh hierarchy. To circumvent this problem, a concept of alge-
braic multigrid methods has been developed (see Brandt [9], Ruge [126], Ruge and
Stüben [127], Reusken [123], Kočvara [63], Kočvara and Mandel [64]. Sequential
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versions for problems in solid mechanics coupled with AMG have been developed
by Boersma and Wriggers, see [7]. In this context the AMG method is used here
as a preconditioner for the CG method. Useful aspects on coupling FEM with other
tehnologies described in [27], [29].

One of the first AMG implementation with parallel computation support was
done by O. Zienkiewicz in co-operation with R. Taylor. The authors’ programming
concept regarding the parallel computation principles was that on every processor
the same version of a parallel FE program is running independently from the other
processors and handles different data due to a domain decomposition Ω =

⋃p−1
s=0 Ωs

with non-overlapping domains Ωs defined by elements (due to implementation pro-
cessor numbering counter always starts from 0). On each of the domains Ωs standard
finite element procedures are employed to discretize the subdomains by isoparamet-
ric elements Ω =

⋃ne
s=0 Ωs. Since during the period of the development of the dis-

puted approach to the method, the most available so-called massive parallel systems
did not allow individual input files for each processor PS, in the observed algorithm
the input file was read by processor P0 and splitted (spread down) to the other pro-
cessors by a data transfer. Hence, every processor PS obtained its own set of input
data including the relevant global geometrical data for positioning the mesh plots.

The different domains were connected via a data exchange between the proces-
sors at distinct stages within the algorithm. Remind here that only the nodes on the
boundaries Γs of each subdomain Ωs were affected by communication which has to
be performed mainly during the solution phase of the algebraic set of equations.

S. Meynen et al. [108] there was discussed in detail the parallel AMG coupling
with theoretical results for thin shells undergoing non-linear elastoplastic deforma-
tions according to von Mises yield condition provided by P. Wriggers et al.

According to S. Meynen et al. [108] the parallelization of the algebraic multigrid
method is performed in two steps, namely: in the executed only once setup phase,
coarse-grid stiffness matrices, transfer operators and coarse-grid matrices are com-
puted on all levels and then, in the second phase, the system of equations is solved
iteratively.

Determination of coarse grid-points starts with a split of the nodes on the cou-
pling boundaries. to different processors. This step includes also data exchange.
After finishing the task, the remaining interior nodes should be subdivided into the
coarse and fine grid-points independently from nodes on the other processors, and
owing to this, without any communication. Then, the parts belonging to coupling
boundaries should be computed, after this the interior parts can be calculated in
parallel in each subdomain. Note here, that owing to these preliminary operations,
a totally parallel construction of the coarse grid matrix is possible and within this
process the fine-grid matrix is split into parts on the subdomains.

To simplify the notation rewrite system (1.3) in the form

Kv = f (1.4)

Then, during the iterative solution of the finite element equations a parallel smooth-
ing operator called Sp(u, f ) is needed, for example, the parallel Gauss–Seidel al-
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gorithm or an incomplete Cholesky decomposition can be implemented here. Pre-
sented on the algebraic multigrid algorithm (pAMG) [108] solve a set of linear equa-
tions (1.4) starting with pAMG(1, v, f , ν) and taking the original stiffness matrix
K as K1 and the force vector f as the right-hand side. Within the parallel algebraic
multigrid method all operators will be assigned with a rising level index l, and let
level one denote the finest and lmax – the coarsest levels, respectively. Let ν be a
cycle parameter, then, by extending a two-grid method to a multigrid method, the
solution of the coarse-grid problem is replaced on each level by ν sweeps of the
multigrid scheme given above (ν = 1 leads to a so-called V -cycle and ν = 2 results
in a W -cycle). We use the parallel algebraic multigrid method (pAMG) as a pre-
conditioner for another iterative solver, the conjugate gradient method, it means we
will also state the CG algorithm. Note here, that in each CG-iteration, the pAMG is
applied to the precondition of the system of equations [108].

In the current thesis a new analytical numerical technique of optimization of
circular and annular plates is developed. It is assumed that the material of plates is an
ideal elastic plastic material obeying a non-linear yield condition and the associated
flow law. Obtained results are compared with existing solutions of other authors.
Calculations have been implemented by the FEM and the method based on Haar
wavelets.



Chapter 2
Optimization of elastic plastic circular plates
made of von Mises material

2.1 Introduction

Thin-walled plates and shells are widely used in the aircraft and space industry.
Moreover, plates and shells are used in various fields of engineering and industry.
This involves the need for the minimization of the cost and weight of plate and shell
structures.

The problems of optimization of plates and shells made of pure elastic or of ideal
inelastic materials are studied by many investigators. Reviews of these papers can
be found in books and review papers by Banichuk [3], Atkoc̆iūnas [2], Kirsch [61],
Cherkaev [12], Karkauskas, C̆yras, Barkowski [57], Bendsoe [6], Lellep and Lepik
[75], Krużelecki and Życzkowski [66], Rozvany [125].

Elastic plastic response of circular and annular plates was studied by Lellep
and Polikarpus [78], [76], [77] in the case of sandwich plates made of a material
which obeys the Tresca’s yield condition. Optimal designs of axisymmetric plates
subjected to the uniformly distributed transverse pressure have been established by
Lellep and Vlassov [81], [81], [82], [83], [84], [85], [86], [87] in the cases of von
Mises and Hill’s yield criteria.

In the present chapter an optimization technique is developed for circular plates
made of an ideal elastic plastic material obeying von Mises yield condition and the
associated flow law. Necessary optimality conditions are derived with the aid of
variational methods of the theory of optimal control.

2.2 Problem formulation

Let us consider the elastic plastic bending of a circular plate of radius R. It is as-
sumed that the plate is subjected to the axisymmetric transverse pressure of inten-
sity p = p(r), where r is the current radius (Fig. 2.1). In what follows we focus the

21
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attention on the axisymmetric response of the plate assuming that the hypotheses of
Kirchhoff hold good in the regions of elastic and plastic deformations.

Fig. 2.1 Circular elastic-plastic plate

Furthermore, the plates with a sandwich cross section will be considered. A sand-
wich plate is a structure which consists of two carrying layers of thickness h and of
a layer of a core material between the rims. Let the thickness of carrying layers be
piece wise constant, e.g.

h = h j (2.1)

for r ∈ (a j, a j+1), where j = 0, . . . ,n and a0 = 0, aa+1 = R. At the same time the
layer of the core material is of constant thickness H. According to this concept the
thickness of the rim is much smaller than the quantity H.

The quantities h j ( j = 0, . . . ,n) and ai (i = 1, . . . ,n) are preliminarily unknown
constant parameters. The aim of the paper is to determine the design parameters and
the stress-strain state of the plate so that a given cost function attains its minimum
value whereas pertinent boundary conditions and additional constraints are met.

As regards the formulation of an optimization problem, one can find from the
literature a lot of different particular problems (Rozvany, [125]; Banichuk, [3]).

However, in the present paper the attention will be confined to the problems of
minimum weight under constrained deflections. Also, we will study the problem of
minimization of the central deflection under constrained material consumption. The
total mass of the plate of piece constant thickness can be presented as

V̄ = 2ρ2π

n

∑
j=0

h j(a2
j+1−a2

j)+πρ1HR2, (2.2)

where ρ2 and ρ1 stand for the densities of carrying layers and the core material,
respectively.

As we are interested in the reducing of the cost of carrying layers instead of (2.2),
the cost of a rim will be used in the form

V =
n

∑
j=0

h j(a2
j+1−a2

j) (2.3)
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When minimizing the cost criterion (2.3) the deflections should be constrained.
Thus, it is reasonable to demand that

W (r)6W0 (2.4)

for r ∈ [0, R] where W0 is a given constant and W stands for the transverse displace-
ment. Evidently, the transverse deflection is maximal at the center of the plate. Thus,
the constraint (2.4) can be replaced by

W (0) =W0. (2.5)

Evidently, (2.5) can be treated as the boundary condition for the system of basic
equations.

2.3 Governing equations

Let M1, M2 be bending moments in the radial and circumferential direction, respec-
tively, and Q be the shear force applied at the edge of an element in the transverse
direction.

These generalized stresses are related to each other by equilibrium equations.
In the frame works of the linear theory of plates equilibrium conditions of a plate
element can be presented as (Reddy [121]; Vinson [144], [145]; Chakrabarty [13];
Ventsel and Krauthammer [142])

d
dr

(rM1)−M2− rQ = 0,

d
dr

(rQ)+Pr = 0.

(2.6)

Principal curvatures of the middle surface of the plate consistent with equilibrium
equations (2.6) have the form

κ1 =−
d2W
dr2 ,

κ2 =−
1
r

d2W
dr2 .

(2.7)

It is worthwhile to mention that equations (2.6) and (2.7) are independent of the
constitutive behaviour of the material. These hold good equally in elastic and plastic
regions of a plate.

It appears that the plate will be subdivided into elastic and plastic regions. In an
elastic region of the plate the principal stresses σ1, σ2 and strain components

ε1 = zκ1, ε2 = zκ2
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satisfy the Hooke’s law for plane stress state.
Here z stands for the axis of coordinate transverse to the middle surface of the

plate.
Integrating of these relations leads to the generalized Hooke’s law. The latter can

be presented for r ∈ (a j, a j+1) where j = 0, . . . ,n as

M1 = D j(κ1 +νκ2),

M2 = D j(κ2 +νκ1).
(2.8)

In (2.8) and henceforth ν is the Poisson modulus and

D j =
EH2h j

2(1−ν2)
, (2.9)

where E stands for the Young modulus.
In plastic regions of the plate relations (2.8) are not valid as the stress state lies

on a yield surface. In the present paper it is assumed that the material of the plate
obeys von Mises yield condition written in generalized stresses as

M2
1 −M1M2 +M2

2 −M2
0 j 6 0 (2.10)

for r ∈ (a j; a j+1); j = 0, . . . , n. In (2.10) M0 j stands for the yield moment

M0 j = σ0Hh j, (2.11)

σ0 being the yield stress of the material.
Note that the non-strict inequality (2.10) undergoes into an equality if the stress

state corresponds to a plastic region. However, in an elastic state the inequality
(2.10) is satisfied as a strict inequality.

It is known from the theory of plasticity that in a plastic region the associated
flow law, or the gradientality law holds good (see Chakrabarty [13]; Kaliszky [54];
Sawczuk [129]).

According to the gradientality law in a plastic region the relations

κ1 = λ (2M1−M2),

κ2 = λ (2M2−M1),
(2.12)

hold good whereas λ is a non-negative scalar multiplier.
Eliminating quantity λ from (2.12) gives

κ1

κ2
=

2M1−M2

2M2−M1
, (2.13)

whereas
λ =

κ1

2M1−M2
. (2.14)
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Substituting the curvatures κ1, κ2 from (2.7) to (2.13) leads to the equation

d2W
dr2 =

dW
rdr

2M1−M2

2M2−M1
. (2.15)

Equations (2.6) and (2.15) together with the equation Φ j = 0 present the set of
governing equations for a plastic region. Here Φ j stands for the left hand side of the
inequality (2.10).

It appears to be reasonable to introduce an auxiliary variable

Z =
dW
dr

. (2.16)

This enables to present the governing equations in the form of the first order
equations

dW
dr

= Z,

dZ
dr

=
Z
r

2M1−M2

2M2−M1
,

dM1

dr
=

M2

r
− M1

r
+Q.

(2.17)

Constraints (2.10) will be transformed into the form

M2
1 −M1M2 +M2

2 −M2
0 j +Θ

2
j = 0 (2.18)

for r ∈ (a j, a j+1), j = 0, . . . , n. The quantities Θ j in (2.18) are certain unknown
functions of current radius to be determined later. Note that the quantity Q in (2.17)
is to be handled as a given function. Indeed, it follows from the second equation in
the system (2.6) that

Q =−1
r

∫ r

0
P(r)r dr (2.19)

where P is the intensity of the distributed lateral loading. Since P(r) is assumed to
be a given function it infers from (2.19) that Q is given, as well.

For an elastic region it follows from (2.7), (2.8) and (2.16) that

M2 =
z
r

D j(ν
2−1)+νM1 (2.20)

and
dZ
dr

=−M1

D j
− ν

r
Z (2.21)

for r ∈ (a j, a j+1), j = 0, . . . , n.
Substituting (2.20) in (2.6) and taking (2.16), (2.21) into account leads to the

system of equations

7
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dW
dr

= Z,

dZ
dr

=−M1

D j
− ν

r
Z,

M1

dr
= (ν2−1)D j

Z
r2 −

1−ν

r
M1 +Q

(2.22)

which holds good in each elastic region for r ∈ (a j, a j+1), j = 0, . . . , n.
As it was mentioned above, the solution of the problem subdivides the plate

into elastic and plastic regions, respectively. Let us denote these subregions of the
plate by Se and Sp, respectively. In what follows we will treat Se and Sp as one-
dimensional subregions consisting of an interval or of the sum of intervals.

It is worthwhile to mention that the sandwich plate is studied herein. Carrying
layers of the plate are assumed to be relatively thin and thus, the stress state can be
either pure elastic or pure plastic; no elastic plastic state occurs. This means that the
sum of sets

Se∪Sp = [0, R].

Summarizing the results, one can say that the stress strain state of the plate is
prescribed by (2.22) for r ∈ Se and by (2.17) for r ∈ Sp whereas the equation (2.18)
holds good for each r ∈ [0, R].

In the case of a simply supported plate at the boundary

M1(R) = 0, W (R) = 0 (2.23)

whereas at the center
Z(0) = 0, M1(0) = M2(0). (2.24)

2.4 Necessary optimality conditions

The problem posed above will be considered as a particular problem of optimal
control. It consists in the minimization of the cost function (2.3) accounting for the
state equations (2.17) for r ∈ Sp and (2.20), (2.22) for r ∈ Se and (2.18) for each
value of r. Of course, appropriate boundary requirements have to be satisfied, as
well.

The variables W , Z, M1 in (2.17), (2.18), (2.22) will be treated as state variables
and M2, Θ j as the controls whereas r is the independent variable and h j ( j = 0, . . . ,n)
and ai (i = 1, . . . ,n) are constant parameters. The problem set up herein belongs to
the class of problems with discontinuous state equations (Bryson [10]; Hull [47]).
In fact, it is evident that right hand sides of equations (2.17) and (2.22) differ from
each other. However, the state variables W , Z, M1 are continuous everywhere, in
particular at the boundary points between elastic and plastic regions.

It is resonable to introduce the following notations. Let Ke be the set of such natu-
ral numbers that for j ∈Ke intervals (a j, a j+1) are elastic, e.g. Se j = (a j, a j+1) ∈ Se
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for j ∈ Ke. Similarly, we expect that Sp j = (a j, a j+1) ∈ Sp if j ∈ Kp. For the sake
of simplicity it is assumed that the interval Sep = (ak, ak+1) is the unique interval
where exist both, the elastic and plastic regions, respectively. Let (rk0 , kk1) be a
plastic region where rk0 ∈ (ak, ak+1) and rk1 ∈ (ak, ak+1) and (ak, rk0), (rk1 , ak+1) –
elastic regions.

Evidently, in particular cases can be rk0 = ak or rk1 = ak+1. Let

Sek = Sek0 ∪Sek1 , Spk = (rk0 , rk1)

where Sek0 = (ak, rk0), Sek1 = (rk1 , ak+1) and let Kp1 , Ke1 be such that

Se =
⋃

j∈Ke1

Se j, Sp =
⋃

j∈Kp1

Sp j.

In other words, Ke1 = Ke∪{K} and Kp1 = Kp∪{K}. Here {K} denotes a set which
contains the number k.

In order to derive necessary conditions of optimality one has to introduce an
extended functional (Bryson [10]; Hull [47]; Lellep [74])

J∗ =V + ∑
j∈Ke1

∫
Se j

{
ψ1

(
dW
dr
−Z
)
+ψ2

(
dW
dr

+
M1

D j
+

ν

r
Z
)
+

+ψ3

(
dM1

dr
+(1−ν

2)D j+
1−ν

r
M1−Q

)
+ϕ0 j

(
M2+D j(1−ν)2 Z

r
−νM1

)}
dr+

+ ∑
j∈Kp1

∫
Sp j

{
ψ1

(
dW
dr
−Z
)
+ψ2

(
dZ
dr
− Z

r
2M1−M2

2M2−M1

)
+

+ψ3

(
dM1

dr
− M2

r
+

M1

r
−Q

)}
dr+

+
n

∑
j=0

∫ a j+1

a j

ϕ j
(
M2

1 −M1M2 +M2
2 −M2

0 j +Θ
2
j
)
dr (2.25)

In (2.25) ψ1, ψ2, ψ3 stand for adjoint (conjugate) variables, ϕ0 j, ϕ j( j = 0, . . . ,n) are
unknown Langrange’ multipliers and the material volume V is given by (2.3). Multi-
pliers ϕ0 j and ϕ j( j = 0, . . . ,n) are introduced in order to account for the constraints
(2.20) and (2.18), respectively. Evidently, in elastic regions constraints (2.18) are
inactive.

Calculating the variation of (2.25) and equalizing it to zero leads to the equation
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δJ∗ =
n

∑
j=0

{
∆h j(a2

j+1−a2
j)+2h j(∆a j+1 ·a j+1−∆a j ·a j)+

+ϕ j

(
2M1δM1−M1δM2−M2δM1 +2M2δM2 +2Θ jδΘ j−2MΘ jδM0 j

)}
+

+ ∑
j∈Ke1

{∫
Se j

{
ψ1δ

dW
dr
−ψ1δZ +ψ2δ

dZ
dr

+ψ2
δM1

D j
− ψ2M1

D2
j

∆D j +ψ2
ν

r
δZ+

+ψ3δ
dM1

dr
+

ψ3(1−ν2)

r2

(
D jδZ +Z∆D j

)
+

1−ν

r
δM1ψ3+

+ϕ0 j

(
δM2 +

1−ν2

r

(
D jδZ +Z∆D j

)
−νδM1

)}
dr+Fe j ·∆Se j

}
+

+ ∑
j∈Kp1

{ ∫
Sp j

{
ψ1δ

dW
dr
−ψ1δZ +ψ2δ

dZ
dr
− ψ2

r
δZ

2M1−M2

2M2−M1
−

− ψ2

r
Z
(2δM1−δM2)(2M2−M1)

(2M2−M1)2 +
ψ2

r
Z
(2δM2−δM1)(2M1−M2)

(2M2−M1)2 +

+ψ3δ
dM1

dr
−ψ3

δM2

r
+ψ3

δM1

r

}
dr+Fp j∆Sp j

}
= 0 (2.26)

In (2.26) Fe j stands for the integrand in (2.25) corresponding to the integral over
an elastic region Se j and ∆Se j is the variation of the boundary of the elastic region.
Similarly, Fp j is the integrand in (2.25) for a plastic region Sp j.

However, it immediately infers from (2.25), (2.17) and (2.22), that Fp j = 0, Fe j =
0 for j ∈ Kp1 and i ∈ Ke1 , respectively.

Integrating the terms

ψ1δ
dW
dr

, ψ2δ
dZ
dr

, ψ3δ
dM1

dr

in (2.26) by parts due to arbitrariness of variations of state variables δW , δZ, δM1
one can state that for r ∈ Sei ; i ∈ Ke1

dψ1

dr
= 0,

dψ2

dr
=−ψ1 +

ν

r
ψ2 +(1−ν)2Di

ψ3

r2 +
1−ν2

r
Diϕ0i,

dψ3

dr
= ϕi(2M1−M2)+

ψ2

Di
+(1−ν)

ψ3

r
+νϕ0i

(2.27)

and for r ∈ Sp j, j ∈ Kp1



2.4 Necessary optimality conditions 29

dψ1

dr
= 0,

dψ2

dr
=−ψ1−

ψ2

r
2M1−M2

2M2−M1
,

dψ3

dr
= ϕ j(2M1−M2)−

ψ2

r
3M2Z

(2M2−M1)2 +
ψ3

r
.

(2.28)

The variations of controls δM2, δΘ j ( j = 0, . . . , n) are independent, as well, in
(2.26). Therefore, the coefficients before these variations must vanish. Thus, for
j = 0, . . . , n

ϕ jΘ j = 0 (2.29)

for r ∈ Se j, j ∈ Ke1
ϕ j(2M2−M1)+ϕ0 j = 0, (2.30)

and for r ∈ Sp j, j ∈ Kp1

ϕ j(2M2−M1)+
ψ2

r
Z

3M1

(2M2−M1)2 −
ψ3

r
= 0. (2.31)

Note finally that (2.27), (2.30) hold good in the intervals (ai, ai+1) for i ∈ Ke
and also for r ∈ (ak, rk0) and (rk1 , ak+1). Similarly, (2.28), (2.31) are satisfied for
r ∈ (a j, a j+1) for j ∈ Kp and for r ∈ (rk0 , rk1).

Substituting (2.27) – (2.31) into (2.26) the equation (2.26) can be written as

n

∑
j=0

∆h j(a2
j+1−a2

j)−2ϕ jM0 j∆M0 j +2
n

∑
j=1

a j(h j−1−h j)∆a j+

+ ∑
i∈Ke1

∫
Sei

{
− ψ2M1

D2
i

+
ψ3

r2 Z(1−ν
2)+

ϕ0i

r
Z(1−ν

2)

}
∆Didr+

+ ∑
i∈Ke

Y
∣∣ai+1
ai

+ ∑
j∈Kp

Y
∣∣a j+1
a j

+Y
∣∣rk0
a′k

+Y
∣∣rk1
rk0

+Y
∣∣ak+1
r′k1

= 0 (2.32)

where the notation
Y = ψ1δW +ψ2δZ +ψ3δM1 (2.33)

is used. Moreover, it can be easily rechecked that

n

∑
j=0

h j(∆a j+1 ·a j+1−∆a j ·a j) =
n

∑
j=1

a j(h j−1−h j)∆a j (2.34)

As the parameters a j ( j = 0, . . . , n) are unknown parameters the current problem
belongs to the class of problems with moving boundaries. In this case the variations
δW (a j), δZ(a j), δM1(a j) are not independent. Arbitrary can be considered the total
variations

8
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∆W (a) = δW (a±)+ dW
dr

∣∣∣∣
a±0
·∆a

∆Z(a) = δZ(a±)+ dZ
dr

∣∣∣∣
a±0
·∆a

∆M1(a) = δM1(a±)+
dM1

dr

∣∣∣∣
a±0
·∆a

(2.35)

Evidently, the variations ∆M0 j and ∆D j are not independent, as

∆M0 j = σ0H∆h j; ∆D j =
EH2∆h j

2(1−ν2)
(2.36)

Making use of (2.36) one easily obtains from (2.32) that due to arbitrariness of ∆h j

a2
j+1−a2

j −2σ0H ·M0 jϕ j +δe j
EH2

2(1−ν2)

∫
Se j

{
− ψ2

D2
j
M1+

+
ψ3

r2 Z(1−ν
2)+

ϕ0 j

r
Z(1−ν

2)

}
dr = 0 (2.37)

for j = 0, . . . , n where

δe j =

{
1, if j ∈ Ke1

0, if j∈̄Ke1

(2.38)

Note that if j = k in (2.37) then the domain of integration consists of two intervals
(ak, rk0) and (rk1 , ak+1), respectively.

Substituting the variations of state variables according to (2.35) into (2.32),
(2.33) and accounting for the equations (2.37) yields

n

∑
j=1

{
2a j(h j−1−h j)∆a j− [ψ1(a j)δW (a j)+ψ2(a j)δZ(a j)+ψ3(a j)δM1(a j)]

}
+

+ψ1(R)δW (R)+ψ2(R)δZ(R)+ψ3(R)δM1(R)−ψ1(0)δW (0)−ψ2(0)δZ(0)−
−ψ3(0)δM1(0)−

[
ψ1(rk0)δW (rk0)+ψ2(rk0)δZ(rk0)+ψ3(rk0)δM1(rk0)

]
−

−
[
ψ1(rk1)δW (rk1)+ψ2(rk1)δZ(rk1)+ψ3(rk1)δM1(rk1)

]
= 0 (2.39)

where the square brackets denote the jump of corresponding variable, e.g.

[ψ(a j)y(a j)] = ψ(a j +0)y(a j +0)−ψ(a j−0)y(a j−0) (2.40)

Variations δW (a j), δZ(a j), δM1(a j), also the variations of state variables at
r = rk0 and r = rk1 can not be considered as arbitrary independent variations because
the coordinates a j, rk0 , rk1 themselves are subjected to the variation (see Hull [47];
Ahmed [1]). However, the variations δW (0), δZ(0), δM1(0) and δW (R), δZ(R),
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δM1(R) are independent. Accounting for the boundary conditions (2.5), (2.23),
(2.24) it follows from (2.39) that

ψ3(0) = 0, ψ2(R) = 0. (2.41)

Let us introduce the total variations at r = rk

∆W (rk) = δW (rk±0)+
dW
dr

∣∣∣∣
rk±0
·∆rk

∆Z(rk) = δZ(rk±0)+
dZ
dr

∣∣∣∣
rk±0
·∆rk

∆M1(rk) = δM1(rk±0)+
dM1

dr

∣∣∣∣
rk±0
·∆rk

(2.42)

In similar way one can define the total variations of state variables at points rk0
and rk1 . Substituting the total variations according to (2.42) in (2.39) and taking into
account the transversality conditions (2.41) with boundary conditions (2.5), (2.23),
(2.24) one obtains

n

∑
j=1

{
2a j(h j−1−h j)∆a j−ψ1(a j +0)

(
∆W (a j)−

dW (a j +0)
dr

∆a j

)
−

−ψ2(a j +0)
(

∆Z(a j)−
dZ(a j +0)

dr
∆a j

)
−

−ψ3(a j +0)
(

∆M1(a j)−
dM1(a j +0)

dr
∆a j

)
+

+ψ1(a j−0)
(

∆W (a j)−
dW (a j−0)

dr
∆a j

)
+

+ψ2(a j−0)
(

∆Z(a j)−
dZ(a j−0)

dr
∆a j

)
+

+ψ3(a j−0)
(

∆M1(a j)−
dM1(a j−0)

dr
∆a j

)
−

−ψ1(rk0 +0)
(

∆W (rk0)−
dW (rk0 +0)

dr
∆rk0

)
−

−ψ2(rk0 +0)
(

∆Z(rk0)−
dZ(rk0 +0)

dr
∆rk0

)
−

−ψ3(rk0 +0)
(

∆M1(rk0)−
dM1(rk0 +0)

dr
∆rk0

)
+

+ψ1(rk0 −0)
(

∆W (rk0)−
dW (rk0 −0)

dr
∆rk0

)
+

+ψ2(rk0 −0)
(

∆Z(rk0)−
dZ(rk0 −0)

dr
∆rk0

)
+
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+ψ3(rk0 −0)
(

∆M1(rk0)−
dM1(rk0 −0)

dr
∆rk0

)
−

−ψ1(rk1 +0)
(

∆W (rk1)−
dW (rk1 +0)

dr
∆rk1

)
−

−ψ2(rk1 +0)
(

∆Z(rk1)−
dZ(rk1 +0)

dr
∆rk1

)
−

−ψ3(rk1 +0)
(

∆M1(rk1)−
dM1(rk1 +0)

dr
∆rk1

)
+

+ψ1(rk1 −0)
(

∆W (rk1)−
dW (rk1 −0)

dr
∆rk1

)
+

+ψ2(rk1 −0)
(

∆Z(rk1)−
dZ(rk1 −0)

dr
∆rk1

)
+

+ψ3(rk1 −0)
(

∆M1(rk1)−
dM1(rk1 −0)

dr
∆rk1

)}
= 0 (2.43)

Since the total variations ∆W (a j), ∆Z(a j), ∆M1(a j) are independent, it imme-
diately infers from (2.43)

ψ1(a j +0)−ψ1(a j−0) = 0 ,

ψ2(a j +0)−ψ2(a j−0) = 0 ,

ψ3(a j +0)−ψ3(a j−0) = 0

(2.44)

for each j = 1, . . . ,n. This means that [ψi(a j)] = 0 for i = 1, 2, 3. In other words,
adjoint variables are continuous at r = a j ( j = 1, . . . ,n).

Due to the arbitrariness of total variations of state variables at r = rk0 and r = rk1
it follows from (2.43) that

[ψi(rk0)] = 0 ,

[ψi(rk1)] = 0
(2.45)

for each i = 1, 2, 3.
Arbitrary are the increments ∆a j( j = 1, . . . ,n), ∆rk0 and ∆rk1 in (2.43). Due to

the arbitrariness on ∆a j one has

2a j(h j−1−h j)+ψ1(a j)

[
dW (a j)

dr

]
+

+ψ2(a j)

[
dZ(a j)

dr

]
+ψ3(a j)

[
dM1(a j)

dr

]
= 0 (2.46)

for each j = 1, . . . ,n. Note that when deriving the last equation the continuity of
adjoint variables (2.44) has been taken into account.

Similarly, it follows from (2.43) that
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ψ1(rk0)

[
dW (rk0)

dr

]
+ ψ2(rk0)

[
dZ(rk0)

dr

]
+ ψ3(rk0)

[
dM1(rk0)

dr

]
= 0 (2.47)

and

ψ1(rk1)

[
dW (rk1)

dr

]
+ ψ2(rk1)

[
dZ(rk1)

dr

]
+ ψ3(rk1)

[
dM1(rk1)

dr

]
= 0. (2.48)

2.5 Numerical results

The results of calculations are presented in Fig. 2.2 – 2.15 and Tables 2.2 – 2.5. In
Tables 2.2 – 2.5 the values of non-dimensional quantities p, αi, γi and w0 are ex-
posed. These quantities are defined by 2.49.

The load deflection relations for elastic plastic von Mises plates are presented in
Fig. 2.2 and Fig. 2.3. Fig. 2.2 corresponds to the plate of constant thickness whereas
Fig. 2.3 is associated with the one-stepped plate. Different curves in Fig. 2.2 corre-
spond to plates with thicknesses h1 = 0.80, h2 = 0.85, h3 = 0.90, h4 = 0.95, h5 = 1.
However, curves labelled with 1, 2, 3, 4, 5 in Fig. 2.3 correspond to steps located
at a1 = 0.18R, a1 = 0.20R, a1 = 0.33R, a1 = 0.43R and a1 = 0.71R, respectively
(here h1 = 0.4h0). It can be seen from Fig. 2.2 and Fig. 2.3 that with increasing the
mass of the plate the deflection w0 decreases at each loading level.

Table 2.1 Numbers of curves

p 2,8000 3,000 3,2000 3,4000 3,6000

# 5 4 3 2 1

Table 2.2 Plastic region interval for γ1 = 0,2; α = 0,4

p 1,6000 1,6300 1,8000 1,9000 2,0000 2,1000

η – 0,0701 0,2431 0,3726 0,5318 0,6702

Table 2.3 Plastic region interval for γ1 = 0,4; α = 0,4

p 1,9821 2,1000 2,2000 2,3000 2,4000 2,5000

η 0,5793 0,6014 0,6207 0,6552 0,6893 0,7604

9
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Table 2.4 Optimal parameters for the deflection w0 = 0.2500, n = 2

p 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000

γ1 0.3781 0.4093 0.6002 0.7069 0.8103 0.8873
α1 0.2478 0.4012 0.4092 0.4791 0.5368 0.5990
γ2 0.6102 0.7150 0.7292 0.7415 0.8561 0.8997
α2 0.3007 0.4816 0.5602 0.5217 0.7204 0.8021
e 12.47% 17.61% 17.9% 11.20% 09.17% 12.76%

Table 2.5 Optimal parameters for the deflection w0 = 0.2500, n = 4

p 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000

γ1 0.4374 0.4861 0.5019 0.5343 0.6276 0.6733
α1 0.1711 0.1891 0.2351 0.2671 0.2714 0.2904
γ2 0.4837 0.5302 0.6072 0.7039 0.7161 0.7996
α2 0.3349 0.4014 0.5039 0.4261 0.3997 0.3817
γ3 0.6483 0.7318 0.7514 0.8624 0.8220 0.8356
α3 0.4602 0.4692 0.6080 0.5357 0.5886 0.6112
γ4 0.6092 0.5477 0.5513 0.6489 0.7952 0.8075
α4 0.8794 0.7213 0.8495 0.9251 0.9075 0.9014
e 19.14% 12.91% 14.03% 17.40% 10.12% 12.84%

Fig. 2.2 Load-deflection relations for plates of constant thickness
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Fig. 2.3 Deflections for α1 = 0.18, α1 = 0.20, α1 = 0.33, α1 = 0.43, α1 = 0.71.

Fig. 2.4 Bending moment m1(ρ) for α = 0.4, γ1 = 0.2.
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Fig. 2.5 Deflections of the plate (α = 0.4, γ1 = 0.2)

Fig. 2.6 Radial moment m1(ρ) for α = 0.4, γ1 = 0.4.
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Fig. 2.7 Transverse deflections for α = 0.4, γ1 = 0.4.

Fig. 2.8 Deflections of the plate (comparison with ABAQUS for α = 0.4, γ1 = 0.35)

10
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Fig. 2.9 Radial bending moment (comparison with wavelet method for α = 0.4, γ1 = 0.9)

Fig. 2.10 Hoop moment for a = 0.2R
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Fig. 2.11 Hoop moment for a = 0.4R

Fig. 2.12 The quantity m for a = 0.2R
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Fig. 2.13 The quantity m for a = 0.4R

Fig. 2.14 Load deflection relations (comparison of results)
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The curves labelled with 1, 2, 3, 4, 5 in Fig. 2.4 – 2.13 correspond to different
values of the load intensity. Corresponding load intensities are accommodated in
the Table 2.1. In Table 2.2 and 2.3 η stands for the length of the single plastic region
located at the center of the plate. Thus rk0 = 0, rk1 = η and k = 0 at the center of the
plate.

Fig. 2.15 Load deflection relations (comparison of results)

For the solution of the direct problem which consists in the determination of the
stress strain state of the plate for given distribution of the material the Finite Element
Codes FEMLAB and ABAQUS were used.

In what follows the results regarding to plates with two different thicknesses h0
and h1 will be discussed. Corresponding plate will be called one-stepped plate. The
load-deflection relations for one-stepped plates are presented in Fig. 2.2 – 2.3. Here
w0 stands for the transverse deflection at the centre of the plate and p is the non-
dimensional load intensity whereas

p = P · M00

R2 , αi =
ai

R
, γi =

hi

h0
, w0 =

W0

H
, m1,2 =

M1,2

M00
(2.49)

Here M00 stands for the yield moment for a section with thickness h0. Optimal
values of design parameters are accommodated in Tables 2.4 and 2.5 for two- and
four-stepped plates, respectively. It can be seen that in contrast to the elastic case the

11
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optimal values of design parameters depend on the load intensity. In the last rows of
Tables 2.4; 2.5 the values of the quantity e = (1−V/V∗) ·100% are accommodated.
Here V stands for the optimal (minimal) value of the plate volume and V∗ is the
volume of the reference plate of constant thickness. It can be seen from Table 2.4
that in the case of two-stepped plates and the deflection w0 = 0.25 one can save
more than 17% of the material.

The distributions of deflections of simply supported plates are plotted in Fig. 2.5;
Fig. 2.7; Fig. 2.8. Here a = 0.4R; Fig. 2.5 corresponds to the case when h1 = 0.2h0
and Fig. 2.7, Fig. 2.8 are associated with the h1 = 0.4h0. The distributions of radial
bending moments corresponding to these cases are portrayed in Fig. 2.4, Fig. 2.6
and Fig. 2.9, respectively.

It can be seen from Fig. 2.5; Fig. 2.7 and Fig. 2.8 that the higher the transverse
pressure is the larger is the deflection at each point of the plate, as might be expected.

The asterisks in Fig. 2.6; Fig. 2.7 indicate the length of the plastic region in the
plate. The matter that the maximum of the radial bending moment is not achieved at
the center of the plate means that a sort of unloading takes place during the elastic
plastic stage of deformation of circular plates.

In Fig. 2.9 the bending moments obtained by the use of the finite element method
are compared with those obtained by the wavelet method. One can see that the
results favourably agree with each other.

Transverse deflections calculated by the code ABAQUS and by the currect
method are compared in Fig. 2.8. One can see that the results are quite close to
each other.

Distributions of the hoop moment m2 = MΘ/M0 are presented in Fig. 2.10 and
Fig. 2.11 for plates with a = 0.2R and a = 0.4R, respectively. It reveals from
Fig. 2.10, Fig. 2.11 that the hoop moment has discontinuities at r = a, as might
be expected.

The quantity
m = m2

1−m1m2 +m2
2 (2.50)

is portrayed in Fig. 2.12, Fig. 2.13 for plates with a = 0.2R and a = 0.4R, respec-
tively. Here the ratio h1/h0 = 0.4.

Note that the Mises yield condition can be presented as

m− γ
2
j 6 0 (2.51)

for r ∈ (a j; a j+1); j = 0, . . . , n. According to the assumption about the stress profile
in plastic regions (2.51) takes the form m = γ2

j . However, in elastic regions the
inequality (2.51) must be converted into a strict inequality. Calculations carried out
and Fig. 2.12, Fig. 2.13 demonstrate that (2.51) is satisfied at each point of the plate.

The load deflections relations obtained by the current method are compared with
the results of Updastra, Peddieson, Buchanan [139] and Turvey [136], [137], [138]
in Fig. 2.14 and Fig. 2.15, respectively.

The method of Upadrasta et al. [139] exploits the idea of elastic compensation
to iteratively modify the elastic properties of the material to simulate the plastic
yielding in finite element codes. In Fig. 2.14 the load deflection relations calculated
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by Upadastra et al. are presented for different values of the material parameter n̄.
The curve labelled with 1 in Fig. 2.14 corresponds to the method used in current
study. The results are more or less coinciding if n̄≈ 0.74.

The load-deflection relations calculated by the current method are compared
with those obtained by Turvey, Salehi [137] also by Ohashi and Murakami [114]
in Fig. 2.15. It can be seen from Fig. 2.15 that the results of the current study are
in good correlation with the results of Turvey and with the data of the experiments
conducted by Ohashi and Murakami [114].

2.6 Concluding remarks

A method for numerical investigation of axisymmetric plates subjected to the dis-
tributed transverse pressure loading was presented. The material of plates studied
herein is assumed to be an ideal elastic plastic material obeying the non-linear yield
condition of von Mises and the associated flow law. The strain hardening as well as
geometrical non-linearity are neglected in the present investigation.

Making use of the variational methods of the theory of optimal control necessary
optimality conditions are derived for plates of piece wise constant thickness. For
calculations a computer code in the Linux environment is created. Calculations car-
ried out showed that the obtained results are in good correlation with those obtained
by ABAQUS when solving the direct problem of determination of the stress strain
state of the plate.





Chapter 3
Optimization of annular plates made of a von
Mises material

3.1 Introduction

Problems of optimization of annular plates have been studied by many authors in
the case of a pure elastic material (see Banichuk [3]; Dzjuba [160] and others). On
the other hand, there exists an exhaustive list of papers devoted to the optimization
of perfectly plastic plates (see Lellep [73]; Lepik [89]). However, there exist only a
few papers concerning to the optimization of plates made of elastic plastic materials.
Among such papers one should mention the papers by Lellep and Vlassov [82] –
[87], Kaliszky, Logo [55].

In this section a method of optimization is developed for annular plates subjected
to the transverse pressure.

3.2 Problem formulation

Let us study the response of the annular plates with radii a and R to the quasistatic
transverse pressure of intensity P = P(r), where r is the current radius. It is assumed
that the plates have an ideal sandwich cross section with two rims of thickness h= h j
for j = 0, . . . ,n and x ∈ (a j, a j+1) (Fig. 3.1). These rims are separated by a layer of
the core material with thickness H. The latter is considered as a constant over the
plate. It is reasonable to take a0 = a and an+1 = R.

Under these assumptions one can present the volume of the plate (actually we
calculate the volume of a layer) as

V =
n

∑
j=0

h j

(
a2

j+1−a2
j

)
. (3.1)

The quantities a j and h j are treated as unknown parameters which will be defined
so that the cost function attains the minimal value, provided the governing equations
and additional constrains with boundary conditions are satisfied.

45
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Fig. 3.1 Stepped annular plate

In the literature one can find various types of cost functions due to the large
variety of optimization problems. In the present paper we shall treat two kinds of
problems: 1) the minimum weight problem for constrained deflections and 2) min-
imization of the deflections at the free edge of the plate. In the first case the cost
function can be presented by (3.1), in the second case J = W (a), where W stands
for the transverse deflection.

Assume that the plate under consideration is simply supported at the outer edge
and it is absolutely free at the inner edge. Thus, the boundary conditions at the inner
edge are

M1(a) = 0, Q(a) = 0, (3.2)

where M1 is the radial bending moment and Q stands for the radial shear force. Note
that the bending moment in the circumferential direction will be denoted by M2. It
is well-known (see Reddy, [121]) that

Q =
1
r

[
d
dr

(
rM1

)
−M2

]
. (3.3)

At the simply supported outer edge the boundary conditions have the form

M1(R) = 0, W (R) = 0. (3.4)

Note that in the case of the minimum weight problem W (a) = W0, where W0 is a
given constant.

3.3 Basic equations and assumptions

We are investigating the elastic plastic response of axisymmetric plates to the ax-
isymmetric loading P(r). The plates have a sandwich-type cross section. It is widely
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recognized that stresses across thin carrying layers in a sandwich plate are constant.
Thus, in a cross section of a sandwich plate the stress state can be either a pure elas-
tic or a pure plastic state. Therefore, the plate must be subdivided into elastic and
plastic regions. Let these regions be denoted by Se and Sp, respectively. Evidently,
the sum of these regions Se∪Sp coincides with the interval [a, R].

It is well-known that the stress state in a pure elastic axisymmetric plate satisfies
the equations (see Reddy, [121]; Vinson, [144]; Lellep and Vlassov, [82]),

dW
dr

= Z,

dZ
dr

=−M1

D j
− ν

r
Z,

dM1

dr
=−

(
1−ν

2)D j
Z
r2 −

1−ν

r
M1 +Q,

dQ
dr

=−Q
r
− p

(3.5)

for r ∈ (a j, a j+1); j = 0, . . . n. Here Z is an auxiliary variable, whereas

D j =
EH2h j

2(1−ν2)
. (3.6)

In (3.5), (3.6) E and ν stand for the Young and Poisson modules, respectively,
whereas D j is the bending stiffness coefficient of the segment of the plate with
thickness h j.

Note that the system (3.5) is identical to the system (2.22) with (2.19) used in the
previous section.

It is assumed that the material of the plate obeys von Mises yield condition pre-
sented as

M2
1 −M1M2 +M2

2 −M2
0 j 6 0 (3.7)

for r ∈ (a j, a j+1); j = 0, . . . n. Here M0 j stands for the limit moment, e.g.

M0 j = σ0Hh j, (3.8)

σ0 being the yield stress of the material.
In an elastic region the inequality (3.7) is satisfied as a strict inequality. However,

in a plastic region (3.7) is transformed into an equality. Introducing a new variable
Θ j the inequality (3.7) can be presented as an equality

M2
1 −M1M2 +M2

2 −M2
0 j +Θ

2
j = 0 (3.9)

The latter holds good in an arbitrary region of the plate.
The associated flow law and equilibrium equations furnish the governing equa-

tions for a plastic region as (Lellep and Vlassov, [82]),
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dW
dr

= Z,

dZ
dr

=
z
r

2M1−M2

2M2−M1
,

dM1

dr
=

M2

r
− M1

r
+Q,

dQ
dr

=−Q
r
− p.

(3.10)

It is worth while to emphasize that (3.10) is satisfied for r ∈ Sp whereas (3.5) holds
good for r ∈ Se. In the elastic regions one has an additional requirement

M2−
Z
r

D j(ν
2−1)−νM1 = 0, (3.11)

the consequence from Hooke’s law, geometrical relations and equilibrium condi-
tions.

The posed problem will be treated as a particular problem of the theory of optimal
control, the variables W , Z, M1, Q being the state variables and M2, Θ j – controls.

Let us denote the state vector by X = (X1, X2, X3, X4). Thus,

X1 =W ; X2 = Z; X3 = M1; X4 = Q (3.12)

and the left hand sides of equations (3.5) and (3.10) can be denoted by X ′i , (i =
1, . . . ,4). Denoting the right hand sides of equations (3.5) and (3.10) by fei and fpi,
respectively, one can write

X ′i = fei(X1, X2, X3, X4, D j) (3.13)

for r ∈ Se j and
X ′i = fpi(X1, X2, X3, X4, M2) (3.14)

for r ∈ Spi ; (i = 1, . . . ,4).
Here Se j stands for the interval (a j, a j+1) under the condition that it belongs

wholly to the elastic region.
Optimality conditions are defined with the help of the theory of optimal control

[1], [3], [47], [75].
Let Ke be the set of integers defined as follows. Namely, for j ∈ Ke the region

Se j = (a j, a j+1) is an elastic region. Similarly, let Kp include such values of indexes
j ∈ Kp for which the region Sp j = (a j, a j+1) is a fully plastic region.

For the sake of simplicity it is assumed that there exists only a unique interval
(ak, ak+1) including the both, elastic and plastic regions. Let plastic deformations
take place for r ∈ (rk0 , rk1). It is reasonable to assume that in the region of constant
thickness h = hk plastic deformations take place for r ∈ (rk0 , rk1) whereas intervals
(ak, rk0) and (rk1 , ak+1) remain elastic. In particular cases it can be ak = rk0 or
ak+1 = rk1 .
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Let us denote the set of integers which contains the number k and all elements of
Ke by Ke1 and let

Sek = Sek0 ∪Sek1 (3.15)

where Sek0 ; Sek1 are the subintervals of (ak, ak+1) associated with elastic deforma-
tions.

Similarly, it is expected that Kp1 is the set of integers which contains besides
elements Kp the integer k. Thus, one can write

Se =
⋃

j∈Ke1

Se j, Sp =
⋃

j∈Kp1

Sp j. (3.16)

3.4 Derivation of optimality conditions

The problem posed above will be treated as a particular problem of optimal control.
This problem involves control functions M2, Q j, ( j = 0, . . . , n) as well as concen-
trated parameters a j ( j = 1, . . . , n), hi (i = 0, . . . , n) whereas the right-hand sides of
state equations are discontinuous when passing the boundary between Se and Sp.

In order to deduce the conditions of optimality of the cost criterion (3.1) sub-
jected to constraints (3.5) and (3.11) in elastic regions and state equations (3.10) in
plastic regions and equalities (3.9) in both regions one can employ the method of an
augmented functional (Bryson, [10]; Banichuk, [3]; Hull, [47]; Lellep and Vlassov,
[82], [83]). In the present case the augmented functional can be presented as (here
the notations (3.12) – (3.14)) are used)

J∗ =V + ∑
j∈Ke1

∫
Se j

{ 4

∑
i=1

ψi
(
X ′i − fei

)
+X j

(
M2 +D j

(
1−ν

2)X2

r
−νX3

)}
dr+

+ ∑
j∈Kp1

∫
Sp j

{ 4

∑
i=1

ψi
(
X ′i − fpi

)}
dr+

n

∑
j=0

∫ a j+1

a j

ϕ j
(
X2

3 −X3M2 +M2
2 −M2

0 j +Θ
2
j
)
dr

(3.17)

Here the functions X j ( j ∈ Ke1) and ϕ j ( j = 0, . . . ,n) stand for Lagrange multipliers
and ψ1, ψ2, ψ3, ψ4 adjoint (conjugate) variables.

Calculating the total variation of the functional (3.17) one has to take into account
that the quantities a j ( j = 1, . . . , n) and hi (i = 0, . . . , n) are preliminarily unknown.
Unfixed are also boundary points between Se j and Sp j. Therefore the variations of
state variables at r = a j must be calculated by the following sample (Ahmed, [1];
Hull, [47]; Lellep, [73])

∆Y (a) = δY (a±0)+Y ′(a±0) ·∆a (3.18)

where δY is the weak variation and ∆Y the total variation of Y at r = a.

13
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The total variation of (3.17) can be presented as

∆J∗ = 2
n

∑
j=1

a j
(
h j−1−h j

)
∆a j +

n

∑
j=0

{(
a2

j+1−a2
j
)
∆h j+

+
∫ a j+1

a j

ϕ j
(
2X3δX3−X3δM2−M2δX3 +2M2δM2−2M0 j δM0 j +2Θ jδΘ j

)
dr
}
+

+ ∑
j∈Ke1

∫
Se j

{ 4

∑
i=1

(
ψiδX ′i −ψiδ fei

)
+X j

(
δM2+

1−ν2

r

(
X2δD j+D jδX2

)
−νδX3

)}
dr+

+ ∑
j∈Kp1

∫
Sp j

4

∑
i=1

(
ψiδX ′i −ψiδ fpi

)
dr (3.19)

Integrating by parts one easily obtains∫ a j+1

a j

ψiδX ′i dr =
∫ a j+1

a j

ψ
′
i δXidr+

+ψi(a j+1−0)δXi(a j+1−0)−ψi(a j +0)δXi(a j +0) (3.20)

Making use of (3.5), (3.12) one can find

δ fe1 = δX2,

δ fe2 =−
1

D j
δX3 +

X3

D2
j
δD j−

ν

r
δX2,

δ fe3 =
ν2−1

r2

(
X2δD j +D jδX2

)
− 1−ν

r
δX3 +δX4,

δ fe4 =−
1
r

δX4

(3.21)

for r ∈ Se j, j ∈ Ke1.
Similarly, it infers from (3.10), (3.12) that

δ fp1 = δX2,

δ fp2 =
δX2

r
2X3−M2

2M2−X3
+

+
X2

r
(
2M2−X3)2

{(
2δX3−δM2

)(
2M2−X3

)
−

−
(
2δM2−δX3

)(
2X3−M2

)}
,

δ fp3 =
1
r

(
δM2−δX3

)
+δX4,

δ fp4 =−
1
r

δX4

(3.22)
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for r ∈ Sp j, j ∈ Kp1.
Making use of (3.6), (3.8) one can recheck that for j ∈ Ke1

δD j =
EH2

2
(
1−ν2

)∆h j (3.23)

and for j ∈ Kp1
δM0 j = σ0H∆h j (3.24)

Substituting (3.20) – (3.24) in (3.19) and starting from the equation ∆J∗ = 0 one
can deduce the requirements which have to be met by the optimal solution. Due to
the independence of variations of state variables δXi (i = 1,2,3,4) one obtains the
adjoint equations for r ∈ Se j, j ∈ Ke1

ψ
′
1 = 0,

ψ
′
2 =−ψ1 +

ν

r
ψ2 +(1−ν

2)

(
D j

ψ3

r2 +
D j

r
X j

)
,

ψ
′
3 =

ψ2

D j
+

1
r
(1−ν)ψ3 +ϕ j(2X3−M2)−νX j,

ψ
′
4 =−

ψ4

r

(3.25)

and for r ∈ Sp j, j ∈ Kp1

ψ
′
1 = 0,

ψ
′
2 =−ψ1−

ψ2

r
2X3−M2

2M2−X3
,

ψ
′
3 =−

ψ2

r
3X2M2

(2M2−X3)2 +
ψ3

r
+ϕ j(2X3−M2),

ψ
′
4 =−

ψ4

r

(3.26)

The variations of control functions δΘ j are independent in (3.19). Thus,

ϕ jΘ j = 0 (3.27)

for j = 0, . . . n.
Making use of (3.19), (3.23), (3.24) and taking into account that the increments

∆h j are arbitrary one can write for each j = 0, . . . , n

a2
j+1−a2

j −2σ0HM0 j(a j+1−a j)ϕ j+

+
EH2δe j

2(1−ν2)

∫
Se j

{
− ψ2

D2
j
X3 +

ψ3

r2 X2(1−ν
2)+

X j

r
(1−ν

2)X2

}
dr = 0 (3.28)
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In (3.28) the following notation is used:

δe j =

{
1, if j ∈ Ke1

0, if j∈̄Ke1
(3.29)

It is worthwhile to mention that if j = k in (3.28) then the integration domain Sek
consists of the intervals (ak, rk0) and (rk1 , ak+1), as it was stipulated in the previous
section of the paper.

Evidently, the variation δM2 is also an independent one in (3.19). Therefore, one
has

ϕ j(2M2−X3)+X j = 0 (3.30)

for r ∈ Se j, j ∈ Ke1 and

ϕ j(2M2−X3)+
ψ2

r
X2

3X3

(2M2−X3)2 −
ψ3

r
= 0 (3.31)

for r ∈ Sp j, j ∈ Kp1.
Substituting (3.25) – (3.31) in the equation ∆J∗ = 0 and integrating the terms

ψiδX ′i , (i = 1, . . . ,4) results in

2
n

∑
j=1

a j
(
h j−1−h j

)
∆a j + ∑

j∈Ke

Y
∣∣∣∣a j+1−0

a j+0

+

+ ∑
j∈Kp

Y
∣∣∣∣a j+1−0

a j+0

+Y
∣∣∣∣rk0−

ak+

+Y
∣∣∣∣rk1−0

rk0+0
+Y
∣∣∣∣ak+1−0

rk1+0
= 0 (3.32)

where

Y =
4

∑
i=1

ψiδXi. (3.33)

The variations of state variables δXi, (i = 1, . . . ,4) can be considered as inde-
pendent quantities at r = a and r = R. Accounting for the boundary conditions (3.2)
and (3.4) one can present the transversality conditions as

ψ2(a) = 0 (3.34)

at r = a and
ψ2(R) = o, ψ4(R) = 0 (3.35)

at the outer edge of the plate.
At the intermediate points r = a j ( j = 1, . . . , n) and at r = rk0 , r = rk1 the inde-

pendent quantities are the total variations of state variables

∆Xi(a j) = δXi(a j±0)+X ′i (a j±0) ·∆a j (3.36)

and
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∆Xi(rk0) = δXi(rk0 ±0)+X ′i (rk0 ±0)∆rk0 ,

∆Xi(rk1) = δXi(rk1 ±0)+X ′i (rk1 ±0)∆rk1 ,
(3.37)

where i = 1, 2, 3, 4 and j = 1, . . . , n.
It is worthwhile to remind that the sum of sets Ke and Kp e.g.

K = Ke∪Kp

includes the integers 0,1, . . . ,n. Therefore, inserting (3.34), (3.35) in (3.32) on can
present the equation (3.32) as

n

∑
j=1

{
2a j
(
h j−1−h j

)
∆a j−

4

∑
i=1

[
ψi(a j)δXi(a j)

]}
−

−
4

∑
i=1

{[
ψi(rk0δXi(rk0))

]
+
[
ψi(rk1)δXi(rk1)

]}
= 0 (3.38)

Here the square brackets denote the jumps of corresponding variables, e.g.[
ψ(a)δX(a)

]
= ψ(a+0)δX(a+0)−ψ(a−0)δX(a−0) (3.39)

Substituting the total variations ∆Xi defined according to (3.36), (3.37) in (3.38)
and bearing in mind that ∆Xi are independent variations, one can easily conclude
that

ψi(a j +0) = ψi(a j−0) (3.40)

for i = 1, . . . ,4; j = 1, . . . ,n. It infers from (3.32) also that

ψi(rk0) = ψi(rk0 −0)

ψi(rk1) = ψi(rk1 +0)
(3.41)

where i = 1,2,3,4.
Because of the continuity of adjoint variables required by (3.40), (3.41) the equa-

tion (3.38) takes the form

n

∑
j=1

{
2a j
(
h j−1−h j

)
∆a j +

4

∑
i=1

ψi(a j)
[
X ′i (a j)

]
∆a j

}
+

+
4

∑
i=1

{
ψi(rk0)

[
X ′i (rk0)

]
∆rk0 +ψi(rk1)

[
X ′i (rk1)

]
∆rk1

}
= 0 (3.42)

Due to the arbitrariness of increments ∆a j it follows from (3.42)

4

∑
i=1

ψi(a j)
[
X ′i (a j)

]
+2a j(h j−1−h j) = 0 (3.43)

14
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for each j = 1, . . . ,n.
In the similar way one obtains

4

∑
i=1

ψi(rk j)
[
X ′i (rk j)

]
= 0 (3.44)

for j = 0,1.

3.5 Numerical results and discussion

In order to solve the problem up to the end one has to integrate the systems of equa-
tions (3.5) and (3.10) separately in elastic and plastic regions. The integration is
implemented numerically by making use of different computer codes. Before the
integration one has to define the hoop moment M2 from (3.9) and substitute it to
the set (3.10) in each plastic region. After that one can determine the adjoint vari-
ables according to (3.25) and (3.26) for elastic and plastic regions, respectively. The
design parameters will be determined from (3.28) and (3.43).

The results of calculations are presented for one-stepped plates in Fig. 3.2 – 3.11
and Tables 3.1 – 3.2.

The results obtained by FEM are compared with those calculated by the wavelet
method.

In Fig. 3.2 the load-deflections curve are presented for annular plates loaded by
the uniformly distributed transverse pressure. Fig. 3.2 – 3.8 correspond to the plate
simply supported at the outer edge and absolutely free at the inner edge. In calcu-
lations the inner radius of the plate a = 0.2R. The load intensities corresponding to
curves 1 – 5 are following: p1 = 1,98, p2 = 2,81, p3 = 3,02, p4 = 2,31, p5 = 3,21.

Distributions of deflections w and radial bending moments for stepped annular
plates with thicknesses h0 and h1 are depicted in Fig. 3.4 – 3.9. Here a = 0.2R and
the notation

α0 =
a
R
, α =

a1

R
, γ =

h1

h0
(3.45)

is used. In Fig. 3.2 – Fig. 3.6 different curves correspond to different values of the
transverse load intensity. Corresponding values of the load are presented above.

In Fig. 3.5 and Fig. 3.8 the deflection and radial moment are depicted for various
values of the parameter α1 and in Fig. 3.6 and Fig. 3.9 for different values of the
ratio γ . Here different curves are associated with γ = 0.4; γ = 0.5; γ = 0.6; γ = 0.7
and γ = 0.8, respectively. It can be seen from Fig. 3.3 and Fig. 3.5 that when the
load intensity increases then transverse deflections monotonically increase, as might
be expected. Fig. 3.7 demonstrates the matter that similar relationship holds good
between the moment and the loading, as well.

It can be seen from Fig. 3.7 – 3.9 that the radial bending moment is a continuous
but not continuously differentiable function of the current radius r. The jumps of
slopes of the derivative m′1 are admissible because at these points the thickness has
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Fig. 3.2 Load-deflection relations for plates of constant thickness

Fig. 3.3 Load-deflection relations of stepped plates
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Fig. 3.4 Transverse deflections of the plate w

Fig. 3.5 Deflections of the plate for different step locations
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Fig. 3.6 Deflections of the plate w for different ticknesses

Fig. 3.7 Radial moment m1

15
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Fig. 3.8 Bending moment m1 for various step locations

Fig. 3.9 Bending moment for different ratios of thicknesses
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Fig. 3.10 Hoop moment

Fig. 3.11 The quantity m
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Fig. 3.12 Value m for the range r/R ∈ [0.2,0.4]

jumps. On the other hand, it can be easily rechecked that the shear force defined by
(3.3) preserves its continuity.

It is quite surprising that the radial bending moment m1 is rather sensitive with
respect to the step location (Fig. 3.8) whereas the changes of the step coordinate
a1 cause only slight changes in the distribution of deflections (Fig. 3.5). Similarly,
looking at Fig. 3.9 and Fig. 3.6 one can see that the bending moment m1 is strongly
sensitive with respect to the ratio of thicknesses (Fig. 3.9) but the deflection is less
sensitive with respect to this ratio.

In order to check whether the obtained solution is statically admissible one has
to check if the stresses in elastic regions remain inside the yield surface in the stress
space. This means that inequalities (3.7) must be fulfilled as strict inequalities in
elastic regions. For this purpose let us introduce a function

m = m2
1−m1m2 +m2

2 (3.46)

where
m1 =

M1

σ0Hh∗
, m2 =

M2

σ0Hh∗
, (3.47)

where h∗ is the thickness of layers of a reference plate of constant thickness.
Comparing (3.7) and (3.46) one can state that (3.7) is satisfied if m 6 γ2

j where
γ j = h j/h∗. In calculations one has taken h∗ = h0.
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Results of calculation showed that the solutions established above are statically
admissible.

Table 3.1 Optimal parameters for w0 = 0.25

p 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000

γ1 0.8241 0.8002 0.7801 0.7201 0.6144 0.5891
η1 0.2917 0.3201 0.3271 0.3406 0.4211 0.4309
η2 0.3289 0.4238 0.3055 0.6320 0.7298 0.8044
α 0.3071 0.3612 0.4072 0.5106 0.6091 0.6675
e 12,74% 14.32% 17.92% 19.21% 18.01% 17.31%

Table 3.2 Optimal parameters for w0 = 0.30

p 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000

γ1 0.7140 0.7013 0.7301 0.7814 0.6215 0.5913
η1 0.4139 0.4031 0.3783 0.4126 0.3817 0.4427
η2 0.5721 0.5791 0.5604 0.7893 0.8314 0.8204
α 0.4715 0.5003 0.4173 0.6120 0.5169 0.6689
e 14,32% 09.81% 15.39% 17.96% 16.92% 18.02%

The distribution of the hoop moment m2 and the quantity m are depicted in
Fig. 3.10 – 3.12. It can be seen from Fig. 3.10 – 3.12 that the moments m2 and m
are discontinuous, as might be expected. One can see from Fig. 3.11 that the in-
equality m < γ2 (here γ = 0.8) is satisfied in the elastic regions. However, m = γ2

in the plastic region as it was assumed above. The variable m is almost constant
in the internal region of the plate (Fig. 3.11). However, studying the situation more
exactly one can see that the quantity m is slightly different from the unity in the
internal region for r 6 0.4R (Fig. 3.12).

The values of the design parameters α and γ are accommodated in Tables 3.1, 3.2
for plates with a unique step of the thickness for different values of the load intensity.
The data presented in Tables 3.1, 3.2 correspond to the plate with the internal radius
a0 = 0.2R.

The parameters η1 and η2 in Tables 3.1, 3.2 indicate the internal and exter-
nal radii of the plastic zone. It means that plastic deformations take place for
r ∈ (η1R, η2R) whereas the remained parts of the plate are elastic.

It can be seen from Tables 3.1, 3.2 that the plastic zone spreads when transverse
pressure increases. It is interesting to note that the coordinates η1 and η2 do not
increase monotonically with the load intensity.

In order to assess the effectivity of the design the coefficient

e =
V
V∗

16
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is introduced. Here V is the optimal value of the volume defined by (3.1) and V∗
stands for the sheet volume of the reference plate of constant thickness h∗.

The values of the coefficient of effectivity are presented in the last rows of Tables
3.1, 3.2. It can be seen from Tables 3.1, 3.2 that the material saving depends essen-
tially on the loading level and also on the admissible deflection at the free edge of
the plate. If, for instance, w0 = 0.3 and p = 2.8 one can save more than 14% of the
material when using the design of one-stepped plates.

3.6 Conclusions

An analytical-numerical study of annular plates operating in the range of elastic
plastic deformations was undertaken. The material of plates was assumed to be an
ideal elastic plastic material obeying the Mises yield condition. The author suc-
ceeded in the analytical derivation of optimality conditions for this highly non-
linear problem. The obtained systems of equations were solved by existing computer
codes.

The results of calculations have shown that in the case of a minimum weight
problem it is possible to establish designs with remarkably smaller material con-
sumption than that of a plate with constant thickness. The material saving depends
on the displacement level. For instance, in the case if a= 0.2R, w= 0.25 and p= 3.4
one can save 19,21% of material when using the design with a unique step of the
thickness. However, if p = 2.8 then the eventual saving is 12,74%. The plotted re-
sults have revealed the matter that radial bending moment is continuous but the hoop
moment has jumps at the cross sections associated with the steps of the thickness.



Chapter 4
Optimization of anisotropic plates

4.1 Introduction

Circular and annular plates are of practical interest in mechanical, civil and ocean
engineering where these plates are used as bulkheads of separable sections of sub-
mersibles. A purely elastic design of a structural element made of a ductile material
and loaded by pressures of high intensity may be overly conservative. Thus, it is rea-
sonable to account for the elastic plastic stages of deformation in direct problems of
determination of the stress strain state of plates as well as in the shape optimization
of plates.

In the present section a method of optimization of elastic plastic annular plates
is developed. The plates are made of anisotropic materials which obey the yield cri-
teria of Hill and Tsai-Wu. It is assumed that the plates have sandwich cross section
whereas the carrying layers are of piece wise constant thickness.

4.2 The cost criterion and main assumptions

The aim of the present investigation is to study the behaviour of elastic plastic cir-
cular plates made of composite materials and to establish the optimal design for
plates of piece wise constant thickness (Fig. 4.1). It is recognized that the behaviour
of structures made of unidirectionally reinforced composites can be prescribed as
the response of anisotropic structures. Further, it is assumed that the material of the
plate is an anisotropic quasi-homogeneous material obeying the Hill’s or Tsai-Wu
yield condition. It is assumed that the thickness (Fig. 4.1)

h =

{
h0, r ∈ (a0, a),
h1, r ∈ (a, R), (4.1)

where R is the radius of the plate and r – current radius. The quantities h0, h1, a are
treated as design variables. Note that in the case of sandwich plates the quantity h
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is considered as the thickness of carrying layers whereas the thickness of the core
material H is assumed to be constant.

Fig. 4.1 Annular plate

Although in the literature one can find a lot of different formulations of the prob-
lems of optimization one of the most important problem of this kind is the minimum
weight problem. An exhaustive list of papers can be found in books by Banichuk
[3], Kirsch [61], Logo [88], Rozvany [124], Gajewski, Życkowski [28] and others.
Discrete material optimization of vibrating plates made of laminated and compos-
ite materials was undertaken by several authors. In the paper by Niu, Olhoff, Lund,
Cheng [112] the material optimization of plates is accomplished in order to obtain
the minimum sound radiation.

In the present study, however, we are looking for minimum weight designs of
composite plates. In the case of a single step of the thickness the cost criterion can
be presented as

J = h0
(
a2−a2

0
)
+h1

(
R2−a2). (4.2)

When minimizing the cost function (4.2) one has to take into account the gov-
erning equations of axisymmetric plates. Moreover, the deflection of the plate must
be constrained. This constraint can be transformed into the boundary condition

W (a0) =W0 (4.3)

where W is the transverse deflection and W0 – a given number.
It is assumed that the material of the plate is a unidirectionally reinforced com-

posite which can be treated as an anisotropic quasi homogeneous material. During
the bending of the plate caused by the transverse pressure of intensity P(r) the elas-
tic and elastic plastic stages of deformation will take place. We assume that in the
plastic stage the material obeys the Tsai-Wu yield criterion (see Daniel, Ishai, [19]).
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4.3 Yield criteria for anisotropic materials

It is well-known that the failure and yielding of homogeneous isotropic bodies can
be prescribed by the theories of maximal strains or maximal values of tangential
stresses. The yield conditions corresponding to these theories are called Mises and
Tresca yield conditions. As regards the failure criteria and yield conditions for com-
posite materials compared to those for homogeneous and isotropic bodies it is not so
clear what the actual and unique criterion for a particular problem is. One can find
a series different criteria suggested by different authors. Probably the most familar
to the engineering and scientific community are the criteria developed by Hill [38],
Lance and Robinson [72], Barlat at al [5], Tsai and Wu [135]. A review of existing
criteria at this time was presented by Burk [11].

In the present study our analysis is resorting to the criteria of Hill and Tsai
and Wu. The criterion of Hill is one of the earliest failure and yield criteria for
anisotropic materials. It presents a generalization of the isotropic yield behaviour of
ductile metals for large strains. Long ago, it was recognized by practicioners and sci-
entists that in a rolling process the metal grains tend to align and thus a self induced
anisotropy occurs.

Guided by these considerations, Hill has formulated, an interactive yield crite-
rion which can be presented for a three-dimensional stress state as (Vinson and
Sierakowski, [146])

A1
(
σ11−σ22

)2
+A2

(
σ22−σ33

)2
+A3

(
σ33−σ11

)2
+

+2A12σ
2
12 +2A13σ

2
13 +2A23σ

2
23 = 1 (4.4)

where σi j are the stress components and A1, A2, A3, A12, A13, A23 stand for numbers
which can be defined on the basis of appropriate experimental data. In the case of
unidirectionally reinforced composites the criterion (4.4) simplifies taking the form

A1

[(
σ11−σ22

)2
+
(
σ33−σ11

)2
]
+A2

(
σ22−σ33

)2
+

+2A12
(
σ

2
12 +σ

2
13
)
+2A23σ

2
23 = 1. (4.5)

In many practically important situations the stress state can be treated as a plane
stress state with σ33 = 0, σ13 = 0, σ23 = 0. For the plane state the Hill’s criterion
takes the form (Fig. 4.2)

A1
(
σ11−σ22

)2
+A2σ

2
22 +A3σ

2
11 +2A12σ

2
12 = 1. (4.6)

Further simplifications of (4.6) can be introduced for transversely isotropic ma-
terials. In this case (4.6) can be rewritten as(

σ11

X

)2

+

(
σ22

Y

)2

−
(

σ11σ22

XX

)2

+

(
σ12

S

)2

= 1. (4.7)
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Fig. 4.2 Plane state of the Hill’s criterion

In (4.7) the quantities X and Y can be interpreted as yield stresses in directions
of coordinate axes and S is the limit value of the tangential stress component.

Somewhat later Tsai and Wu [135] developed a tensor polynomial theory with
the failure surface (Daniel, Ishai, [19])

6

∑
i=1

(
Biσii +

6

∑
j=1

Bi jσiiσ j j

)
= 1 (4.8)

where Bi and Bi j stand for certain numerical coefficients. For the plane state stress
the criterion (4.8) can be expressed as

B1σ11 +B2σ22 +B6τ6 +B11σ
2
11 +B22σ

2
22 +B66τ

2
6+

+2B12σ11σ22 +2B16σ11τ6 +2B26σ22τ6 = 1. (4.9)

where
τ6 = σ66. (4.10)

4.4 Governing equations for anisotropic plates

It was assumed above that the composite material of the plate is an elastic plastic
material. Thus, if the pressure loading is high, then in the plate the regions of elastic
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and plastic deformations occur. In the elastic regions the Hooke’s law holds good
and in plastic regions the stress profile reaches on the yield surface. However, in the
regions of both type the equilibrium conditions must be satisfied. The equilibrium
equations of a plate element are presented by (2.6), provided the stress-strain state
remains axisymmetric. As above, M1, M2 denote the bending moments in the radial
and hoop directions, respectively, whereas Q is the shear force and P – the intensity
of the distributed transverse loading.

Let us denote by Se and Sp the regions of elastic and plastic deformations, re-
spectively. Employing the concept of a sandwich plate the whole plate is subdivided
into elastic and plastic regions. However, in the case of solid plates the regions of
elastic and elastic plastic deformations must be studied separately.

It was shown in the previous works (see Lellep, Vlassov, [84]) that the governing
equations have the form (3.5) in elastic regions for r ∈ (a j, a j+1); j = 0; 1. At the
same time

M2 = νM1 +
1
r

Z
(
ν

2−1
)
D j (4.11)

and

D j =
EH2h j

2(1−ν2)
. (4.12)

In (4.11), (4.12) Z stands for an auxiliary variable; ν is the Poisson modulus and
E stands for the Young modulus. It is worthwhile to mention that for r ∈ (a j, a j+1)
h = h j and a2 = R, a1 = a.

Note that the differential equations (3.5) can be integrated without paying any
attention to the equation (4.11). The latter serves for determination of the hoop mo-
ment M2. The boundary conditions for (3.5) are

M1(a0) = 0; Q(a0) = 0; M1(R) = 0 (4.13)

if the plate is simply supported at the outer edge and free at the inner edge.
In the plastic regions for r ∈ Sp the stress state of the plate corresponds to a

point lying on the yield surface. It is assumed herein that the yield surface can be
presented as

Φ j(M1, M2, h j) = 0 (4.14)

for r ∈ (a j, a j+1) for j = 0 and j = 1.
According to the associated flow law the vector of strain rates must be directed

towards the outward normal to the yield surface (see Chakrabarty, [14]; Kaliszky,
[54]; Jones, [48]). Thus, one has

K̇1 = λ j
∂Φ j

∂M1
,

K̇2 = λ j
∂Φ j

∂M2

(4.15)

for r ∈ (a j, a j+1) and r ∈ Sp. In (4.15) λ j stands for a non-negative scalar multiplier
and K̇1, K̇2 denote the strain rate components. In the present paper a deformation-
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type theory of plasticity is used. Thus, one can replace the strain rates by strain
components whereas

K1 =−
d2W
dr2 , K2 =−

1
r

dW
dr

. (4.16)

Omitting the derivatives with respect to time or a time-like parameter and elimi-
nating λ j in (4.15) leads to the relations

d2W
dr2 =

Z
r
·

∂Φ j

∂M1
∂Φ j

∂M2

(4.17)

where Z is defined earlier by (3.5).
The governing equations for elastic plastic regions are presented by (2.6), (4.13)

– (4.17) Equation (4.15) – (4.17) together with the equilibrium equations result in

dW
dr

= Z,
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Z
r

∂Φ j

∂M1

(
∂Φ j
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)−1

,

dM1

dr
=

M2−M1

r
+Q,

dQ
dr

=−Q
r
− p

(4.18)

for r ∈ Sp. Note that (4.18) presents the system of governing equations for the plastic
region Sp. The system (4.18) is to be integrated together with the yield condition
Φ j = 0 in each plastic region for r ∈ Sp j. Here Sp j stands for the interval (a j, a j+1)
where the stress state corresponds to a plastic state.

It is well-known in the theory of plasticity that the yield surface is a closed convex
surface whereas in elastic regions the inequalities Φ j < 0 hold good. Introducing
new variables Θ j one can present the inequalities Φ j 6 0 as equalities

Φ j +Θ
2
j = 0 (4.19)

which hold good for each r ∈ [a0, R].

4.5 Optimality conditions

The problem posed above is considered as a particular problem of optimization with
constraints. In order to get the conditions of optimality let us introduce the extended
functional
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In (4.20) ψ1 – ψ4 stand for adjoint (conjugate) variables and ν j, ϕ0, ϕ1 are un-
known Lagrange multipliers. Here Se and Sp are the elastic and plastic region, re-
spectively. It is reasonable to assume that the plastic region is located away from the
edges of the plate. Thus Sp = (η0, η1) and Se = [a0, η0]∪ [η1, R].

Calculating the total variation of (4.20) and equalizing ∆J∗ to zero leads to the
set of optimality conditions. Resorting to the technique used in the previous sec-
tions and also previous papers by the authors ([82], [84]), one obtains the adjoint
equations in the elastic region for r ∈ Se j
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r
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(4.21)

In (4.21) one has to take j = 0, if r ∈ [a0, a) and j = 1, if r ∈ (a, R] as the elastic
deformations occur in two separate regions.

In plastic region for r ∈ Sp one has
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Due to the arbitrariness of variations δΘ j

ϕ jΘ j = 0

for j = 0 and j = 1. Similarly one can stipulate ν j = 0 for r ∈ Se. However, for
r ∈ Sp one has
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Since the variations of thicknesses ∆h0, ∆h1 are arbitrary the equation ∆J∗ = 0
results in
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Note that the rest of requirements which yield from the equation ∆J∗= 0 are sim-
ilar to those obtained in the previous sections and in the papers by Lellep, Vlassov
[82], [84].
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4.6 Final results and discussion

The direct problem of determination of the stress strain state of the plate is solved
numericallly with the finite element method. For solution of optimization problems
the finite elements are combined with the method of Haar wavelets.

Table 4.1 Optimal parameters for w0 = 0.25

p 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000

γ1 0.8492 0.8342 0.8014 0.7892 0.7513 0.7239
η0 0.3977 0.4116 0.4385 0.4609 0.4863 0.5204
η1 0.4591 0.4817 0.5247 0.6102 0.6319 0.6404
α 0.4069 0.4215 0.4879 0.5267 0.5862 0.6031
e 9.27% 8.14% 10.17% 12.41% 14.23% 13.07%

Table 4.2 Optimal parameters for w0 = 0.30

p 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000

γ1 0.8502 0.8402 0.8211 0.8109 0.7899 0.7876
η0 0.4094 0.4117 0.4291 0.5231 0.5148 0.5334
η1 0.4582 0.4826 0.5290 0.6152 0.6411 0.6482
α 0.3819 0.4017 0.4310 0.4719 0.5481 0.6217
e 10.78% 12.03% 14.91% 10.52% 06.89% 11.72%

The results of calculations are presented in Fig. 4.3 – 4.10 and Tables 4.1 – 4.2
for plates with two different thicknesses. The results corresponding to n = 200 are
depicted in Fig. 4.11 – 4.14 [86]. It is reasonable to use the following notation

α0 =
a0

R
, α =

a1

R
, ρ =

r
R

,

γ =
h1

h0
, m1,2 =

M1,2

M0
, w0 =

W0

H

where M0 is the yield moment of the matrix material.
The load deflection relations of plates with constant thicknesses are presented in

Fig. 4.3. Here a0 = 0.2R and different curves correspond to different values of the
plate thickness.

The sensitivity of transverse deflections with respect to the intensity of the pres-
sure loading and to the step is portrayed in Fig. 4.4 and Fig. 4.5, respectively. Differ-
ent curves in Fig. 4.4 correspond to the load intensities p1 = 2.8; p2 = 2.9; p3 = 3.0;
p4 = 3.1 and p5 = 3.2. Fig. 4.5 corresponds to the load intensity p = 3.09. Differ-
ent curves in Fig. 4.5 correspond to the step location at α = 0.4 and to the ratios
of thicknesses γ = 0.60; γ = 0.65; γ = 0.70; γ = 0.75; γ = 0.80 whereas the upper
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Fig. 4.3 Load-deflection relations

curve is obtained for h1 = 0.8h0. It can be seen from Fig. 4.5 that the deflection
varies monotonically with the thicknesses ratio, as might be expected.

The distributions of the radial bending moment m1 are presented in Fig. 4.6; 4.7
for different values of the transverse pressure (Fig. 4.6) and for different positions
of the step. In both cases α0 = 0.2. Different curves in Fig. 4.6 are associated with
the same values of the load as in Fig. 4.4. The curves of Fig. 4.6 are calculated for
the case α = 0.4 and γ = 0.8. However, Fig. 4.7 is obtained for the same values of
the ratio of thicknesses as Fig. 4.5. Here the step is located at a1 = 0.4R. Calcula-
tions carried out showed that the radial bending moment has slope discontinuities
at the radius where the thickness has discontinuities. It is somewhat surprising that
the moment distribution is strongly unsymmetrical with respect to the centre of the
interval (a0, R).

Distributions of the hoop moment are portrayed in Fig. 4.8 and Fig. 4.9. It can be
seen from Fig. 4.9 that the hoop moment m2 has discontinuities at the cross-section
associated with the step location and that in the elastic regions the stress components
do not exceed the limit value.

The values of the coefficient of efficiency e =V/V∗ are accommodated for differ-
ent values of the load intensity in Tables 4.1, 4.2. Tables 4.1, 4.2 correspond to the
annular plate with the internal radius a0 = 0.2R. Parameters α and γ present the op-
timal values of design parameters and η0, η1 stand for the internal and external radii
of the plastic region. Tables 4.1, 4.2 reveal the matter that the step can be located
either in the elastic or inside the plastic region. It can be seen from Tables 4.1, 4.2
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Fig. 4.4 Deflection of the plate for different loadings

Fig. 4.5 Deflection of the plates with different thicknesses

19
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Fig. 4.6 Distributions of the radial bending moment

Fig. 4.7 Bending moment m1 in the cases of different ratios of thicknesses
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Fig. 4.8 The quantity m

Fig. 4.9 Hoop moment
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Fig. 4.10 Load deflection relations (comparison with experiment)

that the radii η0 and η1 move towards the outer edge of the plate when the pressure
intensity increases.

In Fig. 4.10 the load deflection relations calculated in the present paper are com-
pared with those obtained by Ohashi and Murakami [114] and with experimental
data. Fig. 4.10 shows that the curves are comparatively close to each other in the
range of small deflections. In Fig. 4.10 curve 1 presents the experimental data by
Ohashi and Murakami and curve 2 corresponds to the results obtained by the cur-
rent method. The circles indicate theoretical predictions by Ohashi and Murakami
for simply supported and clamped plates made of Mises material.

Table 4.3 Optimal parameters for the deflection w0 = 0.2500, n = 2

p 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000

γ1 0.2411 0.3173 0.5001 0.5306 0.6705 0.7922
α1 0.2612 0.4703 0.4158 0.5031 0.6079 0.7143
γ2 0.5794 0.6234 0.7102 0.7302 0.7215 0.8761
α2 0.4123 0.4712 0.5023 0.5719 0.7524 0.8653
e 15.27% 13.40% 19.13% 12.17% 15.10% 16.32%
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Table 4.4 Optimal parameters for the deflection w0 = 0.2500, n = 4

p 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000

γ1 0.2739 0.4253 0.4115 0.5215 0.6033 0.6524
α1 0.1907 0.2074 0.2553 0.2713 0.2931 0.3107
γ2 0.4427 0.4731 0.5387 0.7014 0.6592 0.7342
α2 0.3402 0.4417 0.5319 0.4536 0.4867 0.5128
γ3 0.6257 0.6881 0.8672 0.6613 0.4293 0.5702
α3 0.5158 0.5209 0.6142 0.5894 0.6087 0.6449
γ4 0.5642 0.5100 0.4782 0.5933 0.6997 0.7029
α4 0.7894 0.8597 0.9130 0.9305 0.9324 0.9412
e 21.10% 14.42% 17.16% 13.04% 08.06% 11.92%

Similar to the section 2.5 of the current research optimal values of design param-
eters for circular plates are accommodated in Table 4.3 and Table 4.4 for two- and
four-stepped plates obeying Hill’s yield condition and associated flow law, respec-
tively. It can be seen from Table 4.3 that in the case of two-stepped plates, loading
p = 2.8 and the deflection w0 = 0.25 one can save more than 15% of the material.

Fig. 4.11 Thickness distribution

For circular and annular plates obeying a non-linear yield condition and the as-
sociated gradientality law with a big number of steps the optimization problem was
solved numerically making use of finite elements and the method based on wavelets.

20
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Fig. 4.12 Deflections of the plate

Fig. 4.13 Radial moment
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Fig. 4.14 Hoop moment

The results of calculations are presented in Fig. 4.11 – Fig. 4.14 in the case when
the number of steps n = 200 and the material of plates obeys the Tsai-Wu non-linear
yield condition. Fig. 4.11 corresponds to the annular plate with the internal radius
a = 0.2R. In Fig. 4.11 the distributions of the optimal thickness are presented for
p = 3.4, p = 3.6 and p = 3.8. The transverse deflections corresponding to these val-
ues of the pressure loading are depicted in Fig. 4.12. In Fig. 4.13, 4.14 the principal
moments are portrayed for different values of the transverse pressure. Fig. 4.13 cor-
responds to the radial moment and Fig. 4.14 to the hoop moment. It can be seen
from Fig. 4.14 that the bending moment in the hoop direction is almost constant.
This matter was observed in the rigid-plastic analysis of circular and annular plates,
as well (see Sawczuk and Sokół-Supel [129]). However, the radial bending moment
changes quite rapidly in the neighbourhood of edges of the plate. Maximal values
of the bending moment increase together with the pressure (Fig. 4.13) as might be
expected. However, when increasing infinitely the number of steps the optimal solu-
tion may not exist. The matter that the optimal solution for plate problems does not
exist in the classes of continuous and piece wise continuous functions was observed
earlier in the case of rigid-plastic materials (see Lellep [73]). This effect is known
as the “solid plate paradox”.



80 4 Optimization of anisotropic plates

4.7 Concluding remarks

The methods of analysis and optimization of plates with piece wise constant thick-
nesses developed earlier for homogeneous isotropic materials are extended to plates
made of anisotropic materials. The yielding of materials is assumed to take place
according to the criterion Tsai-Wu and the associated gradientality law.

The traditional bending theory is used, non-linear effects are neglected in the
current study.

Optimal designs of annular plates of piece wise constant thickness are devel-
oped. The effectivity of designs is assessed numerically. The calculations are im-
plemented with the help of the finite element method and with the method based on
Haar wavelets. The comparison of results obtained by different methods shows that
the results are quite close to each other.
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ISBN: 978-9949-23-271-0 (DVD: ISBN: 978-9949-23-344-1).

71. D. Lamblin, G. Guerlement, C. Cinquini, Finite element iterative method for
optimal elastic design of circular plates, Computers & Structures, 12, 1, 1980,
pp. 85–92.

72. R. H. Lance, D. N. Robinson, A maximum shear stress theory of plastic failure
of fiber-reinforced materials, J. Mech. Phys. Solids, 19, 1972, pp. 49–60.



References 85

73. J. Lellep, Optimization of Plastic Structures, Tartu, 1991.
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Summary

Optimization of stepped plates in the case of smooth yield
surfaces

The current work is devoted to the theory of analysis and optimization of stepped
circular and annular plates subject to smooth yield surfaces. Chapter 1 provides the
brief historical review of the problem and of the finite element method. The basic
ideas of parallel computation, also of the multigrid method are presented herein, as
well.

In Chapter 2 a method for numerical investigation of axisymmetric plates sub-
jected to the distributed transverse pressure loading was presented. The material of
plates studied herein is assumed to be an ideal elastic plastic material obeying the
non-linear yield condition of von Mises and the associated flow law. The strain hard-
ening as well as geometrical non-linearity are neglected in the present investigation.
Calculations carried out showed that the obtained results are in good correlation
with those obtained by ABAQUS when solving the direct problem of determination
of the stress strain state of the plate.

In Chapter 3 an analytical-numerical study of annular plates operating in the
range of elastic plastic deformations was undertaken. The material of plates was
assumed to be an ideal elastic plastic material obeying the Mises yield condition.
The author succeeded in the analytical derivation of optimality conditions for this
highly non-linear problem. The obtained systems of equations were solved by ex-
isting computer codes.

In Chapter 4 the methods of analysis and optimization of plates with piece wise
constant thicknesses developed earlier for homogeneous isotropic materials are ex-
tended to plates made of anisotropic materials. The plastic yielding of the material is
assumed to take place according to the criterion Tsai-Wu and the associated gradi-
entality law. The traditional bending theory is used, non-linear effects are neglected
in the current study.

91



Kokkuvõte

Astmeliste plaatide optimiseerimine siledate voolavuspindade
korral

Käesolevas väitekirjas vaadeldakse Misese, Hilli ning Tsai-Wu materjalist valmis-
tatud elastsete plastsete astmeliste plaatide optimiseerimisega seotud küsimusi.

Antud dissertatsioon põhineb autori seitsmel teaduslikul publikatsioonil, millest
kuus on avaldatud viimase kolme aasta jooksul.

Käesolev dissertatsioon koosneb neljast peatükist, kirjanduse loetelust ning au-
tori elulookirjeldusest. Esimene peatükk on sisuliselt ülevaade numbriliste mee-
todite rakendamisest konstruktsioonielementide optimiseerimisel. Selles peatükis
antakse ülevaade plaatide ja koorikute optimiseerimisele pühendatud töödest, samuti
kirjeldatakse lõplike elementide meetodi ja paralleelarvutuse ajaloolist arengut.
Käesoleva uurimise raames on kasutatud lõplike elementide meetodit ning Haari
lainikute meetodit harilike ja osatuletistega diferentsiaalvõrrandite lahendamiseks
ning on rakendatud kõrgproduktiivse ja paralleelarvutuse põhimõtteid.

Teises peatükis vaadeldakse sandwich-tüüpi sümmeetrilise elastse-plastse ümar-
plaadi painet ühtlaselt jaotatud koormuse mõjul ning otsitakse miinimumkaaluga
projekti ette antud maksimumläbipainde korral. Eeldatakse, et plaadi materjal vastab
Misese voolavustingimusele. Optimaalse lahendi leidmiseks on kasutatud lõplike
elementide meetodit.

Kolmandas peatükis uuritakse eelmises peatükis püstitatud probleeme sümmeet-
riliste elastsete-plastsete astmeliste rõngasplaatide puhul. Optimaalse lahendi leid-
miseks on kasutatud lõplike elementide meetodit ning Haari lainikute meetodit, vi-
imast kasutatakse ka harilike diferentsiaalvõrrandite lahendamiseks.

Neljandas peatükis on uuritud anisotroopsete rõngasplaatide painet ning on lei-
tud miinimumkaaluga projektid Hilli ja Tsai-Wu voolavustingimuste puhul. Arvu-
tamisel on kasutatud Haari lainikute meetodit.

Väitekirjas on välja töötatud paralleelarvutuse metoodika, mis annab võimaluse
numbriliselt lahendada elastsete-plastsete plaatide optimiseerimisprobleeme. Saadud
lahendeid on võrreldud Ohashi ja Murakami, Turvey ning Upadrasta tulemustega.
Töös saadud tulemused on heas kooskõlas teiste autorite töödega. Uurimistöö käigus
ilmnes, et optimiseerimisülesannete puhul on mõistlikum kasutada lainikute mee-
todit, mille paralleeliseerimine hoiab rohkem kokku arvuti ressurssi.
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Keelteoskus: eesti, inglise, vene

Teenistuskäik
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