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Abstract

One of the key concerns in spatial analysis and modelling is to study and analyse similar-

ities or dissimilarities between places over geographical space. However, ”global“ spatial

models may fail to identify spatial variations of relationships (spatial heterogeneity) by

assuming spatial stationarity of relationships. In many real-life situations spatial varia-

tion in relationships possibly exists and the assumption of global stationarity might be

highly unrealistic leading to ignorance of a large amount of spatial information. In con-

trast, local spatial models emphasise di↵erences or dissimilarity over space and focus on

identifying spatial variations in relationships. These models allow the parameters of mod-

els to vary locally and can provide more useful information on the processes generating

the data in di↵erent parts of the study area.

In this study, a framework for localising spatial interaction models, based on geo-

graphically weighted (GW) techniques, has been developed. This framework can help in

detecting, visualising and analysing spatial heterogeneity in spatial interaction systems.

In order to apply the GW concept to spatial interaction models, we investigate several

approaches di↵ering mainly in the way calibration points (flows) are defined and spa-

tial separation (distance) between flows is calculated. As a result, a series of localised

geographically weighted spatial interaction (GWSI) models are developed.

Using custom-built algorithms and computer code, we apply the GWSI models to a

journey-to-work dataset in Switzerland for validation and comparison with the related

global models. The results of the model calibrations are visualised using a series of

conventional and flow maps along with some matrix visualisations. The comparison of

the results indicates that in most cases local GWSI models exhibit an improvement over

the global models both in providing more useful local information and also in model

performance and goodness-of-fit.
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Chapter 1

Introduction

1.1 Motivation

Spatial interaction is broadly defined as the movement, flow, or communication of peo-

ple, goods or information over space resulting from a decision-making process (Haynes

and Fotheringham, 1984; Fotheringham and O’Kelly, 1989; Fotheringham et al., 2000;

Fotheringham, 2001; Fischer, 2000). Examples include a wide variety of behaviours such

as migration, shopping patterns, commuting, commodity or communication flows, tele-

phone calls, airline passenger tra�c, attendance at events such as theatre, conferences

and sport events (Haynes and Fotheringham, 1984), all of which form important com-

ponents of social and urban complex systems. Researchers in a variety of fields have

modelled spatial movements through mathematical equations known as spatial interac-

tion models (Fotheringham et al., 2000). These models are particularly useful for better

understanding and analysing the patterns of and the underlying structure of the spatial

flows in the interaction systems. One of the early spatial interaction models was the grav-

ity model and its related family of models (Wilson, 1967, 1970; Haynes and Fotheringham,

1984; Fotheringham and O’Kelly, 1989; Sen and Smith, 1995; Fotheringham et al., 2000;

Roy and Thill, 2004). Later, the underlying formulations of spatial interaction models

have been modified further and more sophisticated models have been developed such as

competing destinations models (see Fotheringham, 1983, 1984b, 1986).

Spatial interaction is fundamental in regional science (Fischer and Getis, 1999; Clarke

and Clarke, 2001) and is also an important aspect of modern society and economy. As a

consequence, spatial interaction modelling is one of the most applied geographical anal-

ysis and modelling techniques (Fotheringham et al., 2000) (see for instance applications

and references in Fotheringham and O’Kelly, 1989; Haynes and Fotheringham, 1984).

Traditionally, spatial interaction models have been calibrated globally in which one set

of parameter estimates is provided for a study region (Fotheringham and Brunsdon,

1999). The resulting global parameter estimates represent an average type of interaction

behaviour and are assumed to be equally valid across the entire study area. The global

validity of the results is due to the assumption of spatial stationarity in relationships
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being investigated (Lloyd, 2011). However, in many real-life situations relationships may

vary across space and then important variations in interaction behaviour could be com-

pletely hidden (Linneman, 1966; Greenwood and Sweetland, 1972; Fotheringham et al.,

2000, 2002) because the global results may fail to represent the true specification of the

reality (Fotheringham and Brunsdon, 1999; Fotheringham et al., 2002; Unwin, 1996a,b;

Fotheringham, 1997; Boots and Okabe, 2007).

The global model misspecification came to light through local parameter estimates

being obtained for each separate origin or destination region (Fotheringham et al., 2000,

2002) (see sections 5.4.1 and 5.4.2 for further information). The origin- and destination-

specific models provide a set of parameter estimates for each origin or destination in the

system (see for instance Haynes and Fotheringham, 1984; Fotheringham and O’Kelly,

1989). Although the origin- and destination-specific models provide more disaggregated

information compared to global interaction models, these models are localised at the

level of discrete origins/destinations. An important drawback of these models is the

fact that they ignore a substantial amount of data that can be potentially useful for

calibration. For example, an origin-specific model ignores flows from surrounding origins

that might have similar flows to the destinations, leading to a lower number of considered

data points and potentially to a less reliable parameter estimation. Another possible

problem with origin- and destination-specific models is the fact that these models might

ignore significant geographical variations of parameters in the interaction system. For

example, an origin-specific model provides a single set of parameters for a given origin,

ignoring potential di↵erences across destinations. Therefore, identifying spatial variations

in relationships, (sometimes referred to as spatial heterogeneity, spatial non-stationarity

or spatial drift (Charlton et al., 1997)), is still an ongoing problem in spatial interaction

modelling requiring further study. This leads to the following research questions:

• How can spatial heterogeneity be detected and taken into account in spatial inter-

action processes?

• How can spatial interaction models be localised to consider spatial heterogeneity?

Interest in local forms of spatial analysis and modelling is not new (Fotheringham,

2000); over the last few decades there has been a powerful movement from global mod-

elling to local modelling (Fotheringham and Brunsdon, 1999; Fotheringham, 1999b; Open-

shaw et al., 1987; Getis and Ord, 1992; Anselin and Getis, 1992; Fotheringham and Roger-

son, 1993; Lloyd, 2011, 2006) which focuses on identifying and understanding di↵erences

across space rather than similarities (Fotheringham, 1999b; Fotheringham et al., 2000).

Several types of local analytical techniques for spatial data have been developed and used

in the literature (see section 5 for a review). One local technique that has become in-

creasingly popular in detecting spatial non-stationarity in spatial analysis is Geographical

Weighted Regression (GWR) (Brunsdon et al., 1996; Fotheringham et al., 1998; Bruns-

don et al., 1998a, 1999a; Fotheringham et al., 2002) which will be introduced in detail
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in section 5.3. Within the GWR framework, relationships under study are allowed to

vary spatially and a set of local parameter estimates is produced for each regression lo-

cation and all observations are spatially weighted with respect to the regression point.

The GWR technique has been used in a wide range of applications for spatial data (see

section 5.4.3) and found to be e�cient in detecting spatial heterogeneity in relationships

that may be missed in a global regression analysis (Foody, 2004). The local parameter

estimates derived from a GWR analysis can be mapped to show how a relationship varies

over space and then to investigate the spatial pattern of the local estimates for better

understanding of possible causes of this pattern (Fotheringham et al., 2002).

Considering that GWR could successfully contribute to modelling “spatially hetero-

geneous processes” (Brunsdon et al., 1996; Fotheringham et al., 1996, 1997b, 2002) and

has e�ciently worked in a range of studies for spatial data, questions we are therefore

addressing are:

• How it is possible to use the experience from GWR in order to apply the geographical

weighting concept to spatial interaction models?

• Within a geographically weighting framework for spatial interaction, how do we

define distances between spatial flows?”

• How do we visualise the local parameter estimates for spatial interaction models?

On a practical side, given the availability of GWR software, the following question is of

interest:

• Will existing GWR software work for spatial interaction flows or is a specific adap-

tation to spatial interaction required?

Given the importance of intra-zonal flows in many spatial interaction processes, and the

local nature of assessing spatial heterogeneity, we also include the following important

question into this research:

• How can intra-zonal trip distance be estimated in spatial interaction systems in

which intra-zonal flows are taken into account in the analysis?

1.2 Aim and objectives of the thesis

The aim of this research is to develop a framework for localising spatial interaction

models using the geographically weighted concept (known from GWR) in which spatial

heterogeneity can be detected, visualised and analysed in spatial interaction systems.

The following research objectives represent the required steps for achieving this aim:

• Designate and specify a real-world spatial interaction problem for the case study

(data collection and processing).
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• Explore and investigate di↵erent existing spatial interaction models.

• Investigate possible ways to incorporate intra-zonal flows in the spatial interaction

models along with exploring and analysing existing approaches.

• Study and analyse the spatial interaction patterns of the case study using both

global and existing local techniques.

• Explore possible approaches for applying the geographically weighted concept to

spatial interaction models.

• Create an algorithm and, if necessary, write computer code for calibrating geo-

graphically weighted spatial interaction (GWSI) models.

• Perform verification and validation of the GWSI models by applying them to the

case study for detecting and analysing spatial heterogeneity.

• Develop and apply appropriate techniques for the visualisation of the conventional

and local interaction model results.

• Analyse and compare the spatial patterns of the parameter estimates resulting from

global and various local models.

• Demonstrate some application examples of the GWSI models especially for the case

of forecasting spatial interaction patterns.

1.3 Short review of techniques and contributions of the

thesis

The idea of applying the GWR approach to spatial flows was pointed out by Berglund

and Karlström (1999) where the potential applicability of this approach was suggested

without performing the method. Later Nakaya (2001, 2003, repeated publications) in-

vestigated this by applying GWR to the calibration of an origin-specific model of a

migration case study in Japan. Nakaya’s study is interesting from two points of view.

First, this study has shown that GWR can be a promising approach for local calibra-

tion of spatial interaction models or at least for the origin-specific model in the case of

migration in Japan. Nissi and Sarra (2011) have also applied this approach similarly

for an origin-specific model of migration flows in Poland. Second, in this approach of

using GWR for calibrating an origin-specific model for each origin in the study region,

a surface of parameter estimates could be estimated where each value in this surface de-

scribes the relationship being measured around the destinations close to that location (see

Fotheringham et al., 2002, page 244). In Nakaya’s study, however, only an origin-specific

model is calibrated where the restriction of the model makes the application of GWR on

flows easier since only destinations are involved in the geographically weighting process.
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Therefore, the question of “how to apply the geographically weighted concept on spatial

interaction models” still remains unsolved.

In order to fulfil the main aim of this study which is to develop a framework for

localising spatial interaction models using the geographically weighted concept, we have

investigated several approaches di↵ering mainly in the way calibration points (flows) are

defined and spatial separations (distance) between flows are estimated. As result, a family

of geographically weighted spatial interaction (GWSI) models is developed throughout

this thesis allowing for the detection of spatial variations in interaction behaviour. The

family of GWSI models is composed of the following local models:

• Origin-focused spatial interaction model

• Destination-focused spatial interaction model

• Destination-specific origin-focused spatial interaction model

• Origin-specific destination-focused spatial interaction model

• Flow-focused spatial interaction model

In all these models, following the principle of the geographically weighing concept, around

each calibration point a spatial kernel is considered and observations are weighted ac-

cording to their proximity to the calibration point. However, the main di↵erence between

the models is the way the calibration point and the distances between flows are defined.

In the first four models, the resulting local parameter estimates are associated with the

spatial flows, although the calibration points in the geographically weighting approach

are actual locations within the study region; i.e. origin locations in the case of origin-

focused models and destination-specific origin-focused models, and destination locations

in the case of destination-focused models and origin-specific destination-focused models.

The distance between flows is defined by the distance between the calibration point and

origins or destinations of the observed flows in the origin-focused and destination-focused

models respectfully.

The flow-focused model is di↵erent from others because the calibration points in the

geographically weighting approach are spatial flows. Therefore, in a flow-focused model

a spatial kernel is considered around each calibration flow and the observed flows within

this kernel are weighted. Two feasible ways for estimating distances between flows are

suggested in this thesis; one based on a four-dimensional spatial kernel and one based on

a spatial trajectory distance measure.

All the above models along with a global gravity model and an origin-specific and a

destination-specific models are calibrated using a journey-to-work case study in Lausanne,

Switzerland. The results of the models are visualised using conventional maps, matrix

visualisations and a series of flow maps. The results of the local models are compared

with the related global models and in most cases the local GWSI models exhibit an
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Figure 1.1: Overview of the spatial interaction models discussed in the thesis, with their
dependencies.

improvement over the global models both in providing more useful local information and

also in terms of model performance and goodness-of-fit.

Figure 1.1 gives a visual overview of the di↵erent spatial interaction models discussed

in this thesis and relates them to each other. An additional contribution of this work is

the discussion on how intra-zonal flows can be considered in spatial interaction models

by introducing a method for intra-zonal distance measures. Internal flows are important

in local spatial interaction models, because these local flows will be given more weight

in a geographically weighting procedure since they are always closer to the calibration

location compared to other observed flows. Also, the Lausanne journey-to-work dataset

contains an important proportion of internal flows (about 45%), which is an additional

reason to include these flows in the models.

1.4 Outline of the thesis

This thesis is structured in 9 chapters, as follows:

• In chapter 2 we introduce the dataset of journey-to-work in the Lausanne agglomer-

ation in Switzerland which is used throughout the work in order to test and validate

the interaction models.

• Chapter 3 provides an overview of spatial interaction models and their underlying
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theoretical framework along with a discussion on calibration techniques for the

interaction models. Also a global Poisson gravity model is calibrated using the

journey-to-work dataset in Lausanne described in chapter 2.

• In chapter 4 we discuss the intra-zonal flows problem and introduce a methodology

for estimating the average intra-zonal trip length allowing for integration of intra-

zonal flows in spatial interaction models.

• Chapter 5 gives a brief overview of the existing local methods for spatial data

analysis with attention given to the models which are used in this thesis such as

Geographically Weighted Regression (GWR) and origin- and destination-specific

spatial interaction models.

• Chapter 6 combines the geographically weighted concept with spatial interaction

models and introduces four members of a family of local GWSI models: origin-

focused, destination-focused, destination-specific origin-focused, and origin-specific

destination-focused models and discusses their application to the Lausanne journey-

to-work dataset.

• Chapter 7 introduces the last version of the GWSI, flow-focused model and discusses

distance measures between flows along with bandwidth calibration and spatial ker-

nel issue. This model is also applied to the Lausanne journey-to-work dataset and

the results are briefly analysed.

• Chapter 8 discusses some further issues around local spatial interaction and shows

some example applications where GWSI models are used for prediction.

• Chapter 9 concludes the thesis by giving a short overview of the models and the

contributions of the individual chapters and finally with a discussion on the possible

future work.



Chapter 2

Data and case study

2.1 Introduction

This thesis focuses on the methodologies of localising spatial interaction models. In order

to illustrate and examine local interaction methods we need to use an appropriate spatial

dataset. Spatial interaction, by definition, takes place between a pair of locations in space

(i.e. origin and destination points) and data should contain information on the volume

of flows between these points as well as attributes and locational information about the

origins and destinations (see Thompson, 1974; Bailey and Gatrell, 1995; Banerjee et al.,

2000; Rae, 2009). Here in this study, the data are used only for model validation and

exposition so the ideas herein are not limited to any particular type of spatial interaction

data but instead have broad application.

The Swiss Federal Statistical O�ce provides fine scale data on journey-to-work (com-

muting) between di↵erent communes in the country. Communes, also known as munici-

palities, are the smallest administrative district in Switzerland. In order to provide more

detailed information about the dataset, we first describe some general definitions and

information about the subdivisions of Switzerland.

2.2 Subdivisions of Switzerland

There are several administrative divisions in Switzerland that divide the country into

smaller units. The highest administrative subdivision in the country are known as can-

tons. There are 26 cantons in Switzerland which are the member states of the Swiss

Confederation. Each canton is divided in a number of districts and each district is di-

vided in communes which is the smallest administrative unit. Switzerland had 2896

communes in 2000. Communes have a local government and are responsible for basic

public services. Communes vary in the size from 22 residents for Corippo (Ticino) to

363,273 residents for the city of Zurich (for year 2000, data from Population Census

2000).

Besides the administrative levels of cantons, districts and communes, Switzerland is

8
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divided in a series of other spatial subdivisions based on several statistical variables. One

of these subdivisions is the concept of agglomeration, corresponding roughly to what is

a Metropolitan Area in the US (Berry et al., 1969; Dahmann and Fitzsimmons, 1995).

Other countries have very similar concepts, for instance the Urban Areas in the UK.

2.2.1 Agglomerations in Switzerland

The agglomerations try to define the spatial extent of urban areas. According to Schuler

et al. (2005, published by Federal Swiss Statistical O�ce), the definition of agglomerations

is based on di↵erent characteristics. More specifically, in Switzerland, a commune belongs

to an agglomeration if at least 3 of the 5 following criteria are met:

• Continuity of built zone with the central city

• High human density (sum of residential population and number of jobs)

• Population growth higher than average

• Low agricultural activity

• Strong commuting relationships with the central zone of the agglomeration

Figure 2.1 shows the Swiss agglomerations according to the definition of the year 2000.

They contain a central city (in red) and surrounding functionally and economically de-

pendent areas (in orange). In some particular cases, an agglomeration can also consist

of a single isolated city (in yellow). The main purpose of the definition of agglomera-

tions is to be able to compare urban areas with very di↵erent administrative limits. All

agglomerations together define the urban area of Switzerland, as opposed to rural zones.

With progressing urbanisation, the definition of agglomeration has changed over time and

is periodically updated by the Swiss Federal Statistical O�ce (usually every 10 years).

In some cases, an agglomeration can also contain neighbouring areas abroad where the

functional and economic relationships are strong. A total of 979 of 2896 communes were

considered as being ’urban‘ in 2000, with a total of 73% of the population (Schuler et al.,

2005).

2.3 The Swiss journey-to-work (commuting) dataset in the

literature

As the quality of the Swiss journey-to-work dataset is quite high with fine scale infor-

mation about Switzerland, it is not surprising that the data have been used in previous

studies. For instance, Bavaud (2010a) used the Swiss commuting dataset for illustrat-

ing the procedure of his study of distances on weighted graphs enabling thermodynamic

graph clustering. The dataset has also been used by Tuia and Bavaud (2007) as a case

study for a dimensionality reduction algorithm based on a flow matrix. The commuting
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Figure 2.1: Agglomerations of Switzerland for year 2000

dataset also contains information about the means of transportation used for the journey

to work. Kanevski et al. (2009) have used these data to illustrate the ability of Gen-

eral Regression Neural Networks (GRNN) to predict the spatial pattern of the usage of

di↵erent means of transportation in commuting. The data has also been used for visuali-

sation purposes in Killer and Axhausen (2010) or Kaiser (2011). Kaiser et al. (2011) have

used the commuting dataset to demonstrate the calibration of a local spatial interaction

model using a variant of geographically weighted regression. Dessemontet et al. (2010)

have made an extensive study of the commuting network of Switzerland by using the

same dataset and Dessemontet (2011) has used these journey-to-work data along with

other data to study the evolution of employment and accessibility in Switzerland over 60

years.

2.4 A spatial interaction model for journey-to-work

Due to the importance of commuting and trip distribution for spatial planning, (e.g.

tra�c and infrastructure development), there has been intensive research covering this

subject in geography and regional science (de Vries et al., 2009; O’Kelly and Niedzielski,

2007) (also see papers Wilson, 1967; O’Kelly and Lee, 2005; Farmer and Fotheringham,

2011; Batty, 1976; O’Kelly and Niedzielski, 2008; Wilson, 1974; O’Kelly et al., 2012; Sang

et al., 2011, inter alia). According to de Vries et al. (2009), the concepts of labour and
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housing markets are connected through commuting flows and so the size of flows between

regions and their e↵ect on the housing and labour markets can be analysed with spatial

interaction models (see Batten and Boyce, 1986; Fotheringham and O’Kelly, 1989).

A comprehensive introduction to spatial interaction modelling is given in section 3.

However, briefly there are three essential elements in spatial interaction models. The

first is travel cost which often is measured as distance between interaction (origin and

destination) regions; the second and third elements are attributes (or sizes) of interac-

tion regions which measure propulsiveness of origins and attractiveness of destinations

respectively. Based on the type of interaction problem and the purpose of the model,

di↵erent origins and destinations attributes can be considered in the model. For instance

in a shopping expenditure model, the origin attribute might be defined as the average

household income or unemployment rate whereas in a migration model, living cost or

average house price can be considered as destination attributes (see Fotheringham and

O’Kelly, 1989).

In this thesis, according to the available elements in our dataset, we consider four

components in our journey-to-work model. The first component is that of commuting

flows which will act as the independent variable in the calibration of the spatial interaction

model. The other three components are:

- Number of economically active population (working people) in each commune, con-

sidered as an origin propulsiveness attribute

- Number of jobs in each destination region, considered as a destination attractiveness

attribute

- Euclidean distance between centroids of origin and destination communes, consid-

ered as a surrogate for travel cost

Although the selection of variables in the interaction case study in this work is mainly

guided by available census elements, there are a number of studies in the literature using

the same variables for commuting analysis, supporting these choices (see for instance

Uboe, 2004; Lloyd and Shuttleworth, 2005; Shuttleworth and Lloyd, 2005; O’Kelly and

Niedzielski, 2007, 2008; Lloyd et al., 2007).

In this thesis we use the Swiss commuting dataset for the year 2000 which was the

latest available version of the data at the time of analysis. This dataset is issued from

the population census, which contains also other data including population. The number

of jobs is available through the firms census which has been conducted during 2001. The

qualifying date for the population census 2000 is the 5 December, while the firms census

contains data for the 1 January 2001, less than one month later. The following sentences

give a summary of general information about the data used in this thesis for spatial

interaction modelling:

• The journey-to-work data were acquired during the population census 2000. Frick

et al. (2004) describe extensively this dataset including methodological issues on
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data acquisition and descriptive statistics. The Swiss Federal Statistical O�ce

o↵ers this commuting data at the fine communal level, freely available at http:

//www.pendlerstatistik.admin.ch

• Information about active population has been acquired during the population cen-

sus 2000, along with other information such as residential population. Most of the

data from the population census is freely available at http://www.stattab.bfs.

admin.ch at the level of the communes, including the active population we are

using for our case study.

• The number of jobs has been acquired by the Statistical O�ce during the firms

census in 2001, where information about all companies in Switzerland was collected.

Information about the economic sectors is also available, including the split of the

number of jobs between secondary and tertiary sectors. Again, most of the data

from this census is also freely available at http://www.stattab.bfs.admin.ch at

the level of the communes.

2.5 Case study: Lausanne

The agglomeration of Lausanne, located in Western Switzerland was selected as the

study area for the calibration of various spatial interaction models. This agglomeration

is composed of 70 communes, covering a total area of roughly 317 km2 with a population

of slightly more than 310,000. The agglomeration is well separated from neighbouring

agglomerations which limits undesired inter-agglomeration interactions. Also the agglom-

eration of Lausanne does not extend behind the country borders as it is the case in some

areas in Switzerland; e.g. in the agglomeration of Geneva where over 9% of the workforce

lives in France, or in Basel where over 13% of the workforce lives in France or Germany.

In Lausanne only 1% of commuters are cross-border. Consisting of 70 communes with

populations ranging from 61 inhabitants (commune of Malapalud) up to 124,914 for the

city of Lausanne, (overall population about 310,000 in 2000), makes the agglomeration of

Lausanne the 5th biggest agglomeration in Switzerland. Figure 2.2 shows an overview of

the agglomeration of Lausanne with the road and train network. Lausanne is bordered

in the south by Lake Geneva. The main transportation routes are along the lake and

also in a northerly direction.

Figure 2.3 shows the location of the 70 communes in the agglomeration of Lausanne in

2000. Figure 2.4 shows the residential population in the agglomeration. The city of Lau-

sanne is by far the most populated commune with nearly 125,000 people which accounts

for roughly 40% of the population of the agglomeration. The remainder of the population

is mainly concentrated in the communes around Lausanne, mainly to the West between

the communes of Prilly to Morges. To the North, we find mainly small communes, with

the exception of the slightly more important town of Echallens. Figure 2.5 shows the

active population in the agglomeration. As active population is considered the working
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Figure 2.2: Overview map of the agglomeration of Lausanne
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Figure 2.3: Communes of the agglomeration of Lausanne

population together with the people seeking actively employment, students are not con-

sidered in the active population unless they are working part time. The spatial structure

of the active population is similar to the residential population; the city of Lausanne has

an active population of nearly 60,000 which is roughly 38% of the overall active popula-

tion in the agglomeration. The ratio of active population to residential population is of

48% in the city of Lausanne, and 50% in the whole agglomeration.

Figure 2.6 shows the number of jobs in the agglomeration in 2001. A job is considered

as an occupied working place in a company so vacant jobs are not counted in this statistic.

There is also no di↵erence between part time and full time jobs; both are counted as a

job. Nearly half of the jobs (roughly 86,000 of 175,500, or 48.9%) are located in the

city of Lausanne, which shows its important role as a centre of this agglomeration. The

remaining jobs are mainly located in the west and north-west of the city, not far from the

junction of the motorways going east, west and north. Figure 2.7 compares the number

of jobs with the active population. Blue circles depict a surplus of jobs, while red circles

represent communes with a greater number of population than jobs. This map shows a

clear gap between the economic and the residential communes in the agglomeration. The

communes east of Lausanne are typical residential communes with a wealthier population.

Figures 2.8 and 2.9 both show the percentage of internal flows for each commune.

In figure 2.8, the number of internal flows is compared to the total incoming flows to

the commune (including the internal flow), while in figure 2.9, the percentage of internal
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Figure 2.4: Population of the agglomeration of Lausanne in 2000

0 Source: Swiss Federal Statistics O!ce, Population census, 20005 km
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Figure 2.5: Active population of the agglomeration of Lausanne in 2000
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Figure 2.6: Number of jobs in the agglomeration of Lausanne in 2001

0 Source: Swiss Federal Statistics O!ce, Firms census, 20015 km
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Figure 2.7: Number of jobs (2001) minus active population (2000) in the agglomeration
of Lausanne. Proportional symbols depict the absolute value of the di↵erence.
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0 Source: Swiss Federal Statistics O!ce, Population census, 20005 km
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Figure 2.8: Percentage of internal flows compared to the total of inflows for the communes
of the agglomeration of Lausanne

flows is computed compared to the total outgoing flows. Figure 2.8 gives information on

the percentage of the commuters, working in a commune living in this same commune.

As an example, from the 64,717 people commuting to Lausanne, 35,585 or 55% live in

Lausanne itself. The spatial pattern shows clearly that the smaller communes at the

border of the agglomeration have a high percentage of internal flows compared to the

total of incoming flows, suggesting few people commute to these communes. On the

other hand, the communes west of Lausanne have more jobs than active population

(see also figure 2.7) and typically have a high percentage of people commuting from

other communes. The information in figure 2.9 represents the percentage of workforce

staying inside their commune of residence for their work. As an example, from the 47,071

commuters of the city of Lausanne, 35,585 or 75.6% do not leave the city for employment.

This percentage of internal flows compared to the total of outflows is higher than average

in the communes having more jobs than active population. But there are a series of

communes in the western border of the agglomeration towards Geneva showing even

higher proportions of internal flows to total of outflows. These communes seem to o↵er

a high proportion of jobs to the local population while having, with the exception of

Aubonne, a surplus of active population compared to the number of jobs, which is rather

unusual in the agglomeration of Lausanne.

Figure 2.10 represents the journey-to-work flows in the agglomeration of Lausanne.

Flows smaller than 20 commuters are not considered. The internal (intra-zonal) flows are
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0 Source: Swiss Federal Statistics O!ce, Population census, 20005 km
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Figure 2.9: Percentage of internal flows compared to the total of outflows for the com-
munes of the agglomeration of Lausanne

represented by proportional circles while the inter-zonal flows are depicted by lines with

proportional width. The map shows clearly an inner part of the agglomeration which

is very well connected in terms of journey-to-work flows. This inner part runs roughly

from Morges in the West to Lutry in the East and contains the communes North-West of

Lausanne having more jobs than active population (see figure 2.7). The communes in the

inner part of the agglomeration are well connected between themselves, while the flows

in the surrounding communes focus mainly towards the inner part of the agglomeration.

This pattern shows a concentric organisation of the agglomeration where the central part

has the biggest parts of the jobs, and the surrounding communes are mostly residential.

Figure 2.11 shows the relationship between the total incoming versus the total outgo-

ing flows. The diagonal line represents equality of incoming and outcoming flows. Both

axes of the chart have logarithmic scales. Only a few communes have higher inflows than

outflows. This chart shows that a few central communes have more jobs than active pop-

ulation, and many small, less central communes are typical residential communes with

much more outflows than inflows.

The frequency histogram of the distance from home to work is shown in figure 2.12.

The average commuting distance is around 3.3 km, while the median is 2.2 km due to

the skewed nature of the frequency distribution. It has to be noted that the commuting

distances have been computed using the polygon centroids, resulting in internal flows

having a distance of 0. Given that about 45% of the flows are internal flows and that
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Figure 2.10: Journey-to-work flows in the agglomeration of Lausanne, 2000
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Figure 2.11: Inflows versus outflows in the agglomeration of Lausanne, 2000
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Figure 2.12: Frequency histogram of the commuting distance in the agglomeration of
Lausanne, 2000

most of the internal flows are in reality not of distance 0, this results in a under-estimation

of the commuting distance. Neverthless, figure 2.12 shows an exponential decrease in the

frequency of the flows with increasing distance.

Another interesting map describing the median income of the resident population in

the agglomeration of Lausanne in 2005 is shown in figure 2.13. The data are provided

by the tax administration of the canton of Vaud. The number of communes in the

agglomeration has been reduced to 65 in 2005, as some communes have merged with

neighbouring communes. According to the map, residents of city of Lausanne have the

lowest income. This is perhaps due to more students and lower-income workers living

here. This is also true for the communes west of the city of Lausanne such as Renens,

Prilly or Ecublens. In contrast, the commune of Jouxtens-Mézery located just in the

north of Lausanne is the commune with the highest median income. This is possibly

because of the low tax rate in this commune in comparison with other parts of the

agglomeration which make this commune an attractive place to live for wealthier people.

The communes of Saint-Sulpice and Buchillon in the middle south and west are famous

for being wealthy locations lying along Lake Geneva.

In this chapter the dataset to be used is described in detail. The dataset consists of

commuting flows in the agglomeration of Lausanne, located in Western Switzerland. The

commuting model in this thesis considers three independent variables of active popula-

tion, number of jobs and distance between origins and destinations. The data related to
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Figure 2.13: Median income in the agglomeration of Lausanne, 2005

these variables are used to produce the maps presented in this chapter.

In the following chapter, spatial interaction models and their underlying theoretical

frameworks will be reviewed and a global Poisson gravity model will be calibrated using

MLE for the Swiss commuting data described above.



Chapter 3

Spatial flow modelling: an

overview

3.1 Introduction

According to Fotheringham and O’Kelly (1989); Fischer (2000) and Fotheringham (2001),

spatial interaction can be broadly defined as the movement or communication of objects

such as people, goods and information over geographic space that results from a decision-

making process (also Batten and Boyce, 1986). By this definition, spatial interaction

covers a wide variety of behaviours and movements such as migration, shopping trips,

commuting, commodity or communication flows, trips for educational purposes, airline

passenger tra�c, the choice of health care services, the spatial pattern of telephone

calls, emails and the World Wide Web connections and even attendance at events like

conferences, cultural and sport events (Haynes and Fotheringham, 1984). All of these

behaviours form important components of social and urban complex systems. In each

case, an individual or group of individuals trade o↵ the benefit of the interaction with the

cost of overcoming the separation between them and their possible destinations; hence,

these decision-making processes are particularly related to spatial choice. The decision

where to relocate in case of migration, where to shop in case of shopping and the decision

where to live or where to work in case of journey-to-work are examples of spatial choice

in spatial interaction.

Usually spatial interaction systems are complex and multi-dimensional; according

to Van-Lierop (1986), this could be due to the fact that ”in reality, multiple dimensions

are involved in the geographical dispersion of human activities and the spatial relation-

ship between them“. This sort of complex system is di�cult to model and analyse. It

has been shown that even simple spatial interaction processes can show complex, chaotic

behaviour (see e.g. Dendrinos and Sonis, 1990; Chen, 2009). However, to facilitate under-

standing and analysis of the patterns and underlying structures of spatial flows in inter-

action systems, during the years, researchers in various fields have tried to model spatial

22
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flows through mathematical equations, known broadly as ”spatial interaction models“.

Spatial interaction models can be used for explanatory purposes when each determi-

nant of flows is examined through an associated parameter estimate (Fotheringham and

O’Kelly, 1989). These models also can provide the opportunity to predict flows patterns

when changes in the interaction system occur; e.g. in a shopping behaviour model, to

forecast how patterns of spatial flows will change when a shop in the study area either

opens or closes.

In this chapter an overview of spatial interaction models is provided with the following

structure: the general form and basic elements of the interaction models are described in

section 3.2; the gravity model is introduced in section 3.3 as an early spatial interaction

model; entropy and utility maximisation frameworks of spatial interaction models are

presented in sections 3.4 and 3.5 respectively; section 3.7 covers the calibration tech-

niques for interaction models and includes the Poisson form of spatial interaction model;

and in a final section of 3.9, a Poisson gravity model is applied to journey-to-work flows

in Lausanne, as an empirical example of a global interaction model.

3.2 General form and elementary components of spatial

interaction modelling

The most general form of a spatial interaction model can be formulated (see e.g. Wilson,

1967; Alonso, 1978; Sen and Sööt, 1981) as:

T
ij

= f(V
i

W
j

C
ij

) (3.1)

where the interaction between any pair of origins i and destinations j is specified as T
ij

,

V
i

represents a vector of origin factors measuring the propulsiveness of origin i, W
j

is

a vector of destination attractiveness factors, and C
ij

represents a vector of separation

factors, measuring the separation between zones i and j usually in term of distance, cost

or travel time between i and j (Fischer, 2000; Haynes and Fotheringham, 1984).
In spatial interaction analysis, a so-called ”origin-destination matrix“ is often used

to display the interactions between di↵erent origins and destinations. The size of this
matrix is defined by the number of origins and destinations in the interaction system.
Table 3.1 represents an origin-destination matrix for an interaction system with m origins
and n destinations. The elements, T

ij

, of this (m ⇥ n) matrix indicate the number of
flows between origin i and destination j. Each row of the matrix is allocated to an origin
i and the columns are aligned with each destination j. The total number of interactions
emanating from each origin i and the total interactions terminating in each destination j
are summed in corresponding O

i

rows and D
j

columns respectively; the sum of all flows
in the matrix which represents the total number of interactions in the system is shown
by T in table 3.1 (for a reference see e.g. Van-Lierop, 1986). Besides T

ij

, the variables
V
i

, W
j

and C
ij

of a spatial interaction model (see equation 3.1) can also be represented
in matrix notation. When there are p origin attributes and q destination attributes in a
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Table 3.1: Origin-destination matrix

````````````Origin
Destination

1 2 3 · · · · · · n Total

1 T11 T12 · · · · · · · T1n O1

2 T21 T22 · · · · · · · T2n O2

3 · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
m Tm1 Tm2 · · · · · · · Tmn Om

Total D1 D2 · · · · · · · Dn T

system with m origins and n destinations, an (m⇥p) matrix V and an (q⇥n) matrix W
can be used for representing origin and destination attributes respectively, and a (m⇥n)
matrix C where its elements c

ij

represent separation between origin i and destination j
(generally in terms of distance) can be considered as components in spatial interaction
models (Fotheringham and O’Kelly, 1989):

V =

0

BBBB@

v11 v21 · · · vp1
v12 v22 · · · vp2
...

...
...

...

v1m v2m · · · vpm

1

CCCCA
W =

0

BBBB@

w1
1 w1

2 · · · w1
n

w2
1 w2

2 · · · w2
n

...
...

...
...

wq
1 wq

2 · · · wq
n

1

CCCCA
C =

0

BBBB@

c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

...

cm1 cm2 · · · cmn

1

CCCCA

3.3 Gravity model: an early spatial interaction model

One of the most widely used modelling frameworks for spatial interaction is the Gravity

model (Haynes and Fotheringham, 1984) which has a long history in the social sci-

ences (Sen and Smith, 1995), and for which many review texts exist (e.g. Roy and Thill,

2004; Sen and Smith, 1995; Batten and Boyce, 1986; Roy, 2004). The early attempts of

understanding regularities in patterns of spatial flows, which can be seen as the starting

point of gravity models, date back at least to the works of Carey (1858) and Ravenstein

(1885) who observed a greater number of migrants to move between larger and closer

cities, ceteris paribus (O’Kelly, 2009; Fotheringham et al., 2000).

The essence of the gravity model framework is based on Newton’s law of universal

gravitation: the attraction between every entity is proportional to their masses and

inversely proportional to their distance. During the mid-1850s, Newton’s theory began

to be used for modelling certain types of human activity between entities physically

separated in geographical space (Roy and Thill, 2004). In determining spatial interaction

based on Newton’s theory, initially the gravitational force was replaced with the number

of interactions between origin i and destination j as T
ij

; the masses were specified by the

measured sizes of the interaction regions, for example by their populations: P
i

for origins

and P
j

for destinations (see Stewart, 1941), and the distance factor was expressed as the
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centroid-to-centroid distance between the interacting regions d
ij

, (Roy, 2004), as:

T
ij

= k
P
i

P
j

d
ij

(3.2)

where k is a scaling parameter relating the magnitude of T
ij

to the ratio P
i

P
j

/d
ij

(Fother-

ingham et al., 2000).

The basic formulation of the gravity model in equation 3.2 has evolved over the years

to better correspond to complex spatial interaction systems. In order to consider the

variation of relationships in real-world situations, the formula 3.2 has been modified to

include a freely varying exponent for each of the model variables:

T
ij

= 
P↵

i

P �

j

d�
ij

(3.3)

or alternatively:

T
ij

=  P↵

i

P �

j

d�
ij

(3.4)

where  (balancing factor), ↵, � and � are parameters of the model to be estimated em-

pirically and reflect the nature of the relationship between spatial flows and each of the

explanatory variables (Fotheringham et al., 2000). The only di↵erence between equa-

tion 3.3 and 3.4 is the value sign of the parameter �. The parameter �, known as

”distance-decay“ or ”friction of distance“ parameter (Haynes and Fotheringham, 1984),

has a general negative influence on the total number of interactions. Therefore, the value

sign of � in equation 3.3 will be positive while in equation 3.4 � will be negative to

indicate a negative e↵ect on the total interaction. Di↵erently from �, both parameters �

and ↵ have positive signs with a general positive influence on the total number of flows

in the interaction system (for more information see Haynes and Fotheringham, 1984).

A further modification of the basic gravity model formula has the form of an expanded

model which considers a number of attributes of the origins and destinations, rather than

only the considered size variables in equations 3.3 and 3.4. The expanded version of the

gravity model has the following formula:

T
ij

= 
V ↵1
i1 V ↵2

i2 · · · V ↵p

ip

W �1
j1 W �2

j2 · · · W �q

jq

d�
ij

(3.5)

with p origin attributes, V
i

, a↵ecting the magnitude of the flows leaving i and q desti-

nation attributes, W
j

, a↵ecting the magnitude of flows entering j (Fotheringham et al.,

2000); (see Haynes and Fotheringham, 1984, for more details).

The underlying ”social physical“ framework of the gravity model has been criticised

for its lack of theoretical grounding in the way individuals behave (Fotheringham et al.,

2000). However, the ability of the model to produce reasonably accurate estimates of
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flows and its easy to understand framework made the gravity model one of the most

widely used interaction models which is continued to be modified, expanded and used

today (Fotheringham et al., 2000; Fischer, 2000). There has been a great deal of e↵ort in

the literature to develop a satisfactory theoretical framework for the gravity model, (see

e.g. Dodd, 1950; Zipf, 1949; Hu↵, 1959; Niedercorn and Bechdolt Jr, 1969), where two

analytical thought classes of ”entropy-maximising“ formulation and ”utility-theory“ ap-

proach brought most advances in this regard (Fotheringham et al., 2000).

3.4 Entropy maximisation and the family of spatial inter-

action models

The entropy maximisation approach estimates the most likely (the most probable) distri-

bution pattern in an interaction system given only limited information, and potentially

respecting a set of constraints. The base of this approach was introduced by Wilson

(1967, 1970, 1971, 1974). The essence of this approach can be explained with the fol-

lowing example: suppose we have one origin with an outflow of 30 individuals, and two

destinations A and B. There are many di↵erent possible configurations of the flows be-

tween the origin and the destinations (see figure 3.1 for some possible configurations).

For a given flow configuration, e.g. f
A

= 5 and f
B

= 25, there are R number of ways of

Figure 3.1: Simple spatial interaction system with some possible flow configurations.

Origin

Destination A

Our information:
1. Two destinations A & B
2. Total !ow  fA + fB = 30

Some possible 
!ow con"gurations:
fA  = 0 fB = 30
fA  = 5 fB = 25
fA  = 10 fB = 20
fA  = 15 fB = 15
fA  = 20 fB = 10
fA  = 25 fB = 5
fA  = 30 fB = 0

Destination B

fA fB

assigning each of the 30 individuals to one of the flows f
A

or f
B

and can be computed

as R = 30!/(f
A

! · f
B

!) or more generally as:

R = T !
�Y

ij

T
ij

! (3.6)
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If we assign the individuals randomly to one of the flows, the probability of getting one

particular configuration is R/
P

R; where
P

R is the total number of possible configura-

tions. Therefore, the most probable flow configuration for f
A

and f
B

is the one where this

probability and hence R is maximised. In a spatial interaction model, the flow configu-

ration T
ij

that maximises R has to be found. Without a↵ecting the maximisation result,

we can take the natural logarithm of equation 3.6 and divide it by the total number of

flows T , giving a new quantity H:

H ⌘ 1

T
lnR =

1

T

�
ln T !�

X

ij

ln T
ij

!
�

(3.7)

where ln T ! can be estimated by Stirling’s formula of large factorials as: (T lnT � T ), if

all T
ij

are large; after some rearranging, this would result in:

H = �
X

ij

(T
ij

/T ) ln(T
ij

/T ) = �
X

ij

p
ij

ln(p
ij

) (3.8)

where p
ij

is the proportion of trips going from i to j (see Fotheringham et al., 2000, for

more details). Equation 3.8 is the formula for the entropy of a distribution (Shannon,

1948; Jaynes, 1957; Georgescu-Roegen, 1971, 1986). Therefore, finding the most likely

flow configuration in a spatial interaction model can be seen as an entropy maximisation

problem. The maximum entropy solution is the one where the di↵erent flows T
ij

have

equal values or are all as near to equal as possible; for instance in the above example,

the optimal flow configuration is when f
A

= f
B

= 15.

It is possible to add constraints to this entropy maximisation procedure. According

to (Fotheringham et al., 2000) some possible constraints that have been imposed on the

system are:

X

ij

T ⇤
ij

lnP
i

= P1 (3.9)

where T ⇤
ij

is the prediction of the spatial interaction model and P
i

is the population of

origin i;

X

ij

T ⇤
ij

lnP
j

= P2 with P
j

the population at destination j (3.10)

X

ij

T ⇤
ij

ln d
ij

= D (3.11)

where D is the total distance travelled by all individuals together;

X

ij

T ⇤
ij

= K where K is the known total interaction; (3.12)
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X

ij

T ⇤
ij

= O
i

for all i (3.13)

where O
i

is the known total flow from each origin (see table3.1); and

X

ij

T ⇤
ij

= D
j

for all j (3.14)

where D
j

is the known total inflow into each destination (see table 3.1).

Optimising equation 3.8 using the constraints in equations 3.9 to 3.12 leads to the well

known formulation of the gravity model (equation 3.4) (Wilson, 1974). By adding ad-

ditional constraints on the total of outgoing flows from origins (equation 3.13) and/or

on the total of incoming flows to destinations (equation 3.14) it is possible to produce a

series of interaction models, called the family of spatial interaction models (Wilson, 1974;

Fotheringham and O’Kelly, 1989). The application of constraints 3.9 and 3.11 together

with constraint 3.14 on the total of incoming flows leads to a spatial interaction model

known as attraction-constrained model :

T
ij

=
D

j

P↵

i

d�
ijP

i

P↵

i

d�
ij

(3.15)

The so-called production-constrained model results from maximising equation 3.8 subject

to constraints 3.10, 3.11 and the constraint 3.13 on the total of outgoing flows:

T
ij

=
O

i

P �

j

d�
ijP

j

P �

j

d�
ij

(3.16)

Maximising equation 3.8 subject to constraints 3.11, 3.13 and 3.14 produces a production-

attraction- or doubly-constrained model (Fotheringham et al., 2000):

T
ij

= A
i

O
i

B
j

D
j

d�
ij

(3.17)

where A
i

=
P

j

(B
j

D
j

d
ij

)�1 and B
j

=
P

j

(A
i

O
i

d
ij

)�1 are balancing factor, to be

iteratively adjusted during the model calibration.

Wilson’s derivation of spatial interaction based on the entropy maximisation provided

an acceptable theoretical justification for the gravity interaction model and the family

of spatial interaction models are widely applied in di↵erent interaction examples (for

instance see Wilson, 1968; Fotheringham and O’Kelly, 1989; O’Kelly, 2009, 2010, 2012;

Clarke et al., 1998; Wilson, 2000; Clarke and Clarke, 2001; Nakaya et al., 2007; Singleton

et al., 2010). Furthermore, numerous extensions to Wilson’s entropy models have been

developed in the literature both from a theoretical and practical perspective (see Wilson,

1975; Sen and Smith, 1995; Fotheringham and O’Kelly, 1989; Roy and Thill, 2004; Roy,

2004; Nakaya et al., 2007). For instance, Alonso (1978) proposed a generalised formula-

tion in which each member of the family of interaction models could be obtained from
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his framework. Later Fotheringham and Dignan (1984) showed that an infinite number

of spatial interaction models can be derived from the Alonso formula (Fotheringham and

O’Kelly, 1989). Other examples of extensions to Wilson’s entropy models are incorpo-

rating neural network into calibration of the models (see for instance Openshaw, 1993;

Nakaya, 1995; Fischer, 2002) and integrating the interaction modelling framework with

spatial microsimulation (see for instance Birkin and Clarke, 1985, 1988; Clarke et al.,

1998; Clarke and Clarke, 2001; Ballas and Clarke, 2001; Birkin et al., 2010; Nakaya

et al., 2007). Despite several criticisms of the Wilson’s framework in the literature,

mainly due to the lack of human behavioural properties in the related models, (see for

instance Haynes and Fotheringham, 1984; Fotheringham et al., 2000; Fotheringham, 2001;

O’Kelly, 2004), the entropy maximisation remains a popular framework of formulating

spatial interaction models. For instance, di↵erent entropy maximisation based models

have been successfully used in many real-world applications around retailing, where re-

tailing can be seen very broadly as a ”system of interest where there is a flow from a

population area to some kind of facility“ (Wilson, 2010). Birkin et al. (2010) show the

main issues of using this type of spatial interaction models in an operational environ-

ment, and explain some of the modifications and extensions required for addressing issues

specific to practical model implementations.

One important modification is a segmentation of the market by customer types, as

expressed in the following production-constrained model (for more details, see e.g. Wilson,

2010):

Sngh

ij

= Ang

i

· eng
i

· Pn

i

·W gh

j

· exp(��c
ij

) (3.18)

where Sngh

ij

is the expenditure by person of type n located in residence zone i for a type

of good g in a type of retail store h with location j. eng
i

is the per-capita expenditure by

a person of type n located in residential zone i for a good of type g. Pn

i

is the population

of type n in zone i. W gh

j

represents the attraction properties of the retail store h located

in destination j, given good type g. c
ij

is the distance or cost between origin i and

destination j, and � is the distance (or cost) deterrance term to be calibrated for each

n, g and h. Finally, Ang

i

is a balancing factor to ensure that the total expenditure of all

persons of type n in zone i for a type of good g in retail store h is met:

X

j

Sngh

ij

= Ongh

i

(3.19)

Such a disaggregated entropy-based spatial interaction models takes into account de-

mand, supply and interaction elements. Birkin et al. (2010) note that disaggregation

needs to be used carefully, as it might lead to over-fitting of the model and consequently

to poor prediction capabilities. This is especially true if the model is calibrated for

individual origin or destinations.

This type of spatial interaction model has been used extensively in many studies. As
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described by Birkin et al. (2002, 2010), these models have been extensively used in the

private sector for retail site location. Additional studies in related fields have also been

undertaken. For example, Clarke et al. (2002) have used a entropy-based model in the

context of food retailing with the aim of finding zones without su�cient supply in grocery

stores, both in quantity and variety. The spatial interaction model is used for estimating

the flows for grocery shopping, and indicators are derived based on the model measuring

the level of provision for an area or a household. Finding these potential ”food deserts“

is useful for planning purposes. A similar application is retail impact assessment, which

tries to assess the impact of new or potential stores (see e.g. England, 2000). If a planned

store is likely to have a considerable impact on existing stores, or generates an important

amount of tra�c, careful evaluation by urban planners is required. While retail impact

assessment is traditionally done without spatial interaction model, Khawaldah et al.

(2012) have shown that the use of a disaggregated spatial interaction model as described

above gives better results.

3.5 Utility maximisation

The family of spatial interaction models derived with the entropy maximisation approach

can also be derived in a more behavioural framework using the concept of utility max-

imisation. The underlying idea of the concept is that the constrained versions of these

models allocate the flows emanating from an origin i to a limited number of destinations

j which can also be seen as in the framework of discrete choice models (McFadden, 1973,

1978, 1980). For example a person at origin i makes the choice of destination j for a

given purpose, such as working or shopping, based on a limited number of attributes of

j. The choice of the person will be the one that maximises his/her utility or benefit.

The utility is estimated based on two components, V
ij

and µ
ij

, where V
ij

is a measurable

component based on the attributes of origin i and destination j, and µ
ij

is a random

component varying between �1 and +1. The utility of a person in i derived from

selecting destination j can then be computed as:

U
ij

= V
ij

+ µ
ij

(3.20)

where V
ij

is a measurable component, µ
ij

is an unknown and small component relative

to V
ij

.

In theory, it is possible to compute for each destination j the utility a person at i

would derive from choosing j and then to find the destination yielding maximum utility.

Due to the random term µ, the estimation of the utility cannot be done with certainty.

The choice of destination j can only be based on the measurable part of the utility V .

If the assumption is made that the random term µ is distributed according to a Gumbel

distribution (also named type I extreme value distribution) (Fisher and Tippett, 1928),

the probability of choosing destination k out of a set of N destinations j can be computed
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as:

p
ik

=
exp(V

ik

)P
j

exp(V
ij

)
. (3.21)

Equation 3.21 has the same basic form as a production- or attraction-constrained spatial

interaction model. Fotheringham and O’Kelly (1989), Fotheringham et al. (2000) and

Pagliara and Timmermans (2009) give a more in-depth discussion of the derivation of

the constrained spatial interaction models using the utility maximisation approach and

their applications.

3.6 Competing destination model

The derivation of spatial interaction models based on the discrete choice framework (util-

ity maximisation), by providing a human behavior and information processing theoretical

foundation for the models, was an improvement over the previous physical analogies to

gravitational attraction and entropy Fotheringham et al. (2000). However, the framework

of discrete choice is mainly based on aspatial contexts where the number of alternatives

are small such as choice of transportation mode. In the derivation of spatial interaction

models based on the utility maximisation, it is assumed that an individual can evaluate

all alternatives; however, this assumption may not be applicable to spatial choice situa-

tions where number of alternatives or choices is usually big. This is because of the fact

that human brain capacity for processing information is limited Norman and Bobrow

(see e.g. 1975); Bettman (see e.g. 1979); Fotheringham et al. (see e.g. 2000).

In order to improve performance of the spatial interaction models in spatial choice

situations, one suggested solution is to assume that individuals consider a hierarchical

spatial information processing when evaluating di↵erent alternatives and to incorpo-

rate relevant measures explicitly, mainly measured with an accessibility variable, in the

model (Fotheringham, 1981, 1982b,a, 1983, 1984a,b). Fotheringham in a series of pub-

lications introduced an improved form of spatial interaction models, called competing

destinations models. In this type of model, an accessibility variable which measures com-

petition between di↵erent destinations in the system, is added to the model formula (see

Fotheringham, 1983, 1984b, 1986).

The competing destinations models were improved and developed further later and

used in di↵erent applications (see for instance Fotheringham, 1987, 1988a; Gitlesen and

Thorsen, 2000; Thill and Kim, 2005; Chun et al., 2012; Uboe, 2004; Brown and Andreson,

2002; Pellegrini and Fotheringham, 1999; Kwan, 1998; Fotheringham and Trew, 1993;

Pellegrini et al., 1997; Thorsen and Gitlesen, 1998; Guldmann, 1999; Fotheringham et al.,

2001b; Lo, 1991).
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3.7 Calibration of spatial interaction models

Di↵erent calibration techniques exist for estimating the parameters of spatial interaction

models. Traditionally in the calibration of spatial interaction models it was assumed

that these models follow a normal (Gaussian) distribution which allowed a linear regres-

sion calibration technique, such as ordinary least squares, to be used for estimating the

model parameters. Ordinary Least Squares (OLS) is a calibration technique which tries

to find the parameter values of the model which best fit the data set, based on min-

imising the sum of the squared error term. To show the derivation of OLS estimators,

consider a mathematical model with a linear combination of dependent variable y
i

and

an independent variable x
i

as:

y
i

= ↵+ �x
i

+ e
i

(3.22)

where e
i

is the error (residual) term, ↵ and � are coe�cients to be estimated. In order to

minimise the sum of squared residuals (SSR) in equation 3.23, OLS solves the equations of

the first order derivatives equal to zero (see equations 3.24 and 3.25). The maximisation

problem can be written as:

minimising SSR(↵̂, �̂) =
X

i

ê2
i

=
X

i

(y
i

� ŷ
i

)2

=
X

i

(y
i

� ↵̂� �̂x
i

)2 (a)

when
@(SSR)

@↵̂
= 0 (b)

and
@(SSR)

@�̂
= 0 (c)

(3.23)

To derive parameter ↵ based on equation 3.23 (b):

�2
X

i

(y
i

� ↵̂� �̂x
i

) = 0 (divide by � 2n) (a)

)
X

i

y
i

� n↵̂�
X

i

�̂x
i

= 0 (rearrange) (b)

) ↵̂ = ȳ � �̂x̄ (c)

(3.24)

For estimating the variable �, based on equation 3.23 (c):

�2x
i

X

i

(y
i

� ↵̂� �̂x
i

) = 0 (divide by � 2) (a)

X

i

x
i

y
i

= ↵̂
X

x
i

+ �̂
X

x2
i

(b)
(3.25)
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multiply 3.24 (b) by
P

i

x
i

and 3.25 (b) by n:

X

i

y
i

X
x
i

= n↵̂
X

x
i

+ �̂(
X

i

x
i

)2 = 0 (a)

n
X

i

x
i

y
i

= n↵̂
X

x
i

+ n �̂
X

i

x2
i

= 0 (b)
(3.26)

subtracting 3.26 (a) from 3.26 (b):

n
X

i

x
i

y
i

�
X

i

y
i

X
x
i

= n �̂
X

i

x2
i

� �̂(
X

i

x
i

)2 (3.27)

and finally

�̂ =
n
P

x
i

y
i

�
P

x
i

P
y
i

n
P

x2
i

� (
P

x
i

)2
=

P
x
i

y
i

� ȳ
P

x
iP

x2
i

� x̄
P

x
i

(3.28)

The OLS technique can also be used for calibrating equations with more than two pa-

rameters. In this case, the model formulation can be written in a matrix notation as

y = X � + e where y is a (m ⇥ 1) vector of the dependent variable, X is a (m ⇥ p)

matrix of independent variables, including a column of one for the intercept parameter

and � is a (p⇥ 1) vector of parameters to be estimated. Following the same principle of

minimising the sum of squared residuals, the estimated parameters of the model can be

derived from the following equation:

�̂ = (XTX)�1XT y where XT indicates the transpose of X. (3.29)

When using matrix notation of OLS for calibrating the spatial interaction models, the

independent variable T
ij

representing spatial flows from origin i to destination j is nor-

mally distributed and a mean of spatial flows can be achieved with a linear combination of

the independent variables. For example, consider a general formula of the gravity model

between m origins and n destinations: T
ij

=  P↵

i

P �

j

d�
ij

; taking logarithms from both

sides of the equation, the formulation of the model is in the form of linear regression:

log T
ij

= log + ↵ logP
i

+ � logP
j

+ � log d
ij

+ e
ij

(3.30)

where P
i

, P
j

and d
ij

are vectors containing the values of explanatory variables of origins
and destinations and distance between them; , �, ↵ and � are parameters of the model
and the error term e

ij

is identical and independent and follows a normal distribution
with zero mean. Using the matrix notation of the least squares technique for minimising
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the sum of square error, a vector of parameter estimates �̂, can be obtained as:

�̂ =

0

BBB@

log 

↵

�

�

1

CCCA
when y =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

log T12

log T13

...

log T1n

log T21

log T23

...

log T2n

...

log Tm1

log Tm2

...

log Tmn

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

and X =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 logP1 logP2 log d12
1 logP1 logP3 log d13
...

...
...

...

1 logP2 logP1 log d21
1 logP2 logP3 log d23
...

...
...

...

1 logP2 logPn log d2n
· · · · · · · · · · · ·
...

...
...

...

1 logPm logP1 log dm1

1 logPm logP2 log dm2

...
...

...
...

1 logPm logPn log dmn

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

3.8 Poisson spatial interaction model and maximum likeli-

hood

The form of spatial interaction models that are calibrated using regression techniques

are often referred to as log-normal models (see Flowerdew and Aitkin, 1982). Although

regression is one of the most commonly used mechanisms for calibrating the log-normal

models, there are several problems associated with this technique. Here we briefly review

two of these problems which are most mentioned in the literature (for further information

see Flowerdew and Aitkin, 1982; Fotheringham and O’Kelly, 1989, inter alia). The zero

flow problem is the first one. Regression techniques require linearising the interaction

model by applying a logarithmic function to both sides of the model equation. The

application of a logarithmic function is problematic if there are any zero flows in the

model, because the logarithm of zero is undefined (Fotheringham and O’Kelly, 1989). It

is obvious that in many spatial interaction systems, a number of spatial flows might be

zero. For instance, in a journey-to-work model covering cities in a country, it is rather

unusual if commuters travel more than several hours for their daily travel to work so

in this case usually the interaction flows between far locations are zero. Or in a trade

flow model, as it is stated in Burger et al. (2009), factors like distance, cost, or absence

of historical and cultural links between distant countries can be some reasons for the

absence of trade and so having zero spatial flow in the model is fairly common (see also

Frankel, 1997; Rauch, 1999).

A second problem associated with the calibration of the spatial interaction models

with regression technique is the assumption of normal distribution of the flows. As spatial

interactions are discrete phenomena indicating a given (nonnegative integer) number of
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flows between a set of origins and destinations, assuming a continuous distribution for

the flows might be an unrealistic assumption (see Flowerdew and Aitkin, 1982).

To overcome the above-mentioned problems, some possible solutions have been sug-

gested. The simplest solution would be to remove all zero interactions from the analysis

but this would result in a biased dataset and misleading parameter estimates that do not

reflect the low interactions (Fotheringham and O’Kelly, 1989; Eichengreen and Irwin,

1998). Another solution for the zero flow problem is to add a small positive constant

(usually 0.5 or 1) to elements of the interaction matrix; for instance to add a small con-

stant to every flow in the system, or add this constant only to the zero flows (see e.g.

Linders and de Groot, 2006). However in any case, it has been shown that the model

calibration is sensitive to this constant in which di↵erent constant values added to the

flows would result in di↵erent parameter estimates (see Flowerdew and Aitkin, 1982;

King, 1988). Therefore, adding a constant to elements of the flow matrix, would poten-

tially bring some bias in the model calibration and would not be a proper solution for

the problem of zero flows in the log-normal models.

In a more promising approach for solving the above problems, considering the fact that

spatial flows are count data, Flowerdew and Aitkin (1982) suggested that in modelling

spatial interaction, each T
ij

variable should be regarded as having a discrete probability

distribution such as Poisson. If there is a constant probability of any individual moving

between i and j when the population of i is large and movements of individuals are

independent, then interactions have a Poisson distribution with mean �
ij

(Flowerdew

and Aitkin, 1982; Fotheringham and Williams, 1983; Flowerdew and Lovett, 1988; Lovett

and Flowerdew, 1989). Therefore, the probability that T
ij

number of people are moving

between i and j is given by:

Pr(T
ij

) =
e��

ij �
T

ij

ij

T
ij

!
(3.31)

where �
ij

is the expected mean value of the variable T
ij

and should be estimated.

In the Poisson regression model, the mean parameter depends on the explanatory vari-

ables (Cameron and Trivedi, 1998) through the generalised linear model (GLM) (Nelder

and Wedderburn, 1972; McCullagh and Nelder, 1989). GLM extends the basic regression

model, where the dependent variable is assumed to follow a Gaussian distribution, to

the case of the exponential family of distributions (Fotheringham et al., 2002), such as

Poisson, binomial distribution, inter alia. The expected value of the dependent variable

in a GLM is defined in terms of a linear function of the explanatory variables:

g
�
E(y

i

)
�
= a0 + a1xi1 + a2xi2 + · · ·+ a

p

x
ip

(3.32)

where the function g() is referred to as ”link function“ and is specified based on the type

of model distribution. The Poisson regression corresponds to the GLM with ”log“ link
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function (Kamo et al., 2009); so that:

log
�
E(y

i

)
�
= a0 +

pX

k=1

a
k

x
ik

(3.33)

where p is the number of explanatory variables, excluding the intercept.

In equation 3.31 where the spatial interaction model is considered to follow a Poisson

distribution, the expected mean value of flows �
ij

is unknown and can be estimated

from a spatial flow model (e.g. a simple gravity model) logarithmically linked to a

linear combination of the logged independent variables (see Flowerdew and Aitkin, 1982;

Flowerdew, 1982):

ln(�
ij

) = + ↵ lnP
i

+ � lnP
j

+ � ln d
ij

(3.34)

or equally as:

�
ij

= exp(+ ↵ lnP
i

+ � lnP
j

+ � ln d
ij

) (3.35)

when an exponential function, exp(), is applied to the both sides of equation 3.34.

Initially Flowerdew and Aitkin (1982) calibrated �
ij

using an iteratively reweighted

least squares techniques described by Nelder andWedderburn (1972); however, later Fother-

ingham and Williams (1983) suggested the maximum-likelihood calibration technique for

this purpose. Maximum likelihood is a calibration technique which estimates parameters

of the model by maximising the probability (likelihood) of the sample data. Suppose

that X is a random variable with density function f(X; ✓1, ..., ✓
k

), where (✓1, ..., ✓
k

) = ✓

are k parameters to be estimated. If x1, ..., xn is a set of n independent observations, the

likelihood function is given by:

L(✓) = f(x1, x2, ..., xn; ✓) =
nY

i=1

f(x
i

; ✓) (3.36)

The maximum likelihood estimators (MLE) of ✓ are obtained by maximising the function

L(✓) by: @L(✓)
�
@✓ = 0.

In practice it is easier to work with the logarithm of the likelihood function, called

the log-likelihood:

lnL(✓) =
nX

i=1

lnf(x
i

; ✓) (a)

and then :
@ lnL(✓)

@✓
= 0 (b)

(3.37)

In order to calibrate �
ij

in the Poisson spatial interaction model represented in equa-
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tion 3.31 using the maximum likelihood technique, consider �
ij

= k P↵

i

P �

j

d��

ij

which is

equivalent to equation 3.34 when k = exp(); the log-likelihood function is:

lnL(�
ij

) =
X

i

X

j

(��
ij

+ T
ij

ln�
ij

� ln T
ij

!) (3.38)

where T
ij

is known. The formula is maximised when:

@ lnL(�
ij

)

@�
=

X

i

X

j

T
ij

lnx
i

�
X

i

X

j

�
ij

lnx
i

= 0 (3.39)

where x
i

is the independent variable associated with the parameter � (Fotheringham and

O’Kelly, 1989). For example, for estimating the parameter �:

@ lnL(�
ij

)

@�
=

@

@�

X

i

X

j

(T
ij

ln�
ij

� �
ij

� lnT
ij

!) (a)

=
@

@�

X

i

X

j

�
T
ij

ln(k P↵

i

P �

j

d��

ij
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where formula (d) in equation 3.40 is equivalent to equation 3.39. 1

3.9 Journey-to-work Poisson gravity model in Lausanne

In order to illustrate an application of spatial flow models on a real-world interaction

example, we apply a global gravity model on the journey-to-work (commuting) dataset

in Lausanne. We consider a Poisson gravity model with three variables as follows:

�
ij

= exp(+ ↵ lnP
i

+ � lnN
j

+ � ln d
ij

) (3.41)

where P
i

indicates the number of economically active population in origin i; N
j

is the

number of jobs in destination j; d
ij

shows the distance between centroids of the com-

muting regions; , ↵, � and � are parameters of the model that will be calibrated using

MLE technique in this example.

As already mentioned in chapter 2, the agglomeration of Lausanne covers a total of 70

communes which are the smallest administrative units in Switzerland. In this interaction

example, we follow the conventional spatial interaction models that usually consider only

inter-zonal flows between origins and destinations but not the interactions within the

1
Note that

@

@x

(uax

) = uax

lnu . a, u > 0
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zones themselves. Therefore, in the above interaction model, only inter-zonal commuting

flows are modelled and intra-zonal flows are eliminated from the model. This results in a

(70⇥ 70) origin-destination matrix in equation 3.41, with 4830 inter-zonal flows between

the 70 commuting communes. We calibrate this gravity model using the MLE technique

and the results are listed in table 3.2, including the estimated t-values, p-values and

standard error of each parameter. The McFadden’s Pseudo R2 and Akaike’s information

criterion (AIC) (Akaike, 1974, 1973) values are also calculated to be used as measures of

goodness-of-fit for the model.

Table 3.2: Global Poisson gravity model for journey-to-work in agglomeration of Lau-
sanne

Global Pseudo R2 0.945
Global AIC 21381.8

Parameter Estimated value t-value p-value Standard error
k -5.70 -94.82 0.00 0.0601
↵ 0.85 316.37 0.00 0.0027
� 1.01 450.63 0.00 0.0022
� -0.67 -130.59 0.00 0.0051

The estimated value of the parameter � is �0.67 indicating the negative influence of

distance on interaction. The estimated values of the parameters ↵ (equal to 0.85) and �

(equal to 1.01) show positive e↵ects on interaction volume. This is expected as usually

increasing the number of workforce and number of existing jobs will increase the number

of commuting flows. However, it is interesting to note that according to the estimated

values of ↵ and � and comparing their t-values (316.37 and 450.63 respectively), the

influence of the number of jobs at a destination seems to be higher than the number

of workers at an origin suggesting that jobs are filled but there might be a surplus of

labour. The p-values of all parameters are close to zero which indicate the significance

of the model parameters.

The global AIC in this model is equal to 21381.8; however, the AIC is usually a

measure for model selection and so it is not interpreted directly but rather compared to

AIC(s) from other models fitted to the same data. The McFadden’s Pseudo R2 is based on

the maximum log likelihood (see McFadden, 1973; Agresti, 1990; Joost and Kalbermat-

ten, 2010) and reflects the degree of improvement of the model with predictors over the

intercept model (Hu et al., 2006). The theoretical range of the McFadden0s Pseudo R2

is between 0 and 1, where 1 indicates perfect predictability. Although according to Hu

et al. (2006) and Joost and Kalbermatten (2010), this coe�cient has the tendency to un-

derestimate the real R2 and it never reaches 1, the result of our model shows a reasonable

goodness-of-fit with McFadden0s Pseudo R2 equal to 0.945.
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3.10 Spatial flow modelling outside geography

In the last few years, considerable research e↵orts in spatial flow modelling have emerged

in fields outside of geography, for example in physics, computer science or complex sys-

tems studies. This recent activity can be explained to some extent by the availability

of many high-quality spatial interaction datasets. For instance, Simini et al. (2012) try

to develop a universal model for spatial interaction by developing a so-called ”radiation

model“. The authors have a background in complex network research and physics, and

they claim their model to be superior to the unconstrained gravity model. This radiation

model has the interesting property not to rely directly on the geographical distance, and

to be completely parameter free. The radiation model is built on the particle emission

and absorption processes in physics with the following formulation:

T̂
ij

= T
i

m
i

n
j

(m
i

+ s
ij

)(m
i

+ n
j

+ s
ij

)
(3.42)

where T̂
ij

is the predicted flow, T
i

the commuters from population i. m
i

is the popu-

lation in origin i, n
j

the population in destination j. s
ij

is the population in a circle

around origin i with radius d
ij

, (distance between origin i and destination j), without

the populations of i and j. In the context of commuting interaction, the idea behind the

model can be seen as the choice of the closest job with better benefits (e.g. salary) by

each individual. The authors have applied this models to commuting trips between US

counties, population migration and commodity flows in the US, and phone calls, with

very good analytical results.

Additional work undertaken by Masucci et al. (2013), however, has shown some lim-

itations of the radiation model suggested by Simini et al. (2012). These limitations are

mainly related to the model’s normalisation to an infinite system that does not accu-

rately represent the situation in many spatial interaction systems. A correction to the

radiation model has been suggested by Masucci et al. (2013). In this paper, it is also

shown that the calibrated unconstrained gravity model outperforms the radiation model

in the case of journey-to-work interaction between wards in England and Wales but the

radiation model performs better than the gravity model for interaction systems with

longer distances such as migration.

Another new human mobility modelling framework has been presented by Simini et al.

(2013), where the space is not considered as being discrete as in previous models such as

the gravity model or the radiation model. The framework allows for a unified view of the

radiation model presented in Simini et al. (2012), the intervening opportunities model

(Stou↵er, 1940; Schmitt and Greene, 1978) and a new variant of the radiation model

with selection. Further, the authors provide an interesting insight into the theoretical

foundations of the unconstrained gravity model in the case of homogeneous space. If the

model calibration yields ↵ or � parameters for attraction and propulsiveness variables

di↵ering from 1, job o↵ers are not equally distributed in space.



40

Lenormand et al. (2012) have also presented a model for estimating commuting flows

based on the number of outgoing and incoming commuters for each region. According

to the authors, their model outperforms the radiation model, especially if the geographic

units are small, such as municipalities. The model is close to a doubly-constrained grav-

ity model, but follows a probabilistic simulation approach where individual commuters

are allocated one by one to depending on probabilities increasing with the number of

commuters towards a destination, and decrease with distance. The model depends on

a single parameter � which represents the importance of distance in commuting choice.

Compared to the doubly-constrained gravity model, this ”universal model of commuting

networks“ can deal with more flexible data such as in- or outflows from other regions.

Lenormand et al. (2012) have also adapted the radiation model to a doubly-constrained

model, while the authors claim the universal model of commuting networks still outper-

forms the doubly-constrained radiation model.

Yet another model has been developed by Yan et al. (2013), labeled ”conduction

model“. The authors present their model as an alternative to the radiation model, but

better addressing issues with intra-urban mobility. The model is derived from a stochas-

tic decision making process where each individual selects its destinations according to

some probabilities. Like the radiation model, the conduction model is parameter free.

The application of this model to several cities across the world showed better results

compared to the radiation model, but lacks comparison to traditional spatial interaction

models. Due to the individual decision making process underlying the model, similarities

to models such as the competing destination model presented shortly in section 3.6 could

arise, but have not yet been investigated.

Within the field of complex systems, Ruzzenenti et al. (2012) have recently developed

a model for extracting spatial and non-spatial e↵ects from spatially embedded networks.

The authors analyse the world-wide trade network and recognise that the gravity model

can quite accurately estimate the trade volume by using distance and GDP. However, the

gravity model seems fails in predicting zero-flows, even in a zero-inflated version (Dueñas

and Fagiolo, 2013) resulting in poor estimates for the in- and out-degrees of the network

nodes. As a solution, the authors use null models to preserve non-spatial constraints

of the model, while still detecting spatial e↵ects. Applications of this model to other

datasets are currently missing but are required in order to evaluate how useful the model

is in di↵erent contexts.

Spatial interaction systems have also been studied using data from mobile phone

networks (e.g. Song et al., 2010; Csáji et al., 2013; Lambiotte et al., 2008; Krings et al.,

2009). For instance, Expert et al. (e.g. 2011); Blondel et al. (e.g. 2008) focus on the

problem of community detection in human networks using large mobile phone datasets.

Expert et al. (e.g. 2011) proposed a modularity function adapted to spatial networks to

factor out the e↵ect of space and to detect hidden structural similarities between the

nodes in the network. Another important study field relating to human networks that
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is analysed using spatial interaction models is spreading of epidemics (e.g. Balcan et al.,

2009; Colizza et al., 2006; Ferguson et al., 2006; Dalziel et al., 2013).

3.11 Zoning problems in spatial interaction

Data about spatial interaction flows are usually collected at the level of some adminis-

trative zones. While zonal aggregation is required to successfully calibrate most spatial

interaction models, it also raises several problems. First of all, the known issues related to

the Modifiable Area Unit Problem (MAUP; see e.g. Openshaw and Taylor, 1981; Open-

shaw, 1984) apply also to spatial interaction models, as propulsiveness and attractiveness

are assessed at a zonal level. Additionally, problems specific to the flows arise:

• Internal flows are flows where the origin and destination of a trip are within the

same zone. Internal flows are di�cult to include in a model, as the length of the

intra-zonal trips is unknown, and the travelled distance is usually included in the

model. As a result, internal flows are often excluded from the calibration process.

This issue will be discussed more in depth in chapter 4.

• In some cases, especially if zones are relatively big, it can make a considerable

di↵erence where in the zone the origin or a destination of a trip is located. This

can be the case for example if a whole city is a single zone, and it is unknown if

the commuters have to cross the city or not. In the case of neighbouring zones,

origin and destination of a trip can be very close, or very far. Generally, the zone

centroids are considered in spatial interaction models in order to estimate travel

distance or travel time. The methods that will be discussed in chapter 4 can be

used to some extent to deal with this problem.

Possible approaches for dealing with the MAUP exist and are extensively discussed in

the literature. One possibility is dasymetric mapping, (e.g. Bentley et al., 2013; Langford

et al., 2008; Mennis, 2009), which can also be used for downsampling purposes in order to

provide estimations for example at the level of a regular grid. Krider and Putler (2013)

have to deal with the opposite problem; due to increasing availability of high quality

geographical data at the address level, the authors had to aggregate the individual point

locations into a regular grid in order to simplify the spatial interaction modelling process.

Data downsampling is a common problem in microsimulation models, where proper-

ties have to be given to individual agents. The whole population of agents should then

reflect the statistical properties of the available real-world data. A popular technique for

solving this problem is Iterative Proportional Fitting (IPF; see e.g. Ireland and Kullback,

1968; Frick and Axhausen, 2004; Müller and Axhausen, 2010). It is also possible to deal

with the zoning problem at the level of the spatial interaction model itself. For example

Birkin et al. (2010) describe a ”boundary-free model“ for retail centers which might have

catchment areas overlapping zone boundaries. Another approach is taken bySimini et al.
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(2013) who have adapted their radiation model presented as a discrete model in Simini

et al. (2012) to account for continuous space and dealing with eventual zoning problems

directly at the level of the model.

3.12 Visualisation of spatial interaction

Visualisation of spatial interaction flows is a challenge due to the big quantity of infor-

mation to show. Flow maps represent interaction as lines where the line width is mostly

proportional to the magnitude of the interaction. Flow maps have been extensively used

and described in the litterature, e.g. by Tobler (1981, 1987); Phan et al. (2005); Guo

(2009); Rae (2009). Dorling (1991) has shown a flow map in a population cartogram.

Flow maps quickly become cluttered as the number of flows increase. Di↵erent techniques

have been developed to make flow maps easier to read, for example flow bundling (Phan

et al., 2005; Holten and Van Wijk, 2009), filtering by distance, location or magnitude

(Rae, 2009), clustering of origin and destination regions (Guo, 2009), or calculating a

field of net exchange vectors (Tobler, 1976, 1981).

An alternative representation method is the non-geographic origin-destination matrix,

where the rows and columns of the matrix represent the origins respectively destinations.

Each matrix cell is coloured according to the magnitude of the flow. This kind of spatial

interaction representation has been used for example in Bertin (1983); Guo (2007); Wong

et al. (2006). One of the question in matrix representations is the order of the rows and

columns. Many possibilities to this problem have been discussed in the litterature (e.g.

Wilkinson, 1979; Friendly, 2009; Mäkinen and Siirtola, 2000), such as using clustering

techniques. In an interactive visualisation, the user can be given the possibility to reorder

the rows and columns.

Wood et al. (2010) divide the geographical space in cells, and inside each cell, they

insert a small matrix covering a miniature version of the map. Inside each cell, the flows

towards all locations are shown as a small heatmap matrix. The authors refer to this

kind of visualisation as ”OD maps“. An application of the OD maps can be found in

Slingsby et al. (2012). Graph layouts can also be used to visualise spatial interaction

flows, as shown for example in Wong et al. (2006) where an interactive tool is shown

allowing for representation as a graph and a compact matrix. However, Ghoniem et al.

(2004) found graph representation to be less optimal than simple matrix representations

except for very small graphs.

In interactive visualisations, it is possible to link spatial and non-spatial views to-

gether. This approach has been used for example by Boyandin et al. (2011), where the

origins and destinations are represented in two separate maps, and the temporal evolu-

tion of migration flows between countries as a heatmap matrix. The matrix is located

between the origin- and destination-map, and all three views are connected through lines

appearing when the user interacts with the visualisation.
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In the above chapter we briefly reviewed the spatial interaction models and their un-

derlying theoretical frameworks. The most commonly used calibration methods of spatial

interaction models were discussed and introduced in detail including Poisson specification

of the spatial interaction models. A Poisson gravity model was calibrated with the MLE

technique when it was applied on the real-world dataset of journey-to-work interactions

in Lausanne. The journey-to-work interaction model covered the inter-zonal commuting

flows between 70 communes in the agglomeration while the intra-zonal flows within the

zones were eliminated from the analysis.

Although ignoring the intra-zonal flows is one of the common solutions for the problem

of estimating the average trip length for the intra-zonal flows in the spatial interaction

analysis, it may result in some complications such as a reduced data sample that does

not accurately represent the processes under study and a biased model calibration. In

the next chapter we address this problem and propose a methodology for estimating the

average intra-zonal trip length based by scattering the origins and destinations of the

flows within their geographical zones.



Chapter 4

Intra-zonal trip length in spatial

interaction models

4.1 Introduction

The problem of estimating average trip-length for intra-zonal flows has a long history in

spatial modelling. In spatial interaction modelling, the data used in model calibration

are often aggregated to represent flows between di↵erent zones and the attributes of these

zones are assumed to be located at their centroids rather than distributed continuously

in space. In such a case, the origin and destination of the flows are assumed to also

be located at the centroids of the zones, so that the separation variable, d
ij

is often

approximated as the centroid-to-centroid travel cost (or distance or time) between the

zones. However, this assumption might cause poor estimation of the separation variable

in the model, especially when populations are not concentrated around the centroid

of the zone. Furthermore, using the centroid-to-centroid approximation for the trip-

length can be problematic when we have to calculate the intra-zonal distances. For

instance in our case study of journey-to-work in Lausanne where a considerable number

of workforce staying inside their commune of residence for their work, the intra-zonal

distances make up a significant amount of information and should be considered in the

analysis. However, in this case the distance calculation between a zone centroid and itself

will lead to a centroid-to-centroid intra-zonal distance (d
ij

) of zero, whereas in reality

the actual average distance commuters travelled within the zone would be positive (see

Fotheringham, 1988b; Fotheringham and O’Kelly, 1989, for a more detailed discussion).

The intra-zonal flows are often ignored in model calibration, because of the above

problems, but eliminating these flows may result in a reduced data sample that does

not accurately represent the processes under study, giving rise to biased parameter es-

timates. There have been some attempts in the literature to estimate the intra-zonal

trip length based on algebraic methods. These methods are mostly based on various

strong assumptions related to zone shape and population distribution and are mainly

44



45

highly approximate and more of analytical interest than viable solutions. In this chapter

a methodology is suggested for estimating the average intra-zonal trip length based on

a scattering of the origins and destinations of the flows within their geographical zones

(scattering-based method). The process of scattering the origins and destinations can

be done randomly or based on available spatial density information, such as population

density. The average trip length is then calculated for all possible trip configurations

within the system.

The remainder of this chapter is structured as follows: A review of some existing

methods for estimating intra-zonal distance are discussed in section 4.2. The methodology

of scattered-based models both for random and density-based approaches is discussed in

sections 4.3.1 and 4.3.2 respectively. The models are then applied to the Lausanne

journey-to-work dataset and the results of the proposed and traditional methods are

compared in section 4.4. The comparison of the methods reveals that the density-based

scattering models have a better model fit and less error; finally a summary is presented

in section 4.5.

4.2 Background

According to Batty (1976), the problem of intra-zonal distance measurement is perhaps

one of the main concerns in many spatial modelling applications. A common approach to

avoid this problem is to simply exclude the internal flows from the analysis. However, in

many cases spatial interaction models are applied to short-distance flows, e.g. journey-

to-work, where the intra-zonal flows can make up a significant percentage of all flows;

therefore omitting them from the model might not be appropriate. For instance, in

a typical urban agglomeration, many people live and work within the main city itself.

In the Lausanne journey-to-work dataset, more than 45% of the flows are intra-zonal,

showing that a significant number of people work within their commune of residence.

In such cases, the model calibration is likely to be very sensitive to the inclusion and

exclusion of intra-zonal flows. In fact eliminating the intra-zonal flows from the model

will certainly ignore a large amount of information and result in a reduced data sample

that does not accurately represent the processes under study. Furthermore, the intra-

zonal flows are generally shorter than the inter-zonal trips between regions, both in length

and duration (see Greenwald, 2006; Venigalla et al., 1999). Ignoring the intra-zonal flows

and considering only the longer flows in the model is not a true representation of reality

and can potentially result in a biased dataset and parameter estimates (Bharat and

Larsen, 2011).

Although the consideration of intra-zonal flows in the model seems to be necessary,

often in practice the average trip length for intra-zonal flows cannot be measured or

is di�cult to measure. There are a number of approaches in the literature for this

purpose. For instance, sometimes a di↵erent formulation is used to calculate the intra-
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zonal trip length or a modification is applied on the model itself to avoid the intra-zonal

flows. LeSage and Pace (2008), for instance, created a separate model with some extra

explanatory variables for flows from the main diagonal of the flow matrix to explain

intra-state migration flows in the United States. LeSage and Fischer (2010) argue that

practitioners often see the intra-zonal flows as a nuisance and consider dummy variables

for those observations (see for example Behrens et al., 2010). There are also a number of

algebraic models in the literature for estimating intra-zonal distances. One of the earliest

methods was introduced by the U.S. Department of Commerce (1965) in which the intra-

zonal driving time of a particular zone A is estimated as one-half of the average driving

time between the centroid of zone A and the centroids of all neighbouring zones (see

Ghareib, 1996). Another example is a similar method suggested by Venigalla et al.

(1999) where in a first step, the nearest zone centroid to the centroid of zone A was

determined and the intra-zonal trip length for zone A was then computed as half the

travel length to the nearest centroid.

Besides the above highly approximate approaches, there have been a number of at-

tempts in the literature for measuring the intra-zonal distances for zones of varying

shapes and under various assumptions. The assumptions are mainly related to the geo-

metrical shape of the zone and the internal population distribution. Both Batty (1976)

and Fotheringham (1988b) suggested zoning based models for deriving the average trip

length for zones that are approximately circular. These models are investigated in more

detail in following section.

4.2.1 Circular-shape distance estimates

The intra-zonal distance problem can be seen as a problem in finding the mean trip

length within any zone (Batty, 1976). Batty (1976) suggested some assumption-based

measures for the mean trip length where one of the simplest is based on the assumptions

that the zone is circular in shape and the population is distributed evenly at a constant

density throughout the zone. An approximation to the intra-zonal distance then can be

found by:

d =
rp
2

(4.1)

where r is the radius of the zone in terms of trip length (travel cost). He also suggested a

slight variation in this measure when it is assumed that the population density varies in

a regular way in the zone which can be modelled by a tractable mathematical function,

fitted to a particular zone (see also Batty, 1974).

Another model based on the same above assumptions (i.e. circular-based shape

and uniform population distribution assumptions) is suggested by Fotheringham (1988b)
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where the intra-zonal trip length is estimated with the following formulation:

d = 0.846 · (1.432
0.846

)z/r · r (4.2)

where z is the distance between the zone centroid and the destination point and r is the

radius of a circle whose area is equal to that of the zone. The coe�cients in this formu-

lation are related to the potential minimum (0.846.r) and maximum (1.423.r) distances

in a circular zone (see Eilon et al., 1971; Fotheringham and O’Kelly, 1989, for further

details). When the point is located on the circumference of the zone then z = r and

d = 1.432 · r; when the point is located between the centre and the circumference then

0.846 · r < d < 1.432 · r; and in the special case of intra-zonal flows when the origin

and destination points are both located at the zone centroid, with z being equal to zero,

equation 4.2 will simplify to: d = 0.846 · r, where the coe�cient of the equation is very

close to one of the equation 4.1. Multiplication of such similar coe�cients in a distance

metric should not make a large di↵erence and so both formulations could produce similar

results when distances are calculated for real-world practical problems.

4.3 Scattered intra-zonal distance estimates

The circular-shape based estimates in section 4.2.1 are only a rough approximation and

they are more of analytical interest than practical (Batty, 1976). Also the assumptions

of the models are rarely all met in practice. The polygons representing the origins and

destinations are often not circular and population is unevenly distributed within a zone.

Additionally, assuming that the population is located at a zone centroid and ignoring

intra-zonal flows from the model (as in a centroid-to-centroid calculation) can still po-

tentially result in poor or biased parameter estimates. To overcome these problems, we

suggest a method for estimating the average trip lengths by scattering the origins and

destinations of the flows within their respective zones.

In spatial interaction models the precise locations of the origins and destinations

of the flows usually depends on where people are starting and terminating their trips,

respectively. Scattering the origins and destinations would be a better approximation to

what is happening in reality compared with assuming that all origins and destinations

are located at the centroid of each zone. The distribution of the origins and destinations

of the flows can be done randomly or based on an available spatial density distribution.

In both random and density-based models, the average trip length is calculated for all

possible trip configurations between scattered origins and destinations. In the case of

intra-zonal flows, the scattered origins and destinations are obviously within one zone

and the average trip length would be calculated between all possible flow configurations

between them.
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4.3.1 Randomly scattered distance estimates

Ideally the average trip length should be computed using the disaggregated data which

give the trip information for all commuters. Generally these data are not available in the

model and the average spatial separation (distance, time, cost) needs to be approximated.

In spatial interaction models usually the population size in each zone and the number of

trips between origin and destination zones are known. However, these data are aggregated

and do not provide any information about the location of the population within each zone,

nor the origin and destination of the flows. In this case, for estimating the average trip

length we can calculate the average geometric distance between two polygons representing

the zones. Geometrically speaking, the surface of each polygon covers an infinite number

of points. Calculating the average distance between two polygons includes all possible

distance configurations between the infinite set of points within both polygons; which

is also infinite. The same situation is valid for intra-zonal distance when the average

distance should be calculated between the infinite number of points within a zone. By

computing the average of all possible distance configurations between two polygons we

make the assumption that the trip lengths are a random sample of all possible distances

and the sample mean tends towards the population mean with a probability that can be

estimated using standard statistical methods.

To overcome the problem of finding the average distance between an infinite number

of points, we can randomly select a number of points from both origin and destination

polygons to build up a sample of flows. For intra-zonal trips, two random sets of points

should be selected within the polygon. The average trip length can then be estimated by

calculating the average geometric distance of the sample points. The law of large numbers

indicates that as the number of experiments (samples) on a random process increases,

the average of all trials will tend towards the expected value. In the case of selecting

random flows between polygons (i.e. random distances between points) if the number

of sample distances is large enough, the calculated sample mean (i.e. the average of the

random distances) is likely to be close to the real value. It should be noted that in this

case no information is available about the exact number and location of the individual

points, we shall assume these points to be distributed uniformly within the zones. As

a consequence, the density of origins and destinations is assumed uniform within each

polygon.

Figure 4.1 illustrates an example of estimating the distance between two arbitrary

polygons with roughly regular shapes and centrally located centroids. Considering the

boundaries of the polygons, a set of 10, 000 flows is selected randomly from the di↵erent

distance configurations between the points located in each polygon. The average distance

of these randomly selected flows is calculated and equals 307.8. The results and informa-

tion of the experiment are shown in table 4.1. The reliability of the estimated average

distance can be investigated using statistical measures such as a confidence interval (CI).

The confidence interval for the mean provides an estimated range of values using the
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Figure 4.1: Example of average polygon distance.

sample data in which the unknown population parameter, (i.e. in this case the average

mean distance between polygons), lies with a given probability. The total population,

in our case all the flows between polygons, and its standard deviation are not known.

In such a case, the sample mean follows a t-distribution with ’sample size � 1’ degrees

of freedom. With increasing sample size, the t-distribution becomes closer to a normal

distribution. The confidence intervals of 95% and 99% are also calculated which indicate

the probability that the estimated average distance for the polygons lies in the estimated

range of values.

Table 4.1: Estimating the distance between two polygons

Centroid for polygon 1 (x, y): (116.0, 345.3)
Width / height for polygon 1: 122.0 / 127.0
Centroid for polygon 2 (x, y): (420.3, 340.1)
Width / height for polygon 2: 150.0 / 143.0
Distance between centroids: 304.3
Sample size: 10,000
Average distance between polygons: 307.8
Median distance between polygons: 309.0
Standard deviation for distance between polygons: 42.7
Confidence interval 95%: [224.03, 391.62]
Confidence interval 99%: [197.69, 417.96]

Due to the random nature of the sample selection, when the sample size is not large

enough, the resulting average distance estimate might vary slightly in di↵erent experi-

ments. To check this, the experiment illustrated in figure 4.1 has been repeated with a

di↵erent set of 10, 000 random samples. The mean distance resulted with new experiment

is equal to 308.2, just slightly di↵erent from the mean of the previous sample presented
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in table 4.1. The close results of these two random trials can be evidence that the sample

size of 10, 000 in our experiments is big enough considering the law of large numbers.

The standard deviation is a measure of the dispersion from the mean of the sampled

distances, so the smaller the standard deviation, the more similar are the distances to

the mean value. The standard deviation of the first and second trials are also very close

to each other, 42.6 compared to 42.7 respectively. The estimated distances and standard

deviation for the distribution of distances between random polygon points (see figure 4.1

bottom) is presumably related to the size, shape and orientation of the involved polygons.

The resultant average trip length from the randomly scattered method shown in

table 4.1 (and the one of second trial) for the polygons illustrated in the example 4.1 is

close to the centroid-to-centroid distance which is equal to 304.3. This is due to the fact

that the scattered-based method considers the actual shape of origin/destination zones

when estimating average trip lengths. Therefore, if origin/destination zones follow a

roughly regular polygon shape especially with centroids located in the middle of polygons

(as in the above example), the distance between the centroid of the origin/destination

zones (i.e. centroid-to-centroid distance) will be a close representation of the trip length

estimated with a scattered-based method. However, in real-world problems the polygons

representing the zones are not necessarily very regular. Sometimes the polygon shape is

such that the centroid of the zone is located out of the polygon. For instance in figure 4.2,

the two blue polygons represent the city of Lausanne. The shape is irregular and divided

in two polygons, the zone centroid is out of the polygon (represented with a blue ⇥ in

figure 4.2). The roughly regular polygon in red shows the zone polygon of the adjacent

city of Renens.

In such cases, as stated earlier, especially when the population is not distributed

evenly over space, the centroid-to-centroid distance is not a good approximation of the

average trip length between two polygons. Additionally, the centroid-to-centroid distance

method fails to address the average distance for intra-zonal flows as the distance between

a centroid to itself is zero. To show an example, a similar experience of calculating

the average distance between two polygons for 10, 000 randomly distributed flows as in

figure 4.1 is calculated for Lausanne and Renens (see figure 4.2). The result of the ex-

periment in table 4.2 indicates a considerable di↵erence between the centroid-to-centroid

and polygon distances, 5151.9 compared to 5907.0. As stated before, the frequency dis-

tribution of the random distances in figure 4.2 (bottom) depends on the shape and the

regularity of the polygons, as it is determined by the distances of all possible combi-

nations of points between the polygons. If the polygons are regular, as in figure 4.1,

the frequency distribution will be close to Gaussian, with the mean being close to the

centroid-to-centroid distance.

The variance (or standard deviation) of the distribution is also influenced by the size

of the two polygons in which bigger polygons giving a higher variance. Estimating the

average distance between two polygons using a sample of 10, 000 flows is computationally
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Figure 4.2: Average polygon distance between Lausanne and Renens.
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tractable. However, as the number of polygons increases, the number of computations

quickly becomes very large. Therefore, we need to find an e�cient way to utilise the

method described above for approximating the average trip length d
ij

between polygons

and d
ii

in the case of intra-zonal distance. Instead of generating a random sample of

flows, we can use a fine regular grid within the zones. Given that the density of origins

and destinations is uniform within each polygon, we can describe the space as a discrete

grid with small square units, as long as the grid is fine enough. For both zones i and j

we select the set of grid points G
i

and G
j

lying within zone i and j respectively. The

average distance d
ij

can be then estimated by computing the average distance between

all possible pairs of points from G
i

to G
j

. If the units are small enough, the estimated

discrete average distance between centres of the grid units will tend towards the average

distance in continuous space between polygons. Figure 4.3 illustrates this approach, the

grid in figure 4.3 is very coarse and serves as illustration only.

4.3.2 Density-based scattering approach

The randomly scattered approach provides a viable alternative to ignoring zero distance

intra-zonal flows, where the populations are assumed to be located at the centre of the

zones. However, in the randomly scattered approach the origin and destination points

are assumed to be uniformly distributed over space which might not reflect reality in
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Table 4.2: Estimating the distance between two polygons (Lausanne and Renens).

Centroid for polygon 1 (x, y): (539700.2, 155921.6)
Width / height for polygon 1: 10538.0 / 10893.0
Centroid for polygon 2 (x, y): (534864.6, 154144.2)
Width / height for polygon 2: 1865.0 / 2555.0
Distance between centroids: 5151.9
Sample size: 10,000
Average distance between polygons: 5907.0
Median distance between polygons: 5603.6
Standard deviation for distance between polygons: 2627.1

Figure 4.3: Estimating the average trip length using a regular grid.

most cases. In a uniform distribution, all random locations are equally spaced and

equally probable in space. In the case of journey-to-work flows, we would expect the

probability of a flow origin at a given location i to be proportional to the density of

the active population at zone i and similarly for the destination point with the density

of jobs. Sometimes a spatial density surface containing information such as population

is available. If such a density surface is available it is possible to choose the locations

randomly according to the given probability density surface instead of selecting them from

a uniform density function. For instance in the case of journey-to-work, this probability

density surface can be approximated via a fine-grained population density surface. If

a high resolution population density is not available, it is possible to disaggregate the

population data using some kind of areal interpolation to make a fine-grained resolution

density surface based on smaller scale data (see e.g. Tobler, 1979; Kyriakidis, 2004; Liu

et al., 2008; Pozdnoukhov and Kaiser, 2011).

Similarly to section 4.3.1, the average trip length for the density-based scattering

approach can be approximated using a fine regular grid. In order to take into account

the probability density surface, a weighted average distance can be computed between

all possible pairs of grid points. The considered weight is w
ij

= w
i

· w
j

, where w
i

is the

value of the density surface at origin i and w
j

is the density surface value at destination

j. The density-based average trip length is then computed by:

d̂
ij

=

P
w
ij

· d(g
i

, g
j

)P
w
ij

(4.3)
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where d(g
i

, g
j

) is the distance between a grid point in zone i and another grid point in

zone j (with potentially i = j). The sum is taken over all possible pairs of grid points

inside zone i and j respectively.

4.4 Application & Results

In following section, we apply di↵erent methods presented in sections 4.3.2 and 4.2.1 for

calculating the average trip length on the journey-to-work dataset in the Lausanne ag-

glomeration and compare their results. The same global Poisson gravity model presented

in section 3.8 is considered here with similar variables and parameters to be estimated

with MLE. For the density-based scattering model (section 4.3.2), the population data for

Lausanne are available as a regular grid with a spatial resolution of 100 metres (hectare-

level population data)1. To make the comparison of the methods possible, di↵erent

variations of treating the intra-zonal flows and distance measures are computed using

the following schemes:

1. Excluding the intra-zonal flows and taking the traditional centroid-to-centroid dis-

tance between the zones for the inter-zonal flows.

2. Using all flows with the inter-zonal distances again computed using the centroids

and the intra-zonal distances are estimated using the circular-shape based model

(equation 4.1).

3. Using all flows with both the intra- and inter-zonal distances computed using the

randomly scattering model (section 4.3.1).

4. Using all flows with both the intra- and inter-zonal distances computed using the

density-based scattering model (section 4.3.2) with the hectare-level population

data as additional information to form a density surface.

The parameters of the calibrated model with di↵erent average trip lengths are shown

in table 4.3 along with some measures of model goodness-of-fit. Parameter ↵ is related

to the active population variable and shows a positive influence on the interaction; by

increasing the size of the active origin population, the total trip number of interactions

from that origin will increase. Parameter � is associated with the destination attractive-

ness variable (in our case the number of jobs in each commune) and also has a positive

e↵ect on the interaction and � is the distance-decay parameter with a negative influence

on the number of interactions.

In our journey-to-work model over 45% of the flows are intra-zonal flows. Hence,

ignoring these data, the centroid-to-centroid model considers only half the flows compared

with the other models. The resulting model is suitable for inter-zonal flows only, while the

1
See http://www.geostat.admin.ch for more information
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Table 4.3: Comparison of di↵erent methods for calculating average trip length (distance).
The results show the output from calibrating a spatial interaction model with the di↵erent
distance estimates.

Distance measure model: Centroid-to-
centroid

Circular-
shape based

Randomly
scattering

Density-based
scattering

AIC 21381.82 61360.14 58881.04 41985.05
Pseudo R2 0.945 0.936 0.938 0.956
SEE 19.35 138.75 144.08 87.69
parameter ↵ 0.846 0.862 0.945 0.791
standard error 0.0027 0.0018 0.0018 0.0020
t-value 316.368 469.904 515.631 414.826
p-value 0.0 0.0 0.0 0.0
parameter � 1.011 0.969 1.0436 0.949
standard error 0.0022 0.0017 0.00180 0.0018
t-value 450.63 561.289 582.680 534.296
p-value 0.0 0.0 0.0 0.0
parameter � -0.668 -1.017 -1.3170 -1.297
standard error 0.0051 0.0031 0.00426 0.0039
t-value -130.589 -325.716 -309.309 -334.594
p-value 0.0 0.0 0.0 0.0
parameter k -5.70 -2.274 -0.881 0.818
standard error 0.0601 0.0335 0.0383 0.038
t-value -94.815 -67.876 -23.0196 21.276
p-value 0.0 0.0 0.0 0.0

other models are more general interaction models. A direct comparison of the goodness-

of-fit between the centroid-to-centroid model and the other models is not really possible,

as the data are not the same. However, a rough comparison of parameter estimates

between the four methods shows that the values of ↵ and � are relatively similar for all

the models. The distance-decay parameter � shows a larger variation especially between

the centroid-to-centroid model to the other models. The distance-decay parameter in the

centroid-to-centroid method is �0.668 while in the other three methods it is smaller than

�1. This shows that ignoring the intra-zonal flows yields a distance-decay parameter

that is substantially di↵erent from when all the flows are considered. The model without

intra-zonal flows overestimates people’s willingness to accept longer distances for their

journey-to-work. The circular-shape based distance calculation and the scattered-based

methods, considering all intra-zonal flows, show a stronger distance-decay e↵ect. This is

an indication that people view distance as an important criterion for their daily travel-

to-work. The intercept parameter k is a balancing factor and not of interest in the

behavioural interpretation in the model. For all parameters in di↵erent models, the

t-values are considerably di↵erent from zero and p-values are zero indicating that all

parameters are significance in the models.

Other comparisons between the di↵erent models can be performed based on statistical

measures of goodness-of-fit. The AIC and McFadden’s Pseudo R2 are listed in table 4.3

for all distance measure variants. Although the smallest AIC value is for the model
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with the centroid-to-centroid distance, this model has a smaller dataset and so a direct

comparison to the models with intra-zonal flows is not appropriate. Between other three

models considering the inter- and intra-zonal flows, the density-based scattering model

with AIC of 41985.05 shows the best goodness-of-fit. The comparison of the McFadden’s

Pseudo R2 is possible only for di↵erent models applied on the same data in which a model

with larger McFadden’s Pseudo R2 has a better fit compared with models with lower

corresponding values. The comparison between models applied on all data (i.e. both

inter- and intra-zonal flows) shows that again the model with density-based scattering

measure shows a better fit in comparison with the other two models of circular-shape

based and randomly scattering.

Estimating the average trip distance using the population density seems to enhance

the spatial interaction model. Between the methods taking into account intra-zonal flows,

the standard error of the estimate (SEE) is higher for the randomly scattering model

compared to the circular-shape based model but it is considerably smaller for the density-

based scattering model. Figure 4.4 shows the predicted flows versus observed flows for all

four model variants. The best fit among the methods considering the intra-zonal flows

is given by the density-based scattering model. Considering all the di↵erent results and

comparison of the models, it can be concluded that the density-based scattering method

is a viable alternative to existing methods for calculating the average trip length and for

considering the intra-zonal flows in the analysis.

4.5 Summary

In this chapter a method for estimating the average distance for intra-zonal flows is pre-

sented. The origins and destinations of the flows in this method are distributed randomly

or based on an available density surface within the origin and destination zones, named

randomly- and density-based scattering methods respectively. The scattered-based meth-

ods provide the average trip-length considering both inter- and intra-zonal flows while

the intra-zonal flows were ignored by methods that estimate the average trip length be-

tween centroids of the origin and destination zones. The scattered-based methods are

not based on any pre-defined assumptions or conditions about the zone shapes. Also this

method for estimating the average trip length considers as much information as possible

when formulating the model by potentially using available density information such as

population density.

The methods presented in section 4.3 are applied on the the Lausanne journey-to-

work data where the scattered-based methods are used to estimate average distances

between the communes, considering both inter- and intra-zonal flows. The scattered-

based method results are compared with existing circular-shape based methods where it

is shown that the density-based scattering methods provides a better fit with less error.

The scattered-based method can be applied to many di↵erent types of spatial interaction
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Figure 4.4: Predicted flows vs. observed flows for di↵erent distance measures.

A. Centroid-based distance 
 (without internal !ows)

B. Centroid-based distance 
 with circle-based distance
 for intrazonal !ows

C. Distance based on
 randomly scattered points

D. Distance based on scattered points
 distributed according to 
 population distribution

models for estimating the average trip length and it could be easily modified to consider

travel distance or time instead of Euclidean distance between the set of points of the

origin an destination zones.

In following chapter a brief overview of the existing local methods for spatial data

analysis will be provided along with existing techniques for local analysis of spatial in-

teraction processes such as origin- and destination-specific models.



Chapter 5

Local spatial analysis

5.1 Introduction

During the last decades there has been a powerful movement within spatial analysis,

termed local modelling or local analysis (Fotheringham and Brunsdon, 1999; Fother-

ingham, 1999b; Openshaw et al., 1987; Getis and Ord, 1992; Anselin and Getis, 1992;

Fotheringham and Rogerson, 1993; Lloyd, 2011, 2006) that involves spatial disaggrega-

tion of the conventional global approaches (Fotheringham, 1992, 1997; Openshaw, 1993;

Fotheringham and Brunsdon, 1999; Openshaw et al., 1987). Local statistics and local

models mainly emphasise di↵erences over space rather than similarities and focus on

identifying spatial variations in relationships (Fotheringham, 1999b; Fotheringham et al.,

2000), while global models assume spatial stationarity of relationships (Lloyd, 2011). In

a global model, one set of results representing an average type of relationship is generated

providing general information about the entire study region (Fotheringham and Bruns-

don, 1999). However, in situations where relationships vary across space, the average

set of global results may fail to represent the actual situation in any part of the study

area (Fotheringham and Brunsdon, 1999; Fotheringham et al., 2002; Unwin, 1996a,b;

Fotheringham, 1997; Boots and Okabe, 2007). In fact in many real-life situations, spatial

variation in relationships exists and the assumption of global stationarity or structural

stability over space might be highly unrealistic (see Fotheringham et al., 1996; Fothering-

ham, 1997; Brunsdon et al., 1996; Leung et al., 2000a). Sometimes in the literature, such

variations in relationships are referred to as spatial heterogeneity or spatial drift (Charl-

ton et al., 1997).

Despite the importance of spatial heterogeneity in di↵erent research areas, a unified

definition for it is lacking (Li and Reynolds, 1994). Kolasa and Rollo (1991) have shown

that spatial heterogeneity can be defined in di↵erent ways and the lack of a unified

definition of the concept may be due to the complexity of the phenomena involved.

For instance, Li and Reynolds (1994) define spatial heterogeneity as the complexity and

variability of a system property in space and LeSage (1999) refers to spatial heterogeneity

as variation in relationships over space. So, briefly, spatial heterogeneity can be defined as

57



58

the systematic variation of a process by location (spatial non-stationarity). In the case of

a model, spatial heterogeneity can be expressed by variation of the model’s parameters

over space. In a heterogeneous model, the parameters are allowed to vary over space

while a stationary model has the same parameters at all locations (Lloyd, 2011).

Fotheringham et al. (2002, 2000); Fotheringham (1999b, 1997) have discussed three

di↵erent possible reasons why we might expect variation of relationships over space. An

obvious reason could be due to sampling variation, i.e. we are likely to generate di↵erent

parameter estimates resulting from the calibration of the model with di↵erent spatial

subsets of a dataset. A second possible cause of spatial heterogeneity is that the model

is a gross misspecification of reality; for instance, when one or more relevant variables

are represented by incorrect functional form or are omitted from the model. The third

and in our study probably most important cause of possible spatial heterogeneity is that,

for whatever reasons, some relationships vary across space. For instance, in a regression

model of housing price, the value of an extra bedroom can vary from place to place; e.g.

in areas around a good school, the utility of an extra room is high since in such areas

there may be more demand by families with several children (Brunsdon et al., 1999b).

This variation can be seen in other fields of study, for instance when modelling the spatial

distribution of a certain illness based on social and economical criteria (Fotheringham

et al., 1996). Another example is in social processes when the variation of a relation-

ship might depend in part on where the measurement is taken, since the perception of

opportunities might vary in space from one individual to another. The individual percep-

tion of opportunities and how people evaluate di↵erent alternatives to choose between

them, is still something of a mystery and relies on an individual’s cognition of space.

Fotheringham et al. (2002) have discussed that perhaps the reason people have di↵erent

responses to the same stimuli over space is due to di↵erent administrative, political or

other contextual issues, or perhaps there are spatial variations in people’s attitudes or

preferences. For example in the case of a shopping behaviour modelling, people in small

cities might accept the need to travel longer distances for clothes shopping than do people

in big cities.

The same variation in relationship which represents heterogeneity can be seen in

journey-to-work modelling where people working in big cities may accept living farther

away and commuting long distances everyday while people working in smaller cities might

be less receptive to commuting long distances. This variation in people’s behaviour in

space represents spatial heterogeneity. There are some studies in contextual e↵ects on

variation of people’s behaviour over space, for example Cox (1969); Agnew (1996); Pattie

and Johnston (2000) in voting behaviour and Yano et al. (2003) in migration. Fothering-

ham and Brunsdon (1999); Fotheringham et al. (2002) stated that the idea of intrinsic

variation of human behaviour over space is consistent with the post-modernist beliefs

of the importance of place and locality as frames for understanding such behaviour (see

Thrift, 1983), so identification of local variation in relationships can be a useful procedure
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to more intensive studies of such di↵erences (Fotheringham, 2000; Fotheringham et al.,

1997b).

In order to examine local variations of relationships over space, local statistics and

local form of spatial models provide local values for specific spatial subregions that are

defined with respect to the complete dataset (Boots and Okabe, 2007). These local

values can then be mapped over space to examine and visualise possible significant spa-

tial variations in relationships. Analysing these spatial variations can help us to better

understand spatial processes by improving our knowledge of the system under investi-

gation (Fotheringham et al., 2002; Fotheringham, 2000; Fotheringham and Brunsdon,

1999; Fotheringham, 1997). Fotheringham and Brunsdon (1999) stated that “...an ex-

amination of the nature of the spatial variation can suggest to us a more accurate model

specification or the nature of some intrinsic variation in spatial behaviour”. Over the

last several years, increasing attention has been paid to local models for the analysis of

spatial data. However, the earliest attempts for that predate this recent interest (Fother-

ingham and Brunsdon, 1999; Fotheringham, 1997, 1992, 1984a, 1981; Greenwood and

Sweetland, 1972; Casetti, 1972; Monmonier, 1969; Linneman, 1966). There are a number

of publications in the literature that attempt to provide a review of local forms of spatial

modelling and analysis, for example see Lloyd (2011, 2006); Fotheringham et al. (2002,

2000); Atkinson (2001); Fotheringham and Brunsdon (1999); Unwin and Unwin (1998);

Fotheringham (1997); Fotheringham and Charlton (1994).

In the following section we briefly review a sample number of these local models with

a greater attention given to a few of the models which will be used in this thesis (e.g.

GWR, origin- and destination-specific spatial interaction models).

5.2 Overview of local methods for spatial data analysis

Local models can provide an important link between spatial analysis and the powerful

visual display environments of various GIS and statistical graphics packages where local

values can be visualised on maps (Fotheringham, 1993, 2000; Fotheringham et al., 2002).

The process of information analysis is made easier and quicker, and more spatially disag-

gregated spatial statistics can be developed (Fotheringham and Charlton, 1994). Many

approaches for dealing with local information have been developed. Among the most

important arguably are the following:

• Local point pattern techniques, such as the Geographic Analysis Machine

(GAM) developed by Openshaw et al. (1987) trying to find evidence for local clus-

tering, and further developed e.g. by Openshaw and Craft (1991) and Fotheringham

and Zhan (1996). Another set of methods for point pattern analysis are the Spatial

Scan Statistics by Kulldorf (1997), testing if a point process is random and aiming

for finding local clusters in space and potentially in time.

• Local spatial autocorrelation is a descriptive univariate statistic aiming to as-
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sess degree of spatial dependency or spatial association among observations. Spatial

autocorrelation exists when nearby locations show similar values , i.e. neighbouring

observations have dependent values (LeSage and Pace, 2009). Spatial autocorrela-

tion may occur only at some locations and not in others, requiring local indicators

to detect its presence. Among these local methods are the Local Indicators of Spa-

tial Association (LISA) described by Anselin (1995). These indicators can be for

example a local version of Moran’s I (Moran, 1950) or Geary’s C (Geary, 1954)

statistics. Using these statistics for spatial autocorrelation requires measuring a

spatial weight matrix whose elements describe the subjective concept of spatial

proximity, such as cardinal distance (e.g. km) between neighbours or ordinal dis-

tance (e.g. k nearest neighbours). Some examples of local spatial autocorrelation

include (Getis and Ord, 1992; Ding and Fotheringham, 1992; Ord and Getis, 1995,

2001; Brunsdon et al., 1998b; Rogerson, 1999; Rosenberg, 2000; Leung et al., 2000b;

Getis and Gri�th, 2002; Getis and Aldstadt, 2004; Bavaud, 2008).

• Local regression techniques are required when relationships between variables

vary over space. Many di↵erent approaches can be found in the literature, for ex-

ample applications of the expansion method to geographical models, allowing the

linking of geographical locations to spatially varying phenomena (Casetti, 1972,

1997; Jones and Casetti, 1992; Brown and Kodras, 1987; Fotheringham and Pitts,

1995). The presence of spatial autocorrelation is typically a violation of the un-

derlying assumptions (i.e. independence assumption) of linear regression. The

spatial lag model tries to address this issue by incorporating such spatial depen-

dencies as an additional predictor into the model, giving a spatially autoregressive

linear regression (Anselin, 1988, 1999, 2001a,b, 2009, 2010). Other variants to this

approach exist, such as the spatial lag and spatial error model (Anselin, 1988).

Although the spatial lag and spatial error models consider spatial autocorrelation

using local information, they still yield a set of global parameter estimates, so in

this sense Fotheringham et al. (2002) categorised them as semi-local rather than

fully local models. Another approach to local regression is Geographically Weighted

Regression (GWR) which will be discussed in detail in section 5.3.

• Local spatial interaction models try to capture spatial variations in the under-

lying model parameters in order to investigate di↵erences in interaction behaviour.

Spatial disaggregation of spatial interaction models can be achieved by separate cali-

bration of the model for each specific origin or destination in the system. These local

model are called origin- and destination-specific spatial interaction models (see e.g.

Fotheringham and O’Kelly, 1989), which will be discussed in detail in section 5.4.

Further disaggregation has been done by Nakaya (2001, 2003) by combining these

location-specific models with the GWR approach. This is also discussed in more

detail in section 5.4.3.
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• Local network autocorrelation for spatial flows is similar to spatial auto-

correlation applied on geographic data, but considers dependencies among spatial

flows. Network autocorrelation has been first described by Black (1992) who exam-

ined a global network autocorrelation using Moran’s I statistic. Some attempts in

the literature exist for incorporating network autocorrelation in spatial interaction

model (see Chun et al., 2012, for a brief review of the recent network autocorrelation

research). For instance, Berglund and Karlström (1999) applied Getis-Ord statistics

(see e.g. Getis and Ord, 1992; Ord and Getis, 1995) to origin and destination pairs

to measure the spatial association in residuals from flow models. Also, network

autocorrelation can be integrated into spatial interaction models in a similar way

to spatial autocorrelation in spatial lag models, leading to an autoregressive regres-

sion variant (see e.g. Gri�th, 2007; Chun, 2008; Fischer and Gri�th, 2008; Gri�th,

2009; LeSage and Pace, 2008, 2009; Chun and Gri�th, 2011; Chun et al., 2012).

In this approach, spatial lag vectors are formed based on spatial weight matrices

that are defined based on proximity of origin and destination regions to their neigh-

bouring zones (see LeSage and Fischer, 2010). Network autocorrelation techniques,

similar to spatial lag and spatial error models, incorporate local relationships into

their modelling framework but still these models have to be considered as semi-

local rather than fully local techniques (see Fotheringham et al., 2002, p. 22), since

they yield a set of global parameter estimates. As such, these types of models are

outside the remit of this thesis and will not be considered further.

5.3 Geographically Weighted Regression (GWR)

Geographically weighted regression (GWR) (Brunsdon et al., 1996; Fotheringham et al.,

1998; Brunsdon et al., 1998a, 1999a; Fotheringham, 1999a; Fotheringham et al., 2002)

is a local linear regression technique for analysing spatially varying relationships. In

GWR, relationships are allowed to vary spatially and a set of local parameter estimates

are produced for each location. These local parameter estimates and their related local

statistics can then be mapped over space for further spatial analysis. The geographically

weighted concept in GWR denotes that data are weighted according to their proximity

to a calibration point, in which data in closer proximity carry more weight and have

more influence in the parameter estimation. So in GWR, the regression coe�cients are

location dependent; this extended local version of regression model can be modelled as:

y
i

= �0i + �1i x1i + �2i x2i + . . . + �
ki

x
ki

+ ✏
i

= �0i +
p�1X

k=1

�
ki

x
ki

+ ✏
i

=
pX

k=0

�
ki

x
ki

+ ✏
i

, when x0i = 1

(5.1)
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where y
i

is the dependent variable at location i; x
ik

is the kth independent variable at

location i; �
ki

shows �
k

parameters of the model at location i, and ✏
i

is an error term

that should be minimised.

The estimation of the parameters of the model then is based on geographically weighted

least squares, by minimising
P

i

w
i

(y
i

� y0
i

)2 where w
i

is a weighted function applied to

each squared di↵erence between the observed y
i

and its predicted value y0
i

(Brunsdon

et al., 1996; Fotheringham et al., 2001a). Rewriting the GWR model expressed in equa-

tion 5.1 in a matrix notation gives

y
i

= �
i

X
i

+ ✏
i

(5.2)

where �
i

is a column vector of the model’s parameters matrix; X
i

is a row vector of

independent variables matrix at location i (Fotheringham, 2009; Wheeler and Páez, 2010).

The local parameters of the model at i, �0
i

, can be estimated by the following matrix

notation of weighted least squares:

�0
i

= (XT W
i

X)�1 XT W
i

Y (5.3)

where X is the matrix of independent variables with a first column of one values for the

intercept variable , XT denotes the transpose of X, Y is an n by 1 vector of dependent

variables: Y = (y1, y2, . . . , yn)T and W
i

is an n by n matrix of weights whose o↵-diagonal

elements are zero and whose diagonal elements are the geographical weighting of each of

the n observed data based on their proximity to the calibration point i (Fotheringham

et al., 2002; Fotheringham, 1999a, p. 53). W
i

has the form of the following matrix:

W
i

=

2

66664

w
i1 0 . . . 0

0 w
i2 . . . 0

...
...

...
...

0 0 . . . w
in

3

77775

where w
in

denotes the weight of the data point n on the calibration of the model around

calibration point i (Fotheringham et al., 2000, p.94).

5.3.1 Spatial weighting function

The choice of both weighting function, or kernel, and the bandwidth are two major

considerations in the GWR procedure, although the bandwidth selection has a more sig-

nificant influence on the results (Lloyd and Shuttleworth, 2005; Fotheringham et al., 2002,

1997a). Two major categories of weighting methods exist: one uses a fixed bandwidth

and one uses an adaptive bandwidth. With a fixed spatial weighting function, the same

bandwidth is applied to each calibration point and so it is assumed that this bandwidth

is constant over the study area. Fotheringham et al. (2002, p. 210) refer to this as a fixed

kernel where each observation has a weight according to how far it is located from the
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centre of the kernel. Observations closer to the centre of the kernel have higher weights

while the weights decrease when the observations are located further away. One example

of a fixed kernel is the Gaussian kernel which can be written as:

w
ij

= exp [ -
1

2
(
d
ij

b
)2 ] (5.4)

where d
ij

is the geographical distance, mostly Euclidean distance in GWR, between the

locations of calibration point i and observation j. Parameter b, called bandwidth, has

to be optimally specified using an appropriate technique. Another example of the fixed

kernel is the bi-square function:

w
ij

=

(
[1� (d

ij

/b)2]2 if d
ij

< b

0 otherwise
(5.5)

which produces a continuous weighting function up to distance b from the regression

point and then zero weights to any data point behind b (Fotheringham et al., 2002, p.

57). Examples of using these types of fixed spatial kernels are provided by Brunsdon

et al. (1996, 1997); Fotheringham et al. (1998, 2002).

Another category of kernels is when the spatial kernel is not fixed and can adapt its

size to the density of data points over space. The size of bandwidth is bigger when the

data are sparse and in areas where the data are plentiful, bandwidth size is smaller. This

type of spatial weighting function is referred to as an adaptive spatial kernel (Fothering-

ham et al., 2002, p. 46). Adaptive kernels are particularly useful when the density of the

observations shows a large spatial variation (Nakaya, 2007). Again, there are di↵erent

types of spatially adaptive weighting functions for GWR which can be found in the lit-

erature (see e.g. Wheeler and Páez, 2010; Páez and Wheeler, 2009; Fotheringham et al.,

2002, 2000). For instance, the bi-square function is the type commonly used in GWR for

this purpose:

w
ij

=

(
[1� (dij

b

)2 ]2 if j is one of the Nth nearest neighbours of i

0 otherwise
(5.6)

where b is the bandwidth indicating the greatest distance between the regression point

and the Nth nearest neighbours, and N is a parameter to be estimated (Fotheringham,

2009) which indicates the number of observations within each kernel.

5.3.2 Calibration of the spatial weighting function

As previously mentioned, the results of GWR are sensitive to the degree of distance-

decay so the bandwidth selection is an important consideration in GWR (Fotheringham

et al., 2002). A too small bandwidth may lead to a large variance in the results because a

small number of data points is used in the local calibration, while a too large bandwidth

may lead to biased results since the data are drawn from locations further away from the
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regression point (Fotheringham, 2009). Therefore, whichever weighting function is used

in GWR, an optimum value for the bandwidth (in the case of the fixed kernel) or the

optimal number of nearest neighbours to be considered in the calibration (in the case of

the flexible kernel) should be estimated.

There are di↵erent methods in the literature that can be used for this purpose (see

Fotheringham et al., 2002; Fotheringham, 2009). For instance, the optimum bandwidth

parameter can be obtained by minimising a cross-validation (CV) score which is based on

minimising the squared error of the dependent variable. The CV approach was initially

proposed by Cleveland (1979) for locally weighted regression. Later the CV method has

been adapted based on an integrated squared error for kernel density estimation (see e.g.

Rudemo, 1982; Bowman, 1984) and eventually was used in GWR (see Brunsdon et al.,

1996; Farber and Páez, 2007; Páez and Wheeler, 2009; Wheeler and Páez, 2010). The

general form of the CV can be written as:

CV =
nX

i=1

[ y
i

� y06=i

(b) ]2 (5.7)

where y06=i

(b) is the fitted value of y
i

with the observations for point i omitted from the

calibration process and parameter b is the bandwidth. The CV can be estimated using

an optimization technique such as golden section search, assuming the cross-validation

function is reasonably well behaved (Fotheringham et al., 2000; Greig, 1980). Plotting the

CV scores against the bandwidth values provides a guidance for selecting the optimum

bandwidth parameter (Fotheringham et al., 2002).

A similar method, which is an approximation to the CV but easier to compute, is

the generalised cross-validation criterion (GCV) (see Fotheringham et al., 2000). The

formula for the GCV score is:

GCV = n
nX

i=1

[ y
i

� y0
i

(b) ]2/(n� tr(S))2 (5.8)

where tr(S) is the trace of the hat matrix S (Hoaglin and Welsch, 1978; Fotheringham

et al., 2002) which is equivalent to the e↵ective number of parameters in the model. The

hat matrix provides information about the influence of each observed value on each fitted

value and gives each fitted value ŷ
i

as a linear combination of the observed values y
i

as

ŷ
i

= Sy
i

. Each row of the hat matrix can be calculated by:

r
i

= X
i

(XT W (u
i

, v
i

) X)�1XT W (u
i

, v
i

). (5.9)

where (u
i

, v
i

) is the coordinates of i.

Another possible method for estimating the optimum bandwidth is to minimise the

Akaike Information Criterion (AIC), (see Akaike, 1973, 1974), which provides a trade-o↵
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between the complexity of the model and the goodness-of-fit with the following formula:

AIC = 2n ln(�̂) + n ln(2⇡) + n + tr(S) (5.10)

where n is the sample size and �̂ is the estimated standard deviation of the error

term (Fotheringham et al., 2002; Hurvich et al., 1998). The model with the smallest

AIC, which is called the minimum AIC estimator, is the model with the optimum band-

width. In some situations, when the number of parameters is relatively big compared

to the number of observations, the AIC estimator may perform poorly or may even be

biased (see Cheng et al., 2011; Sakamoto et al., 1986; Sugiura, 1978). To avoid this

problem, a small sample bias adjustment (second order) (see Hurvich and Tsai, 1989)

has been incorporated (notably by Hurvich et al. (1998)) which led to a corrected AIC

(AICc) estimator. In local regressions the degrees of freedom is likely to be small, so the

use of AICc is more appropriate than AIC. Following Hurvich et al. (1998), Fothering-

ham et al. (2002) proposed the following AICc formula for use in GWR which provides

a trade-o↵ between goodness-of-fit and degree of freedom as:

AICc = 2n ln(�̂) + n ln(2⇡) + n

✓
n+ tr(S)

n� 2� tr(S)

◆
. (5.11)

When the e↵ective number of parameters in the model is small relative to the number

of observations, the di↵erence between AIC and AICc is insignificant (see Nakaya et al.,

2005).

5.3.3 Geographically weighted Poisson regression (GWPR)

GWR has initially been developed for linear regression modelling where the dependent

variable is assumed to follow a Gaussian (normal) distribution; however, later the ge-

ographically weighted method has been extended on the basis of the generalised linear

modelling framework (see section 3.8) for Binomial (logistic) distribution as geographi-

cally weighted logistic regression and for Poisson distribution as geographically weighted

Poisson regression (GWPR) (Nakaya, 2007; Fotheringham et al., 2002; Nakaya et al.,

2007, 2005; Lovett et al., 1986; Lovett and Flowerdew, 1989). In this thesis, where we

aim to localise spatial interaction models using the GWR technique, the GWPR provides

a more appropriate framework compared to the conventional Gaussian regression since

the spatial flows are discrete and nonnegative (see section 3.8 for further details).

The core principle of the GWPR is similar to the basic GWR, in that the parameter

estimates are allowed to vary geographically and these variations can be estimated with

a spatial weighting kernel (see Nakaya et al., 2005). A comprehensive introduction to

the GWPR principle is given by Nakaya et al. (2005) (see also Fotheringham et al., 2002;

Nakaya, 2001, 2003). In this section we present a summary of the theory behind the

GWPR technique, drawing on insights from Nakaya et al. (2005); Fotheringham et al.
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(2002). The traditional form of a Poisson regression model links a dependent variable

y
i

that follows a Poisson distribution and a number of independent variables x
ki

, and is

generally defined as:

y
i

= exp(�0 +
X

k

�
k

x
ki

+ e
i

) (5.12)

where �
k

are parameters of the model (with �0 for intercept), and e
i

is the error term. A

GWR extension of the above model allows the parameters of the model to vary over space

by incorporating the coordinates (u
i

, v
i

) of the regression point in the model formulation:

y
i

= exp
�
�0(ui, vi) +

X

k

�
k

(u
i

, v
i

)x
ki

+ e
i

�
. (5.13)

To estimate the GWPR parameters, Nakaya et al. (2005) consider a geographically

weighted likelihood principle which is a variant of the local likelihood principle (Loader,

1999) and which is consistent with the geographically weighted least squares in conven-

tional Gaussian GWR. Using this methodology, the model parameters at location i are

estimated by maximising the geographically weighted log-likelihood function:

maxL(u
i

, v
i

) =
nX

j=1

�
� ŷ

j

(�
i

) + y
j

ln ŷ
j

(�
i

)
�
. w

ij

(5.14)

where ŷ
j

(�
i

) is the predicted value of y at location j with parameters at regression point

i and w
ij

is the geographical weight of the jth observation at the ith regression point.

As suggested by Fotheringham et al. (2002); Nakaya et al. (2005), the above equation

can be maximised using a local Fisher scoring, a form of interactively re-weighted least

squares (Hastie and Tibshirani, 1990). In this local scoring method, as the procedure

is iterative, an initial guess at the regression coe�cients is usually made by an ordinary

least squares regression and then the parameter estimates are updated until convergence

by repeating a matrix computation of weighted least squares. Computational details for

the calibration procedure of GWPR can be found in Nakaya et al. (2005).

Similar to the conventional GWR, GWPR considers a spatial kernel around each

calibration point i and the observations are weighted gradually according to their prox-

imity to the centre of the kernel where the observation i has the maximum weight. The

choice of the geographical weighting kernel is similar to GWR in which di↵erent spatial

weighting functions are available such as Gaussian or bi-square function both for fixed

and adaptive bandwidths (see section 5.3.1). For calibrating the selected geographically

weighting function in GWPR, Nakaya et al. (2005) suggest some possible methods where

in a similar way as in GWR, means the optimal bandwidth is selected in term of some

criteria. For instance, minimising the AIC of the model is one of the suggested methods:

AIC(b) = Deviance(b) + 2k(b) (5.15)
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where k(b) is the e↵ective number of parameters in the model with bandwidth b. The

corrected AIC, AICc, for using in GWPR is formulated as:

AICc(b) = Deviance(b) + 2 k(b)
� n

n� k(b)� 1

�

= AIC(b) + 2
k(b)

�
k(b) + 1

�

n� k(b)� 1

(5.16)

As with the AICc in GWR, the model with smallest AICc is the model with the best

bandwidth suggestion. As a rule-of-thumb, if the di↵erences between AICc values of two

models is less than around 2, then the competition between models is too close and the

di↵erence between the models is negligible (Nakaya et al., 2005; Fotheringham et al.,

2002).

Nakaya (2001, 2003) argue that as the number of observations increases, the AIC and

CV may perform poorly and a more complex model is attained with these estimators as

the best model instead of the true one. Therefore, the AIC and CV estimators lead to a

smaller bandwidth size for the local modelling. On the other hand, the derivation of the

AICc method is based on Gaussian linear models and when the underlying probability

distribution is extremely non-normal, using the AICc may not be appropriate (see Burn-

ham and Anderson, 2002; Nakaya et al., 2005). As an alternative, Nakaya (2001, 2003)

proposed a Bayesian based bandwidth selection estimator for use in GWPR known as

Bayesian Information Criterion (BIC), sometimes referred to as the Schwartz Information

Criterion (SIC)(Schwartz, 1978). The BIC is defined as:

BIC(b) = Deviance(b) + k(b) ln(n) (5.17)

where k(b) is the e↵ective number of parameters and n is the number of observations. The

model with the smallest BIC is the best fit model and guides the optimum bandwidth

value. The model complexity penalty in BIC is weighted by the number of observa-

tions. Therefore, the same degree of complexity (that is, the same value of k) carries

a higher penalty for larger samples in BIC than in similar measures such as AIC. Con-

sequently, using BIC in large samples tends to identify models with fewer parameters

as optimal (Fotheringham et al., 2002). Although the estimator selected by BIC may

be more biased compared to AIC, the bias is negligible in large samples (Nakaya, 2001,

2003).

5.4 Local calibration of spatial interaction models

One of the earliest attempts of local spatial analysis that perhaps predates all other local

models, is that of local spatial interaction (Fotheringham et al., 2000). It was recognised

quite early that a global calibration of spatial interaction models may fail to capture
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spatial variation of relationships over space and so not represent the true specification

of reality (Fotheringham et al., 2002). A large amount of spatial information on inter-

action behaviour could be completely hidden in the output of a global calibration of

spatial flow models, so local parameter estimates potentially provide much more useful

disaggregated information (Linneman, 1966; Greenwood and Sweetland, 1972; Fother-

ingham et al., 2000, 2002). The main evidence for this was shown when the spatial

interaction models were calibrated separately for each specific origin and destination

instead of a single global estimate (see Fotheringham, 1983, 1984b, 1986). When the

resultant local parameter estimates were mapped over space, they showed a clear spatial

variation (see Fotheringham, 1981, 1983, 1984a,b, 1991; Meyer and Eagle, 1982; Fother-

ingham and O’Kelly, 1989; Fotheringham et al., 2000). This spatial variation would be

completely ignored with a global calibration (Fotheringham et al., 2002). The spatial

interaction models that are calibrated for separate subsets of data to provide local infor-

mation for each specific origin and destination in the system are referred to as origin- and

destination-specific models respectively. A large number of examples using origin- and

destination-specific models to provide spatial disaggregated information of interaction

behaviour over origins and destinations exist in the literature (see for instance Haynes

and Fotheringham, 1984; Fotheringham and O’Kelly, 1989).

In the following section, we show the general formulations of the unconstrained grav-

ity origin- and destination-specific models along with an application of the models using

the journey-to-work dataset of Lausanne. We map the local results over origin and desti-

nation communes in order to visualise possible spatial variations of the model parameters

over space and to compare the local results with the global calibrated parameters.

5.4.1 Origin-specific spatial interaction model

Consider a general unconstrained gravity spatial interaction model:

T
ij

=  v ↵

i

w�

j

d �

ij

(5.18)

where T
ij

represents the flow between regions. Variables are defined as before in chapter 3,

v
i

represents origin propulsiveness, w
j

is destination attractiveness and d
ij

indicates

distance between i and j; , ↵, � and � are global parameters of the model. These global

parameters represent an average type of interaction behaviour and are valid equally for

the entire study region. An origin-specific version of this model is applied when only

flows from one origin i going to di↵erent destinations are considered in the calibration

process; see figure 5.1 for an illustration of the origin-specific model. A general origin-

specific version of the unconstrained spatial interaction model can be represented by the

following formula:

T
ij

= 
i

w �

i

j

d �

i

ij

(5.19)
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Origin

Destination
Flow 

Figure 5.1: A simplified illustration of the origin-specific spatial interaction.

where the value of the origin attribute variable v↵
i

becomes a constant (as only one origin

is considered in the model calibration) and usually is subsumed into the balancing param-

eter 
i

. The parameters 
i

, �
i

and �
i

are specific to origin i (Haynes and Fotheringham,

1984). The calibration process of the model can be repeated for all origins in the system

and the resulting specific parameter estimates can be mapped over space.

In order to provide an example of the origin-specific model, we apply a Poisson

version of the model to the journey-to-work dataset in Lausanne agglomeration, using

the following formula:

�
ij

= exp(
i

+ �
i

lnN
j

+ �
i

ln d
ij

) + "
ij

(5.20)

where as before �
ij

shows the number of interactions between i and j, including intra-

zonal flows, N
j

the number of jobs in destination j and d
ij

is the distance between regions

calculated with the population density-based scattering method described in section 4.3.2,


i

, �
i

and �
i

are parameters of the model specific to origin i. We calibrated the model for

each commune using a subset of data flows from each specific origin in the agglomeration.

A set of local parameter estimates is obtained for each origin separately. Table 5.1 shows

the results of calibrating the local origin-specific model in the Lausanne agglomeration,

where the mean, minimum, maximum, standard deviation and quartiles 25%, 50%, and

75% of the parameter estimates and their t-values along with the Deviance and Pseudo

R2 of the models are presented. The results of a global spatial interaction calibrated for

the same area are listed in the table for comparison, although a direct comparison of the

model cannot be done because the global model contains more variables (i.e the origin

attribute variable, here active population). Also, in the calibration of the global model

all the data are considered while in the calibration of an origin-specific model, only a

part of data related to that specific origin are involved. The values of parameters in both

global and local models show the general expected e↵ect on interaction, i.e. number of

jobs at a destination has a positive influence and distance has a negative e↵ect on the

total interaction. The global distance-decay parameter of �1.2973 shows a less negative

e↵ect in comparison with the mean value of �1.8247 over all communes in the origin-
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Table 5.1: The Poisson global and origin-specific models for journey-to-work in the ag-
glomeration of Lausanne.

Global model

Model type Poisson

Deviance 32575.3

Pseudo R2
0.9561

Parameters Estimates Std error t-values

Active pop. 0.7908 0.0019 414.8

Jobs 0.9486 0.0018 534.3

Distance -1.2973 0.0039 -334.6

Intercept 0.8181 0.0385 21.3

Origin-specific model

Parameter Mean Min Max Std Dev Quartiles

25% 50% 75%

Jobs 1.0598 0.7645 1.2710 0.1032 1.0040 1.0599 1.1194

Distance -1.8247 -2.7482 -0.8144 0.4180 -2.0740 -1.8291 -1.5395

Intercept 9.7697 3.9305 19.2064 2.9938 7.5179 9.9179 11.6682

t-values jobs 42.2 5.7 168.9 30.0 22.5 31.8 52.7

t-values distance -32.9 -100.5 -7.8 16.8 -41.1 -29.5 -19.9

t-values intercept 28.4 7.7 69.5 13.3 19.4 24.9 34.3

p-values jobs 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-values distance 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-values intercept 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Deviance 172.4 -182.7 1390.9 211.5 65.5 105.7 202.6

Pseudo R2
0.8822 0.6365 0.9959 0.0740 0.8392 0.8949 0.9422

specific model. Comparing the min, max and standard deviation of the local parameters

shows a clear variation between the values. The parameter for the number of jobs in

the origin-specific model varies between 0.7645 and 1.2710 while the standard deviation

is 0.1032. The standard deviation indicates the variation from the average across all

communes. The local distance-decay parameters show higher variation from the mean,

(i.e. standard deviation of 0.4180) and the estimates range from a minimum of �2.7482

to a maximum of �0.8144.

In order to facilitate further analysis of spatial variation in the model’s results, we

mapped the local parameter estimates and their t-values over communes (see figures 5.2

and 5.3). Comparing these maps with the overview maps of the Lausanne communes in

figures 2.2 and 2.3 makes it easier to understand and analyse the source of these varia-

tions. For instance the distance-decay parameter in Lausanne city and the neighbouring

industrial areas is less negative than average indicating the inhabitants of these areas

consider distance to be a less important deterrent for their daily journey-to-work com-

pared to people in other parts of the agglomeration where the distance-decay is more

negative. This variation partly can be explained with the better transportation system

in central Lausanne and the neighbouring regions. However, sometimes there are varia-

tions in parameter estimates that are not so easy to explain. For instance, the value of

the job parameter in Lausanne city is high but a dramatic drop in the value occurs in

some neighbouring communes. The t-values of the parameters are mapped in figure 5.3.
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In general the t-values are considerably di↵erent from 0 indicating the significance of the

local parameters.

5.4.2 Destination-specific spatial interaction model

Similar to the origin-specific model, a destination-specific model can be generated when

a spatial interaction model is calibrated using flow data going to a specific destination j.

See figure 5.4 for a general overview of the destination-specific model in an interaction

system. The following formula shows a destination-specific version of the gravity model

shown by the equation 5.18:

T
ij

= 
j

v
↵

j

i

d
�

j

ij

(5.21)

where the value of the destination attribute variable w�

j

is a constant ( as only one

destination is considered in the model calibration) and is subsumed into the balancing

parameter 
j

, and the parameters 
j

, ↵
j

, and �
j

are specific to destination j (Haynes

and Fotheringham, 1984). As in the origin-specific model, the calibration process can be

repeated for all destinations in the system and the resulting parameter estimates can be

mapped over space.

As an example we apply a Poisson version of the destination-specific model on the

journey-to-work dataset in the Lausanne agglomeration, considering the following for-

mula:

�
ij

= exp(
j

+ ↵
j

lnP
i

+ �
j

ln d
ij

) + "
ij

(5.22)

where the variables are defined as before and the parameters 
j

, ↵
j

, and �
j

are specific

to destination j. Repeating the calibration for each specific destination in the Lausanne

agglomeration, we list the local results in table 5.2. Maps of the local parameters and

their t-vales are shown in figures 5.5 and 5.6 respectively.

Although the local parameter estimates from the destination-specific model generally

indicate the expected influence on the total interaction, i.e. negative for distance-decay

and positive for active population, some unexpected values occur. For instance, the

average value for the local active population parameter is 0.8830, higher than the global

value of this parameter which is equal to 0.7908. However, its minimum value is �0.7594

which is completely counter intuitive. By checking the resulting local active population

parameters for all destinations, it turns out that there is only one negative value between

all destinations. This negative active population parameter is for Malapalud, the smallest

commune in the agglomeration which has a total of 61 inhabitants according to census

data 2000. There are only 30 people in the commune who are economically active and

the number of jobs is 25 mainly in agriculture. In total only 1 person is commuting

towards this destination, coming from another small rural commune which explains the

negative parameter for the active population. Additionally, the t-value of this parameter
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Figure 5.2: The parameter values for Poisson origin-specific model in agglomeration of
Lausanne.
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Figure 5.3: The t-values of the parameters for Poisson origin-specific model in agglom-
eration of Lausanne. These maps display absolute t-values, where values greater than
2.33 are significant at a level of 99%, and values greater than 1.65 are significant at
a level of 95%. For negative parameter values (for the distance decay parameter), the
negative t-values of -2.33 and -1.65 correspond to the significance levels of 99% and 95%
respectively.
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Origin

Destination
Flow 

Figure 5.4: A simplified illustration of the destination-specific spatial interaction.

Table 5.2: The Poisson destination-specific model for journey-to-work in the agglomera-
tion of Lausanne.

Destination-specific models

Parameter Mean Min Max Std Dev Quartiles

25% 50% 75%

Active population 0.8830 -0.7594 1.8510 0.3053 0.8000 0.8809 1.0068

Distance -1.9847 -4.4205 -0.5854 0.6904 -2.4184 -1.8805 -1.4386

Intercept 11.5903 3.8253 23.3434 4.0070 8.4200 10.9907 14.4038

t-values act. pop. 26.4 -0.6 204.1 31.1 9.0 19.1 31.9

t-values distance -30.0 -102.2 -1.4 19.3 -41.0 -24.4 -15.2

t-values intercept 26.7 4.5 70.8 12.0 17.8 24.9 33.7

p-values act. pop. 0.02 0.00 0.55 0.08 0.00 0.00 0.00

p-values distance 0.00 0.00 0.17 0.02 0.00 0.00 0.00

p-values intercept 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Deviance 153.1 -62.9 1620.3 218.8 43.8 95.8 182.4

Pseudo R2
0.8620 0.5427 0.9918 0.0808 0.8232 0.8771 0.9207

is �0.6 indicating that the parameter estimate for active population for this destination

is not significantly di↵erent from 0.

For the local distance-decay parameters, the average estimate over all communes is

�1.9847 compared to the value from the global model which is �1.2973. So, locally

distance is perceived as a bigger barrier for daily travelling compared to globally. As

was discussed earlier, a direct comparison of the local and global model is di�cult as

the number of variables and parameters are di↵erent. However, a general comparison

of the models is useful as it shows how the locally disaggregated information provided

by destination-specific model, e.g. spatial variation of the model’s parameters, would be

totally missed with a global calibration.

5.4.3 Local calibration of spatial interaction based on a GWR approach

The Lausanne journey-to-work spatial interaction results provide an example of spa-

tial heterogeneity in the processes generating flows. The nature of this systematic spa-

tial variation has been described by previous researchers (see for instance Curry, 1972;

Curry et al., 1975; Sheppard, 1979, 1978; Fotheringham, 1981; Gordon, 1985; Thorsen
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Figure 5.5: The parameters values for Poisson destination-specific model in agglomeration
of Lausanne.
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Figure 5.6: The t-values of parameters for Poisson destination-specific model in agglom-
eration of Lausanne. These maps display absolute t-values, where values greater than
2.33 are significant at a level of 99%, and values greater than 1.65 are significant at
a level of 95%. For negative parameter values (for the distance decay parameter), the
negative t-values of -2.33 and -1.65 correspond to the significance levels of 99% and 95%
respectively.
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and Gitlesen, 1998). As stated by Fotheringham and Webber (1980), this systematic

spatial variation may be partly due to variation in the underlying spatial structure of

the systems (see also Fotheringham, 1982b,a). For instance, if spatial configurations

of origins and destinations in a spatial system influence the spatial pattern of param-

eter estimates (see Fotheringham and Webber, 1980; Fotheringham, 1981). Although

modified spatial interaction models, such as the competing destinations model (see sec-

tion 3.6), by incorporating relevant measures explicitly can remove the spatial structure

e↵ect from the interaction patterns and result in substantial improvements in model ac-

curacy (Fotheringham, 1991; Yano et al., 2003; Fotheringham et al., 2001b; Pellegrini and

Fotheringham, 2002), significant geographical variations of parameters in the interaction

system can still remain in the model (Ishikawa, 1987; Yano et al., 2000; Nakaya, 2001,

2003). For instance, the results of Nakaya’s study shows significant spatial heterogene-

ity of the accessibility parameter estimates when a competing destination origin-specific

model was calibrated for a migration case study in Japan (see Nakaya, 2001, 2003).

Another attempt to capture spatial heterogeneity in spatial interaction models is to

localise the models by applying the same local techniques for analysing normal spatial

data on flow data. One of the earliest attempts in this regard is Fotheringham and

Pitts (1995) where directional drifts of the spatial interaction model parameters are

measured using the expansion method. Later Berglund and Karlström (1999) pointed out

in their publication on local spatial association that GWR is, in its principle of exploring

nonstationarity in relationships between di↵erent sets of variables over space, applicable

to many di↵erent models including spatial interaction models. Nakaya (2001, 2003)

investigated the capability of GWR for local calibration of flow models using a migration

case study in Japan. As in GWR the regression model is calibrated repeatedly for

each geographical location (i.e. calibration point) in space. Nakaya suggests calibrating

the spatial interaction model for each specific flow in the interaction system. In his

work, however, an origin-specific spatial interaction model is calibrated using the GWR

technique in which a spatial kernel is considered around destination j of flow ij and flows

from origin i to di↵erent destinations are weighted according to the distance between

their destinations to the calibration point (i.e. destination j). So in Nakaya’s work, for

each specific origin in the system a local calibration of the model is obtained using GWR

and the calibration points are destinations of the observed flows, not the observed flows

themselves. This approach is described in more detail, following an empirical example,

in the next chapter (see section 6.5).

Another example of using GWR for calibrating an origin-specific spatial interaction

model is presented by Nissi and Sarra (2011) which is slightly di↵erent from Nakaya’s

approach. In this work, the authors introduced a modified version of the weighting func-

tion which considers both the distance and a new parameter of “strength of connection”
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between destinations which is based on total interactions between destinations:

w
k(j) = exp

�
�

d2
jk

b2
⇥ (strength of connection)

�
(5.23)

where d
jk

shows the distance between j and k, b is the bandwidth parameter, and the

strength of connection represents a value of interaction between two destinations and is

defined by the following formula:

Strength of connection between k and j =
T 2
kj

T
ok

⇥ T
oj

(5.24)

where the interaction between destinations k and j is shown as T
kj

, T
ok

and T
oj

represent

the total number of flows terminating at destinations k and j respectively. The original

idea of this weighting function is to give higher weights to more connected destinations,

(i.e. destinations that share more visitors); when k and j represent the same location,

a unit weight is allocated to the destination. However, this formulation fails to address

a situation when the destinations k and j are located in two di↵erent locations with no

flows in between. In this case the strength of connection between k and j will be equal to

zero and multiplication of zero to
d

2
jk

b

2 in equation 5.23 gives rise to a unity weighting value

due to the exponential function. In fact with this formulation, even a far destination k

with no connections with destination j will have the highest weight of unity value which

is totally opposite to the purpose of the GWR principle.

The GWR technique has been used in a wide range of applications such as analysing

spatial variations in average rainfall and altitude relationship by Brunsdon et al. (2001), in

school performance by Fotheringham et al. (2001a), in housing attribute price by Bitter

et al. (2007), in crime patterns by Cahill and Mulligan (2007); Wheeler and Waller

(2009), in real estate price by Huang et al. (2010), in mortality rates by Holt and Lo

(2008), among others. The application of GWR can be found also in commuting analysis.

For instance, Lloyd and Shuttleworth (2005); Shuttleworth and Lloyd (2005) use GWR

to study the relationships between the average commuting distance and some socio-

economic variables in Northern Ireland. However, these studies can not be considered in

the category of local calibration of spatial interaction since the dependent variable is the

average travel distance not the travel flows themselves.

Although the e�ciency of GWR in local spatial data analysis has been shown in

di↵erent applications, surprisingly there are not many applications of the geographically

weighting concept in spatial interaction models. The reason is possibly due to the com-

plexity of applying GWR on spatial flows since usually interaction models involve a huge

amount of data covering information for all origins, destinations and flows between the

regions. The existing software for GWR works fine for a reasonable size of spatial data in

normal regression models but based on our experience has di�culties to run for spatial

flow data. This might also to some extent explain the lack of GWR applications for
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spatial flow analysis. In this thesis, we developed a simplified version of GWR software

using Python that works for calibrating spatial interaction models1.

In the following chapters we expand the idea of using the concept of geographically

weighting for local calibration of spatial flows further. More specifically, we do not restrict

the models to the origin- or/and destination-specific type of spatial interaction models

but we develop this idea as a general local calibration method that can be applied to any

type of spatial interaction model. Based on this idea, the spatial interaction models can

be calibrated in any arbitrary location within the study region and the resulting param-

eters can be mapped over space to visualise any potential spatial heterogeneity in the

system for further investigation. Also, based on the same idea of using the geographically

weighted concept for localising spatial interaction model, a local calibration method will

be described for calibrating each arbitrary flow (pair of locations) within the system.

1
available at https://github.com/mkordi/pygwr



Chapter 6

Geographically weighted spatial

interaction (GWSI)

6.1 Introduction

In the following two chapters we focus on localising spatial interaction models using

geographical weighting in three di↵erent ways. In two of the three, we calibrate the in-

teraction models for calibration points which are actual geographic locations within the

study region (e.g. centroids of origins, destinations). The data are spatial flows between

origins and destinations in the agglomeration of Lausanne in Switzerland. Considering a

spatial kernel around the calibration point, the observed data flows are weighted accord-

ing to their distance to the centre of the kernel. The distance estimation is categorised in

two parts: 1) when the distance between the calibration point and the origin of the flows

is considered (we name this an origin-focused approach), 2) when the distance is defined

considering the destination of the observed flows (we term this a destination-focused

approach). In these scenarios, we do not restrict the method to one of calibrating only

origin- and/or destination-specific models, but we consider a broader approach which

di↵ers from the approach of Nakaya (2001). A comprehensive framework for local cali-

bration of spatial interaction models is developed in which any type of spatial interaction

model can be calibrated in any arbitrary location within the study region. The origin-

and destination-focused approaches are discussed in more detail in this chapter while in

a third approach for localising the spatial interaction models, we apply the geographi-

cally weighted concept with both observations and calibration data being spatial flows.

The interaction model is then calibrated for each spatial flow, we call this a flow-focused

approach. This model will be presented and described in details in the next chapter.

6.2 Origin-focused GWSI approach

As discussed before (see chapter 5), for a particular relationship in an origin-specific

model, a parameter is estimated separately for each origin compared to a single average

80
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estimate for the entire study area obtained in a global model. In a spatial interaction

system with an m-by-n origin-destination matrix, the calibration process can be repeated

for each of the m origins. The resulting parameters for all m origins can then be mapped

to examine spatial variations in interaction determinants over origins. This can be used

to visualise possible spatial heterogeneity when the parameter estimates vary across ori-

gins. However, an origin-specific model provides an average type of parameter estimates

localised to the entire origin region. If the region representing the origin is relatively

large, or when the relationships under study varies across di↵erent destinations, it would

be more useful to estimate the parameters of the spatial interaction models at a more

spatially disaggregated level, rather than only at the level of origin regions.

Additionally, an origin-specific model only considers flows that originate from a spe-

cific origin i to di↵erent destinations so that flows emanating from other origins in the

system are ignored in the model calibration for origin i. However, sometimes information

from other origin regions in the model can be useful, particularly when we are interested

in calibrating the model’s parameters for locations with no flow data available. In this

situation, the information from neighbouring origins can be used to estimate the model

parameters at the calibration origin. For instance, in our case study of journey-to-work,

if workforces in nearby villages with similar conditions show similar behaviour in their

daily commuting, (e.g. a similar level of interest in choosing a specific workplace or des-

tination j), we can use this information for estimating the model parameters (level of

interest of inhabitant for choosing destination j) for a nearby origin where there is no

commuting information available.

In order to take into account information at a regional scale instead of a single origin,

we can apply the principle of geographical weighting on the flows when a cluster of origins

around the calibration point is considered in the calibration process of the model. The

general principle of geographical weighting can be applied on the interaction flows as

it is used in GWR. However, spatial interaction is a multidimensional phenomenon and

applying the concept of geographical weighting to flows involves not only a single location

for a calibration point and a set of surrounding data point as in normal GWR, but involves

locations of origins, destinations and the interactions between them. Therefore applying

the concept of the geographical weighting to spatial interaction is more complicated

than applying GWR to non-flow spatial data. In applying the geographically weighted

concept to the spatial interaction, observations (i.e. data points) are flows between

origin and destination regions, while a calibration point can be either a specific flow

(i.e. when the model is calibrated for each separate pair of origins and destinations

in the system), or a single geographic location within the study area. In this chapter

we focus on geographically weighted spatial interaction where the calibration points are

absolute geographic points within the origin and destination regions and not flows. In

this context, a geographic calibration point can be represented by the centroid of one of

the existing origins or destinations, or an arbitrary location within the study area, when
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Origin

Destination

Calibration point

Distance between origin
and calibration point

Flow weighted according
to distance to calibration
point (width ~ weight)

Figure 6.1: A schematic overview of the origin-focused GWSI approach.

we are interested in estimating flows in regions with no prior flow data.

In geographically weighted spatial interaction (GWSI) fitting a spatial kernel to the

data involves defining a region around each calibration point. All the observed flows

within this region are then weighted and used to calibrate the interaction model. The

influence of the observed flows on the calibration process is based on a weighting scheme

in which each observed flow is weighted by its distance from the centre of a kernel (i.e.

distance to the calibration point); flows with greater weights have more influence on the

calibration process. In this section, where we are interested in considering information

on neighbouring origins when calibrating a spatial interaction model, we weight the

observed flows around a calibration point based on proximity of the origins of the flows

to the calibration point. Here, flows with closer origins to the centre of the spatial

kernel have a greater weight and have a larger e↵ect on the model calibration procedure.

Weights decrease continuously as the distance between the calibration point and the

observed origin increases. In this framework, when a calibration point is an existing

origin, not only flows from the calibration point are involved in the model calibration

but also, focusing on the origins of the neighbouring flows, a cluster of flows around

the calibration point influence the local parameter estimation. If a calibration point

and an existing origin share the same location (i.e. when the model is calibrated for

an existing origin), the maximum weights are assigned to the flows originating from the

calibration point, since the distance between that origin and the calibration point is a

minimum. Figure 6.1 illustrates a schematic overview of GWSI when the focus is on

the origins of the observed flows around the calibration point; this represents an origin-

focused approach. In figure 6.1, the flows’ widths represent their weights according to the

distance between the flows’ origin and the calibration point; these distances are shown

with dashed lines. A wider flow represents a higher weight and a greater influence on the

parameters’ estimation for the calibration point.

Repeating the GWSI procedure for all calibration points, the observed flows are
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weighted di↵erently so that a unique local set of parameter estimates is achieved for each

particular location across the region. The results of the local calibrations of the model

can be visualised by mapping the local parameter estimates to show possible spatial

variations in the determinants of interaction. The following equation shows the general

formulation of the GWSI when the focus is on the origin of the flows (i.e. origin-focused

approach):

T
ij

= {u(x,y)i} v
↵{u(x,y)i}
i

w
�{u(x,y)i}
j

d
�{u(x,y)i}
ij

(6.1)

where u is the calibration point, (i.e. one of the existing origins or any other point within

the study region), v
i

, w
j

and d
ij

are the model variables (i.e. the origin propulsiveness,

attractiveness of destination and distance between origin i and destination j respectively).

, ↵, � and � are parameters of the model. In above formula, the parameters of the

model are allowed to vary over space so we make them location-dependent in which the

coordinates of the calibration point, u(x, y), become a part of the model formula.

If the spatial interaction model is considered to be a Gaussian model, the relation-

ships between the dependent variable (i.e. interaction) and the independent variables in

equation 6.1 can be modelled using a linear regression approach by applying a logarithmic

function to both sides of the equation. The model’s parameters can then be estimated

with weighted least square (WLS) method using the following formula:

b0
u

= (XT W
u

ij

X)�1 XT W
u

ij

T
ij

(6.2)

where b0
u

is a vector containing the local parameters of the model at location u, X

is a matrix of the independent variables, including a column of ones for the intercept

parameter, XT is the transpose matrix of X, T
ij

is the vector of dependent variable

showing flows from i to j and W
u

ij

is a weighting matrix. The elements of the weighting

matrix are defined using a weighting function of distance between the calibration point

and origins of the flows (see equation 6.5). The same general principle is applied to

calibrate equation 6.1 when the spatial interaction model follows a Poisson distribution.

The Poisson origin-focused model then is formulated as follows:

�
ij

= exp ({ui} + ↵{ui} ln vi + �{ui} lnwj

+ �{ui} ln dij) (6.3)

Equation 6.3 can be calibrated using the same geographically weighted likelihood prin-

ciple described in GWPR (see section 5.3.3) in which the parameter estimates are cali-

brated in a point-wise way solving a set of equations to maximise the first derivation of

the weighted log-likelihood of the model:

lnL(�
ij

) =
X

ij

(��
ij

+ T
ij

ln�
ij

� lnT
ij

!) W
u

ij

(6.4)
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where W
u

ij

indicates the weight of flow ij according to the proximity of its origin i to

the calibration point u.

In both the Gaussian and Poisson models, di↵erent kernel types can be used for

weighting the flows such as the Gaussian function. The Gaussian kernel for origin-focused

spatial interaction model can be formulated as:

W
u

ij

= exp [ -
1

2
(
d
ui

b
)2 ] (6.5)

where d
ui

is the geographical distance between the calibration point u and the centroid

of origin i of the observed flow ij, and parameter b is bandwidth. If u and i coincide,

(i.e. the calibration point is one of the existing origins), the weight of that observed flow

with origin i will be unity and the weighting of other flows will decrease according to a

Gaussian curve as the distance between i and other origins increases. Another possible

weighting kernel is the squared Cauchy function which has the following formulation:

W
u

ij

= (1 +
d2
ui

b2
)�2 (6.6)

where d
ui

is again the geographical distance between the calibration point u and the

origin of flow i, and b is a bandwidth parameter. Figure 6.2 shows a comparison of

the squared Cauchy and the Gaussian kernel functions. The squared Cauchy kernel is

similar to the Gaussian kernel but gives slightly less weight to close points and more

weight to distant points. This second property is important if only a few data points are

located within the kernel; the squared Cauchy kernel allows for fitting the model using the

data outside of bandwidth distance. Using this function, the local model parameters are

expected to tend towards the global parameters in the case of few data inside the kernel

(Nakaya, 2001). Spatial interaction data are frequently sparse with only a few origin-

destination pairs having considerable numbers of flows. This makes the squared Cauchy

function an interesting kernel for geographical weighting of spatial interaction datasets;

so the Cauchy spatial kernel will be used in this thesis in di↵erent GWSI approaches for

obtaining weights for spatial interaction flows. For both Gaussian and squared Cauchy

kernel, the bandwidth parameter can be estimated using the AICc criteria, as outlined

in sections 5.3.2 and 5.3.3 (see equations 5.11 and 5.16 for the formal representation of

the AICc).

6.2.1 Application of the origin-focused GWSI approach

In order to illustrate the origin-focused GWSI approach, we apply our approach to the

journey-to-work dataset for the agglomeration of Lausanne. In the following equation, T
ij

indicates total flows from origin i to destination j, including the intra-zonal flows. The

model variables are defined as in previous chapters; P
i

represents the active population

living in origin i, N
j

shows the number of jobs in destination j and d
ij

is a variable

indicating the distance between i and j calculated with the density-based scattering



85

1

Squared Cauchy function
(bandwidth = 1.0)

Gaussian function
(bandwidth = 0.6)

Distance

Ke
rn

el
 w

ei
gh

t

0.5

0
0.5 1.5 2.50 1 2

Figure 6.2: Comparison between squared Cauchy and Gaussian kernel functions.

method using population density data as explained in section 4.3.2, and 
i

, ↵
i

, �
i

and �
i

are parameters of the model at i to be estimated:

T
ij

= {i} P
↵{i}
i

N
�{i}
j

d
�{i}
ij

(6.7)

Considering equations 6.3 and 6.7, the Poisson version of the origin-focused model for

our case study of journey-to-work in the agglomeration of Lausanne can be formulated

as follows:

�
ij

= exp ({i} + ↵{i} lnPi

+ �{i} lnNj

+ �{i} ln dij) (6.8)

where �
ij

indicates the flow between i and j and parameters 
i

, ↵
i

, �
i

and �
i

will be

calibrated for each origin commune i considering a cluster of nearby origins. Following

the considerations in the previous section, the squared Cauchy function is used as a

weighting function (see equation 6.6). The first step in applying the geographically

weighted approach to spatial interaction is to find an optimal bandwidth to be used in

the weighing function. For this we apply the AICc approach (see equation 5.16) for

selecting an optimal fixed bandwidth for the agglomeration of Lausanne when the model

is Poisson and origin-focused. Figure 6.3 shows the plotted values of the bandwidth in

metres against the deviance, AICc and BIC scores. The optimal bandwidth occurs where

the AICc score is minimum; in this case equal to 100 metres. Using BIC as criteria, the

optimal bandwidth would be 500 metres.

Following the GWSI methodology, the selected bandwidth is used to set a spatial

kernel around each calibration point (i.e. each origin) to weight the observed flows

within the kernel. Repeating this procedure for all origins within the agglomeration of

Lausanne, table 6.1 (bottom) shows the results of the geographically weighted Poisson

origin-focused approach using the selected bandwidth (100 metres). The parameters, t-
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Figure 6.3: Bandwidth value (fixed) against AICc, BIC and deviance for Poisson origin-
focused GWSI in Lausanne agglomeration, using a squared Cauchy weighting function.

values and p-values are illustrated with a mean, standard deviation, minimum, maximum

and quartiles 25%, 50% (= median) and 75%. In order to compare the results of the

local origin-focused model with a global one, results of the Poisson origin-specific model

calibrated in the previous chapter are listed at the top of table 6.1. The deviance and

Pseudo R2 of the models are calculated as measures of goodness-of-fit. It should be noted

that since the number of observations and variables in the two models are di↵erent, a

direct comparison of the models cannot be considered. For instance, the deviance value

is expected to increase in origin-focused model which has more variables than the origin-

specific model. A reminder here is needed to clarify the di↵erence between the origin-

focused and origin-specific models. As was shown in section 5.4.1, an origin-specific model

for our journey-to-work case study can be formulated as follows:

�
ij

= exp (
i

+ �
i

lnN
j

+ �
i

ln d
ij

) (6.9)

where any variable associated with the origin i (e.g. in this case P
i

) is a constant and

can integrated into the balancing factor. In other words, in the calibration process of

an origin-specific model for origin i, only information on destinations and the travel cost

(distance) are considered and information on origins is ignored. However, in the origin-

focused GWSI considering a kernel around i, a cluster of nearby origins are involved

in the calibration process so that the equation of the origin-focused model covers all

the variables in the model and can provide an estimated parameter value for the origin

propulsiveness variable (i.e. here the number of active population in each origin).
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Table 6.1: Poisson origin-specific and origin-focused GWSI models

Origin-specific model

Parameter Mean Min Max Std Dev Quartiles

25% 50% 75%

Jobs 1.0598 0.7645 1.2710 0.1032 1.0040 1.0599 1.1194

Distance -1.8247 -2.7482 -0.8144 0.4180 -2.0740 -1.8291 -1.5395

Intercept 9.7697 3.9305 19.2064 2.9938 7.5179 9.9179 11.6682

t-values jobs 42.2 5.7 168.9 30.0 22.5 31.8 52.7

t-values distance -32.9 -100.5 -7.8 16.8 -41.1 -29.5 -19.9

t-values intercept 28.4 7.7 69.5 13.3 19.4 24.9 34.3

p-values jobs 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-values distance 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-values intercept 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Deviance 172.4 -182.7 1390.9 211.5 65.5 105.7 202.6

Pseudo R2
0.8822 0.6365 0.9959 0.0740 0.8392 0.8949 0.9422

Local origin-focused GWSI

Bandwidth 100 metres

Parameter Mean Min Max Std Dev Quartiles

25% 50% 75%

Active pop. 0.6647 -0.4964 1.2266 0.2739 0.4865 0.7160 0.8331

Jobs 1.0598 0.7646 1.2707 0.1027 1.0026 1.0599 1.1206

Distance -1.8235 -2.7482 -0.8145 0.4152 -2.0754 -1.8291 -1.5351

Intercept 5.2193 -6.0886 17.6987 4.8164 1.7744 4.9432 8.2181

t-values active pop. 0.5 -0.0 6.0 1.0 0.1 0.2 0.4

t-values jobs 85.6 1.5 2019.9 277.5 12.6 24.8 47.2

t-values distance -71.8 -1519.1 -2.1 232.7 -41.7 -20.1 -10.8

t-values intercept 0.2 -3.0 1.5 0.6 0.1 0.2 0.4

p-values active pop. 0.76 0.00 0.99 0.25 0.68 0.87 0.93

p-values jobs 0.00 0.00 0.12 0.01 0.00 0.00 0.00

p-values distance 0.00 0.00 0.03 0.00 0.00 0.00 0.00

p-values intercept 0.76 0.00 0.99 0.22 0.70 0.81 0.92

Deviance -12373.3 -417006.2 528320.6 149530.9 -98029.4 8212.7 76164.2

Pseudo R2
0.8447 -0.2735 0.9888 0.2025 0.8597 0.9008 0.9396
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Maps of local parameter estimates of the Poisson origin-focused GWSI model over

all communes in Lausanne are given in figure 6.4. Estimated parameters from both the

origin-focused and origin-specific models are extremely similar for both distance-decay

and number of jobs parameters (see figure 5.2 for origin-specific model). The average

for the distance parameter is �1.8235 for the origin-focused model, and �1.8247 for the

origin-specific model. The spatial distribution of the estimated distance-decay parame-

ters across Lausanne shows a clear pattern with a concentric gradient. The communes

around Renens, west of the city of Lausanne, have the least negative values, (i.e. the

active population living in these communes consider distance to be less of a deterrent for

their daily travel to work than people farther away). It is interesting to note that the

deterrence of distance on interaction is higher in peripheral communes than in the more

central zones in the west of Lausanne. One possible explanation for this can be better

accessibility, which is especially so in the west of Lausanne with a high proximity of

all three motorway branches. A good transportation infrastructure allows workforces to

travel longer distances in the same amount of time to di↵erent destinations. In both the

origin-focused and origin-specific models, the average for the number of jobs parameter

is 1.0598. The city of Lausanne and some communes at the border of the agglomeration

have higher jobs parameters. Interestingly, important commercial centres and branches of

international companies are located at the western end of the agglomeration which might

explain the higher parameter values for the number of jobs in this area. The eastern end

of the agglomeration, bordering the protected zone of Lavaux, has the lowest parameter

values for the number of jobs. The Lavaux is one of the UNESCO world heritage sites,

whose vineyards are protected from further development. These communes are known

for being mainly residential with higher house prices than average.

The reason for these similar values for the distance-decay and number of jobs pa-

rameters can be the fact that the origin-focused model has a very small bandwidth of

only 100 metres. In this situation, the flows from the same origin have maximum weight

of 1 and all other flows smaller weights, making the model similar to an origin-specific

model. One di↵erence between the two models is that the origin-focused model contains

a parameter for the active population while in the origin-specific model this parameter

is omitted. Interestingly, the p-values for this parameter (with mean p-value of 0.76) for

most origins indicate that the estimated parameter values are not significantly di↵erent

from 0, showing no significant contribution of this parameter in the model. This can

be also seen in the map of t-values of the parameters in figure 6.5. In this case, the

origin-focused model tends towards an origin-specific model, both through the selection

of a small optimal bandwidth and non significant parameter estimates for the active pop-

ulation parameter. However, it should be noted that comparing the Pseudo R2 of the

origin-focused and the origin-specific models shows a better score for the origin-focused

model with a value of 0.9008 compared to 0.8949 in median (quartiles 50%). This indi-

cates that in most origins, the local origin-focused approach shows improvement over the
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Figure 6.4: The parameter estimates of the Poisson origin-focused GWSI model over all
communes of the Lausanne agglomeration.
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origin-specific model.

6.3 Destination-focused GWSI approach

As discussed in section 6.2, by using the concept of geographical weighting for calibrating

spatial interaction models, a local set of parameter estimates can be obtained for each

arbitrary calibration location within the region. In GWSI, a spatial kernel is defined

around each calibration point, all observed flows (i.e. data points in regression) falling

within this kernel will contribute in the model calibration process. In this section we focus

on the destination of the flows. The main approach of GWSI for destinations is similar to

the origin-focused approach, however here a cluster of destinations of the observed flows

around the calibration point are considered within the kernel. The observation flows

are weighted according to the proximity of their destinations to the calibration point in

which greater weights are assigned to the flows with closer destinations to the calibration

point. As for each calibration point, the nearby observations will be weighted di↵erently

so the results of the model calibration are unique to the particular location. We call this

scenario the destination-focused approach. The destination-focused GWSI procedure

can be repeated for all calibration points within the region, possible variability in the

calibrated parameter estimates can be visualised when these values are mapped over

space. Figure 6.6 illustrates the destination-focused scenario where observed flows are

weighted according to distance of their destinations to the calibration point. Again here

the width of the flows represents the influence of that flow on the calibration process,

i.e. wider flows have larger weights and higher e↵ect on the calibration process. The

distances between the calibration points and destinations are shown with dashed lines.

The general mathematical formula for a gravity destination-focused GWSI model can

be written as follows:

T
ij

= {u(x,y)j} v
↵{u(x,y)j}
i

w
�{u(x,y)j}
j

d
�{u(x,y)j}
ij

(6.10)

where (x, y) are the coordinates of the calibration point u, (i.e. one of the existing

destinations or any other point within the study region), v
i

, w
j

and d
ij

are the model

variables (i.e. the origin propulsiveness, attractiveness of destination and distance be-

tween origin i and destination j respectively), and , ↵, � and � are parameters of the

model to be calibrated. Similar to equation 6.1, the above formula can be calibrated

using the WLS method as shown in equation 6.2 and using the iteratively re-weighted

least squares when the model is Poisson to arrive at a maximum likelihood model fit

(see equations 6.3 and 6.4). A weighting function can be used to assign weights to the

observation flows. The Cauchy kernel for the destination-focused GWSI approach can

be formulated as follows:

W
u

ij

= (1 +
d2
uj

b2
)�2 (6.11)
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Figure 6.5: The t-values of parameters of the Poisson origin-focused GWSI model over all
communes of the Lausanne agglomeration. These maps display absolute t-values, where
values greater than 2.33 are significant at a level of 99%, and values greater than 1.65
are significant at a level of 95%. For negative parameter values (for the distance decay
parameter), the negative t-values of -2.33 and -1.65 correspond to the significance levels
of 99% and 95% respectively.
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Distance between origin
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Flow weighted according
to distance to calibration
point (width ~ weight)

Figure 6.6: A schematic overview of destination-focused GWSI approach.

where d
u

j

is the geographical distance between the calibration point u and destination j

of the observed flow ij. The bandwidth parameter, b, can be estimated with the AICc

or BIC methods as discussed in section 5.3.3.

6.3.1 Application of the destination-focused GWSI approach

In this section we apply the destination-focused GWSI approach on the journey-to-work

data in Lausanne. The following formula shows the Poisson destination-focused spatial

interaction model that we calibrate for each destination j within the agglomeration of

Lausanne:

�
ij

= exp({j} + ↵{j} lnPi

+ �{j} lnNj

+ �{j} ln dij) (6.12)

where �
ij

are the flows between i and j, P
i

represents the number of active population

in each origin, N
j

indicates the number of jobs in each destination, d
ij

is the distance

between i and j calculated with density-based scattering method using the population

density (see section 4.3.2), and 
j

, ↵
j

, �
j

and �
j

are parameters of the model to be

estimated for each calibration commune j considering a cluster of nearby destinations.

The optimal bandwidth has been estimated using the AICc and BIC approaches.

The calculated bandwidth values against the AICc, BIC and deviance scores for the

destination-focused approach are shown in figure 6.7. The optimal bandwidth value

that could be calculated with both AICc and BIC is equal to 100 metres. The results

of the destination-focused approach for all communes in Lausanne using the calculated

optimal bandwidth are shown in table 6.2. The results of a destination-specific model

are also shown in the top part of table 6.2 for a comparison with local results of GWSI.

The parameters of the models show the expected e↵ect on the overall interaction in

which the distance shows a negative e↵ect and the active population and the number of

jobs are related to the interaction in a positive relationship. Similarly to section 6.2.1, a

comparison between destination-specific and destination-focused models needs to be done
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Figure 6.7: Bandwidth value (fixed) against deviance, AICc and BIC score for Poisson
destination-focused model in Lausanne agglomeration, using a squared Cauchy weighting
function.

carefully as both models do not include the same number of variables. The destination-

specific model ignores the destination attractiveness information and only origins and

distance attributes are considered in the model’s formula.

While table 6.2 shows the summary statistics for the destination-specific and lo-

cal destination-focused models, a map of the spatial variation of the model’s parame-

ters is shown in figure 6.8 for the destination-focused GWSI. This map can be com-

pared with one of the destination-specific model presented in figure 5.5. The t-values

of the model’s parameters are mapped in figures 6.9 and 5.6 for the destination-focused

and the destination-specific models respectively. The t-values of the parameters of the

destination-focused GWSI, except the intercept parameter, show higher values than

equivalents from the destination-specific model; in the former, parameter values seem

to be significantly di↵erent from 0, while in the latter this is not always the case.

For both destination-specific and destination-focused GWSI models, all the distance-

decay parameters are negative but the destination-specific model shows more negative

parameter value for communes on average. The spatial pattern of distance-decay pa-

rameters in the destination-focused model is similar to the origin-focused GWSI (see

section 6.2.1), in the sense that we can find a gradient from the central communes of

the agglomeration showing the least negative values towards the periphery with larger

negative values. This pattern indicates that the deterrence of distance to interaction is

less for people commuting to the central communes. This can be explained by a better

transportation system in the central communes (e.g. Lausanne city or Renes) which
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Table 6.2: Poisson destination-specific and destination-focused GWSI models

Destination-specific models

Parameter Mean Min Max Std Dev Quartiles

25% 50% 75%

Active population 0.8830 -0.7594 1.8510 0.3053 0.8000 0.8809 1.0068

Distance -1.9847 -4.4205 -0.5854 0.6904 -2.4184 -1.8805 -1.4386

Intercept 11.5903 3.8253 23.3434 4.0070 8.4200 10.9907 14.4038

t-values active pop. 26.4 -0.6 204.1 31.1 9.0 19.1 31.9

t-values distance -30.0 -102.2 -1.4 19.3 -41.0 -24.4 -15.2

t-values intercept 26.7 4.5 70.8 12.0 17.8 24.9 33.7

p-values act. pop. 0.02 0.00 0.55 0.08 0.00 0.00 0.00

p-values distance 0.00 0.00 0.17 0.02 0.00 0.00 0.00

p-values intercept 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Deviance 153.1 -62.9 1620.3 218.8 43.8 95.8 182.4

Pseudo R2
0.8620 0.5427 0.9918 0.0808 0.8232 0.8771 0.9207

Local destination-focused GWSI

Bandwidth 100 metres (fixed)

Parameter Mean Min Max Std Dev Quartiles

25% 50% 75%

Active pop. 0.7852 0.6614 0.8651 0.0468 0.7646 0.7935 0.8208

Jobs 0.9136 0.7912 1.0324 0.0568 0.8769 0.9083 0.9564

Distance -1.3775 -1.7612 -1.0372 0.1724 -1.4957 -1.3943 -1.2526

Intercept 1.8216 -2.5062 6.7314 2.2585 0.2119 2.0878 3.5218

t-values active pop. 126.4 36.2 281.3 62.7 75.6 109.0 170.7

t-values jobs 150.3 54.6 313.7 66.6 95.9 135.1 196.4

t-values distance -114.5 -157.2 -63.9 23.6 -130.5 -113.6 -97.3

t-values intercept 10.8 -33.0 31.5 17.3 2.4 17.3 23.6

p-values active pop. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-values jobs 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-values distance 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p-values intercept 0.00 0.00 0.22 0.03 0.00 0.00 0.00

Deviance 41562.4 276.2 77733.4 24281.6 22563.4 39911.9 63838.8

Pseudo R2
0.9532 0.9335 0.9721 0.0064 0.9508 0.9537 0.9563
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Figure 6.8: The parameter estimates for Poisson destination-focused GWSI model in
agglomeration of Lausanne.
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Figure 6.9: The t-values of parameters for Poisson destination-focused GWSI model in
agglomeration of Lausanne. These maps display absolute t-values, where values greater
than 2.33 are significant at a level of 99%, and values greater than 1.65 are significant
at a level of 95%. For negative parameter values (for the distance decay parameter), the
negative t-values of -2.33 and -1.65 correspond to the significance levels of 99% and 95%
respectively.
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workforces can access more easily from di↵erent communes compared with less accessible

destinations located in high elevation areas (e.g. Servion or Carrouge). In comparison

with the destination-specific model, distance-decay parameters of destination-focused

GWSI show smoother variations in space (i.e. in the destination-specific model, the

variation of distance parameters is larger between neighbouring communes resulting in

some places exhibiting a salt-and-pepper pattern with abrupt changes). For instance,

the distance-decay parameter from the destination-specific model for Jouxtens-Mézery,

a central commune located west of Lausanne city, shows a large di↵erence compared

with other neighbouring communes. Comparison of t-values of the distance-decay pa-

rameter between models shows a higher range of values in destination-focused GWSI

(with a mean of �114.5) indicating more significance of the distance-decay parameter

estimates obtained with this model in comparison with those from a destination-specific

model (with a mean of �30.0). The t-value of distance-decay parameter ranges between

�157.2 and �63.9 in destination-focused GWSI while a much lower range is shown in

the destination-specific model between �102.2 and �1.4.

The local values of the active population parameter vary between 0.66 and 0.87 in

the destination-focused GWSI model, with an average value of 0.79. The spatial pattern

shows higher values for the central communes. Some smaller secondary centres at the pe-

riphery, such as Cossonay in the north-west and Aubonne in the west, also have slightly

higher parameter values for the active population compared to their respective neigh-

bours. This shows that although active population has a general positive e↵ect on total

interaction, this e↵ect is larger in the central communes of the agglomeration. Overall,

the destination-focused GWSI yields a smooth spatial pattern without large variations

between neighbours, with a relatively small range in the resulting parameter values. The

parameter values for the active population obtained using the destination-specific model

are less homogenous. They vary between �0.76 and +1.85. Negative parameter values

for the active population are rather unusual. Some of the smallest parameter values occur

in the communes of Villette, Jouxtens-Mézery, Villars-Tiercelin, Malapalud or Chigny.

The t-values for these communes in the destination-specific model are close to 0, indi-

cating that these parameter values are not significant. This result can be explained by

the fact that these communes are typically small and rather residential. In order to ob-

tain a better result for these communes, we typically need to pull in information from

the neighbouring communes; this is achieved through the use of the destination-focused

GWSI where a cluster of destinations is considered in the calibration process. The im-

provement of t-values of the active population parameter in destination-focused GWSI

shows more significance of this parameter estimate in comparison with those obtained

with the destination-specific model.

The destination attractiveness variable, (i.e. number of jobs), is only considered in

the destination-focused GWSI model since in the calibration of a destination-specific

model information on the neighbouring destination attributes is ignored (see the general
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formula of a destination-specific model in equation 5.21). In comparison to a destination-

specific model, in a destination-focused GWSI where a cluster of destinations around the

calibration communes is considered, an estimated parameter value for the destination

attractiveness (i.e. number of jobs) variable can be obtained. The parameter values for

this variable for the Lausanne agglomeration vary between 0.79 and 1.03 with an average

value of 0.91. The spatial pattern shows a clear gradient from the central communes where

the highest values are located, towards the periphery with the lowest values. The t-values

of the number of jobs parameter of the destination-focused GWSI show significantly

higher value from 0 indicating significance of the local parameters (see figure 6.9).

Goodness-of-fit tests for the models are undertaken based on Pseudo R2 and deviance

values listed in table 6.2. The Pseudo R2 is on average higher for the destination-focused

GWSI model showing a better fit compared to the destination-specific model. For the

destination-specific model, the Pseudo R2 has an average of 0.86 and median of 0.88

compared to average of 0.95 and median of 0.95 for the destination-focused variant.

Comparison of deviance of the models however is not straightforward because deviance

depends on the number of observations and number of parameters in the model. The

deviance is higher in the destination-focused GWSI, probably due to the fact that this

model includes more variables, parameters and numbers of observations in each regression

compared with the destination-specific model. In general, comparing results of the models

shows the destination-focused GWSI provides stable and smooth regression results even in

locations where enough information for a destination-specific model is lacking, preventing

large variations in parameter values between neighbouring communes.

The results of the above sections in this chapter have shown that the origin- and

destination-focused GWSI models can provide more local information compared with

conventional origin- and destination-specific models. This is because they can be cali-

brated in any arbitrary location within the study region and provide local information

about the situation in that location. In the following sections, we further disaggregate

our analysis by applying the origin- and destination-focused approaches to each separate

destination and origin in the region.

6.4 Destination-specific origin-focused GWSI approach

The origin-focused GWSI model can be calibrated for each specific destination in the

system, providing a destination-specific version of the origin-focused GWSI model. In

this scenario, a cluster of origins is considered around the calibration point, as in the

origin-focused approach. The calibration point can be an existing origin interacting with

the destination j or any arbitrary location within the study area. The weighting scheme

is similar to the one in the origin-focused approach in which a kernel is considered around

the calibration point u and observation flows within this kernel are weighted according

to the proximity of their origins to the calibration point. However, in comparison to the
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Figure 6.10: A simplified illustration of the destination-specific origin-focused GWSI
approach.

origin-focused GWSI approach, in the destination-specific origin-focused approach, only

flows terminating in a specific destination j are considered in the model. If the calibration

process with this approach is repeated for all arbitrary locations within the study area,

a surface of local parameters specific to all destinations (i.e. origin propulsiveness and

distance parameters) will be obtained. Figure 6.10 shows a simplified illustration of the

destination-specific origin-focused approach where the width of the flows represents their

weights and therefore their influence on the calibration process.

The following formula shows a general equation for the proposed destination-specific

origin-focused GWSI in the form of a gravity-type spatial interaction model:

T
ij

= ({ui},j) v
↵({ui},j)
i

d
�({ui},j)
ij

(6.13)

where T
ij

represents the number of flows from di↵erent origins i to destination j, v
i

and d
ij

are variables of origin propulsiveness and distance between regions respectively,

({ui},j), ↵({ui},j) and �({ui},j) are parameters of the model to be estimated, specific to des-

tination j by considering a cluster of origins around the calibration point u. This model

equation can be calibrated similarly to origin- and destination-focused GWSI models

through linear regression for a Gaussian model and as a GLM when the interaction

model is considered to be Poisson. If the model is considered to follow a Poisson distri-

bution, the calibration process can be undertaken similarly to the origin-focused GWSI

explained in section 6.2.1 using geographically weighted Poisson regression in which the

maximum likelihood estimates are obtained by iteratively re-weighted least squares using

the following equation:

lnL(�
ij

) =
X

ij

(��
ij

+ T
ij

ln�
ij

� lnT
ij

!) W
u

ij

(6.14)

where �
ij

= exp(
uj

+ ↵
uj

ln v
i

+ �
uj

ln d
ij

). To obtain the flow weights in matrix W
u

ij
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in above equation 6.14, a Cauchy function can be used as a spatial kernel:

W
u

ij

=
⇥
1 + (

d(ui)j
b

)2
⇤�2

(6.15)

where W
u

ij

indicates the weight of flow ij according to the proximity of its origin i to

the calibration point u, (i.e. parameter d(ui)j shows the distance between u and origin i

connected to a specific destination j). Parameter b is the kernel bandwidth and can be

calculated using the AICc or BIC methods as before.

6.4.1 Application of the destination-specific origin-focused GWSI ap-

proach

To illustrate the use of the proposed destination-specific origin-focused GWSI approach,

we apply this model on the journey-to-work dataset of Lausanne considering the following

Poisson gravity model:

�
ij

= exp(({i},j) + ↵({i},j) lnPi

+ �({i},j) ln dij) (6.16)

where the variables P
i

and d
ij

are defined as before (i.e. P
i

represents active population

living in origin i and d
ij

is distance between regions i and j), parameters ({i},j), ↵({i},j)

and �({i},j) are calibrated for origin communes in the agglomeration that are interacting

with a specific destination j. In order to provide a local set of parameter estimates specific

to each destination within the agglomeration, the general origin-focused GWSI approach

should be repeated for each commune. This requires the estimation of the bandwidth

parameter for each destination separately. We have calculated the optimum bandwidth

values for each commune using the AICc method. In order to visualise the spatial varia-

tion of the bandwidth values across the agglomeration, the resulted bandwidth values are

mapped for each specific destination commune, as shown in figure 6.11. In this figure,

the minimum, maximum and percentiles 10%, 25%, 50%, 75% and 90% of the bandwidth

are shown in the legend of the map. The bandwidth values vary between 300 metres for

central communes to 12 kilometres for some small bordering communes. This pattern of

bandwidth values is interesting since it shows how the GWSI model considers a smaller

bandwidth in central area where the flow data are dense and the spatial kernel opens to

have a bigger bandwidth when the flow data are sparse in the small bordering communes.

In a destination-specific origin-focused GWSI where the calibration process is re-

peated for all m origin communes connected to the specific destination j, m sets of local

parameter estimates result for each destination. Using the selected optimum bandwidth

for each commune, we have computed the local parameter estimates of the model for

all 70 destinations within the agglomeration. To facilitate visualisation and analysis of

the results, we have plotted each of these parameters in a 70 ⇥ 70 matrix. Figures 6.12

and 6.13 show the values of the distance-decay and active population parameters respec-

tively. The origin communes are listed in the bottom columns of the matrices while
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Figure 6.11: Optimal bandwidth for destination-specific origin-focused GWSI models.

destination communes are shown in rows. Both origins and destinations are placed in

decreasing order of the total number of outgoing flows; as a result, the bigger communes

are at the top and left of the matrices (e.g. see position of the city of Lausanne as the

biggest commune). As mentioned in section 3.12, di↵erent approaches exist for ordering

the rows and columns of the matrix visualisation giving raise to di↵erent visual patterns.

In order to simplify the identification of the di↵erent communes for interpretation pur-

poses, we have chosen to keep the order between all matrix visualisation constant, in

decreasing order of size. As a result, important flows appear at the top of the matrix

visualisation. For each specific destination j in the rows of the matrices, di↵erent values

in columns show the estimated parameter values at corresponding origins. For instance

in the distance-decay matrix shown in figure 6.12 consider the destination Lutry (10th

destination from top column), variation of parameter values in di↵erent origins shows how

people living at those origins consider distance as a barrier for commuting to destination

Lutry.

The variations in the distance-decay parameter values range from around �3 to �1

with less negative values generally found for the larger destinations with better trans-

portation systems and higher number of jobs. In general in the destination-specific

origin-focused GWSI model for this agglomeration, distance-decay parameters of origin

communes do not show much variations for most larger destinations such as Lausanne,

Renens or Crissier. This is visible through the appearance of horizontal lines having

nearly identical parameter values for these destinations. However, for some of the smaller
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Figure 6.12: Distance-decay parameter of the destination-specific origin-focused GWSI
for Lausanne agglomeration. Each row (destination) represents one destination-specific
origin-focused model, calibrated separately for each origin (column), resulting in 4900
di↵erent parameter estimates.
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Figure 6.13: Active population parameter of the destination-specific origin-focused GWSI
for Lausanne agglomeration. Each row (destination) represents one destination-specific
origin-focused model, calibrated separately for each origin (column), resulting in 4900
di↵erent parameter estimates.
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destinations located further down the matrix’s rows, variations across the di↵erent ori-

gins exist, such as for destinations of Belmot, Mézières or Assens. The significance of

the distance-decay parameters are tested by calculating t-values which are shown in fig-

ure 6.14 for all communes. Higher t-values of the distance-decay parameter for mainly

medium size destination communes in the the matrix indicate the greater significance of

them over parameters of the smaller and some of the larger communes in the bottom

rows and top part of the matrix respectively. However, there are some exceptions such

as Mex, Cully or Morrens where the t-values are close to zero. We have also calculated

the p-values of the parameters. The p-values of distance-decay parameter of more than

70% of the models are still in a acceptable range, (70th percentile = 0.1), which shows

the significance of the distance-decay parameters of these models with 90% confidence.

The active population parameter matrix in figure 6.13 shows variations of these pa-

rameters across di↵erent origins for each specific destination. The values of the parame-

ters vary roughly between 0.6 and 1.4 with an overall positive e↵ect on total interaction.

In general, this parameter shows more variations over di↵erent communes compared to

distance-decay. This indicates that the active population variable does not always have

the same importance for each destination across all origins. However, there are some

exceptions such as Saint-Saphorin-sur-Morges or Malapalud where the values of the pa-

rameters are very similar across all origins. Figure 6.15 illustrates the matrix of t-values

for the active population parameter estimates of the model. In this matrix a clear gra-

dient from the larger destinations to the smaller ones can be found. For some of the

models, the t-values indicate that some active population parameters are not signifi-

cantly di↵erent from 0 including ones for above examples of Saint-Saphorin-sur-Morges

and Malapalud. The p-values of the active population parameter show that this param-

eter in more than 68% of the local models is significant (68th percentile of p-values for

the active-population parameter = 0.1).

In order to compare goodness-of-fit of the destination-specific origin-focused GWSI

models over di↵erent communes, Pseudo R2 values for all models are calculated. As it is

illustrated in figure 6.16, on average the models show reasonable fit with R2 values range

between roughly 0.7 and over 0.95. In most destinations in the matrix, R2 values of the

origin-focused models show few variations over di↵erent origins. Considering all results,

the origin-focused GWSI provides spatially disaggregated information when the specific

parameter estimates are obtained for each destination within the region, considering a

cluster of origins around each calibration commune.

6.5 Origin-specific destination-focused GWSI approach

An origin-specific version of the destination-focused GWSI model can be developed when

in the model calibration process only observation flows with origin i to di↵erent desti-

nations are considered. Similar to the destination-focused approach, a weighting kernel
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Figure 6.14: The t-values of distance-decay parameter of the destination-specific origin-
focused GWSI for Lausanne agglomeration. This map displays absolute t-values, where
values smaller than -2.383 are significant at a level of 99%, and values smaller than -1.668
are significant at a level of 95%, and values smaller than -1.294 are significant at a level
of 90%. Each row (destination) represents one destination-specific origin-focused model,
calibrated separately for each origin (column), resulting in 4900 di↵erent t-values.
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Figure 6.15: The t-values for active population parameter of the destination-specific
origin-focused GWSI for Lausanne agglomeration. This map displays absolute t-values,
where values greater than 2.383 are significant at a level of 99%, and values greater than
1.668 are significant at a level of 95%, and values greater than 1.294 are significant at
a level of 90%. Each row (destination) represents one destination-specific origin-focused
model, calibrated separately for each origin (column), resulting in 4900 di↵erent t-values.
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Figure 6.16: The Pseudo R2 of the destination-specific origin-focused GWSI models
for Lausanne agglomeration. Each row (destination) represents one destination-specific
origin-focused model, calibrated separately for each origin (column), resulting in 4900
di↵erent Pseudo R2 values.
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Figure 6.17: An overview illustration of the origin-specific destination-focused GWSI
approach.

is defined around any calibration point u and observation flows are weighted based on

proximity of their destinations to the centre of the kernel u. For an illustration of the

model see figure 6.17 where observed flow weights are represented by their width. In

this figure, flows with destinations closer to the calibration point are wider, representing

higher weights and a larger e↵ect on the model calibration. The following equation shows

a general mathematical formula for the origin-specific destination-focused approach:

T
ij

= (i,{uj}) w
�(i,{uj})
j

d
�(i,{uj})
ij

(6.17)

where T
ij

represents flows between specific origin i and di↵erent destination j, w
j

is the

number of jobs in destination j, d
ij

represents the distance between regions and (i,{uj}),

�(i,{uj}) and �(i,{uj}) are parameters of the model to be estimated for origin i when a

cluster of destinations is involved in the calibration point u. The weighting function and

the bandwidth selection can be undertaken in a similar way to the destination-focused

approach; for example, a Cauchy kernel with the following formula can be used to assign

weights of W
u

ij

to the observed flows:

W
u

ij

=
⇥
1 + (

d
i(uj)

b
)2

⇤�2
(6.18)

where d
i(uj) is the geographical distance between the calibration point u and destination

j of the observed flow ij. As before, the bandwidth parameter b can be estimated with

the AICc method.

6.5.1 Application of the origin-specific destination-focused GWSI ap-

proach

We apply the proposed origin-specific destination-focused GWSI approach on the journey-

to-work dataset of the Lausanne agglomeration with a Poisson gravity-type spatial in-
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teraction model as:

�
ij

= exp((i,{j}) + �(i,{j}) lnNj

+ �(i,{j}) ln dij) (6.19)

where as before N
j

indicates the number of jobs in destination j and d
ij

is distance

between i and j calculated with a density-based scattering method using the population

density (see section 4.3.2 of chapter 4), the parameters of the model (i,{j}), �(i,{j}) and

�(i,{j}) are specific to origin i such that a cluster of destinations around the calibration

commune j is considered in weighting the flows. The origin-specific destination-focused

GWSI is equivalent to the origin-specific model introduced in Nakaya (2001, 2003). As

explained before, an origin-destination specific model was introduced in (Nakaya, 2001)

to be calibrated using GWR. The main idea of the method was to estimate a set of

local parameter estimates for each specific flow (origin-destination specific) in the sys-

tem. However, to avoid the challenge of calculating weights between flows in his paper,

Nakaya (2001) uses a simplified origin-specific version of the proposed flow-specific model

where the model restriction helps to apply geographical weighting only for destination

locations (see Nakaya, 2001, 2003). It should be noted here that when the calibration

points and destinations share the same geographical locations (i.e. when the model is

calibrated for each destination in the study region), Nakaya’s origin-specific model for

flows is equivalent to the origin-specific destination-focused GWSI. However, the latter

considers a broader view of the geographically weighted spatial interaction in the sense

that this model can be calibrated in any location within the region even where no flow

data are available. In fact, the fundamental theory behind the origin-specific destination-

focused GWSI models is to enable us to provide more disaggregated local information

at any arbitrary location of the study region rather than only at each origin. As noted

before in section 6.1, two possible solutions for calculating distances between flows will

be presented in the next chapter, where the calibration points are spatial flows rather

than geographical locations.

In order to evaluate the optimum bandwidth for di↵erent origins when applying the

destination-focused GWSI on the Lausanne dataset, the same AICc approach is used.

Figure 6.18 shows a map of optimum bandwidth results for origin communes. The values

illustrate a similar pattern to the bandwidth values for destinations in the destination-

specific origin-focused approach (see figure 6.11) in which bandwidths are smaller for

central communes and bigger for the smaller origins in the bordering regions of the

agglomeration. However, here in the origin-specific destination-focused approach, band-

widths are bigger in general, ranging between 1800 metres to more than 31 kilometres.

The value of 31 kilometres and above is almost the global bandwidth value which covers

nearly the whole study area. This may shows that for these communes, the optimal

model is close to a pure origin-specific model and perhaps the combination with the

origin-focused approach does not lead to an improvement. However, this is only the case

of a few number of small bordering communes.
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Figure 6.18: Optimal bandwidth for the origin-specific destination-focused GWSI models.

We have used the calculated optimal bandwidth values shown in figure 6.18 to further

illustrate the application of the origin-specific destination-focused GWSI on the journey-

to-work dataset in the Lausanne agglomeration. The calibration procedure is repeated

for all 70 destinations to provide local parameter estimates for each specific origin within

the agglomeration. Again, for each specific origin, there are 70 local values for each

parameter corresponding to di↵erent destinations. Similarly to section 6.4.1, we provide

70 ⇥ 70 matrices to illustrate the local parameter estimates of the model. As before,

origins and destinations are placed in decreasing order of the total number of outgoing

flows, this time however the rows of the matrices represents origins and the columns

show the parameter estimates at the corresponding destinations. For instance, figure 6.19

represents the distance-decay parameter of the models, the values in each column show

how distance is perceived by people living in a specific origin (located in one of the rows

of the matrix) when commuting to each of the destinations. In general, the estimated

distance-decay values display the expected negative e↵ect on interactions. However, the

negative e↵ect of distance is less for people living in larger communes as their associated

distance-decay values are lower compared to the smaller communes shown at the bottom

part of the matrix. This can be explained again with the better transportation systems

in larger cities. The t-values of the distance-decay parameters illustrated in figure 6.20

do not show a clear spatial pattern for larger or smaller communes. In general, although

some of the t-values shown in the matrix are close to zero, the p-values of the distance-

decay parameter in more than 90% of the models are significant with 98% confidence
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(90th percentile of p-values for the distance-decay parameter = 0.02).

The matrix for the number of jobs parameter estimates is shown in figure 6.21. This

matrix presents more variation of the parameter estimates for di↵erent origins compared

to the distance-decay estimates. The values of the number of jobs parameter for each

model shows that how would increasing the number of jobs in di↵erent destinations a↵ect

the commuting behaviour of the residence of each specific origin. In other words, how

total interaction from each origin would be a↵ected by changing the number of jobs

in di↵erent destinations. For instance, consider Lausanne city located in the first row,

the results show how people living in Lausanne will behave in terms of commuting to

the di↵erent destinations if the active population increases. Generally, the number of

interactions to all destinations will increase, but the amount of increase will vary for

the separate destinations. Furthermore, the values of the number of jobs parameter

in figure 6.21 seems to be slightly higher in the lower part of the matrix where smaller

communes are listed. This indicates that increasing number of jobs in destinations a↵ects

more smaller communes in the agglomeration than bigger origins. This might be because

bigger origins have more number of jobs in their own communes with a higher internal

flows compared to outgoing flows so that increasing the number of jobs in other communes

do not change much the commuting pattern in these communes.

The t-values of the number of jobs parameters for all models are illustrated in fig-

ure 6.22. For most of the models the t-values are significantly higher than zero with few

exceptions such as the small commune of Villette. It is also interesting that for most

communes there are nearly no variations in the t-values across di↵erent destinations in-

dicating the significance of all the number of jobs parameters over di↵erent destinations.

The p-values of the number of jobs parameters shows that this parameter in more than

95% of the local models is significant with 99% of confidence (95th percentile of p-values

for the number of jobs parameter = 0.008). Finally, the values of Pseudo R2 of all the

origin-specific destination-focused models are calculated and presented in figure 6.23.

The R2 values range roughly between 0.8 to over 0.97 showing a satisfactory goodness-

of-fit for the models, with a better fit in larger communes. This could be due to more

flow data available in larger communes in comparison with smaller residential places.

6.6 Summary

The key idea of this chapter was localising spatial interaction models based on a geo-

graphically weighted approach. The general concept of geographical weighting, known as

GWR, has been applied to spatial interaction models with the calibration points being

geographical locations within the study region. The same case study of journey-to-work

flows in the agglomeration of Lausanne used in other chapters was used to illustrate the

proposed local geographically weighted spatial interaction (GWSI). Considering a spa-

tial kernel around each calibration point, all flows within this kernel have been weighted
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Figure 6.19: Distance-decay parameter of the origin-specific destination-focused GWSI
for Lausanne agglomeration. Each row (origin) represents one origin-specific destination-
focused model, calibrated separately for each destination (column), resulting in 4900
di↵erent parameter estimates.
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Figure 6.20: The t-values for the distance-decay parameter of the origin-specific
destination-focused GWSI for Lausanne agglomeration. This map displays absolute t-
values, where values smaller than -2.383 are significant at a level of 99%, and values
smaller than -1.668 are significant at a level of 95%, and values smaller than -1.294 are
significant at a level of 90%. Each row (origin) represents one origin-specific destination-
focused model, calibrated separately for each destination (column), resulting in 4900
di↵erent t-values.
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Figure 6.21: Number of jobs parameter of the origin-specific destination-focused GWSI
for Lausanne agglomeration. Each row (origin) represents one origin-specific destination-
focused model, calibrated separately for each destination (column), resulting in 4900
di↵erent parameter estimates.
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Figure 6.22: The t-values for number of jobs parameter of the origin-specific destination-
focused GWSI for Lausanne agglomeration. This map displays absolute t-values, where
values greater than 2.383 are significant at a level of 99%, and values greater than 1.668
are significant at a level of 95%, and values greater than 1.294 are significant at a level
of 90%. Each row (origin) represents one origin-specific destination-focused model, cali-
brated separately for each destination (column), resulting in 4900 di↵erent t-values.
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Figure 6.23: The Pseudo R2 of the origin-specific destination-focused GWSI models for
Lausanne agglomeration. Each row (origin) represents one origin-specific destination-
focused model, calibrated separately for each destination (column), resulting in 4900
di↵erent Pseudo R2 values.



117

according to their distance to the calibration point. The distance between observed flows

and the calibration point was obtained using two approaches; one based on the origins

of the flows (origin-focused approach) and another based on destinations (destination-

focused approach). These models have been taken a step further to provide more spatial

disaggregated information by calibrating a destination- and origin-specific version of the

origin- and destination-focused GWSI models respectively. For each model, the optimal

bandwidths and local parameters were obtained and analysed. All the presented GWSI

models in this chapter allow for localising spatial interaction models with geographical

weighting of the flows and the calibration points being geographical location within the

region. The calibration locations can be any arbitrary location where no interaction infor-

mation is available. Considering a cluster of origins or destinations around the calibration

point, GWSI models use information of neighbouring regions for model calibration.

In the following chapter we present another variant of a GWSI model where obser-

vations and calibration points are spatial flows. In this scenario, each flow is represented

with both its origin and destination and two di↵erent approaches based on a four dimen-

sional kernel and spatial trajectories are considered for calculating the distances between

flows.



Chapter 7

GWSI: Flow-focused approach

7.1 Introduction

In order to localise spatial interaction models using the geographically weighted (GW)

concept we have taken three approaches di↵ering mainly in the way calibration points (or

calibration flows) are defined and spatial separation (distance) between flows estimated.

In the first two approaches the calibration points are actual geographical locations within

the study region, e.g. any existing origin or destination, or any arbitrary location with

no flow data available. These models, (i.e. the origin- and destination-focused GWSI

models), have been presented in the previous chapter along with some empirical examples.

In a third approach, we consider the calibration points to be spatial flows (i.e. pairs

of origin-destinations) within the study region. Therefore, the interaction models can be

calibrated locally for each flow and by moving the calibration flows across the region, a

surface of local parameter estimates can be generated across the region. We name this

approach flow-focused GWSI and will present this model in more detail below.

7.2 Flow-focused GWSI approach

In the origin- and destination-focused models, a local set of parameter estimates is cal-

ibrated for each existing origin and destination within the study area. Analysing these

parameter estimates provides local information about the interaction behaviour of the

calibration locations considering their neighbouring regions. These models could also be

used for forecasting purposes when they are calibrated for locations with no interactions

or with no flow information. It is also interesting to localise spatial interaction models

over spatial flows rather than over a single location. These spatial flows can be any ar-

bitrary interaction flows between the existing origins and destinations in the system, or

the model can be calibrated for a pair of origins and destinations with no flow between

them. In this case the localised interaction model can be used for prediction purposes.

The main methodology in this version of GWSI models (i.e. flow-focussed GWSI) is

similar to the origin- and destination-focused GWSI in which the GW concept is used for
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calibrating the spatial interaction models. However here in the flow-focused approach,

the calibration points are spatial flows between two geographical locations i and j. In

this method, a spatial kernel will be placed around each calibration flow and observed

flows within this kernel will be weighted based on their proximity to the calibration flow

ij. The higher weights are given to the flows closer to the flow ij and the maximum

weight of unity is at the centre of the kernel. The following equation shows the general

formulation of the flow-focused GWSI model:

T
ij

= 
ij

v
↵

ij

i

w
�

ij

j

d
�

ij

ij

(7.1)

where T
ij

is the flow between i and j, v
i

is the origin propulsiveness variable, w
j

represents

the destination attractiveness, d
ij

is the distance between i and j; , ↵, � and � are model

parameters to be calibrated localised to the flow ij .

The calibration of a Gaussian flow-focused model, similar to an origin- or a destination-

focused model can be done using the WLS method (see chapter 6 for more information)

with the following formulation:

b0
ij

= (XT W
ij

X)�1 XT W
ij

T
ij

(7.2)

where b0
ij

is a vector containing the model parameter estimates local to the flow ij, X is

a matrix of the independent variables including a column of ones for the intercept, XT is

the transpose matrix of X, T
ij

is the vector of the dependent variable showing flows from

origin i to destination j and W
ij

is a weighting matrix with elements calculated with a

weighting function based on the distance between the calibration flow ij and neighbouring

observation flows. In a similar way, when the flow-focused GWSI is formulated as a

Poisson spatial interaction model as below:

�
ij

= exp(
ij

+ ↵
ij

ln v
i

+ �
ij

lnw
j

+ �
ij

ln d
ij

) (7.3)

the calibration of the model can be done using the weighted log-likelihood method (see

section 6.2) with the following formulation:

lnL(�
ij

) =
X

ij

(��
ij

+ T
ij

ln�
ij

� lnT
ij

!) W
ij

(7.4)

As explained in chapter 6, di↵erent weighting functions can be used for calculating

the elements of the weighting matrices. In a Gaussian kernel for instance, the weighting

function for a flow-focused GWSI model can be formulated as:

W
ij

= exp [ -
1

2

�d
b

�2
] (7.5)

where the spatial weights depend on two parameters: (i) d the spatial separation (e.g.

distance) between flows, and (ii) b, the bandwidth parameter that should be estimated
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by an appropriate method such as minimising the AICc (see section 6.2 for more infor-

mation). In GWR, the spatial separations between the locations of the observed data

and the calibration point are often estimated by calculating the geographical (Euclidean)

distance between them. However, in the flow-focused GWSI model the observed data

and the calibration points are all spatial interactions (flows). As stated in Nakaya (2001,

2003), estimating the spatial separation (distance) between two flows containing two

geographical locations each, can be highly complicated. In the following sections we pro-

pose two di↵erent ways of calculating the distance between spatial flows based on (i) a

four-dimensional distance calculation and (ii) a spatial trajectory distance measure.

7.2.1 A four-dimensional kernel approach

The term “spatial interaction” conceptually can be defined as the “flow” of goods, peo-

ple, information or units of any kind in motion (Bavaud, 2010b) between geographical

places (Fotheringham and O’Kelly, 1989; Haynes and Fotheringham, 1984; Fischer, 2000;

Fotheringham, 2001). Each spatial flow is associated with two geographical locations;

the origin and destination points. Traditionally, spatial flows are illustrated as “arrows”

between these geographical locations, e.g. flow between origin i and destination j is

usually shown as: i ! j. Considering the fact that each spatial flow contains two points

in space, we can illustrate each flow as a pair of origin and destinations, e.g. flow ij

can be shown as (
�!
i, j). In this form, each flow is represented as a directed spatial vector

with magnitude equal to the number of interactions between i and j and then the spa-

tial separation between di↵erent flows can be represented as the “dissimilarity” between

vectors.

Dissimilarity measures or coe�cients are defined in mathematics by the following

properties (see for instance Webb, 2002; Greenacre, 2008): If d
ab

is the dissimilarity of

an object (e.g. vector) a from object b, then:

1) d
ab

� 0 (= 0 if a = b)

2) d
ab

= d
ba

3) d
ab

 d
ac

+ d
cb

The first item is trivial; the distance between flows is always a positive value and it

is zero for the distance between a vector and itself. The second condition represents

the symmetrical attribute of the measure and in most cases is satisfied (e.g. when the

dissimilarity is measured with Euclidean distance). However, as stated in Webb (2002),

the symmetry condition might not be always respected; for instance if the road distance

is considered between two places when in one direction the communication is longer

than the other way because of one-way streets. The third and last property is known as

triangle inequality. If this condition is satisfied, the dissimilarity measure is said to be a

metric dissimilarity or a distance (Webb, 2002).

In a Euclidean space Rn, the most widely known metric for dissimilarity between two

points (vectors) is the Euclidean distance. Consider pointA with coordinate (x1, x2, . . . , xn)
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A A A
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Figure 7.1: The set of points at equal distance r from a given point A where r is a:
(a.) Euclidean distance, (b.) city-block distance and (c.) Chebyshev distance.

and point B with coordinate (y1, y2, . . . , yn), the Euclidean distance between A and B is

calculated by:

d
Euclidean

(A,B) =

vuut
nX

i=1

(x
i

� y
i

)2 (7.6)

The set of points at equal distance r from a given point A, where r is a Euclidean distance,

form the circumference of the circle in the two-dimensional space (see figure 7.1 a.), and

the surface of a sphere in three-dimensional space.

While the Euclidean distance is the best known and most widely used distance mea-

sure, other distance measures exist for space points (vectors). For instance, the city-block

distance (also known as Manhattan or taxicab distance) between two points A and B is

calculated by the sum of the absolute di↵erences of their coordinates:

d
Manhattan

(A,B) =
nX

i=1

|x
i

� y
i

| (7.7)

The connections between points in city-block distance are grid lines. As the name of the

metric suggests, the grid can be considered as a net of streets (square blocks) between

the points in a city (e.g. Manhattan). In this metric, the set of points at equal distance

r from a given point A, where r is a city-block distance, is the outline of a square with

sides oriented at a 45� angle to the coordinate axes (see figure 7.1 b.). Both Euclidean

distance and Manhattan distance can be seen as special cases of the Minkowski distance

(m � 1):

d
Minkowski

(A,B) =
� nX

i=1

|x
i

� y
i

|m
�1/m

(7.8)

In the case of city-block distance, m = 1, and for the Euclidean distance m is 2. While

the value of m takes typically values of 1 or 2, it can in theory take values bigger than

2. If m tends to infinity, the distance tends to a metric called Chebyshev or maximum
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Figure 7.2: The flow (ij) and (i0j0) represented as a four-dimensional vector in Euclidean
space.

value distance:

d
Chebishev

(A,B) = max
i

|x
i

� y
i

|. (7.9)

The set of points at equal distance r from a given point A, where r is a Chebyshev

distance, form the outline of a square where the sides are parallel to the coordinate axes

(see figure 7.1 c.). Minkowski distances with a value of m bigger than 2 are abstract dis-

tances with no direct representation in Euclidean space. However, from a computational

perspective, the Chebyshev distance is the fastest distance to be computed and is often

used when the execution time is a critical factor (Webb, 2002).

Defining spatial flows as pairs of origins and destinations, a flow between origin i

with coordinates (x
i

, y
i

) to destination j with coordinates (x
j

, y
j

) can be considered as

a four-dimensional vector (x
i

, y
i

, x
j

, y
j

) (see figure 7.2.1). Given that all the distance

measures presented above can be applied on any pair of vectors of n dimensions, we can

use them for calculating the distance between two flows as a four-dimensional distance

measure. In the case of the four-dimensional Euclidean distance, we can compute the

distance between flow ij with origin-destination coordinates (x
i

, y
i

, x
j

, y
j

) and the flow

i0j0 with coordinates (x
i

0 , y
i

0 , x
j

0 , y
j

0) with the following formulation:

d(ij)(i0j0) =
q
(x

i

� x
i

0)2 + (y
i

� y
i

0)2 + (x
j

� x
j

0)2 + (y
j

� y
j

0)2 (7.10)

In the flow-focused GWSI model, each flow ij is weighted using a function like the

one specified in equation 7.5, with respect to a calibration flow i0j0. The distance d in

formula 7.5 becomes in this case the four-dimensional distance between the calibration

flow and flow ij, which can be calculated using equation 7.10 or potentially any other
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distance presented above. We will refer to this kind of weighting function with a four-

dimensional distance as a four-dimensional kernel function. As the visualisation of 4-

dimensional objects is not trivial, here no figure is presented of such a four-dimensional

kernel. When using a four-dimensional kernel, we will write the flow-focused GWSI model

as:

T
ij

= {ij} v
↵{ij}
i

w
�{ij}
j

d
�{ij}
ij

(7.11)

where notation {ij} indicates that a cluster of flows is considered around each calibra-

tion flow ij and the separations between flows are calculated using the four-dimensional

distance.

7.2.2 Spatial trajectories approach

A trajectory can be defined as a directed trace or a path generated by a moving object in

geographical space that defines a link between two locations (Wood et al., 2009; Zheng

and Zhou, 2011). Sometimes a trajectory is a simple path, e.g. the shortest Euclidean

distance between a start and an end point but it can also have more complex traversal

objectives, e.g. to be a function of time. In this case, a trajectory is a time-stamped

series of spatial coordinates: p1 ! p2 ! · · · ! p
n

, with every p
i

= (x
i

, y
i

, t
i

).

Measuring the similarity or dissimilarity of two trajectories is a common problem

and several approaches have been suggested for this purpose. If two trajectories have

the same number of points corresponding to each other, the sum-of-pairs distance (SOP)

suggested by Agrawal et al. (1993), can be computed by simply summing up the distances

between the corresponding points:

SOP (p1 · · · pn, q1 · · · qn) =
nX

i=1

d(p
i

, q
i

) (7.12)

where d(p
i

, q
i

) is the Euclidean distance between points p
i

and q
i

(see Zheng and Zhou,

2011). Figure 7.3 illustrates this principle. Obviously, the Euclidean distance d(p
i

, q
i

)

could be replaced by any distance measure defined between points. For trajectories of

di↵erent lengths, more sophisticated dissimilarity measures are known (see e.g. Zheng

and Zhou, 2011). Some of these measures do not meet the triangle equality condition

and therefore not all can be considered as distances. These alternative measures are not

discussed here, as they are not relevant for spatial interaction models.

The sum-of-pairs distance for trajectories can also be applied to flows in spatial

interaction. In this case, the distance between flow ij and i0j0 becomes:

SOP (ij, i0j0) = d(i, i0) + d(j, j0) (7.13)

where d(·) can be again the Euclidean distance. Using the presented trajectory distance
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approach, the formula for the flow-focused GWSI model can be written as:

T
ij

= {i}{j} v
↵{i}{j}
i

w
�{i}{j}
j

d
�{i}{j}
ij

(7.14)

where the notation {i} {j} indicates that a cluster of flows is considered around the

calibration flow ij and the distance between flows is calculated based on distances between

origins and destinations using the sum-of-pairs trajectory distance approach. It should

be noted here that the main methodology for localisation of the flow-focused GWSI is

the same in both the four-dimensional kernel (equation 7.11) and the trajectory approach

(equation 7.14) but the calculation of distances between flows in the weighting function

is di↵erent.

7.3 Application of the local flow-focused model to Lau-

sanne journey-to-work data

In this section we apply the flow-focused GWSI model to the Lausanne journey-to-work

dataset. A Poisson flow-focused GWSI model can be formulated as:

�
ij

= exp({ij} + ↵{ij} lnPi

+ �{ij} lnNj

+ �{ij} ln dij) (7.15)

where the model variables and parameters are defined as in the previous chapters (e.g.

see chapter 6).

7.3.1 Bandwidth selection

The four-dimensional kernel and the spatial trajectories approaches presented in sec-

tions 7.2.1 and 7.2.2 provide two possible new alternatives for estimating the separations

(distances) between spatial flows. In the calibration process of the above flow-focused

model, we can use any of these spatial kernel approaches for weighting the spatial flows.

However, the main principle of geographically weighting of the flows is the same in both
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Figure 7.4: Bandwidth value (fixed) against AICc score for the Poisson flow-focused
model in Lausanne agglomeration. Deviance and BIC are also shown.

spatial kernels, even though these approaches might result in a slightly di↵erent weight

for each flow. Therefore, the result of the calibrated flow-focused model using these spa-

tial kernel approaches would be similar and so as an example, we calibrate this model

for each flow within the agglomeration of Lausanne using the four-dimensional kernel

approach only.

The optimal bandwidth for the flow-focused model can be found using the same

techniques as for other GW models. In the present case, the optimal bandwidth has

been estimated using the AICc approach. The calculated bandwidth values against AICc

scores for the flow-focused GWSI model when the squared Cauchy kernel has been used

as weighting function are shown in figure 7.4. Using AICc, the optimal bandwidth is

found to be 1318 metres. The plot also contains BIC scores and deviance.

7.3.2 Adaptive spatial kernels

Instead of using a fixed bandwidth in the flow-focused GWSI models, it would also be

possible to apply an adaptive kernel. The adaptive kernel is sensitive to the density of

data and would vary spatially so that the kernel is smaller in regions where many data

flows are available while the kernel has larger bandwidth where the flows are sparse (see

Fotheringham et al., 2002). As mentioned in section 5.3.1, there are di↵erent methods

for producing spatially varying kernels. One of the kernels that is related to the Nth

nearest neighbours is the bi-square function with following formula:
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Figure 7.5: Adaptive bandwidth value (number of flows considered) against AICc score
for the Poisson flow-focused model in Lausanne agglomeration (using a bi-square kernel).

W
ij

=

8
>>>>>><

>>>>>>:

[1� (
d(ij)(i0j0)

b

)2 ]2 if ij is one of the Nth nearest

neighbours of the calibration

flow and b is the distance

to the Nth nearest neighbour.

0 otherwise

(7.16)

In this method, the adaptive bandwidth is therefore measured in terms of the number

of flows to be considered in the model calibration instead of a distance as in the fixed

kernel. The procedure to find the optimal adaptive bandwidth is the same as with flexible

bandwidth, i.e. the AICc score is computed for a set of di↵erent bandwidth values, for

example by using a golden section search approach. Figure 7.5 shows the bandwidth

plot for di↵erent number of neighbouring flows considered, for the Poisson flow-focused

GWSI model, using a bi-square kernel as the weighting function. In this case, the optimal

bandwidth is 98 neighbouring flows, which is the minimum bandwidth that can still be

reliably calculated.

7.3.3 Analysis of the model results

This section illustrates and discusses the results of a flow-focused model. For this demon-

stration, a Poisson flow-focused GWSI model with a fixed bandwidth of 1318 metres and

four-dimensional kernel is used. The squared Cauchy kernel has been used as a weighting

function. Table 7.1 shows a summary of the results of the flow-focused model for the

agglomeration of Lausanne along with some summary statistics. The model has been
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Table 7.1: Poisson flow-focused GWSI model, with fixed bandwidth of 1318 metres, and
four-dimensional squared Cauchy kernel

Parameter Mean Min Max Std Dev Quartiles

25% 50% 75%

Active pop. 0.8216 0.3969 1.1918 0.0695 0.7808 0.8264 0.8642

Jobs 0.9583 0.0150 1.2543 0.0804 0.9204 0.9727 1.0091

Distance -1.3100 -2.4916 -0.6021 0.2197 -1.4338 -1.2696 -1.1647

Intercept 0.4554 -6.2670 12.1462 2.4992 -1.2571 -0.1074 1.9504

t-values active pop. 6.5 1.3 71.1 4.7 3.6 5.1 7.9

t-values jobs 8.5 0.1 80.5 5.5 5.0 7.0 10.1

t-values distance -5.8 -30.7 -1.0 3.8 -7.3 -4.7 -3.2

t-values intercept 0.4 -7.5 15.9 1.7 -0.4 -0.0 0.6

p-values active pop. 0.00 0.00 0.21 0.02 0.00 0.00 0.00

p-values jobs 0.00 0.00 0.96 0.02 0.00 0.00 0.00

p-values distance 0.01 0.00 0.33 0.02 0.00 0.00 0.00

p-values intercept 0.55 0.00 1.00 0.34 0.24 0.62 0.86

Deviance 56081.1 -147672.5 569893.4 38270.5 38395.4 53466.1 70196.8

Pseudo R2
0.9544 0.6049 0.9996 0.0164 0.9501 0.9569 0.9632

estimated separately for each of the 4900 flows. For each flow, one set of local parameter

estimates has been estimated.

The Pseudo R2 varies between 0.605 and 0.999 with an average of 0.954. Half of

the models have a Pseudo R2 between 0.950 and 0.963, showing that most of the 4900

local models have an excellent fit. The parameter ↵ for active population varies between

0.397 and 1.192, with an average of 0.822, and half of the models have values between

0.781 and 0.864. The parameter � for the number of jobs shows has a range of values

from 0.015 to 1.254 with an average of 0.958. The minimum parameter value of 0.015 is

for the internal flow of the small village of Carrouge located at the north-eastern border

of the agglomeration; this commune has only 400 workforce and roughly 130 jobs and

an internal flow of 87 people. The corresponding p-value of 0.96 also shows that the

parameter value is not significantly di↵erent from 0. The standard deviation for this

parameter is low (0.08), which shows that there is not a lot of variation over all local

models.

The distance-decay parameter � ranges from �2.492 to �0.602 with an average of

�1.31. The standard deviation of � is higher compared to the ↵ and � parameters

(0.22 against 0.07 and 0.08); half of the models have values in the range of �1.434 to

�1.165. The intercept in most models is close to 0, but can be as low as �6.267 or

as high as 12.146. The t-values and p-values for the di↵erent parameters show that

the parameters are in most models significantly di↵erent from 0, except the intercept in

some cases. Overall, the flow-focused model successfully detects and takes into account

spatial variations in relationships. The relatively small bandwidth of 1318 metres, and

the significant variation of the model parameters for the di↵erent flows shows the presence

of spatial heterogeneity in the interaction behaviour in this agglomeration.

Figures 7.6, 7.7 and 7.8 show the complete set of parameter estimates for all 4900

calibration flows using matrix visualisation. The origins and destinations are ordered
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descending by size. Figure 7.6 shows parameter ↵ for the active population. While there

is no clear pattern visible, bigger communes seem to have slightly higher values for the ↵

parameter, indicating that the size of the active population has a slightly bigger impact

on the number of interactions in bigger communes. Also, there does not seem to be

di↵erent parameter values for the internal flows. For the � parameter for the number of

jobs (figure 7.7), there is also no clear visible pattern, except for the mid-size and smaller

communes where the parameter value for the internal flows (diagonal in figure 7.7) has

smaller parameter values compared to most other flows. The number of jobs seems to have

a smaller e↵ect on the number of intrazonal flows, especially outside the central locations.

The distance-decay parameter (�) in figure 7.8 is mostly more negative for internal flows,

and also for some mid-size and smaller rural communes, e.g. the communes of Servion,

Sullens, or Carrouge. These communes are typical residential communes in more rural

parts of the agglomeration. Distance seems to be a bigger obstacle to commuting for

flows with one of these communes as an origin or a destination. Distance-decay seems to

be closer to 0 (i.e. higher or less negative) for flows towards bigger communes, and also

some mid-size towns, e.g. Paudex where Nespresso has a major o�ce.

Figures 7.9 to 7.14 show the values for the �, ↵ and � parameters for the in- and

outflows from/to five selected communes in the agglomeration. The number of commuters

is represented by the line width, while the colour corresponds to the parameter value.

The five selected communes are the central city of Lausanne, the smaller city of Morges in

the western part of the agglomeration, the suburban towns of Lutry (East of Lausanne),

Epalinges (North of Lausanne) and Bussigny (West of Lausanne). Figure 7.9 shows the

distance-decay parameters for the inflows into the five selected communes. The parameter

estimates for the flows to Lausanne are all very similar and relatively high (close to 0),

indicating that distance is not important for many commuters to Lausanne, probably due

to the attraction of the city, high number of jobs and good transportation system. Some

exceptions are the neighbouring towns of Lausanne, where the distance-decay parameter

is slightly more negative. Also for flows towards other locations such as Morges or Lutry,

the neighbouring towns have generally slightly more negative � values. The reason might

be that for some people, distance to work is an important factor for residential choice. The

flows from the south-eastern communes of the agglomeration towards Lutry or Epalinges

show more negative distance-decay parameter values than average. These communes are

known to have a higher percentage of well educated and wealthy population; these people

are also able to pay higher rent for homes and can a↵ord to live closer to work, resulting

in more negative � values.

Figure 7.10 shows the active population parameters (↵) for the inflows. Flows from

the outer parts of the agglomeration show generally smaller estimates for ↵. This is

especially the case for the flows towards Lausanne, Epalinges and Morges, but less for

flows to Bussigny. The reason behind this pattern might be that for commuting to a

city like Lausanne or Morges, it is easier to use public transportation, while it is easy
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Figure 7.6: Parameter ↵, active population, using the bandwidth of 1318 metres. Each
cell shows the parameter value of one flow-focused model, corresponding to the destina-
tion (row) and the origin (column) of each flow. The resulting matrix visualisation shows
the parameter values of all 4900 calibrated models.
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Figure 7.7: Parameter �, number of jobs, using the bandwidth of 1318 metres. Each cell
shows the parameter value of one flow-focused model, corresponding to the destination
(row) and the origin (column) of each flow. The resulting matrix visualisation shows the
parameter values of all 4900 calibrated models.
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Figure 7.8: Parameter �, distance-decay, using the bandwidth of 1318 metres. Each cell
shows the parameter value of one flow-focused model, corresponding to the destination
(row) and the origin (column) of each flow. The resulting matrix visualisation shows the
parameter values of all 4900 calibrated models.



132

-0.602
-0.812
-1.022
-1.232
-1.442
-1.652
-1.862
-2.072

Value of the
beta parameter

-2.282
-2.492

Flow-focused GWSI In!ows Lausanne

In!ows Epalinges

In!ows Lutry In!ows Bussigny

In!ows Morges

Distance decay parameter (beta)

Figure 7.9: Distance decay parameters for inflows in 5 communes in the agglomeration
of Lausanne. The value of the parameter estimates are represented by di↵erent colours
and the width of the lines shows original flow data values (flow size).
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to commute by car to Bussigny which is close to the highway. For people living in the

smaller communes in the outer parts of the agglomeration, public transportation is less

well developed, and people tend to commute less to the crowded cities.

Figure 7.11 shows the number of jobs parameters (�) for the inflows. The � values

are mostly smaller for closer origins and destinations. There also seems to be a gap

from east to west, visible especially for the flows to Lutry and Epalinges. It might be

that relatively few people cross the city of Lausanne for work, even though a highway

by-passes the city.

Figure 7.12 shows the distance-decay parameter (�) for flows going out of the five

selected communes. Again, shorter flows tend to have more negative � values, and there

are also some di↵erences between east and west. Figure 7.13 shows the active population

parameter for the outflows of the five communes but does not give additional insight into

the commuting patterns. The spatial pattern for the number of jobs parameter (�) for

the outgoing flows in figure 7.14 shows again a di↵erence between the flows within the

central zone of the agglomeration with slightly higher estimates for � and communes at

the outer parts of the agglomeration having smaller values, indicating that the number of

jobs is a less important factor for people commuting from the central part of the region

towards the outer zones.

More analysis of the spatial patterns and their meaning would be possible, especially

if the model result are combined with other socio-economic data. But this short analysis

shows the potential of the flow-focused GWSI method to find regional di↵erences in com-

muting behaviour. Also again should be emphasised here that the flow-focused GWSI,

similar to other variants of GWSI, can also be used for forecasting purposes when the

model is calibrated for a pair of origin and destination with no flow in between.

In the following chapter we will discuss some issues related to GWSI models, e.g.

adaptive bandwidth selection in the origin- and destination-focused models, along with

some empirical examples using the GWSI models.
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Figure 7.10: Active population parameters (alpha) for inflows in 5 communes in the
agglomeration of Lausanne. The value of the parameter estimates are represented by
di↵erent colours and the width of the lines shows original flow data values (flow size).
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Figure 7.11: Number of jobs parameters (gamma) for inflows in 5 communes in the
agglomeration of Lausanne. The value of the parameter estimates are represented by
di↵erent colours and the width of the lines shows original flow data values (flow size).
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Figure 7.12: Distance decay parameters for outflows from 5 communes in the agglom-
eration of Lausanne. The value of the parameter estimates are represented by di↵erent
colours and the width of the lines shows original flow data values (flow size).
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Figure 7.13: Active population parameters (alpha) for outflows from 5 communes in the
agglomeration of Lausanne. The value of the parameter estimates are represented by
di↵erent colours and the width of the lines shows original flow data values (flow size).
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Figure 7.14: Number of jobs parameters (gamma) for outflows from 5 communes in the
agglomeration of Lausanne. The value of the parameter estimates are represented by
di↵erent colours and the width of the lines shows original flow data values (flow size).



Chapter 8

Discussion and examples

The underlying principle of the family of GWSI models and their formulations has been

introduced in the previous chapters of this thesis. Furthermore, the local parameter esti-

mates of the GWSI models have been compared to those from global spatial interaction

models through a real-world commuting application in Lausanne. In the following chap-

ter we discuss some issues that arise from the geographically weighting spatial interaction

models along with some suggestions and discussion on possible approaches to deal with

these issues.

8.1 Network distance and travel time approaches

Spatial interaction models incorporate the distance between origins and destinations as

one of the explanatory variables. Euclidean distance is frequently used for this purpose;

however, it is also possible to replace this by the transportation network distance or

travel time. Today, calculating the network distance and travel time is fairly simple as

Web services become available for estimating both the fastest and shortest path from

one location to another1. The travel time estimate often includes the road types and

speed limits and sometimes even the tra�c conditions. This modification of the distance

parameter applies for both global and local interaction models. A feasible way to compute

the network and time distances is to query one of the Web services repeatedly using the

centroids of all the origin and destination zones as departure and arrival points. The

Web service selects automatically the closest point of the road network to the centroid

of the zone and then calculate the fastest/shortest path between the two points. The

resulting distances can be used directly in the spatial interaction models, in the same

way as other distance measures.

We have used the CloudMade Routing Web service for obtaining the fastest route

along with network and time distances for the agglomeration of Lausanne. We have

then calibrated the global Poisson spatial interaction model shown in equation 3.41 and

1
e.g. Google Directions: https://developers.google.com/maps/documentation/directions/ or

CloudMade Routing: http://developers.cloudmade.com/projects/show/routing-http-api

139
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Table 8.1: Global Poisson spatial interaction model with di↵erent distance measures

Distance measure ↵ � � Intercept Deviance Pseudo R2

Density-based scattering 0.820 0.998 - 0.878 -3.982 10254 0.9490

Centroid-to-centroid 0.846 1.011 -0.668 -5.700 11362 0.9453

Road network 0.851 0.984 -0.745 -4.642 12314 0.9443

Time distance 0.810 0.949 -0.667 -6.484 16029 0.9351

Table 8.2: Poisson flow-focused model with di↵erent distance measures

Median Median Median Median Median Median
Distance measure ↵ � � intercept deviance pseudo R2

Density-based scattering 0.876 1.032 -0.867 -4.516 15361 0.9515

Centroid-to-centroid 0.897 1.047 -0.720 -6.277 15457 0.9480

Road network 0.903 1.021 -0.804 -5.072 15967 0.9467

Time distance 0.869 0.991 -0.713 -7.049 20065 0.9368

the local flow-focused GWSI model in equation 7.3 for the Lausanne commuting dataset

considering di↵erent distance parameters of the density-based scattered distance (see

section 4.3.2), the centroid-to-centroid distance, the network and the time distances.

The variables of the models are defined in the same way as in equations 3.41 and 7.3

respectfully and intra-zonal flows are excluded from the analysis. In the flow-focused

model a squared Cauchy kernel is used for weighting the flows and the bandwidth is set

to 1320 metres obtained in section 7.3.1. The results of the global and the flow-focused

Poisson spatial interaction models are shown in table 8.1 and table 8.2 respectively.

For all models, the resultant parameter estimates show the expected e↵ect on the total

interaction (i.e. distance-decay negative, population and number of jobs positive) and

the goodness-of-fit assessed by deviance and pseudo R2 represent that models are well

fitted. However, both deviance and pseudo R2 suggest that models using the population

density-based distance are the best and the goodness-of-fit decreases slightly by using

the centroid-to-centroid, the road network and the time distances. This is a rather

unexpected result although the di↵erences between the models are small. However, the

results only show the behaviour of the models in Lausanne and other example applications

should be studied in order to get better insight into this issue.

There are some possible explanations for this behaviour, for instance, the chosen ap-

proach of calculating the network distances based on the origin and destination centroids

might not give a satisfactory approximation of the reality. Furthermore, the chosen Web

service (the one provided by CloudMade based on OpenStreetMap data) might not give

time distance estimates with a su�cient accuracy. The other possible source of error

is the assumption that all commuters are using a car, while in reality many people use

alternative means of transportations. Ignoring the internal flows might also give rise to a

biased result. For the GWSI models, it also has to be noted that the flow-focused model

uses Euclidean distances for weighting the flows (four-dimensional Euclidean distance in
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Figure 8.1: Weighting of flows in a destination-focused approach is done using the dis-
tance to the destination only.

the case of the flow-focused model). It is unclear if using network/time distances for

weighting the flows would be a feasible approach in the case of GWSI models.

8.2 Mixed kernel approach

During calibration of a GWSI model, we give a weight to each of the flows. This weight

is calculated based on some distance measures (e.g. distance from the calibration point

to each flow’s origin on the origin-focused model), and using a kernel function, mostly

a Gaussian kernel in GWR or a squared Cauchy kernel in GWSI. In the case of a

destination-focused model (see section 6.3), the squared Cauchy kernel function can be

written as:

W
u

ij

=
h
1 + (

d
uj

b
)2
i�2

(8.1)

where d
uj

is the geographical distance between the calibration point u and destination

j of the observed flow ij (see figure 8.1a for an illustration). Using this type of spatial

kernel, in geographically weighting spatial flows we consider only distance as the measure

of spatial similarity between flows. This means that a flow ij0 where d
uj

0 = d
uj

is weighted

the same as flow ij since their destinations are the same distance to the calibration point

u (illustrated by figure 8.1b). However, some situations call into question the equal

weighting of flows only based on the physical distance to their respective destinations.

This might for example happen if destinations j and u are located in the same spatial

cluster with many exchanges between j and u, while j0 is located outside the cluster

with only few exchanges between j0 and u. In this case, destination u is probably more

similar to destination j than to j0, and consequently flow ij should be weighted higher

than flow ij0. The question therefore is: how to improve the weighting scheme in GWSI?

A possible solution is to include the similarity between destinations into the destination-

focused model (in the case of origin-focused model, similarity between origins). We

discuss here a possible approach for the case of a destination-focused model, using the

”strength of connection“ between destinations.
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8.2.1 Strength of connection as a similarity measure between destina-

tions

As already mentioned in chapter 5, Nissi and Sarra (2011) integrate a parameter called the

strength of connection between destinations into the weighting function by multiplying

the strength of connection with the spatial distance (see equation 5.23). They defined

the strength of connection between destinations u and j as T 2
uj

/(T•uT•j), where T
uj

represents the flow from u to j, T•u the total of all flows to destination u, and T•j the

total of all flows to destination j (see also equation 5.24). They considered the strength

of connection between destinations as a measure of similarity. In their equation, flows T
uj

are powered by 2 and also flows T•j and T•j are multiplied; however, from a mathematical

point of view, it is not clear whether powering or multiplying the flows is feasible or

what is the meaning of powered or multiplied flows. On the other hand, the strength

of connection parameter is then integrated into the weighting function with simply a

direct multiplication to the power term which again does not have a mathematical reason

(equation 5.23). Furthermore, as already discussed in chapter 5, this approach fails if

T
uj

= 0. Also, only a directional flow from u to j is considered in the straight of

connection equation, and the flow from j to u is ignored.

We suggest two alternative formulations for the strength of connection:

c
uj

=
T
uj

+ T
ju

T•u + T
u•

(a)

or

c
uj

=
1

2
(
T
uj

T•j
+

T
ju

T•u
) (b)

(8.2)

where c
uj

is the strength of connection of destination u to destination j, T
uj

is the flow

from u to j, T
ju

the flow from j to u, T•u and T•j are the total of flows to destination

u and j respectively, and T
u• the total of outgoing flows from u. In formula 8.2(a), as

T
uj

is part of T
u• and T

ju

part of T•u, cuj is always smaller or equal to 1. Also since

all flows are always 0 or positive, then 0  c
uj

 1. We can see c
uj

as the proportion

of flows between u and j compared to the total flows with origin or destination u. In

formula 8.2(b), we are summing up the proportion of flows from u to j over all flows going

to j and the proportion of flows from j to u over all flows going to u. Multiplying this by
1
2 , the strength of connection is then 0  c

uj

 1. In cases where no flows occur between

two destinations, c
uj

will be 0. If the flows between u and j are small compared to the

overall flows from and to u, c
uj

will take a relatively small value. If all flows from and to

u (j in formula 8.2(b)) are between u and j, c
uj

is 1.

8.2.2 Integrating destination similarity into the weighting function

An important question is how to integrate the similarity measure into the weighting

function, for example into the Gaussian or squared Cauchy kernel function. Nissi and
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Sarra (2011) multiply the strength of connection with the squared geographical distance

inside a Gaussian kernel function (see also equation 5.23):

W
u

ij

= exp(�1

2
(
d
uj

b
)2 ⇥ strength of connection). (8.3)

Instead of altering the distance measure directly, we can make a separate kernel for the

spatial distance and the similarity measure between flows. If we take the strength of

connection c
uj

as the similarity measure, we can mix the two kernels by computing a

weighted average. In the case of a Gaussian kernel function, this gives:

W
u
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= w
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· e�
1
2 (
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1
2 (
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where w
geo

is the weight given to the geographical weighting kernel, d
uj

is the Euclidean

distance between the calibration point and destination j, c
uj

is the strength of connection,

b the bandwidth for the spatial kernel and b
c

the bandwidth for the destination similarity

kernel (strength of connection in our case). In the case of a squared Cauchy kernel, the

mixed kernel can be written as:

W
u

ij

= w
geo

·
h
1 + (

d
uj

b
)2
i�2

+ (1� w
geo

) ·
h
1 + (

1� c
uj

b
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. (8.5)

It is also possible to mix two di↵erent types of kernels together, for example a squared

Cauchy kernel for the geographical distance, and a Gaussian kernel for the destination

similarity kernel:

W
u

ij

= w
geo

·
h
1 + (

d
uj

b
)2
i2

+ (1� w
geo

) · e�
1
2 (

1�c

uj

b

c

)2 . (8.6)

All variants of this mixed kernel have two bandwidths, b and b
c

; one for the spatial

kernel and one for the distance similarity kernel. Both bandwidths need to be calibrated

using AICc, BIC or a similar measure. Additionally, w
geo

can be included into the band-

width calibration process as third parameter, with possible values between 0 and 1. This

last parameter allows for di↵erent weighting of the two kernels. By including this pa-

rameter into the bandwidth calibration process, the optimal weight for each of the two

kernels can be found, giving an interesting insight into the importance of geographical

distance in the model compared to the destination similarity. If the dataset is not too

large, the calibration of the three parameters can be done by a simple grid search, where

all parameters are varied in relatively small regular steps and the AICc or BIC is cal-

culated for each possible parameter combination. Di↵erent variants of the mixed kernel

(e.g. equation 8.4, 8.5 or 8.6) can also be considered.
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Figure 8.2: Bandwidth optimisation plot using AICc for both spatial and strength of
connection bandwidths, with a weight of 0.8 for the spatial kernel and 0.2 for the strength
of connection kernel.

8.2.3 Example application of a mixed kernel

In order to illustrate the approach of including the strength of connection into a GWSI

destination-focused model, we show an example application to the journey-to-work dataset

for the agglomeration of Lausanne. The strength of connection between destinations has

been computed according to equation 8.2(a), and a mixed kernel approach with a Gaus-

sian kernel for both spatial and strength of connection bandwidths has been chosen

(equation 8.4). The three parameters have been calibrated using AICc. Figure 8.2 shows

the AICc against the two bandwidths, with a constant value for w
geo

of 0.8. The band-

width calibration yields an optimal bandwidth of 200 metres for the spatial bandwidth,

0.2 for the strength of connection bandwidth, and a weight w
geo

of 0.8. The optimal

bandwidths are both very small: with smaller bandwidths, the model is getting better,

which represents a tendency towards a destination-specific model. The calibration of

the third parameter, the weight for the spatial kernel w
geo

, yields the importance of the

strength of connection in the model. Figure 8.3 shows w
geo

against the AICc for a con-

stant spatial bandwidth of 200 metres and constant strength of connection bandwidth of

0.2. The optimal weight is in this case 0.8, indicating that the model is mainly influenced

by the spatial kernel.
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Figure 8.3: Plot showing the AICc for di↵erent weights of the spatial kernel, for spatial
bandwidth of 200 metres and strength of connection bandwidth of 0.2.

8.2.4 Discussion of the mixed kernel approach

In the case of the presented example application of a destination-focused mixed ker-

nel model including the strength of connection between destinations, this approach did

show that the GWSI models can be extended to include some additional non-geographic

variables in the weighting function in the model. Through the bandwidth optimisation

process, not only the optimal bandwidths can be found, but the strength of connection

kernel or the spatial kernel can potentially get eliminated when its weight is zero. In this

example, the strength of connection between destinations does not improve the model

considerably and the spatial bandwidth indicates that our model is close to a standard

destination-focused model. The mixed kernel approach might improve the GWSI model

in the case of other datasets, or by using another measure for the strength of connection

between destinations. In this section, we have presented the case of a destination-focused

GWSI model.

The formula of the mixed kernel approach has one important limitation in the pre-

sented form. The calibration point in the GWSI model needs to be an existing des-

tination, because the flow from and to the calibration point to all other origins and

destinations must be known. This will somewhat limit the utility of this approach, espe-

cially for forecasting flows (i.e. for calibration the local model at a point with no flow).

It should be noted here that the presented mixed kernel approach could also be applied

to other types of GWSI models such as an origin-focused GWSI model, and potentially

the flow-focused models.
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Origin i

Figure 8.4: Flows from region i stacked at the centroid of the region.

8.3 GWSI: Scattered approach

In the origin- and destination-focused GWSI approaches for local calibration of spatial

interaction models, centroids of origin and destination regions have been so far considered

as the reference points for geographically weighting the observed flows. In the case of an

origin-focused model, if origin i is connected to n destinations, all n outgoing flows from i

will obtain the same weight as the distance between their origin (i.e. the centroid of origin

region i) to the calibration point u is the same for all flows. Figure 8.4 illustrates this

situation where the origins of n flows going to n di↵erent destinations are stacked up at

the centroid of the region i. This behaviour implies that in origin- and destination-focused

approaches, flows are always weighted in groups. For example in a GWSI origin-focused

approach, if the model is calibrated at the centroid of existing origin i connected to n

destinations then the weight for all these n flows is 1. The same situation is valid for the

destination-focused approach when a group of n flows from di↵erent origins is piled up

at the centroid of the destination j, leading to equal weights for all the n incoming flows

to j.

To study the e↵ect of stacking the origins and destinations at the region centroids

in both origin- and destination-focused approaches, we consider a scenario where ori-

gins and destinations of the flows are scattered randomly within their region polygons.

In this situation, the observed flows will have their origins and destinations in di↵er-

ent locations rather than to be piled up at the region centroids. When geographically

weighting the flows, they will have slightly di↵erent weights. The weighting schema is still

based on the proximity of origins or destinations of the observed flows to the calibration

point. In order to evaluate the di↵erences between the two approaches, we apply the geo-

graphically weighted concept on a Poisson origin-focused model using the scattered-based

method and compare it with the result of the GWSI origin-focused model presented in

section 6.2.1.
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Figure 8.5: Bandwidth value (fixed) against AICc score for the origin-focused Poisson
model using stacked and the scattered-based method.

8.3.1 Origin-focused approach for Poisson spatial interaction using

scattered-based method

The same model formula as in equation 6.7 will be applied here for the GWSI origin-

focused approach for a Poisson spatial interaction model on journey-to-work data in

Lausanne. The model is calibrated in each origin commune where the origins and des-

tinations of the observed flows are located randomly within their corresponding regions.

The squared Cauchy kernel is used as the spatial weighting function for the geographically

weighting of the flows and the selection of the optimal bandwidth has been performed

using AICc. Figure 8.5 shows the bandwidth values against the AICc score along with the

AICc scores for the stacked model. In the case of the scattered-based model, the optimal

bandwidth is equal to 400 metres and for the stacked model, the optimal bandwidth is

100 metres. This result was expected since in the scattered model, since the origins are

not located at a same location as in a stacked model but they are scattered within the

zone, so the spatial kernel does not wrap around one single location and obtains a bigger

bandwidth.

The results of the calibrated model are listed in table 8.3. Compared to the results

of the stacked variant of the origin-focused model (table 6.1) in the agglomeration of

Lausanne, the parameter values vary slightly. The biggest di↵erence is in the parameter

estimates for the distance variable which has a median value of �1.58 for the stacked

approach and �1.83 for the scattered variant. Interestingly, the p-values indicate that for

all parameters in the scattered approach the majority of models have significant values,

contrary to the stacked approach where the active population and intercept estimates

are mostly not significantly di↵erent from 0. Most of the models resulting from the scat-

tered approach are significant and show very good Pseudo R2 values of 0.92 or more for
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Figure 8.6: The median parameter estimates for origin-focused Poisson model using
scattered-based method.
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Table 8.3: Origin-focused GWSI (Poisson with scattered origins)

Bandwidth 400 metres (fixed)

Parameter Mean Min Max Std Dev Quartiles

25% 50% 75%

Active pop. 0.7539 -0.4837 1.3198 0.1878 0.6252 0.7589 0.8910

Jobs 1.0158 0.4957 1.6471 0.1010 0.9504 1.0181 1.0800

Distance -1.5997 -2.7076 -0.0277 0.3393 -1.8437 -1.5784 -1.3812

Intercept 3.1310 -13.1462 14.7351 3.9885 0.4505 2.9231 6.0377

t-values active pop. 6.3 -1.1 30.3 4.9 2.6 5.0 8.8

t-values jobs 13.3 1.6 78.5 8.4 7.7 11.2 16.2

t-values distance -10.3 -47.7 -0.1 5.7 -12.9 -9.0 -6.2

t-values intercept 1.4 -11.4 16.2 2.5 0.2 1.3 2.7

p-values active pop. 0.06 0.00 0.87 0.15 0.00 0.00 0.01

p-values jobs 0.00 0.00 0.12 0.00 0.00 0.00 0.00

p-values distance 0.00 0.00 0.91 0.02 0.00 0.00 0.00

p-values intercept 0.24 0.00 1.00 0.29 0.00 0.09 0.40

Deviance -28978.5 -399250.5 956985.1 114814.6 -99331.9 -17485.8 51242.0

Pseudo R2
0.8922 -0.1360 0.9988 0.1073 0.8825 0.9271 0.9466

the majority of the models, which is higher than for the stacked approach model with a

median Pseudo R2 of 0.90. The scattered approach shows smaller variation (standard de-

viation) for the parameters and also Pseudo R2. Figure 8.6 shows the median parameter

values for each origin commune for all variables and figure 8.7 illustrates the respective

t-values of the parameters. Most parameters show high t-values, especially in the centre

of the agglomeration. In short, scattering the points for geographically weighting has an

impact on the optimal bandwidth selection. In the case of this dataset, a bigger optimal

bandwidth resulted for the scattered approach, leading to a more stable regression result

(less variation in parameters, most t-values and Pseudo R2). Overall, a better model fit

seems to be the result of the scattering approach.

8.4 Adaptive bandwidth

As discussed earlier in chapter 5, the spatial kernel in geographically weighting can be

fixed in terms of shape and magnitude over space or it can vary spatially (Fotheringham

et al., 2002). This spatial kernel variation in size can be based on the density of the

data in space so that the bandwidth parameter in the kernel will be larger where the

density of data is low and smaller in regions where the density of data points is high. To

investigate the adaptive bandwidth in GWSI, we have calculated the adaptive bandwidth

for an origin-focused model using the AICc method for the journey-to-work dataset of

Lausanne. Figure 8.8 illustrates the adaptive bandwidth for Poisson GWSI origin-focused

approach (see equation 6.7), where the number of data points (in GWSI the number

of flow observations) are plotted against the AICc score. The geographical weighting

function used for this example is a bi-square kernel (see equation 5.6).

The minimum AICc value occurs at the optimum adaptive bandwidth of 71 to 140

flows, the lowest band. In the origin-focused GWSI model, each calibration point (each
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Figure 8.7: The median t-values of parameters for origin-focused Poisson model using
scattered-based method. These maps display absolute t-values, where values greater
than 2.33 are significant at a level of 99%, and values greater than 1.65 are significant
at a level of 95%. For negative parameter values (for the distance-decay parameter), the
negative t-values of -2.33 and -1.65 correspond to the significance levels of 99% and 95%
respectively.



151

0 200 400 600 800 1000
11000

12000

13000

14000

15000

16000

17000

18000
AI

Cc

Adaptive bandwidth (number of considered !ows)
Bisquare weighting function

Model: Poisson origin-focused stacked
Data: Journey-to-work agglomeration of Lausanne

Optimal bandwidth:
71–140 !ows

Figure 8.8: Bandwidth value (adaptive; number of flows) against AICc for origin-focused
Poisson model.

origin i) is connected to n destinations (in the Lausanne dataset, 70 destinations), so

if we divide the adaptive bandwidth by the number of destinations (i.e. number of

flows with origins stacked up at the calibration point), it shows the number of origins

that are considered in the calibration process of origin i (here maximum 2 neighbouring

origins). Figure 8.8 shows well the fact that in the origin-focused model, neighbours can

only be included by sets of 70 points due to the stacked nature of the origins. We have

calculated the adaptive bandwidth for the GWSI origin-focused model with scattered

origins to investigate how the number of observations included in the model calibration

changes. Figure 8.9 shows the bandwidth values plotted against the AICc scores and

the optimum adaptive bandwidth is equal to 140 flows corresponding again to 2 origins.

In GWSI, both fixed and adaptive bandwidth approaches are possible. In the case of

the journey-to-work dataset for the Lausanne agglomeration, no big di↵erence seems to

occur between the two approaches.

8.5 Application examples of the GWSI models

In order to illustrate possible use cases of the GWSI models, we show two di↵erent

examples in this section.

8.5.1 Evaluate impact of new business centre

In this first example, we study the impact of a new (fictional) business centre that could

be located near the city centre of Lausanne. We assume that this new business centre

creates 1000 new jobs and we are interested in forecasting where the workers would come

from according to a spatial interaction model. Figure 8.10 shows the location of the new
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Figure 8.9: Bandwidth value (adaptive; number of flows) against AICc for origin-focused
Poisson model using scattered approach.

business centre. Its location is strategic as it is quite close to the motorway and within

good proximity to the city centre to guarantee good accessibility for potential workers.

We use a destination-focused model with a squared Cauchy kernel as a weighting

function for this example. The bandwidth of the destination-focused model is calibrated

in a first step using BIC and AICc scores, using all journey-to-work flows for the agglom-

eration of Lausanne. We use a fixed bandwidth approach. In our case, the bandwidth

tends towards a specific model, as both BIC and AICc scores decrease with decreasing

bandwidth (figure 8.11), so then we use the smallest calculated bandwidth of 100 metres.

In a second step, we calibrate the destination-focused model for the business centre as a

destination, yielding local estimates for the model parameters ↵, � and �. We get a value

of ↵ = 0.779, � = 1.008 and � = �1.044 with the intercept value being �2.593. The

value for the pseudo R2 is 0.957. A global unconstrained interaction model yields values

of ↵ = 0.791, � = 0.949, and � = �1.297, with an intercept of 0.818. The values for

the local destination-focused model for the distance-decay parameter � is less negative

compared to the global model. This means that for this specific location, the workers

accept to travel longer distances. The local parameter values can now be used to predict

the individual journey-to-work flows from each of the 70 communes towards the business

centre; figure 8.12 shows these predictions graphically. As expected, the biggest com-

muting flow would be from the city of Lausanne, and from the neighbouring communes

around the business centre.

Instead of using a destination-focused model, we can also predict the flows to the

business centre by using an origin-specific destination-focused model. In this case, a

separate bandwidth is calculated for each origin, resulting in an even more localised

model. Instead of calibrating the parameters on the whole dataset of 4900 flows, we now
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Figure 8.11: Bandwidth selection plot for the destination-focused model using a squared
Cauchy kernel.
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Figure 8.12: Estimated flows based on the destination-focused model calibrated at the
location of the business centre.

calibrate 70 local models with each time 70 flows only, resulting in a set of parameter

estimates for each flow. Table 8.4 summarises the results of the 70 local models. The �

parameter has a similar median value compared to the destination-focused model (1.069

against 1.008). The median of the distance-decay parameter has a value of �1.823, which

is considerably more negative than for the destination-focused model (�1.297).

Table 8.4: Poisson origin-specific destination-focused GWSI model

Parameter Mean Min Max Std Dev Quartiles
25% 50% 75%

Jobs 1.094 0.616 1.381 0.117 1.025 1.069 1.169
Distance -1.816 -2.689 -0.851 0.396 -2.039 -1.823 -1.501
Intercept 9.330 3.425 18.145 3.032 7.140 9.139 11.274
Pseudo R2 0.892 0.626 0.996 0.078 0.858 0.906 0.951

Both destination-focused and origin-specific destination-focused models yield uncon-

strained estimates of flows towards the business centre, so that the total number of

estimated flows does not necessarily sum up to the number of jobs in the buisness centre

(1000 in our assumption). A simple correction can be the application of a multiplication

factor constraining the total number of flows to correspond to the number of jobs. This

multiplication factor c can be calculated as c =
P

N/T̂ , where T̂ is the number of esti-

mated flows, and N the number of jobs. Figure 8.13 shows the estimated flows predicted

using the origin-specific destination-focused model with a total flow constraint.
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Figure 8.13: Estimated flows based on the origin-specific destination-focused model cal-
ibrated at the location of the business centre, corrected using a total-flow constraint.

8.5.2 Estimating commuting flows based on historic data

In Switzerland, the commuting flows have been measured in 1990 and 2000. More recent

data are currently not available, while data both on active population and number of jobs

are available for 2010. We can use the flow-focused model to estimate the flows for 2010

based on the commuting data for 2000. A squared Cauchy kernel is used as weighting

function. The optimal bandwidth is estimated using AICc for the flow-focused model

using the commuting data of 2000 for calibration; the optimal bandwidth is 1320 metres

(figure 8.14).

Once the optimal bandwidth has been found, we can calibrate the model for each individ-

ual flow, and we get a set of parameters local to each flow, as already seen in chapter 7.

The set of parameters can then be used to estimate the flow for 2000, and assess the

estimation error as the flows for 2000 are known. Figure 8.15 shows the estimated flows

for 2000 on top left, and the the estimation error on top right as a origin-destination ma-

trix. The overall model quality is excellent, with only a few errors. For each calibration

flow, pseudo R2 values can be computed. Average pseudo R2 is 0.954 with a standard

deviation of 0.016; half of the models have values between 0.950 and 0.963.
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Figure 8.14: Bandwidth selection plot for the flow-focused model with squared Cauchy
kernel.

Using the calibrated flow-focused model for each flow with active population and

number of jobs for 2010 instead of 2000, we can make an estimation of the expected

flow between any origin and destination for 2010 (figure 8.15 bottom left). We can

also estimate the increase or decrease of commuters between each origin and destination

(figure 8.15 bottom right). In figure 8.15, the origins and destinations are ordered by

the total number of flows, communes having bigger flows being on the top left of the

matrix. The bigger communes all show an increase in the number of commuters, for

both incoming and outgoing flows. This is mainly due to an increase of active population

between 2000 and 2010, as shown in figure 8.16 (left), and also to the increase in the

number of jobs (figure 8.16, right). All communes in the agglomeration show an increase

in active population with the city of Lausanne increasing by more than 20,000 people.

Also in most communes, the number of jobs increased; however, a small decrease could be

observed in some places. Overall, at the level of the agglomeration, both the total number

of active population and jobs increased resulting in an increase in the total number of

commuting flows.

8.5.3 Discussion of locational analysis examples

Two di↵erent examples of the use of a local spatial interaction model have been shown

in sections 8.5.1 and 8.5.2. Many other applications are possible. For example, if we
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Figure 8.15: Estimated flows in 2000 based on the flow-focused model (top left), di↵erence
of estimated and observed flows in 2000 (top right), estimated flows in 2010 (bottom left)
and estimated increase in commuting flows from 2000 to 2010 (bottom right).
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Figure 8.16: Evolution of active population 2000-2010 (both absolute values and growth
rate), and of the number of jobs 2000-2010 (both absolute values and growth rate).

use network distances or travel times inside the spatial interaction model, the impact of

improved transportation infrastructure on the journey-to-work flows could be studied.

Other examples of GWSI models in the context of commuting interaction can be the

analysis of the decision process during the search for a new home, given a known location

for the workplace and during the search for a job when the residential place is fixed.

The connection between residence and workplace is the core consideration in commuting

models (see Clark et al., 2003). Although several factors can a↵ect commuting behaviour,

the cost of travel, job viability and housing price are three important factors to be

considered in the commuting analysis.

The journey-to-work problem can be seen through two di↵erent frames. First, when

the workforce are resident in a area, for instance owning their house, and are looking for

suitable jobs nearby. This commuting scenario can be analysed using an origin-focused

GWSI model. Here, we assume that people from the same origin are more likely to have

the same characteristics and behave similarly (see Haynes and Fotheringham, 1984),

so then flows related to them will have more weight and influence on the calibration

using an origin-focused model. Further dissaggregated information can be obtained if a

destination-specific origin-focused model is used.

A second scenario on commuting which perhaps is more likely is when workers find a

job and then look for a residence close to their work. For instance, Clark and Burt (1980)

have studied that when households move, there is a considerable tendency to relocate

closer to their working place (see Clark et al., 2003). These types of behaviour can

be analysed using a destination-focused model or an origin-specific destination-focused

model. Here we assume it is more likely that people who are working in the same

locations or nearby destinations have more similar characteristics than people coming

from the same locations. Therefore, we would then weight the flows with destination
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information rather than origin information.

A frequent problem in spatial interaction modelling is the problem of non-geographic

disaggregation of the model. This arises for example in commuting where workers have

di↵erent qualifications and the companies are active in di↵erent economic sectors. In this

situation, a di↵erent model might be required for each group of commuters. In the case

of the business centre discussed above, it might happen that the new centre is located in

an area where the active population does not have the required qualification for working

in a service-oriented business. In order to model this situation accurately, we need to

make sure we account for the qualifications both of the population and the jobs. This

problem is similar to the problem of market segmentation, discussed in section 3.4, with

one possible model formulation in equation 3.18. We could apply the same principle

to the geographically weighted spatial interaction model, for example in the case of the

business centre with a destination-focused model:

T
ij

(q) = {j}(q) P
↵{j}
i

(q) N
�{j}
j

(q) d
�{i}
ij

(q) (8.7)

where q is a specific qualification needed for the business centre and for which we want

to estimate the commuting flows. All other variables are the same as in equation 6.7. Of

course, we would need to know the commuting flow for the group having the required

qualifications towards other existing destinations in order to successfully calibrate the

model.

Another possibility is the use of the mixed kernel approach presented in section 8.2.

Instead of using the strength of connection for the non-geographical kernel, information

about the belonging to a specific group (e.g. having the required qualifications for working

in the new business centre) could be included. This approach might be especially useful

if the membership to a group is not very well defined. For example, the population with

similar qualifications could also be included in the model and given a weight according to

the probability of having an employee with those qualifications in the new business centre.

In other applications, this approach could also be useful in cases where segmentation is

in arbitrary groups, such as age groups. For these continuous variables, a finer weighting

scheme might lead to better results. One problem with further disaggregation of the

model is also the risk of overfitting. In geographically weighted models, overfitting is

addressed by using a su�ciently big kernel bandwidth, allowing for drawing in a su�cient

amount of information from neighbouring locations. In the case of non-geographical

disaggregation, borrowing information from similar groups might be necessary if data

availability is sparse.

In the examples above, the dataset is limited to 70 origins and 1 (section 8.5.1) or 70

destinations (section 8.5.2), resulting in 4900 flows at maximum. This size of a dataset

for a spatial interaction system is rather small, but even so it required considerable

computational resources, especially for bandwidth selection where many di↵erent models

are computed and compared to each other. Strategies to deal with bigger datasets have
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to be developed. One attempt to deal with big datasets in local regression models is

the Scalable Local Regression (SLR) approach which is an incremental variant of GWR

developed by Kaiser et al. (2011). In this study, (i.e. Kaiser et al. (2011)) SLR in a

GWSI example is applied to roughly 150,000 journey-to-work flows across the whole

of Switzerland. However, only Gaussian regression has been considered in SLR and

Poisson regression has not been implemented in this model, limiting its usability for

GWSI models.

In the following chapter we summarise the major findings of the thesis with regard

to the research questions posed initially and will provide a conclusion of the study along

with some suggestions for future research.



Chapter 9

Conclusion

The main research objectives in this thesis were how spatial heterogeneity can be detected

in spatial interaction processes and how spatial interaction models can be localised in

order to take spatial heterogeneity into account. These objectives were addressed by cre-

ating a family of local spatial interaction models taking into account spatial heterogeneity

through geographical weighting of the flows.

This family is composed by the following models:

• Origin-focused spatial interaction model. In this model the flows are weighted

according to the geographical distance between the calibration point and the origin

of the flows. The origin-specific model can be seen as a special case of the origin-

focused model with a bi-square kernel and bandwidth 0, except for the choice of

the variables.

• Destination-focused spatial interaction model. This model is similar to the

origin-focused model, except that the flows are weighted according to the geograph-

ical distance between the calibration point and the destination of the flows. Again,

the destination-specific model can seen as a special case of the destination-focused

model, except for the choice of the model variables.

• Origin-focused destination-specific spatial interaction model. In this case,

the origin-focused geographically weighted approach is applied to a destination-

specific model. Individual flows towards one single location are weighted according

to the distance between their origin to the calibration point.

• Destination-focused origin-specific spatial interaction model. In this case,

the destination-focused approach is applied to a origin-specific model.

• Flow-focused spatial interaction model. Individual flows are weighted based

on the distance between the flows. Several measures can be used for the distance

between the flows, such as the 4-dimensional Euclidean distance or a spatial tra-

jectories distance.

161
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These di↵erent models are built on top of the GWR principle in which the geograph-

ical weighting approach allows finding local parameters at a given calibration point and

takes into account possible spatial heterogeneity through localised parameter estimates.

The spatial variation can refer to origins or destinations only, or to both simultaneously;

for each spatial heterogeneity case a di↵erent model can be chosen from the GWSI family.

All models are also able to adapt to situations with or without spatial variation through

the bandwidth calibration process. If no spatial heterogeneity is found in the dataset, the

kernel bandwidth will be large. Indeed, a global unconstrained spatial interaction model

can be seen as a special case of a local model where the kernel bandwidth is infinity and

all flows are given weight 1.

This family of local spatial interaction models has been gradually introduced and

studied in successive chapters of this thesis and related aspects and issues have been

highlighted, discussed, and in some cases solutions suggested. More specifically, the

contributions of the individual chapters are as follows:

• Chapter 2 describes the journey-to-work dataset of the agglomeration of Lausanne

which has been used throughout the thesis for illustrating and testing the individual

models. Additional data required for spatial interaction modelling such as active

population and number of jobs is also described.

• Chapter 3 briefly reviews existing spatial interaction models and their underlying

theoretical frameworks. The problem of the intra-zonal flows which are commonly

ignored is highlighted.

• Chapter 4 introduces some novel considerations on how to deal with the intra-

zonal flows issue in spatial interaction models by estimating the average trip length

within a zone. The best results are given by the population density-based scattering

approach which estimates the average trip length based on the population distri-

bution within the zone. As a result, intra-zonal flows can also be considered in the

spatial interaction models. In the case of the Lausanne journey-to-work dataset,

integrating the intra-zonal flows is important since more than 45% of all the flows

are internal flows (see Kordi et al., 2012).

• Chapter 5 introduces the principle of local models and more specifically the principle

of GWR. It also discusses existing methods for localising spatial interaction models,

such as origin- or destination-specific models. Finally, chapter 5 also presents some

attempts to combine the GWR principle with spatial interaction models.

• The geographical weighting principle of spatial interaction models is introduced in

chapter 6 and the origin- and destination-focused models are developed and dis-

cussed. Chapter 6 also introduces the combination of the geographical weighting of

flows with the origin- and destination-specific models, resulting in the origin-focused
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destination-specific and destination-focused origin-specific models (see Kordi and

Fotheringham, 2011).

• Chapter 7 introduces the last member of the family of local GWSI models, the

flow-focused model. First, di↵erent approaches for measuring the distance between

two flows are discussed. One approach introduced in this chapter is the four-

dimensional kernel approach, where the flow is considered as a four-dimensional

object and the distance between the flows is calculated by the Euclidean distance

in four-dimensional space. Di↵erent variants to the Euclidean distance, such as

Manhattan or Minkowski distance are also discussed. A second approach, the

spatial trajectories distance measure, is also introduced, based on the sum-of-pairs

distance by Agrawal et al. (1993). The model has been applied to the Lausanne

journey-to-work dataset, giving the opportunity to discuss bandwidth calibration

issues for the local spatial interaction models. Visualisations for the parameter

estimates for each flow have also been developed using matrix-style visualisations

and a series of flow maps.

• Chapter 8 discusses some issues arising from the geographical weighting of spatial

interaction models that have not been treated in depth in previous chapters. This

includes the replacement of Euclidean distance measures by network distance and

travel time distance, which in the case of the Lausanne journey-to-work dataset

does not improve the model estimates. Chapter 8 also introduces a mixed-kernel

approach, where a second kernel is added to the geographical weighting scheme

in order to take into account the strength of connection between destinations in a

destination-focused model. The two kernels are combined together using a weighted

average. The two bandwidths and the weight for the geographical kernel can be

optimised using the AICc score; in the case of the Lausanne dataset, the geograph-

ical kernel is weighted much more than the kernel for the strength of connection.

The mixed kernel approach is flexible in the sense that it allows for excluding one

of the kernels.

Chapter 8 also addresses the issue of having all outgoing flows of one region located

at the same origin coordinates (”stacked“ origins), and similarly for destinations,

by scattering the origins and destinations. This scattering approach leads to a

more robust spatial interaction model, at least for the studied dataset. In previous

chapters, only a fixed bandwidth has been considered. The principle of geographical

weighting of spatial flows does not exclude an adaptive bandwidth commonly used

in GWR. In chapter 8, an example of an adaptive bandwidth is shown, with similar

results to the fixed bandwidth approach.

Chapter 8 also contains two locational analysis examples where variants of local

spatial interaction models have been tested. The first is to study the flows to-

wards a planned business centre where 1000 jobs are to be created, by using a
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destination-focused model. The second example predicts commuting flows for the

agglomeration of Lausanne for the year 2010, based on flow data for 2000. The

resulting estimates shows an increase in the journey-to-work flows which seems to

be consistent with the overall increase of active population and the number of jobs.

This flow prediction has been done using a flow-focused model.

The empirical experiments in this thesis indicate that the local GWSI models might

be an improvement over conventional global spatial interaction models since they provide

more useful spatial information on interaction behaviour. These models also can act as

a generalisation to global and previous local spatial interaction models such as origin-

and destination-specific models. The family of local spatial interaction models repre-

sents a feasible solution to detect and take into account spatial heterogeneity in spatial

interaction processes.

Beyond these two main research questions, other minor questions have also been

addressed. Two di↵erent approaches have been developed on how to define distances

between flows. Considering flows as four-dimensional directed objects allows the oppor-

tunity to consider them using similar techniques as for two-dimensional spatial analysis.

Also, the problem of visualising local parameter estimates for spatial interaction models

could be addressed using traditional maps for origin- and destination-focused models and

matrix-style visualisations for the flow-focused models; extracts of the matrix visualisa-

tions also have been used to develop a series of flow maps.

One of the minor questions that needed to be answered was if existing GWR soft-

ware can be used also for GWSI models. For all models in the family of local spatial

interaction models except for the flow-focused model, existing GWR can potentially be

used, as long as Poisson GWR is implemented. The flow-focused model needs a special

weighting scheme, which is either a four-dimensional distance or a spatial trajectories

distance. These distance calculations require a specific implementation of GWR. The

mixed kernel approach also requires implementing a specific weighting scheme. In prac-

tice, existing GWR software tested with GWSI models presented some problems. In most

cases, the computation was very slow, taking several hours for the Lausanne journey-to-

work dataset with 4900 flows. In many cases, errors occurred during the calculation for

unknown reasons. Consequently, a Python implementation of GWR has been built on

top of the statsmodels Python package1, which uses the computationally e�cient Numpy

library2 (especially for matrix calculations). Statsmodels provides the required regres-

sion models (especially weighted Poisson regression), and only the geographical weighting

scheme had to be added. This custom GWR implementation has been validated against

existing GWR software (GWR33 and GWR44).

1
http://statsmodels.sourceforge.net

2
http://www.numpy.org

3
http://ncg.nuim.ie/ncg/gwr/software.htm

4
http://www.st-andrews.ac.uk/geoinformatics/gwr/gwr-software/
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Another minor research question that has been raised in the introduction was how

intra-zonal flows can be taken into account in spatial interaction modelling. A novel

approach has been developed in chapter 4 for estimating average trip length in which

origins and destinations of flows are distributed randomly or based on an available den-

sity surface within their respective zones. The random and population-based scattering

methods have shown good results in the case of the Lausanne journey-to-work dataset.

9.1 Future research

The work presented in this thesis opens several new interesting avenues for future re-

search. First, although the GWSI models in this thesis are applied and analysed in the

context of commuting interaction, they could be applied equally to other types of spa-

tial interaction data. So, further work on the application of di↵erent variants of GWSI

models to other interaction datasets, for instance on bigger datasets from di↵erent re-

gions on migration data, flow of information (phone calls, e-mail tra�c etc.) or shopping

behaviour, would be interesting. Also, testing the GWSI approach with other types of

regression, such as Poisson-Gamma or negative binomial regression would be another

pertinent issue to be addressed.

Furthermore, so far all geographical weighted spatial interaction models are exten-

sions of an unconstrained gravity model. In traditional spatial interaction modelling,

constrained models play an important role; for instance both of the example applications

presented in section 8.5 would traditionally be studied with constrained interaction mod-

els. Geographically weighting of a constrained model raises interesting issues. Future

research could address the relevance of such an approach.

In section 8.2, the mixed kernel approach has been introduced and applied to the

Lausanne dataset. This approach integrates a simple measure for the strength of connec-

tion between destinations. The method can be tested on other datasets and also other

measures for the strength of connection could be examined. For example, using a clus-

tering approach that tries to group together similar destinations based on some features

that need to be defined might be an alternative. Applications of the mixed kernel in

other models could also be tested.

In order to ease the application of the GWSI models and establish the method,

a reliable software package should be built with all the di↵erent algorithms. A well-

documented Python package with some example applications would enable many re-

searchers to use the models with their own data and integration into other user-friendly

software packages such as Quantum GIS5 would be possible. Also, computationally ef-

ficient variants such as the Scalable Local Regression presented in Kaiser et al. (2011)

should be further extended to better take into account the specificities of spatial inter-

action models, such as using Poisson or negative binomial regression instead of simple

5
http://qgis.org
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Gaussian regression. Such an algorithm would open the application of the GWSI models

to huge datasets.
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Simini, F., Maritan, A., and Néda, Z. (2013). Human mobility in a continuum approach.

PLoS ONE, 8(3):e60069.

Singleton, A. D., Wilson, A. G., and O’Brien, O. (2010). Geodemographics and spatial

interaction: an integrated model for higher education. Journal of Geographical Systems,

14:223–241.

Slingsby, A., Kelly, M., Dykes, J., and Wood, J. (2012). OD maps for studying histor-

ical internal migration in Ireland. In IEEE Conference on Information Visualization

(InfoVis), 14 - 19 Oct 2012, Seattle, Washington, US.

Song, C., Qu, Z., Blumm, N., and Barabasi, A.-L. (2010). Limits of predictability in

human mobility. Science, 327:1018–1021.

Stewart, J. Q. (1941). An inverse distance variation for certain social influences. Science,

93:89–90.

Stou↵er, S. (1940). Intervening opportunities: a theory relating mobility and distance.

American Sociological Review, 5(6):845–867.

Sugiura, N. (1978). Further analysis of the data by akaike’s information criterion and

the finite corrections. Communications in Statistics, theory and methods, A7:13–26.

Thill, J. C. and Kim, M. (2005). Trip making, induced travel demand, and accessibility.

Journal of Geographical Systems, 7(2):229–248.

Thompson, D. (1974). Review article: Spatial interaction data. Annals of the Association

of American Geographers, 64(4):560–575.

Thorsen, I. and Gitlesen, J. P. (1998). Empirical evaluation of alternative model specifi-

cations to predict commuting flows. Journal of Regional Science, 38(2):273—292.

Thrift, N. J. (1983). On the determination of social action in space and time. Environment

and Planning D, 1:23–57.

Tobler, W. (1976). Spatial interaction patterns. Journal of Environmental Systems,

6:271–301.

Tobler, W. (1979). Smooth pycnophylactic interpolation for geographical regions. Journal

of the American Statistical Association, 74(367):519–530.



188

Tobler, W. (1981). A model of geographical movement. Geographical Analysis, 13(1):1–

20.

Tobler, W. (1987). Experiments in migration mapping by computer. The American

Cartographer, 14(2):155–163.

Tuia, D. and Bavaud, F. (2007). Revealing distances hidden in flows: a formalism for

mapping pendular geostatistical distances. In Spatial Econometrics Conference, Cam-

bridge, UK. University of Cambridge.

Uboe, J. (2004). Aggregation of gravity models for journeys to work. Environment and

Planning A, 36:715–729.

Unwin, A. (1996a). Exploratory spatial analysis and local statistics. Computational

Statistics, 11:387—400.

Unwin, A. and Unwin, D. (1998). Exploratory spatial data analysis with local statistics.

Journal of the Royal Statistical Society: Series D (The Statistician), 47:415—421.

Unwin, D. (1996b). GIS, spatial analysis and spatial statistics. Progress in Human

Geography, 20:540—541.

U.S. Department of Commerce (1965). Calibrating and treating a gravity model for any

size urban area. U.S. Government Printing O�ce, Washington, D.C.

Van-Lierop, W. (1986). Spatial interaction modelling and residential choice analysis.

Gower publishing company, Hants England.

Venigalla, M., Chatterjee, A., and Bronzini, M. (1999). A specialized equilibrium assign-

ment algorithm for air quality modeling. Transportation Research Part D: Transport

and Environment, 4(1):29–44.

Webb, A. R. (2002). Statistical Pattern Recognition. John Wiley and Sons Ltd, second

edition.
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