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Inclusive K0
SK

0
S production in ep collisions at the DESY ep collider HERAwas studied with the ZEUS

detector using an integrated luminosity of 0:5 fb�1. Enhancements in the mass spectrum were observed

and are attributed to the production of f2ð1270Þ=a02ð1320Þ, f02ð1525Þ and f0ð1710Þ. Masses and widths

were obtained using a fit which takes into account theoretical predictions based on SU(3) symmetry

arguments, and are consistent with the Particle Data Group values. The f0ð1710Þ state, which has a mass

consistent with a glueball candidate, was observed with a statistical significance of 5 standard deviations.

However, if this state is the same as that seen in ��! K0
SK

0
S, it is unlikely to be a pure glueball state.
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Introduction.—The existence of glueballs is predicted by
QCD. The lightest glueball is expected to have quantum
numbers JPC ¼ 0þþ and a mass in the range 1550–
1750 MeV [1]. Thus, it can mix with q �q states from the
scalar meson nonet, which have I ¼ 0 and similar masses.
Four states with JPC ¼ 0þþ and I ¼ 0 are established [1]:
f0ð980Þ, f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ, but only two
states can fit into the nonet. In the literature, the state
f0ð1710Þ is frequently considered to be a state with a
possible glueball or tetraquark composition [2]. However,
its partonic content has yet to be established.

The ZEUS Collaboration previously observed [3] indi-
cations of two states, f02ð1525Þ and f0ð1710Þ, decaying to

K0
SK

0
S final states in inclusive deep inelastic scattering

(DIS) events. The statistical significance of the observation
did not exceed three standard deviations. The state in the
1700 MeV mass region had a mass consistent with that of
the f0ð1710Þ; however, its width was significantly narrower
than that quoted by the Particle Data Group (PDG) [1].

The results presented here correspond to the full HERA
luminosity of 0:5 fb�1 and supersede the earlier ZEUS
results. The measurement of the K0

SK
0
S final states is pre-

sented in a kinematic region of ep collisions dominated by
photoproduction with exchanged photon virtuality, Q2,
below 1 GeV2. The data allow the reconstruction of the
K0
SK

0
S final states with much larger statistics than previ-

ously used.
Experimental setup.—The data were collected between

1996 and 2007 at the electron-proton collider HERA using
the ZEUS detector. During this period HERA operated
with electrons or positrons (Here and in the following,
the term ‘‘electron’’ denotes generically both the electron
(e�) and the positron (eþ).) of energy Ee ¼ 27:5 GeV and
protons initially with an energy of 820 GeVand, after 1997,
with 920 GeV.

A detailed description of the ZEUS detector can be
found elsewhere [4]. Charged particles were tracked in
the central tracking detector [5], which operated in a
magnetic field of 1.43 T provided by a thin superconduct-
ing solenoid. Before the 2004–2007 running period, the
ZEUS tracking system was upgraded with a silicon Micro
Vertex Detector (MVD) [6]. The high-resolution uranium-
scintillator calorimeter (CAL) [7] consisted of three parts:
the forward, the barrel, and the rear calorimeters.

Event sample.—A three-level trigger system [4,8] was
used to select events online. No explicit trigger require-
ment was applied for selecting K0

SK
0
S events. The photo-

production sample is dominated by events triggered by a
low jet transverse energy, ET , requirement (ET > 6 GeV).
Deep inelastic scattering events were triggered by requir-
ing an electron in the CAL.

Events were selected offline by requiring jZvtx j
<50 cm, where Zvtx is the Z coordinate of the primary
vertex position determined from the tracks. The average
energy of the total hadronic system, W, of the selected

events was�200 GeV. The data sample was dominated by
photoproduction events with Q2 < 1 GeV2.
Reconstruction of K0

S candidates.—The K0
S mesons

were identified via their charged-decay mode, K0
S !

�þ��. Both tracks from the same secondary decay ver-
tex were assigned the mass of the charged pion and the
invariant mass, Mð�þ��Þ, of each track pair was calcu-
lated. The K0

S candidates were selected by requiring:

(i) Mðeþe�Þ � 50 MeV, where the electron mass was
assigned to each track, to eliminate tracks from photon
conversions; (ii) Mðp�Þ � 1121 MeV, where the proton
mass was assigned to the track with higher momentum, to

eliminate � and �� contamination to the K0
S signal;

(iii) pTðK0
SÞ � 0:25 GeV and j�ðK0

SÞj � 1:6, where

pTðK0
SÞ is the transverse momentum and �ðK0

SÞ is the

pseudorapidity; (iv) �2D < 0:12 rad (�3D < 0:24 rad),
where �2D (�3D) is the two (three) dimensional collinearity
angle between the K0

S-candidate momentum vector and the

vector defined by the interaction point and the K0
S decay

vertex. For �2D, the XY plane was used.
The cuts on the collinearity angles significantly reduced

the non-K0
S background in the data during the 2004–2007

period. These cuts were necessary due to the extra material
introduced by the MVD. After all these cuts, the decay
length distribution of the resulting K0

S candidates peaked at

�2 cm.
Events with at least twoK0

S candidates were accepted for

further analysis. More than two K0
S were allowed in one

event, unlike for the previously published result [3], and all
distinct combinations of K0

SK
0
S were used. In the mass

range of 481 � Mð�þ��Þ � 515 MeV the number of
K0
S candidates is 1258399.

Figure 1 shows the invariant-mass distribution of K0
S

candidates. A fit over the whole mass range including a
first-order polynomial was used to estimate the background
contribution at �8%. The central region was fitted with
two bifurcated Gaussian functions to determine the mass
and width of the K0

S meson. For the HERA II data, correc-

tions were applied to take into account the extra dead
material introduced into the detector. After the corrections,
the mass and width of the K0

S were compatible with the

PDG value and detector resolution, respectively.
Results.—The K0

SK
0
S invariant-mass distribution was re-

constructed by combining two K0
S candidates selected in

the mass window 481 � Mð�þ��Þ � 515 MeV. Tracks

used for the K0
SK

0
S pair reconstruction were required to be

assigned uniquely to each K0
S in the K0

SK
0
S pair.

Figure 2(a) shows the measured K0
SK

0
S invariant-mass

spectrum. Three peaks are seen at around 1300, 1500, and
1700 MeV. No state heavier than the f0ð1710Þ was ob-
served. The invariant-mass distribution, m, was fitted as a
sum of resonance production and a smoothly varying
background UðmÞ. Each resonant amplitude, R, was given
a relativistic Breit-Wigner form [9]:
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BWðRÞ ¼ MR

ffiffiffiffiffiffi

�R
p

M2
R �m2 � iMR�R

; (1)

where MR and �R are the resonance mass and width,
respectively. The background function used was

UðmÞ ¼ mA expð�BmÞ; (2)

where A and B are free parameters. The K0
SK

0
S mass

resolution is about 12 MeV for the mass region below
1800 MeV and its impact on the extracted widths is small
compared to the expected widths of the states [3].
Therefore, resolution effects were ignored in the fit.

Two types of fit, as performed for the reaction ��!
K0
SK

0
S by the L3 [10] and TASSO [9] Collaborations,

respectively, were tried, using Eqs. (1) and (2). Fit 1 is an

incoherent sum of three Breit-Wigner cross sections rep-
resenting the f2ð1270Þ=a02ð1320Þ, f02ð1525Þ and f0ð1710Þ
plus background. Fit 2 is motivated by SU(3) predictions
[11]. The decays of the tensor (JP ¼ 2þ) mesons f2ð1270Þ,
a02ð1320Þ, and f02ð1525Þ into the two pseudoscalar (JP ¼
0�) mesons K0 �K0 are related by SU(3) symmetry with a
specific interference pattern. The intensity is the modulus-
squared of the sum of these three amplitudes plus the
incoherent addition of f0ð1710Þ and a nonresonant back-
ground. The predicted coefficients of the f2ð1270Þ,
a02ð1320Þ, and f02ð1525Þ Breit-Wigner amplitudes for an

electromagnetic production process are, respectively, þ5,
�3, and þ2 [11,12]. This results in the fit function:

FðmÞ ¼ aj5BWðf2ð1270ÞÞ� 3BWða02ð1320ÞÞ
þ 2BWðf02ð1525ÞÞj2 þ bjBWðf0ð1710ÞÞj2
þ cUðmÞ; (3)

where a, b, and c are free parameters.
All the resonance masses and widths were allowed to

vary in the fits. The results of the fits are shown in Table I.
The quality of both fits, characterized by the �2 per number
of degrees of freedom (see Table I), is good. However, fit 2
describes the spectrum around the f2ð1270Þ=a02ð1320Þ re-
gion better and, unlike fit 1, reproduces the dip between
f2ð1270Þ=a02ð1320Þ and f02ð1525Þ. For this reason and,

based on the theoretical motivation, fit 2 is preferred and
shown in Fig. 2. The background-subtracted mass spectrum
is shown in Fig. 2(b) together with the fit.
The a02ð1320Þmass in fit 2 is below the PDG value [1]. A

similar shift, attributed to the destructive interference be-
tween f2ð1270Þ and a02ð1320Þ, was also seen in a study of
resonance physics with �� events [11]. Fit 1 without
interference yields a narrow width for the combined
f2ð1270Þ=a02ð1320Þ peak, as also seen by the L3

Collaboration [10]. Fit 2 with interference yields widths
close to the PDG values for all observed resonances. The
fitted masses for f02ð1525Þ and f0ð1710Þ are somewhat
below the PDG values with uncertainties comparable
with those of the PDG (Table I). The quality of a fit without

ZEUS

0.450 0.475 0.500 0.525 0.550
M(π+π-) (GeV)

0

20 000

40 000

60 000

80 000

100 000

E
nt

rie
s/

1 
M

eV

ZEUS 0.5 fb-1

Signal

Fit

ZEUS

0.450 0.475 0.500 0.525 0.550
M(π+π-) (GeV)

0

120 000
E

nt
rie

s/
1 

M
eV

FIG. 1 (color online). The measured �þ�� invariant-mass
distribution for events with at least two K0

S candidates (dots).

The shaded area represents the signal window used for K0
SK

0
S

pair reconstruction. The fit performed (see text) is displayed as a
solid line.

TABLE I. The measured masses and widths for the f2ð1270Þ, a02ð1320Þ, f02ð1525Þ and f0ð1710Þ states using K0
SK

0
S decays as

determined by one fit neglecting interference and another one with interference as predicted by SU(3) symmetry arguments included.
Both statistical and systematic uncertainties are quoted. The systematic uncertainty for the f2ð1270Þ=a02ð1320Þ peak is expected to be

significant and it is not listed. Also quoted are the PDG values for comparison.

Fit No interference Interference PDG 2007 Values

�2=ndf 96=95 86=97
in MeV Mass Width Mass Width Mass Width

f2ð1270Þ
1304� 6 61� 11

1268� 10 176� 17 1275:4� 1:1 185:2þ3:1
�2:5

a02ð1320Þ 1257� 9 114� 14 1318:3� 0:6 107� 5

f02ð1525Þ 1523� 3þ2
�8 71� 5þ17

�2 1512� 3þ1:4
�0:5 83� 9þ5

�4 1525� 5 73þ6
�5

f0ð1710Þ 1692� 6þ9
�3 125� 12þ19

�32 1701� 5þ9
�2 100� 24þ7

�22 1724� 7 137� 8
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the f0ð1710Þ resonance (not shown) yields �2=ndf ¼
162=97 and is strongly disfavored.

The systematic uncertainties of the masses and widths of
the resonances, determined from the fit shown in Fig. 2,
were evaluated by changing the selection cuts and the
fitting procedure. Variations of minimum track pT , track
pseudorapidity range, track momenta by �0:1%, accepted
�þ�� mass range around theK0

S peak and collinearity cuts

were done. In addition a maximum likelihood fit was used
instead of the �2 fit and event selection cuts were varied. A
check for the possible influence of the JP ¼ 0þ state
f0ð1500Þ was carried out by including in the fit a Breit-
Wigner amplitude of this state interfering with the ampli-
tude of the f0ð1710Þ. The resulting changes of the fitted
values of the mass and the width of the f0ð1710Þ are
included in the systematic uncertainties [13]. The largest
systematic uncertainties were: fitting with fixed PDG mass
and width on f02ð1525Þ affects the f0ð1710Þ width by

�19 MeV and the largest effect of varying the track mo-
menta on the f0ð1710Þ width is þ7 MeV. The combined
systematic uncertainties are included in Table I.

The number of events in the f0ð1710Þ resonance given
by the fit is 4058� 820, which has a 5 standard deviation
statistical significance. This is one of the best f0ð1710Þ
signals reported. This state is considered to be a glueball
candidate [2]. However, if it is the same as seen in ��!
K0
SK

0
S [9,10], it is unlikely to be a pure glueball state, since

photons can couple in partonic level only to charged ob-

jects. Figure 3 compares the results of this analysis with
other measurements from collider and fixed-target experi-
ments. The f0ð1710Þ mass as deduced from the quark-
onium decays by the BES Collaboration is significantly
higher than the values given by all other experiments,
including older J= -decay analyses [1].
Conclusions.—In conclusion, K0

SK
0
S final states were

studied in ep collisions at HERAwith the ZEUS detector.
Three enhancements which correspond to f2ð1270Þ=
a02ð1320Þ, f02ð1525Þ and f0ð1710Þ were observed. No state

heavier than the f0ð1710Þ was observed. The states were
fitted taking into account the interference pattern predicted
by SU(3) symmetry arguments. The measured masses of
the f02ð1525Þ and f0ð1710Þ states are somewhat below the

world average; however, the widths are consistent with the
PDG values. The f0ð1710Þ state, which has a mass con-
sistent with a JPC ¼ 0þþ glueball candidate, is observed
with a 5 standard-deviation statistical significance.
However, if this state is the same as that seen in ��!
K0
SK

0
S, it is unlikely to be a pure glueball state.
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