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Abstract 

A smart driving Smartphone application – which offers real-time fuel efficiency and 

safety feedback to the driver in the vehicle – was evaluated in a real-world driving 

study. Forty participants drove an instrumented vehicle over a 50 minute mixed route 

driving scenario, with 15 being selected for video data analysis. Two conditions were 

adopted, one a control, the other with smart driving advice being presented to the driver. 

Key findings from the study showed a 4.1% improvement in fuel efficiency when using 

the smart driving system, and an almost 3-fold reduction in time spent travelling closer 

than 1.5 seconds to the vehicle in front. Glance behavior results showed that drivers 

spent an average of 4.3% of their time looking at the system, at an average of 0.43 

seconds per glance, with no glances of greater than two seconds. In conclusion this 

study has shown that a smart driving system specifically developed and designed with 

the drivers’ information requirements in mind can lead to significant improvements in 

real-world driving behaviours, whilst limiting visual distraction, with the task being 

integrated into normal driving. 

Introduction 

A wealth of previous research has shown that using In-Vehicle Information Systems 

(IVIS) can be distracting to the driver, cause an increase in workload and also be 

detrimental to certain driving performance characteristics – specifically when they 

require the driver to engage in a non-driving related secondary task. However, many 

IVIS (either OEM or aftermarket) have recently been developed which aim to actually 

increase driving safety, efficiency, comfort or convenience. What is unknown is 

whether or not these IVIS have any real, measurable positive effect of driving 

behaviours in the real-world, and if they do what is the consequence of these on driver 

distraction? This paper aims to address these issues by reporting on a comprehensive 

field trial conducted using an in-vehicle smart driving advisor. 

The Foot-LITE Smart Driving System 

The smart driving system used was developed for a UK project called Foot-LITE. The 

Foot-LITE system aims to bring information on safety and fuel efficiency together on a 

single, integrated, adaptive interface presented on a Smartphone application. The smart 

driving advice offered is based on the analysis of real-time information related to 

vehicle operation and local road conditions, with data being collected via an adapted 

lane departure warning (LDW) camera, the vehicles On-Board Diagnostics (OBDII) 

port, as well as 3-axis accelerometer and a Global Positioning Satellite (GPS) module. 
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The Foot-LITE human-machine interface (HMI) concept (figure 1) was 

developed according to Ecological Interface Design principles (EID; Burns & 

Hajdukiewicz, 2004). Specifically relevant to the driving task EID offers to dynamically 

reflect the driving environment and integrate complex information onto a single, direct 

perception display (Burns & Hajdukiewicz 2004). Safety and Eco information is 

grouped together with all parameters being displayed concurrently and changing in real-

time depending on the driver’s inputs. Given the safety critical nature of evaluating in-

vehicle systems in the real-world and interacting with other road users, the HMI was 

rigorously tested and iterated until the version, shown in figure 1, was released for on-

road trials. The ergonomic development and evaluation of the HMI has been reported 

previously (see Birrell and Young 2011, Young and Birrell 2012). 

In-vehicle smart driving information presented to the driver in real-time were: 

 Headway: A visual representation of time headway (figure 1, picture 2) 

was presented to the driver as a cautionary threshold (amber) when the 

driver was less than 2 seconds to the car in front, and a warning threshold 

(red) when below 1.5 seconds. When the driver was greater than two 

seconds, or when headway information was not presented to the driver 

(i.e. below 15 mph or headway confidence was not sufficient) the display 

shows as the default green (figure 1, picture 1). 

 Lane Departure Warning: A red warning was given to the driver when 

they deviated from their lane (figure 1, picture 2). For this experimental 

setup the lane deviation threshold was set to be very sensitive, i.e. when 

the driver was close to the lane lines a warning was displayed, as well as 

if having actually deviated. 

 

Figure 1 Example screenshots from the Foot-LITE
1
 smart driving advisor. 

Only one ‘oval’ is ever presented on the IVIS at any one time, but all 

aspects depicted can change in real-time and in combination. Picture 

1 (left) Default Green display. Picture 2 (centre) – top-left to bottom 

– Headway Warning, Lane Deviation Warning, Headway Caution. 

                                           
1
   This design is protected by Brunel University as a UK Registered Design (UK RD 4017134-41 inc.); 

the unauthorized use or copying of these designs constitutes a legal infringement. 
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Picture 3 (right) – top-left to bottom-right – Braking Caution, 

Acceleration warning, Change up caution, Change down warning 

 Gear Change Advice: The bottom half of picture 3, figure 1 shows gear 

change advice. The amber arrow suggests either a single gear change up 

or down in a sequential manner, red either a block change (e.g. 2
nd

 to 4
th

) 

is preferable or a single shift if high power demand is needed. When the 

drivers adheres to the gear change advice, or when in the correct gear the 

gear change section of the HMI will revert to the green default display. 

 Acceleration and Braking: As presented in the top half of picture 3, 

figure 1, braking and acceleration advice is offered to the driver in order 

to limit excessive acceleration / throttle use, and also to try and 

encourage a smoother speed profile. Again cautionary (amber) and 

excessive (red) warnings are offered to the driver. 

Methodology 

Design and Dependent Variables 

This study utilised a control verses intervention, within-subjects repeated measures 

experimental design. In the control condition no smart driving feedback was offered, in 

the intervention condition feedback was offered by the Foot-LITE system. The order of 

which participants completed the conditions was counterbalanced to negate order and 

potential gender effects. 

 Two very different types of data were collected for this study: Driving 

performance data; and Driver glance behaviour. Variables collected related to driving 

performance are described below: 

 Time headway: continuous (s) and % journey spent under 1.5 s 

 Number of lane deviations 

 Engine speed (RPM) and load (%), throttle position (%) 

 Current and ideal gear position, % time in each gear 

 Vehicle speed (mph) and journey time (s). 

Variables collected related to driver glance behaviour were: 

 Glance frequency: absolute and percentage of glances to certain locations 

 Glance duration: average, maximum and percentage of time spent at each 

location, and number of glances greater than 2 seconds. 

Driving Scenario 

The driving scenario adopted for this study was a fixed route in and around the 

Leicestershire (central England) area, it was 40.1 miles (or 64.5 km) in length and took 

approximately 1 hour and 15 minutes to complete. The scenario encompassed three 

clearly defined sections of road which included only one type of road category – 

‘Motorway’, ‘Urban’ and ‘Inter-Urban’ (figure 2). The motorway (highway) section 

consisted of 3 or 4 lanes with a speed limit of 70 mph (≈113 kph) and took 

approximately 11-12 minutes to complete, with one section where two motorways 

merged together. The urban section of roadway was completed on unregistered, 

residential single carriageway and one-way roads with numerous pedestrian crossings, 

roundabouts and T-junctions present; the speed limit throughout was 30 mph (≈48 kph) 
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and took approximately 8 minutes to complete. Within the inter-urban section the main 

carriageway was all one lane in width with multiple lanes at traffic light controlled 

intersections and roundabouts, speed limits varied between 40, 50 and 60 mph (≈64, 80 

and 97 kph). This was the longest section of roadway taking approximately 18 minutes 

to complete, and could also be classified as rural. All participants drove the same 

instrumented vehicle throughout the study; this was a UK right-hand drive 2006 Ford 

Focus Zetec, 1.6 L diesel with manual transmission. 

 

Figure 2 Driving scenario adopted for the study 

In all driving conditions participants were given route guidance instructions 

verbally by the experimenter, who also dealt with any issues that arose with any logger 

or system within the vehicle. Directions were offered according to a fixed script to 

ensure all drivers received the same instructions. The route description also included 

some tactical information such as upcoming changes to 30 mph speed limits, 

approaching traffic lights, as well as standard instructions such as ‘At the roundabout 

turn RIGHT, 2
nd

 exit, right hand lane’. 

Participants 

Forty participants (30 male and 10 female; table 1) were recruited to take part in this 

study, all of whom were members of staff at the trial management company. 

Prospective volunteers replied to a companywide circular email if they were interested 

in taking part. The principal inclusion criterion was that participants were covered to 

drive a company vehicle on the company insurance policy, and who were not involved 

in the Foot-LITE project or had a working knowledge of the project. 

 For the glance behaviour analysis 15 participants (10 male and 5 female; table 1) 

were selected from the original 40 to be included based on the quality of video data 

collected in both the control and experimental conditions, and also if the smart driving 

system was working effectively throughout the entire route. 
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Table 1  Study participant demographics 

Trial Subset n Age Driving Experience 

 

   Mean SD Mean SD 

Driving Group 40 41.90 11.64 22.03 11.74 

Performance Male 30 42.33 12.28 22.60 11.94 

 

Female 10 40.60 9.10 20.30 11.24 

Glance Group 15 39.40 12.95 19.07 12.52 

Behaviour Male 10 39.64 14.89 19.55 13.36 

 

Female 5 38.75 6.60 17.75 11.53 

 

Data Collection and Analysis 

Data for this study were collected using two principal logging methods, firstly via the 

Foot-LITE system itself which collects numerous parameters from different sources 

(OBDII port, adapted LDW camera, GPS on Smartphone, accelerometer in the 

processing unit) and fuses this data to form the feedback presented via the Smartphone 

application. This data were stored on journey specific .csv files which were imported 

into MS Excel for analysis. The second logging method was a GPS data logger supplied 

by Race Technology (DL1 Mk3), which records GPS at 20 Hz and accelerometer and 

gyroscope at 100 Hz. The DL1 was also connected to Race Technology’s Video4 

hardware to collect raw video data from four internal cameras, with data being analysed 

using their bespoke software package (Analysis v8). Finally, end of journey fuel 

consumption was recorded according to the vehicles internal trip computer. 

 Driving performance data collected were trimmed to only include data collected 

between the start of the motorway section and end of the inter-urban section – this was 

termed data for the ‘entire’ journey (figure 3). Data from seven participants were 

excluded from the driving performance analysis, this was either a result of logger errors 

(2 cases), data not being collected from the Foot-LITE system (2 cases), or the Foot-

LITE system not providing effective feedback in the experimental condition (3 cases). 

This left 33 participants with complete datasets available for analysis. Statistical testing 

was conducted using SPSS 16.0 and significance was accepted at p<0.05. Two 

MANOVAs evaluated potential differences between the data collected from the Foot-

LITE system and GPS data logger, with a Paired T-test used to assess fuel efficiency. 

Glance behaviour data was analysed slightly differently. To ensure comparisons 

could be made between each of the sections of roadway, three-eight minute segments 

were outlined for the video analysis. These were defined from a pilot benchmarking run 

where the test experimenter drove the route in typical traffic densities, adhering to the 

speed limit and UK Highway Code throughout. The start and end points for segments 

were based on fixed GPS points relating to eight minutes of the benchmarking run, 

therefore each participant completed same distance but total driving time may vary 

slightly depending on self-selected driving speeds, traffic conditions etc. Glance 

behaviours for these three sections of roadway were then combined to create 24 minutes 

of video data analysed, and again termed data for the ‘entire’ journey. 
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With no automated analysis of driver glance behaviour from raw video files 

available (to the authors’ knowledge) an alternative method was needed. For this study 

an innovative method was established which used the JWatcher software. JWatcher is a 

freeware tool originally developed as an observational recording programme for the 

behavioural sciences. Certain behaviours or activities could be identified and associated 

with specific keys on the keyboard, with the time in-between these keystrokes being 

recorded and saved as .text files. In this case each keystroke was associated with a 

glance towards a specific location, these were defined as: 

 IVIS – the Foot-LITE smart driving Smartphone application 

 Mirrors – left and right wing mirrors, rear-view mirror (coded separately) 

 Driving Equipment – instrument panel, gear stick, handbrake etc. 

 Road: Centre – centre of the roadway, which may not always be straight 

ahead when cornering or when ‘tracking’ an object 

 Road: Off-Centre – looking out of the windscreen (but not centrally) or 

side windows (but not mirrors). This could include viewing side roads, 

oncoming traffic or traffic signs, but also glances considered as not 

relevant to the driving task as defined by Hughes and Cole (1986), i.e. 

immediate road and general surroundings, vegetation and advertising 

 Other – glances to the experimenter, non-driving related in-vehicle 

equipment (e.g. HVAC controls) or any other unspecified glances 

(daydreaming or where a glance cannot be determined). 

Further pilot analysis was conducted using JWatcher which determined that 

video playback at one quarter speed was sufficient to accurately and reliably record 

glances. ISO 15007 (2002) defines glance duration as being from the initial movement 

of the eye away from its location to when it is fixed on its new location (transition), and 

ending just before the next transition begins (dwell time). For real-time video analysis 

this proposes a significant problem, as it is not known what the driver is going to look at 

(fixation) when they start the first transition. For this reason a slightly adapted definition 

of glance duration was used, i.e. going from fixation to fixation rather than transition to 

transition. This allowed the analyst to determine where a glance fell before recording it. 

The key to this method was accurately and reliably defining the start of each glance 

fixation. Driver glance behaviour was again evaluated using a MANOVA in SPSS. 

Procedure 

Participants completed the same driving scenario on two separate occasions separated 

by one week, but on the same day and at the same time of day in an attempt to limit 

external factors such as traffic. One condition was a ‘Control’ (no smart driving 

feedback offered), the other ‘Experimental’ where feedback via the IVIS was offered. 

When participants arrived to take part in the study for their first randomised condition 

they were given a verbal and written explanation of the project and the specific aims of 

study. After this they were shown the Risk Assessment and finally signed, informed 

consent was gained. Following this participants were shown to the test vehicle where 

they were instructed to adjust the seats, steering wheel and mirrors so they were 

comfortable and accessible. All participants had the opportunity to take the test vehicle 

on a brief drive to familiarise themselves with the vehicle before the actual trial began. 

In addition to this the first 10 minutes of the journey was excluded (figure 2: ‘MIRA’ to 

‘Start’) to ensure the drivers were comfortable with the vehicle controls. 
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Data logging (both GPS and Foot-LITE) was initiated prior to the 

commencement of each condition and the internal trip computer was zeroed. Before the 

start of the experimental condition participants were given a detailed introduction to the 

Foot-LITE system, including being shown what feedback the system would offer, they 

also had chance to ask any questions. In the control condition the Smartphone was set to 

silent and placed out of sight of the driver but data were still collected. As explained 

previously the first 10 minutes of each driving scenario was for vehicle familiarisation, 

additionally in the experimental condition participants were also shown the interface 

and each event highlighted as it appeared on the Smartphone. In both driving conditions 

participants were instructed to drive as they would do normally, however in the 

experimental conditions taking on board the smart driving information if they deemed it 

reliable and applicable information, and also safe to do so. 

Results 

Aspects such as driving speed and journey time are parameters universally important for 

both safety and efficiency. Results from the current study showed no differences 

(p>0.05) in either parameters between the conditions. 

Driving Performance 

Safety parameters that the Foot-LITE smart driving system offered feedback to the 

driver in real-time were headway (distance to the car in front) and lane position. Results 

showed that lane position did not differ significantly (p>0.05), with the mean number of 

lane deviation warnings offered by the system for all participants over the entire journey 

in the control condition being 17.7 and 15.1 in the experimental condition. Where the 

smart driving system did elicit a difference was with respect to headway. Mean 

headway for the entire journey (calculated when a vehicle was detected within 5 

seconds) increased from 2.05 (SD = 0.32) to 2.33 (0.33) seconds from the control to 

experimental conditions; this difference was significant (F(1,65) = 17.41, p<0.001). The 

percentage of the entire journey which the participants spent travelling closer than 1.5 

seconds to the car in front (or when receiving a ‘Red’ headway warning as in figure 1, 

picture 2) decreased significantly (F(1,65) = 16.86, p<0.001) from 6.61% (5.77) in the 

control condition to 2.32% (1.78) in the experimental condition. 
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Figure 3 Fuel economy (MPG) for each condition. Blue bars represent mean 

MPG for all participants, Red squares minimum MPG achieved, 

Green triangles maximum MPG, and error bars the standard 

deviation of data. Asterisk (*) indicates a significant difference 

(p<0.001) to the control condition 

 The principal parameter of driving efficiency is actual fuel economy or the 

number of miles driven per gallon of fuel used (MPG); this was recorded post journey 

according to the vehicles internal trip computer. Results show that average fuel 

economy increased significantly by 4.1% between the control and experimental 

conditions (F(1,65) = 15.96, p<0.001), this was an increase from 54.8 (SD = 3.10) to 57.0 

(2.90) MPG (figure 3). Specifically related to fuel efficiency certain changes in driving 

performance were also observed which may account for the difference noted above. 

Drivers in the experimental condition spent 13.8% (SD = 3.82) of the drive in the wrong 

gear, this was 15.0% (5.32) in the control condition (figure 4). Whilst this difference 

was not significant, it was when we consider the use of 1
st
 gear, which reduced from 

5.4% (2.88) to 4.5% (0.93) between control and experimental conditions respectively 

(F(1,65) = 4.56, p<0.05), and 5
th

 gear which showed a strong trend (F(1,65) = 2.82, p<0.1) 

for an increase from 39.0% (9.43) to 41.1% (5.79). Engine load and RPM also differed 

when using the smart driving system, with maximum engine RPM reducing 

significantly (F(1,65) = 3.69, p<0.05) from 2921.6 (409.5) to 2791.5 (272.2) and mean 

engine load increasing (F(1,65) = 5.78, p<0.05) from 42.6% (2.38) to 43.9% (2.09) 

between the conditions. 

* 
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Figure 4  Percentage of the entire journey spent in each individual gear. 

Asterisk (*) indicates a significant difference (p<0.05) to the control 

condition, and Plus (+) a trend (p<0.1). Error bars represent 

standard deviation of the mean data 

Glance Behaviour 

The mean number of glances (in absolute form) made to any of the locations by 

participants was 1103.3 (SD = 130.3) glances in the control condition verses 1128.7 

(110.9) in the experimental condition. Regarding the breakdown of glances to each 

recorded location for the entire journey, figure 5 shows that the introduction of the 

smart diving IVIS resulted in a significant reduction (F(1,29) = 12.80, p<0.01) in the 

percentage of glances to the ‘Road: Off-Centre’. This is to compensate for the glances 

to the IVIS which accounted for 11.4% (or 128.7 out of 1128.7) of the glances for the 

entire journey in the experimental condition. No other significant differences with 

respect to glance frequency were observed. 

Table 2  Mean glance frequency and glance duration results for both Control 

and Experimental conditions 

 

Percentage of 

Total Glances 

Ave Glance 

Duration (s) 

% Total 

Glance 

Duration 

Max Glance 

Duration (s) 

 

Con Exp Con Exp Con Exp Con Exp 

Centre 47.87 47.50 2.32 2.20 77.98 77.56 19.58 18.41 

Off-Centre 30.61 21.97 0.54 0.53 12.70 9.52 4.65 5.25 

Mirrors 9.78 7.49 0.49 0.49 3.99 3.04 1.39 1.38 

Equip 7.47 8.04 0.62 0.61 3.63 3.98 1.30 1.37 

Other 4.17 3.38 0.46 0.64 1.67 1.53 1.06 1.70 

IVIS NA 11.37 NA 0.43 NA 4.32 NA 1.28 

 

* 

+ 
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Figure 5 Mean percentage of glances to each location in the control and 

experimental conditions. Errors bars represent standard deviation 

of the mean data. Asterisks (*) indicates a significant difference 

(p<0.05) between the conditions 

Mean single glance duration is shown in table 2, with times of around 0.5 to 0.6 

seconds when considering the driving equipment, mirrors and off-centre road glances in 

both conditions. The average time spent looking at the smart driving system was 0.43 

(SD = 0.08). Maximum glance durations were again similar for both conditions, with 

times to areas other than the road being consistently around 1.3 to 1.4 seconds (table 2). 

Interestingly the maximum glance duration to the IVIS was the lowest recorded 

(although not significantly) at 1.28 seconds. With few changes being observed in 

average or maximum glance durations we would expect to see the percentage of total 

glance durations to each location to follow similar trends to glance frequencies (figure 

5), i.e. to allocate visual resource to the IVIS during the experimental condition we 

would see a reduction in the percentage of glance duration off-centre compared to the 

control condition. This was observed in the analysis with the reduction being significant 

(F(1,29) = 6.25, p<0.05), with no other interactions occurring.  

Discussion and Conclusions 

Findings presented in this paper show that using an in-vehicle smart driving aid during 

real-world, on-road driving resulted in the drivers spending an average of 4.3% of their 

time looking at the IVIS, at an average of 0.43 seconds per glance, with no glances of 

greater than two seconds, and accounting for 11.4% of the total glances made. Hughes 

and Cole (1986) suggested that drivers might have up to 50% ‘spare’ attentional 

capacity during ‘normal’ driving, and Green and Shah (2004) suggest that during 

‘routine’ driving approximately 40% of attention could be allocated to non-driving 

tasks. A notion proposed by this current study is that spare capacity could be considered 

as glances to two main categories – ‘Other’ and ‘Road: Off Centre’, as these contain 

glances that may not be considered safety or operationally critical to the driving task. 

Given that results presented in this paper suggest that using the IVIS offered limited 

safety implications (assessed by mean and maximum glance durations), the authors 

propose that the allocation of visual resource towards the IVIS could be considered to 

* 
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be taken from these ‘spare’ glances. Importantly glances to the mirrors, driving 

equipment and at the centre of the road didn’t alter significantly with the introduction of 

the IVIS. Comparing the findings presented in this study for the use of the Foot-LITE 

system to other recognised in-vehicle systems shows that using a Satnav (for route 

guidance only not destination entry) is more visually demanding in terms of mean 

glance duration and percentage of time looking at the IVIS (Morris et al. 2013). Using 

an in-car entertainment systems has been found to be more visually demanding (when 

considering glance durations), and the secondary task has been linked to distraction 

related parameters such as increased lane deviations (Blaschke et al. 2009). 

When using the smart driving system an average improvement of 4.1% was seen 

in fuel economy over the control condition, and importantly with no increase in journey 

time or reduction in average speed. Primarily these efficiency savings were enabled by 

limiting the use of lower gears (facilitated by planning ahead to avoid unnecessary 

stops) and an increase in the use of 5
th

 gear (as advised by the in-vehicle system); both 

these aspects have been independently shown to correlate significantly with good fuel 

economy (Johansson et al. 2003). This is supported by research into the effectiveness of 

using gear shift indicators (GSI) with Vermeulen (2006) suggesting that adhering to 

gear shift advice resulted in a 3-5% reduction in CO2 output (and corresponding 

increase in fuel efficiency) for the standard emissions legislative driving cycle. This 

effect increased to between 7 and 11% when considering urban and rural driving 

respectively. A secondary effect of the change in gear shift behaviour was a significant 

decrease in maximum engine revs (or RPM) and an increase in mean engine load. 

Changing gear before 2,000 revs is considered a ‘Golden Rule’ of eco-driving, and 

whilst the Foot-LITE systems gear shift algorithms are not this simplistic, late gear 

change is clearly an inefficient driving behaviour which was corrected when using the 

smart driving system – as shown by the decrease in maximum engine RPM. 

Significant and important changes in driving safety behaviours were also 

observed, with results showing that mean headway for the entire journey increased by 

13.7% to 2.33 seconds in the experimental smart driving feedback condition compared 

to 2.05 seconds in the control condition. In addition to a significant three-fold reduction 

in the percentage of the journey spent travelling closer than 1.5 seconds time headway. 

Results from other research which have evaluated the use of a headway warning 

systems are interesting with Ben-Yaacov et al. (2002) showing that drivers spent 42.2% 

of their driving time at headways of less than one second, and when headway warning 

were activated this reduced significantly to just 3.5%. A longitudinal study conducted 

by Shinar and Schechtman (2002) evaluated 43 participants using instrumented vehicles 

over 6 weeks (3 weeks with the system off, 3 on) with in-vehicle headway feedback. 

Results showed a 25% decrease in time spent under 0.8 seconds headway from 

experimental to control, and 14% more time maintaining headways of above 1.2 

seconds. As we can see the headway times presented in the research above are much 

shorter than experienced in the current trial. This may be a function of the fact that 

participants were given initial headway feedback (amber visual warning, no audio) at 2 

seconds rather than 1.2 seconds (Shinar and Schechtman 2002) and 1.0 seconds (Ben-

Yaacov et al. 2002). This suggests that presenting headway warnings at 2 seconds, 

rather than 1 second, leads to greater following distances being employed by drivers, 

and hence a positive effect on driving safety. However, care needs to be taken regarding 

user acceptance, as people may be less likely to accept a system which may allow them 
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to be ‘cut up’ more frequently in high density traffic. A likely trade-off between 

acceptance and safety is needed. 

Findings from a previous simulator study evaluating an early prototype of Foot-

LITE showed that the HMI design was not visually demanding with no detriment (in 

fact an improvement was observed) in peripheral detection task performance, and did 

not lead to an increase in subjective workload (Birrell and Young 2011). This is 

supported by results from this current study which showed that positive changes in 

driving behaviour came at no significant cost to eyes on road time. The 100-car 

naturalistic driving study suggests that very simple secondary tasks do not appear to 

have a crash risk that is greater than normal driving (Klauer et al. 2006). This current 

study concludes that an ergonomically designed in-vehicle interface, utilising ecological 

interface design principles, presenting both safety and eco-driving information via an 

integrated and adaptive interface can lead to measurable and beneficial changes in real-

world driving performance, whilst not resulting in visual distraction and the subsequent 

compromise in driving safety. 
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