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It is shown that the geometry of multielectron threshold ionization in atoms depends on the initial
configuration of bound electrons. The reason for this behavior is found in the stability properties of the
classical fixed point of the equations of motion for multiple threshold fragmentation. Specifically for
three-electron breakup, apart from the symmetric triangular configuration also a breakup of lower
symmetry in the form of a T shape can occur, as we demonstrate by calculating triple photoionization
for the lithium ground and first excited states. We predict the electron breakup geometry for threshold
fragmentation experiments.
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Three-body Coulomb dynamics, in particular, two-
electron atoms, are very well studied in the energy regime
of single as well as double ionization [1–4]. Much less is
known about correlated dynamics in four-body Coulomb
systems, more precisely on differential observables for
fragmentation of a three-electron atom in its nucleus and
all electrons [5–8]. A recent experiment provides for the
first time detailed information in terms of differential cross
sections on the angular and energetic breakup parameters
of three electrons following impact double ionization of
Helium [9]. For small excess energies E (each continuum
electron carries away about 9 eV energy), it was found that
the electrons form an equilateral triangle upon breaking
away from the nucleus. This is expected in accordance with
Wannier’s theory [10], quantified for three electrons in
[11]. There, it is shown that the fixed point of classical
dynamics, through which full fragmentation near threshold
E � 0 should proceed, is given for a three-electron atom
by an equilateral triangle with the nucleus in the center and
the electrons at the corners.

In two-electron atoms the corresponding fixed point
implies a collinear escape of the electrons in opposite
directions [10,12]. The normal mode vibration about this
collinear configuration is stable. This is in marked contrast
to the three-electron case, where the triangular configura-
tion is linked to two unstable, degenerate normal modes
[11,13].

We will show that the latter property has the conse-
quence that the preferred final geometry of the three escap-
ing electrons becomes initial state dependent and can
change between an equilateral triangle and a less symmet-
ric T-shaped escape. While the former is realized, e.g., in
electron impact double ionization of helium, the latter
should be seen in triple photoionization of lithium. These
are only two prominent examples. The general pattern and
the reason for it will be detailed below.

Because of the scaling of the Coulomb potential, states
of finite total angular momentum L will all behave like the
L � 0 state close to threshold which is therefore sufficient
to consider [14]. In hyperspherical coordinates with the

radial variable w instead of the hyperradius r � w2, the
Hamiltonian for a three-electron atom with total angular
momentum L � 0 reads

 h �
p2
w

8w2 �
�2

2w4 �
C���
w2 ; (1)

where � � ��1; �2; �1; �2�
y contains all angular variables

describing the positions of the electrons on the hypersphere
of radius r and �, the so-called grand angular momentum
operator [15], is a function of � and all conjugate mo-
menta. The total Coulomb interaction V � C=r acquires in
this form simply an angular dependent charge C���. In
terms of the familiar vectors r1, r2, r3 pointing from the
nucleus to each electron, the hyperspherical coordinates
are given by
 

r � �r2
1 � r

2
2 � r

2
3�

1=2; (2a)

�1 � arctan�r1=r2�; (2b)

�2 � arctan�r2e=r3�; (2c)

�1 � arctan�r1 � r2=�r1r2��; (2d)

�2 � arctan�r1 � r3=�r1r3��; (2e)

where r2e � �r
2
1 � r

2
2�

1=2.
Threshold dynamics is governed by motion along the

normal modes about the fixed point of the Hamiltonian
H � �h� E�w2 [16]. The special form of H ensures that
the dynamics remains regular approaching the fixed point
radially, i.e., w! w	 � 0, while �	 at the fixed point is
defined through r�C���j���	 � 0. The equations of
motion can be expressed as a system of first order differ-
ential equations (ODE) _� � Gr�H for the phase space
vector � � �pw;P�; w;��y, with

 G �
0 �1f
1f 0

� �
(3)

a block matrix composed from 0 and unity matrices of
dimension f
 f [17], where f is the number of degrees of
freedom, here f � 5. Since the differential equations are
still singular at the fixed point (w	, �	) a change of the
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momentum variables P� conjugate to � is needed

 p!j
� P!j

=w (4)

as well as a new time variable � related to the original
time t conjugate to the Hamiltonian Eq. (1) through dt �
w3d�. Finally, the normal modes can be obtained from
the modified ODE, d�=d� � Gr� ~H by diagonalizing the
matrix @2G ~H=�@�@��j���	, where � refers to the new
phase space variables with the (noncanonical) momenta
from Eq. (4). The eigenvalues are the Liapunov expo-
nents �j and in the normal mode basis fûjg threshold
dynamics assumes an oscillatorlike form of �uj��� �
exp��j���uj�0� with the unit vectors ûj

 û j � �uj�0�=j�uj�0�j (5)

defining the normal mode basis. The ����� � �� �	 are
excursions of � from their fixed point values �	 and are
expressed as a linear combination of the �uj���.

We recall briefly the familiar three-body breakup in a
two-electron atom with hyperradius r2e and the angles �1,
�1 defined as in Eq. (2). The charge corresponding to C���
in Eq. (2) is for the two-electron problem

 C2e��1; �1� � �
Z

sin�1
�

Z
cos�1

�
1

�1� sin�2�1� cos�1�
1=2
: (6)

The fixed point analysis reveals a pair of unstable �1=2 �

��0 � � and stable �3=4 � �!0 � i! Liapunov expo-
nents (�0, !0, �, !> 0) with a shift (��0 and �!0,
respectively), compared to standard symplectic dynamics.
The shift formally arises through the noncanonical trans-
formation of the momentum variables Eq. (4) necessary to
obtain normal mode motion about the singular fixed point
w	 � 0.

The resulting eigenvectors ûi reveal orthogonal motion
along �1 and �1, i.e., any phase space vector ���1

���
describing linearized motion in the subspace spanned by
p�1

, �1, can be expressed as a linear combination of two
eigenvectors ���1

� a�� exp��1��û1 � b�� exp��2��û2.
An analogous relation holds for linearized motion in the
subspace p�1

, �1, realized through two different eigenvec-
tors, ���1

� a�� exp��3��û3 � b�� exp��4��û4. Hence,
���1

��� � ���1
��� � 0 at all times �. The coincidence of

the eigenspaces with the respective dynamics of �1 and �1

has the important consequence that the fixed point value
�1 � � is preserved through its relation to the stable
eigenmode while all energy sharings occur through their
relation to the unstable eigenmode along �1.

This coincidence of normal modes with subspaces of
observables is special to two-electron atoms and does not
hold for more electrons. Moreover, for three-electron
atoms, a new feature emerges in threshold dynamics,
namely, the existence of two degenerate pairs of unstable

normal modes with Liapunov exponents �1=2 � �3=4 �

��0 � �. Note that the fragmentation dynamics close to
the fixed point will take place in the phase space of the two
unstable normal modes with an arbitrary linear combina-
tion of the two eigenvectors û1 and û3 belonging to the two
(equal) positive Liapunov exponents �1 � �3 � ��,

 ����� � exp������c1û1 � c3û3�; (7)

which allows for flexibility in the four-body breakup, as we
will see.

One sees directly from Table I that unlike the two-
electron case the normal mode dynamics about the fixed
point for geometrical angles �i and hyperangles �i is not
separated, i.e., ���i��� � ���i��� � 0. Even more impor-
tantly, all phase space variables are linked to the unstable
normal modes. Hence, the fixed point geometry does not
provide necessarily a preference for the final angles of the
electrons. On the other hand, this opens the way for the
initial state to have an influence on the final observables,
even close to threshold.

Relevant for threshold ionization is the spatial electron
distribution at the time (we label it � � 0) when all elec-
trons to be ionized have received enough energy (through
collisions) to leave the atom. We call this distribution the
transient threshold configuration (TTC).

In a two-electron atom, the necessary energy transfer
between the two electrons leading to three-body fragmen-
tation happens through a single collision. At this time � �
0 both electrons are naturally close together, so that
��1�0� � 0 holds and defines the TTC, independent of
the initial bound electron configuration.

In a three-electron atom, the situation is more compli-
cated since at least two collisions are necessary to distrib-
ute the energy among the electrons so that all of them can
escape. For triple photoionization of lithium we know from
classical calculations that the 1s photoelectron (3), which
has absorbed the photon initially, collides immediately
with the other 1s electron (2) and subsequently (about 60
attoseconds later) either electron 2 or the photoelectron
itself collides with the 2s electron (1). This can be ex-
pressed with the two collision sequences s1 � �32; 21� and
s2 � �32; 31� [18]. The time delay of the second collision,

TABLE I. The two eigenvectors ûi belonging to the positive
Liapunov exponent � > 0 in the basis of the phase space
variables from Eq. (2).

Basis û1 û3

��1 �8:22
 10�3 2:67
 10�1

�p�1
�2:97
 10�2 9:64
 10�1

��2 �1:81
 10�1 0
�p�2

�9:83
 10�1 0
��1 7:12
 10�3 0
�p�1

6:57
 10�3 �4:46
 10�3

��2 3:33
 10�3 7:40
 10�3

�p�2
�2:75
 10�4 8:92
 10�3
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respectively, is due to the ‘‘distance’’ of the 2s shell from
the 1s shell. It leaves an asymmetric situation after the
second collision when the transient threshold configuration
is reached at � � 0. While the two electrons participating
in the last collision are close to each other, the third one is
further away. Concentrating on the collision sequence (32,
21), this implies in terms of distances to the nucleus

 r1 � r2 � r3: (8)

Hence, ��1�0� � 0 while ��2�0� � 0. This can be easily
accommodated with a suitable linear combination choos-
ing, e.g., c1 � 1=a and c2 � �1=b in Eq. (7), where a and
b are the coefficients of ��1 with respect to û1 and û3 (see
first row of Table I).

The scenario described is still within the overall picture
of threshold breakup in the spirit of Wannier and therefore
in accordance with the power law � / �E=E0�

� for the
dependence of the total breakup cross section on the excess
energy E [20–22]. The exponent � � ��1 � �3�=�2�r� �
2:162, where �r � 2:5088 is the radial Liapunov exponent
and �1 � �3 � 5:4240. Yet, the TTC with unequal dis-
tances of the electrons to the nucleus breaks the complete
symmetry among the electrons. This, in turn, leads to a
preferred final geometry of the three electrons since essen-
tially with the third electron being far away, the geometry
determination reduces to that of two electrons escaping in
an equivalent way as in the two-electron breakup, i.e.,
back-to-back with an angle of �1 � �. The question re-
mains if there is a preferred angle between this electron
pair escaping along a line and the third electron. Assuming
for simplicity that r3  r1 � r2 and therefore sin�2 � 0
holds (the opposite case would lead to the same result), we
can expand C��� in Eq. (1) in powers of 	 � �2

 C��� � 	�1
X3

n�0

cn	n: (9)

One can show that to lowest order in 	, the problem to find
a stable configuration is that of the two-electron system
(here with nuclear charge Z � 3) with the well-known
solution �		1 � � and �		1 � �=4 [10]. These values mini-
mize c2 for any value �2. Its value �		2 � �=2 is deter-
mined from @c3=@�2 � 0 which is a stable solution. [The
�		 is used for the fixed point solution ofC���when r3 
r1 � r2 to distinguish it from the �	 global fixed point
solution of C��� mentioned previously in the Letter.] This
constitutes the T shape of the three electrons as a preferred
asymptotically (	! 0) stable geometrical configuration
within the globally unstable two-dimensional subspace
spanned by û1, û3. The fragmentation dynamics in the
subspace is completely degenerate—hence, we have
looked on a ‘‘higher order’’ correction, which would give
a preference within the degenerate subspace: that is the
asymptotically stable T shape. Indeed, this configuration
was found numerically close to threshold in triple photo-
ionization [19].

One can double check this new insight into the role of
the TTC of the electrons in the presence of degenerate
Liapunov exponents by considering initial configurations
which lead to different transient configurations.

For an initial excited state Li�1s2s2� the two collisions in
which energy is transferred from the (1s) photoelectron to
the two 2s electrons happen close in time (and therefore in
space). Hence, the transient threshold configuration after
the second collision at � � 0 is r1 � r2 � r3 close to the
fixed point and therefore giving preference to the symmet-
ric breakup with a dominant angle 120� between the
electrons, similar to electron impact double ionization of
helium.

Numerical results confirm this prediction as seen from
Fig. 1 where the probability to find an angle � between two
electrons in triple photoionization of the initial Li�1s2s2� is
shown for different excess energies. Clearly, the most
likely angle is cos� � �1=2 corresponding to 120�, in-
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θ)

/ P
 3+ 1.2 eV0.8 eV0.4 eV FIG. 1. Probability to find the angle �

between two electrons for triple ioniza-
tion from the initial Li�1s2s2� state for
excess energies above the triple ioniza-
tion threshold as indicated. The preferred
breakup geometry is the equilateral tri-
angle.
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 3+ 1.2 eV0.9 eV0.5 eV FIG. 2. Same as Fig. 1, but for triple

ionization from the initial Li�1s22s�
ground state for excess energies above
the triple ionization threshold as indi-
cated. The preferred breakup geometry
is the T shape.
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dicated by the thin vertical line. The method used to ob-
tain the results in Figs. 1–3 is the classical trajectory
Monte Carlo method detailed in [19].

On the other hand, for the ground state as initial state the
TTC is asymmetric as previously described and we expect
a final T shape geometry with peaks at 90� and 180�. This
is indeed the case, as can be seen in Fig. 2. As a final test we
may use again the excited initial state Li�1s2s2� but take
the 2s electron as the photoelectron. This process is due to
the smaller dipole coupling by more than an order of
magnitude suppressed compared to the ionization with
the 1s electron absorbing the photon. However, here we
use this only as an illustration for the initial state depen-
dence of threshold ionization. According to our reasoning
we have in this case (although it is the same initial state as
before) a different TTC since the first collision of the
photoelectron 1 happens with the 1s electron 2 while later
on the collision of the 1s electron 2 with the 2s electron 3
will take place. Consequently, for the TTC r3 � r2 � r1

holds which is structurally identical to Eq. (8), the situation
when a final T shape geometry appears. As can be seen in
Fig. 3 the T shape indeed also emerges if the photoelectron
comes from the 2s shell.

To summarize, we predict that for three-electron
breakup near threshold two preferred geometrical patterns
for the electrons exist, namely, an equilateral triangle and a
T shape. Which of them is realized depends on the transient
threshold configuration, that is the spatial distribution of
the electrons at the time when the energy among them is
distributed such that all of them can escape. The transient

threshold configuration is strongly influenced by the initial
state of the electrons, as has been discussed in detail for the
case of lithium. A complete overview of the three-electron
breakup pattern for three-electron systems is provided in
Table II. Whenever the two electrons to which energy is
transferred in the course of the fragmentation of the atom
are in the same shell, a symmetric triangular geometry is
expected. If the two electrons are from different shells, we
expect a T shape. Recent experimental results on electron
impact double ionization of helium [9] are consistent with
our predictions but do not provide sufficient information to
consider our prediction as experimentally already con-
firmed. Based on the present consideration it is also pos-
sible to predict the breakup geometries and their realization
dependent on the initial state for more than three electrons.

*Present address: The Beijing Key Laboratory for Nano-
Photonics and Nano-Structure, Capital Normal University,
Beijing 100037 People’s Republic of China.
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FIG. 3. Same as Fig. 1, but with a 2s electron as photoelectron.
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