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Abstract

Bank crises, by interrupting liquidity provision, have been viewed as
resulting in welfare losses. In a model of banking with moral hazard,
we show that second best bank contracts that improve on autarky ex
ante require costly crises to occur with positive probability at the interim
stage. When bank payoffs are partially appropriable, either directly via
imposition of fines or indirectly by the use of bank equity as a collateral, we
argue that an appropriately designed ex-ante regime of policy intervention
involving conditional monitoring can prevent bank crises.
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1 Introduction

A key issue in the theoretical literature on banking is the link between illiquid
assets, liquid liabilities and bank crises. In the seminal paper by Diamond and
Dybvig (1983) (see also Bryant (1980)), effi cient risk-sharing between deposi-
tors with idiosyncratic, privately observed taste shocks creates a demand for
liquidity. Banks invest in illiquid assets but take on liquid liabilities by issu-
ing demand deposit contracts with a sequential service constraint. Although
demand deposit contracts support effi cient risk-sharing between depositors, the
use of such contracts makes banks vulnerable to runs driven by depositor co-
ordination failure. Allen and Gale (2000) extend the analysis of Diamond and
Dybvig (1983) to study financial contagion in an optimal contracting scenario.
However, as Diamond and Dybvig point out, when aggregate taste shocks are

common knowledge, a demand deposit contract with an appropriately chosen
threshold for suspension of convertibility eliminates bank runs while supporting
effi cient risk-sharing. This point applies to the model of financial contagion
developed by Allen and Gale (2000) as well.
Taken together, these two remarks raise the following question: what pre-

vents banks from using such contracts to rule out bank runs driven by co-
ordination failure? In this paper we study a model of banking with ex ante
moral hazard where there is a misalignment of incentives between banks and
depositors, banks’investment decisions aren’t verifiable by depositors and bank
payoffs aren’t contractible. Under these conditions, we argue that depositors
will no longer deposit their endowments with banks with zero crises probabil-
ity: we show, in a second-best scenario, that both equilibrium bank runs and
equilibrium contagion occur with positive probability in any banking contract
that improves on autarky ex ante.
Initially, we study banking in a closed region. Although the bank has no in-

vestment funds of its own, it has a comparative advantage in operating illiquid
assets: no other agent in the economy has the human capital to operate illiquid
assets. Consequently, the bank controls any investment made in illiquid assets.
The bank has a choice of two illiquid assets to invest in. After depositors en-
dowments have been mobilized, but before the realization of idiosyncratic taste
shocks, the bank makes an investment decision. Each illiquid asset generates a
stream of “public”and “private”returns1 .
Throughout this paper, we assume that the social planner maximizes the

ex-ante utility of the representative depositor2 . Even with costless, perfect
monitoring of the banks actions, we show that using transfers to provide the
bank with appropriate incentives can result in narrow banking and no liquidity
provision. More generally, incentive compatible transfers to the bank will lower

1Following Hart and Moore (1998), we think of "public" returns, in contract to "private
returns, as cash flows generated by the asset that the bank cannot steal because they are
publicly verifiable (for instance, they are embedded in physical capital which can be seized by
depositors).

2Equivalently, we assume that the depositors have all the bargaining power. In our model,
scenarios where the bank has all the bargaining power always results in narrow banking.
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consumption for all types of depositors. Nevertheless, our first result shows
that it is still possible to implement effi cient risk sharing between depositors,
without sacrificing consumption, by using a contract which embodies the threat
of a bank run off the equilibrium path of play.
In contrast, when the investment decision of the bank is non-contractible, we

show that effi cient risk-sharing between depositors is no longer implementable.
The positive probability of an equilibrium bank run is necessary and suffi cient
to resolve incentive problems in banking. Although the second-best incentive
compatible contract improves on autarky (so that ex-ante forward looking de-
positors will choose to deposit with the bank), it also generates, endogenously,
the risk of a banking crisis.
Next, we extend the model to multiple regions linked by an inter-bank market

along the lines of Allen and Gale (2000). In this case, with local moral hazard
where only the incentive constraint of the bank in one region binds, there is
trade in the inter-bank market even allowing for the possibility of bank runs
and contagion after the realization of liquidity shocks. Moreover, the second-
best allocation is implemented by combination of trade in the inter-bank market
with bank runs in region with local hazard but also, under certain parameter
configurations, global contagion induced by the random second-best banking
contract.
In either case, the randomness introduced by banking contracts studied here

is uncorrelated with fundamentals and is driven purely by incentives. We be-
lieve this is a more primitive explanation for bank runs and contagion. In the
formal model studied here, bailouts are equivalent to building in a suspension of
convertibility clause in the banking contract. In this sense, the random second-
best contracts studied here provides a rationale for the doctrine of "creative
ambiguity" when the banking regulator makes no ex-ante commitment to a par-
ticular bailout policy but instead leaves the banking sector in doubt about its
intentions (Goodhart (1999), Russel (2009)).
Are there policy interventions that can improve on random banking con-

tracts? Intervention by central banks or government agents takes place typi-
cally after the onset of a crisis. Can an ex-ante intervention be designed where
monitoring and the threat of termination and /or confiscation of bank payoffs
conditional on a bank run can prevent bank runs ex-ante? A key assump-
tion of our formal analysis is that once the investment decision by a bank has
been made, the bank cannot be prevented from accessing its "private" non-
contractible payoffs. When this assumption is partially relaxed (for example,
requiring bank payoffs to directly accrue to an escrow account that can be ac-
cessed by a regulator or the use of bank equity as a collateral), other intervention
options become available. In the final section of the paper, we outline a policy
of intervention involving (a) depositor protection via emergency liquidity provi-
sion and (b) conditional monitoring and the threat of confiscation of partially
appropriable bank payoffs, either directly via imposition of fines or indirectly
by the use of bank equity as a collateral.
The rest of the paper is structured as follows. The remainder of the in-

troduction relates the results obtained here with other papers on bank runs.
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Section 2 studies a simple model of banking with moral hazard and leads up to
the main result of the paper. Section 3 is devoted to contagion issues. Section
4 outlines the our policy proposal. The final section concludes.

1.1 Related literature

Although to the best of our knowledge, both the model and the results of our
paper are new, in what follows, we situate our analysis in the context of related
work.
Perhaps the paper closest to the approach we adopt here is Diamond and

Rajan (2001) who show that the threat of bank runs off the equilibrium path of
play impacts on the bank’s ability and incentives to renegotiate loan contracts
with borrowers. We obtain a similar result: the threat of bank runs off the
equilibrium path of play (when monitoring is both costless and perfect) impacts
on the investment decision of the bank. However, they do not obtain equilibrium
bank runs as, in their model, whether or not banks renegotiate is observable
(though not verifiable and therefore, non-contractible ex-ante).
Calomiris and Kahn (1991) study a model of embezzlement in banking where

the bank’s temptation to embezzle depends on the realization of an exogenous
move of nature and depending on the prevailing state, either the bank will never
be tempted to embezzle or will always be tempted to embezzle. Therefore, in
Calomiris and Kahn (1991), the positive probability of a bank run relies on the
existence of aggregate payoff-relevant uncertainty. Diamond and Rajan (2000),
in a framework similar to Diamond and Rajan (2001), also require the additional
feature of exogenous uncertainty to obtain equilibrium bank runs. In contrast,
in our paper the existence of equilibrium bank runs doesn’t rely on aggregate
payoff relevant uncertainty. Here bank runs are driven purely by incentives.
Holmström and Tirole ((1997), (1998)), study a model where conditional

on the realization of an exogenous liquidity shock, banks incentives have to
be aligned with those of the depositors. In their model, ex-ante (before the
realization of the exogenous liquidity shock), the threshold (in the space of
liquidity shocks) below which the bank is liquidated is set. They show that
this threshold will be higher than the first-best threshold when agency costs are
taken into account. In this sense, their ineffi cient termination (relative to the
first-best) is driven by exogenous payoff-relevant uncertainty while in our paper
ineffi cient termination doesn’t require exogenous payoff-relevant uncertainty.
It is worth remarking that a common feature of Calomiris and Kahn (1991),

Holmström and Tirole ((1997), (1998)), and Diamond and Rajan (2001), is their
focus on issues of moral hazard that arise conditional on the realization of the
liquidity shock. In contrast, here, we study moral hazard issues that arise ex
ante before the realization of the liquidity shock.
A related branch has focused on the relation between incomplete informa-

tion about the distribution of taste shocks across depositors and bank runs in
banking scenarios with a finite number of depositors. Under the assumption
that the social planner can condition allocations on the position a depositor has
in the queue of depositors attempting to withdraw their deposits, Green and
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Lin (2003), building on Wallace ((1998), (1990)), show that it is possible to
implement the first-best socially optimal risk-sharing allocation without bank
runs. On the other hand, by imposing further restrictions on banking contracts,
Peck and Shell (2003) obtain equilibrium bank runs as a feature of the optimal
banking contract.
Another branch of the literature has focused on the relation between incom-

plete information about the future returns of the illiquid asset and bank runs
(see, for instance, Gorton (1985), Gorton and Pennacchi (1990), Postlewaite and
Vives (1987), Chari and Jaganathan (1988), Jacklin and Bhattacharya (1988),
Allen and Gale (1998)). However, in these papers, the variation in the future re-
turns of the illiquid asset is exogenous while here the variation in future returns
is a function of the investment decision of the bank and is hence endogenous.
Finally, in our paper, as in Aghion and Bolton (1992), bank runs can be

interpreted as a way of allocating control of over banking assets to depositors.
However, unlike Aghion and Bolton (1992), the reallocation of control rights isn’t
triggered by some exogenous event but endogenously via depositor’s actions in
the second-best banking contract.

2 Bank runs with moral hazard

2.1 The model

In this section we study a model of banking in a closed region. The model
extends Diamond-Dybvig (1983) to allow for moral hazard in banking. There
are three time periods, t = 0, 1, 2. In each period there is a single perishable good
xt. There is a continuum of identical depositors in [0, 1], indexed by i, of mass
one, each endowed with one unit of the perishable good at time period t = 0 and
nothing at t = 1 and t = 2. Each depositor has access to a storage technology
that allows him to convert one unit of the consumption good invested at t = 0
to 1 unit of the consumption good at t = 1 or to 1 unit of the consumption good
at t = 2.
Depositors preferences over consumption are identical ex-ante i.e. as of pe-

riod 0. Each faces a privately observed uninsurable risk of being type 1 or type
2. In period 1, each consumer learns of his type. Type 1 agents care only
about consumption in period 1 while for type 2 agents, consumption in period
1 and consumption in period 2 are perfect substitutes. For each agent, only to-
tal consumption (and not its period-wise decomposition) is publicly observable.
Formally, at t = 1, each agent has a state dependent utility function which has
the following form:

U(x1, x2, θ) =

{
u(x1) if i is of type 1 in state θ

u(x1 + x2) if i is of type 2 in state θ

In each state of nature, there is a proportion λ of the continuum of agents who
are of type 1 and conditional on the state of nature, each agent has an equal and
independent chance of being type 1. It is assumed that λ is commonly known.
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In addition, there is a bank, denoted by b. The bank’s preferences over
consumption is represented by the linear utility function U b(x0, x1, x2) = x1 +
x2
3 . Unlike depositors, the bank has no endowments of the consumption good

at t = 0. However, the bank is endowed with two different asset technologies,
j = A,B, that convert inputs of the perishable good at t = 0 to outputs of
the perishable consumption good at t = 1 or t = 2. We will assume that the
size of the bank is large relative to the size of an individual depositor4 . As each
individual depositor has a (Lebesgue) measure zero, if the bank has the same size
as an individual depositor, transfers to the bank can be made without affecting
the overall resource constraint. In order to capture the trade-offbetween making
transfers to the bank and effi cient risk sharing between depositors, the bank has
to be large relative to the depositors.
The output of the perishable consumption good produced by either asset

technology has two components: a “private”non-contractible component that
only the bank can access and consume and a “public” component which de-
positors can access and consume as well. Both the “public”and the “private”
component of both asset technologies are characterized by constant returns to
scale. For each unit of the consumption good invested in t = 0, asset technology
j, j = A,B, yields either 1 unit of the “public”component of the consumption
good if the project is terminated at t = 1 or Rj > 0 units of the “public”com-
ponent of the consumption good at t = 2 if the project continues to t = 2. In
addition, for each unit of the consumption good invested in t = 0, asset tech-
nology j, j = A,B, yields rbj unit of the “private”non-contractible component
of the consumption good if the project is terminated at t = 1, or Rbj > 0 units
of the “private” component of the consumption good at t = 2 if the project
continues to t = 25 . In addition, at t = 0, the bank incurs a direct private
utility cost cj per unit of the consumption good invested in asset j at t = 0.

In order to operate either of these two asset technologies, the bank has to
mobilize the endowments of the depositors. At t = 0, we assume that mobilizing
depositors’endowments requires a banking contract which specifies an allocation
for each type of depositor and an investment portfolio for the bank.
Any contract used must satisfy the following constraints:
(a) the bank controls any investment that is made into either of these two

asset technologies and the operation of both these two asset technologies,
(b) no other agent in the economy has the human capital to operate either

of these two technologies,
(c) no other agent can replace the bank to take over the operation of either

3The assumption that ub (.) is linear simplifies the computations and the notation consid-
erably. All the results stated here extend, with appropiately modified computations, to the
case where ub (.) is strictly increasing and concave in consumption.

4Technically, the set of agents is modelled as a mixed measure space where each individual
depositor has a Lebesgue measure zero (and therefore is part of an atomless continuum of
depositors) while the bank is an atom with measure one. For details on how construct such a
measure space see Busetto, Codognato and Ghosal (2010).

5The assumption that within a technology there is no choice as to how much of the in-
vestment goes into the public component and how much into the private component is a
simplification and nothing essential in our results depends on this analysis.
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illiquid asset from the bank at t = 1,
(d) at t = 1 verifying or observing the investment decision of the bank, made

at t = 0, is possible only if an appropriate monitoring technology is available,
(e) the public return at t = 1 is observed by the depositors and/or an outside

agent (a court) only if the asset technology is terminated at t = 1 and the public
return at t = 2 is observed by the depositors and/or the outside agent only at
t = 2.
The consequence of making these assumptions is that, in the absence of a

perfect monitoring technology, the investment decision of the bank at t = 0
is non-contractible. The combination of non-contractible actions together with
the "private" non-contractible component of bank payoffs is the source of the
moral hazard problem.
In addition, we make some further assumptions on depositor’s preferences

and the two asset technologies:
(A1) u(.) is strictly increasing, strictly concave, smooth utility function,
(A2) −u

′′(x)x
u′(x) > 1 for all x > 0,

(A3) RA > 1 > RB > 0,
(A4) RA +RbA > RB +RbB ,
(A5) max

{
rbA, r

b
B

}
< Rbj , j = A,B,

(A6) cA > cB
Assumption (A1) implies that each individual type 1 and type 2 depositor

is risk-averse. Assumption (A2) implies that whenever there is effi cient risk-
sharing, the bank has to provide liquidity services: narrow banking is ruled
out. Under assumption (A3), it can never be in the depositor’s interest for the
bank to invest in asset B: depositors will prefer to invest their endowments
of the consumption good in the storage technology. Assumption (A4) implies
that production effi ciency requires investment in asset A. Assumption (A5)
implies that for either asset, the bank prefers the project to continue to t = 2.
Assumption (A6) says that it is costlier for the bank to operate the asset A the
effi cient asset technology.
An allocation is a vector (γs, γ, x, x

b) where (γs, γ) is the asset (equiva-
lently, investment) portfolio (chosen at t = 0) and describes the proportion of
endowments invested in the storage technology and asset technology A (with
proportion 1 − γs − γ invested in asset technology B), x = (x1

1, x
2
1, x

1
2, x

2
2) is

the consumption allocation of the depositors (xkt is the consumption of type k
depositor in time period t, k = 1, 2 and t = 1, 2) and describes what each type of
depositor consumes in each period and xb =

(
xb1, x

b
2

)
describes the consumption

allocation to the bank. A consequence of assumptions (A4) and (A5) is that
productive effi ciency, and hence ex ante effi ciency, requires that γ = 1.

Throughout the paper we that the social planner maximizes the ex ante
utility of a representative depositor6 . We first characterize the (constrained)
effi cient allocation and then, examine the implementation of this allocation us-
ing contracts (games). Given the sequential structure of the banking scenario

6 It can be easily verified (details available on request) that when banks have all the bar-
gaining power, narrow banking results.
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studied here, our notion of implementation requires that agents use dominant
actions in every subgame of the banking contract.

2.2 Contracts without bank runs

Clearly, the ex-ante utility of the representative depositor is

g(x) = λu(x1
1) + (1− λ)u(x2

1 + x2
2)

where g(x) is a weighted sum of type 1 and type 2 depositors preferences where
the weights used reflect the aggregate proportions of type 1 and type 2 de-
positors. When there is no monitoring technology available, the representative
depositor cannot condition transfers to the bank at t = 1 or t = 2, on the in-
vestment portfolio chosen by the bank at t = 0. In this case, making transfers
to the bank will have no impact on the bank’s incentives. Without a moni-
toring technology, in any banking contract that maximizes the ex ante utility
of the representative depositor, no transfers, over and above the private non-
contractible payoff the bank receives by operating either asset technology, will
be made to the bank.
Consider the case when RbA− cA ≥ RbB − cB . In this case, we claim that the

social planner can design a banking contract that implements the effi cient risk-
sharing without bank runs. The social planner solves the following maximization
problem (labelled (P ) for later reference):

max
{γ,x,xb}

g(x)

subject to
(P1) RA ≥ RA

(
λx1

1 + (1− λ)x2
1

)
+
(
λx1

2 + (1− λ)x2
2

)
,

(P2) xkt ≥ 0, k = 1, 2, t = 1, 2,
(P3) u

(
x1

1

)
≥ u

(
x2

1

)
,

(P4) u(x2
1 + x2

2) ≥ u(x1
1 + x1

2).
The solutions to (P ) satisfy the equations
(1) x2∗

1 = x1∗
2 = 0,

(2) u′(x1∗
1 ) = RAu

′(x2∗
2 ),

(3) RA = λRAx
1∗
1 + (1− λ)x2∗

2 ,
while for the bank
(4a) γ∗ = 1,
(4b) xb∗1 = 0,
(4c) xb∗2 = RbA.
Allocations characterized by (1)−(4) correspond to the first-best allocations

in Diamond and Dybvig (1983). As in their paper, under the assumption (A1),
u′′(x) < 0 while under assumption (A3), RA > 1. Therefore, using (2), it
follows that x2∗

2 > x1∗
1 . This ensures that the truth telling constraints (P3)

is satisfied. Under the additional assumption that −u
′′(x)x
u′(x) > 1 it also follows

that x1∗
1 > 1 while x2∗

2 < RA so that effi cient risk-sharing requires the bank to
provide liquidity services: narrow banking is ruled out.
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Again, as in Diamond and Dybvig (1983), there is a banking contract
(
γ̂, r̂, k̂

)
,

satisfying a sequential service constraint and with suspension of convertibility7 ,
that implements (γ∗, x∗). Each depositor who withdraws in period 1 obtains a
fixed claim r̂1 = x1∗

1 per unit deposited at t = 0 and convertibility is suspended
at k̂ = λ. If banking continues to t = 2, each agent who withdraws at t = 2,
obtains a fixed claim r̂2 = x2∗

2 per unit deposited at t = 0 and not withdrawn
at t = 1. Moreover, γ̂ = 1. The argument establishing how such a contract
implements first-best risk sharing follows Diamond and Dybvig (1983) and is
reported in appendix 1.
What happens if RbA − cA < RbB − cB and the long-run interests of the

depositors and the bank are no longer aligned? If costless and perfect monitoring
of the bank’s portfolio choice, made at t = 0, is possible at t = 1, the depositor
can write a banking contract that conditions transfers at t = 1 on portfolio
choices made by the bank at t = 0. Whether the social planner will actually
choose to do so is an issue examined in the next subsection.

2.3 Contracts with the threat of bank runs

In this subsection, we examine the case where at time t = 0, it becomes common
knowledge that the social planner has invested in a monitoring technology and
study the case of costless and perfect monitoring. With monitoring, we assume
that (a) before the bank makes its investment decision, it becomes common
knowledge that depositors have invested in the monitoring technology, and (b)
all monitoring occurs at t = 1 after the realization of θ and the results of
monitoring are publicly revealed before depositors choose whether or not to
withdraw their deposits.
Specifically, we assume that at t = 0, it is common knowledge that at the

beginning of t = 1, the social planner observes the investment allocation across
assets made by the bank at t = 0. We assume that RbA − cA < RbB − cB .
An obvious additional component in a banking contract is that now the social
planner can commit to make transfers to the bank at t = 2, contingent on the
actions chosen by the bank at t = 0. Note that under our assumptions, the
social planner cannot make negative transfers to the bank i.e. fine the bank.
This is because, by assumption, the payoffs of the bank are private and non-
contractible. Therefore, any transfer made to the bank has to be non-negative.
Suppose the social planner commits to make a transfer, at t = 2, to the

bank of τ b2 (γ), such that RbA + τ b2 (1) − cA = RbB − cB + ε, where ε > 0 but
infinitesimal, while τ b2 (γ) = 0 for all γ 6= 1. In this case, the bank will choose

7The sequential service constraint implies that (a) withdrawal tenders are served sequen-
tially in random order until the bank runs out of assets and (b) the bank’s payoff to any
agent can depend only on the agent’s place in the line and not on any future information
about agents behind him in the line while suspension of convertibility implies that any agent
attempting to withdraw at t = 1 will receive nothing at t = 1 if he attempts to withdraw at
t = 1 after a fraction k̂ of depositors. Note that along the equilibrium path of play, neither
the sequential service constraint nor the suspension of convertibility constraint ever binds in
any of the banking contracts, whether random or deterministic, studied in this paper.
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γ = 1 if banking continues to t = 2. The resource constraint is
(P ′1) RA − τ b2 (1) ≥ RA

(
λx1

1 + (1− λ)x2
1

)
+
(
λx1

2 + (1− λ)x2
2

)
.

Let γ′, x′ denote a solution to the maximization problem with the resource
constraint (P ′1). Remark that a necessary condition for effi cient risk-sharing
between type 1 and type 2 depositors is that the equations (1), (2) and the
inequality (P ′1) be simultaneously satisfied. Remark also that for depositors’
participation constraints to be satisfied, any solution to the maximization prob-
lem must also satisfy the inequality

(5) x′11 ≥ 1 and x′21 + x′22 ≥ 1.
The following example demonstrates the (robust) possibility that there is no

x′ satisfying (1), (2), (P ′1) and (5).
Example: Suppose u (x) = x1−β

1−β , λ > 0 and RA − τ b2 (1) < 1− ε. Suppose
to the contrary, there is some x′ satisfying (1), (2), (P ′1) and (5). Then, any x′

that satisfies (1), (2) must also satisfy the equation R
1
β

Ax
′1
1 = x′22 . Evaluated at

x′11 = 1, the expression on the right hand side of (P ′1) is λRA + (1− λ)R
1
β

A >
1 as RA > 1 while the left hand side of (P ′1) is strictly less than 1 − ε, a
contradiction.�
The above example shows that with transfers, even with costless and perfect

monitoring, there is, in general, a trade-off between (a) effi cient risk-sharing
between type 1 and type 2 depositors and provision of liquidity, and (b) provid-
ing the bank with appropriate incentives. In robust banking scenarios, banking
contracts with transfers results in no risk-sharing between type 1 and type 2
depositors and consequently, no provision of liquidity i.e. in narrow banking.
In general, however, even if risk-sharing between type 1 and type 2 depositors

and providing the bank with appropriate incentives are consistent i.e. if there
is a solution satisfying (1), (2), (P ′1) and (5), incentive compatible transfers
to the bank will lower consumption for both types of depositors. To make this
point, observe that when equations (1) and (2) are satisfied, we have that

u′
(
x′11
)

= RAu
′ (x′22 )

and as u′′(.) < 0, the preceding equation implicitly defines a function f(.) such
that

x′22 = f
(
x′11
)

where

f
(
x′11
)

= u′−1

(
u′
(
x′11
)

RA

)
.

Consider the inequality
(6) RA − τ b2 (1) ≥ λRA + (1− λ) f (1) .
By computation, it is easily checked that when (6) holds, an interior solution

is possible. Note that (6) is equivalent to

RAu
′
(
RA − τ b2 (1)− λRA

1− λ

)
< u′(1)
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which implies that as RA > 1 and u′′(.) < 0, x′22 > x′11 , x
′2
2 < f (1) and therefore,

x′11 > 1. But we also have that x′11 < x∗11 and x′22 < x∗22 . It follows that if (6)
holds, any solution can be implemented by an appropriately designed banking
contract, augmented with transfers and with suspension of convertibility. How-
ever, such an contract will inevitably entail a consumption loss for both types
of depositors.
Assuming that the action chosen by the bank, at t = 0 can be observed

costlessly at t = 1, can the social planner design a banking contract without
transfers that implements the allocation x∗?
The following argument shows that this is indeed possible. The main idea

of the argument is that the social planner can observe γ, and therefore make
the terms of the banking contract contingent on γ so that if γ = 1, there is no
bank run while if γ < 1, there is a bank run (equivalently, asset liquidation) with
probability one. Such a banking contract would induce the bank to choose γ = 1
at t = 0. Therefore, in the game induced by the banking contract, although
bank runs are never observed along the equilibrium path of play, the threat of
a bank run off the equilibrium path of play induces the bank to choose γ = 1
along the equilibrium path of play.
The details are as follows. Let r′ (γ) be a function defined from [0, 1] to

<2
+ while let k′ (γ) be a function defined from [0, 1] to itself. Consider the
banking contract, subject to a sequential service constraint, described by a
vector (γ′, r′, k′) such that r′1 (1) = x1∗

1 per unit deposited at t = 0, r′1 (γ) = 1
for γ < 1, k′ (1) = λ while k′ (γ) = 1 for γ < 1, and if banking continues to
t = 2, r′2 (1) = x2∗

2 while for γ < 1, r′2 (γ) = 0 per unit deposited at t = 0 and
not withdrawn at t = 1. The contract also specifies the bank’s asset portfolio
where γ′ = 1. It follows that when γ = 1, it is a dominant action for type
one depositors to withdraw and for type two depositors not to withdraw at
t = 1, while it is a dominant action for all types of depositors to withdraw their
deposits at t = 1 whenever γ < 1. Anticipating this behavior by depositors,
the bank will choose γ = γ′ = 1 as this yields a payoff RbA − cA while choosing
γ < 1 yields a payoff γ

(
rbA − cA

)
+ (1− γ)

(
rbB − cB

)
< RbA − cA.

We summarize the above discussion as the following proposition:

Proposition 1 When costless and perfect monitoring8 is possible, a banking
contract with the threat of bank runs off the equilibrium path of play can im-
plement the effi cient allocation x∗ and yield the depositor higher payoffs than a
banking contract involving transfers to the bank.

2.4 Contracts with equilibrium bank runs

What happens if RbA − cA < RbB − cB and there is no available monitoring
technology for verifying and observing the investment decision of the bank at
t = 1? In this case, allowing for transfers to the bank will have no impact
on the bank’s incentives. A banking contract, all of whose Nash equilibria at

8The case of imperfect and costly monitoring combines features of the results obtained in
this section and section 2.4 below and is studied in section 4 below.
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t = 1 involve a zero probability of a bank run, will fail to implement any γ > 0.
If rbA − cA < rbB − cB , even when bank runs occur with probability one, the
bank will not invest in asset A: in this case without establishing some sort of
contractibility over bank payoffs, no depositor will invest with the bank and
even the second-best effi ciency cannot be achieved.
Assume that rbA − cA > rbB − cB9 and if there is enough chance of a bank

run (equivalently, early asset liquidation)10 at t = 1, so that technology A gets
to generate a higher "private" utility to the bank than technology B, one might
get the bank to invest all available resources at t = 0 in asset technology A. So
a run is clearly necessary to implement any allocation with γ > 0. That it is
suffi cient is proved below. However requiring γ > 0 entails a positive probability
of a bank run at t = 1 and although effi cient risk-sharing between type 1 and
type 2 depositors is never implemented with probability one, it is achieved with
strictly positive probability.
Consider the randomization scheme (S, π) where S = {s1, ..., sM}, M ≥

2, is some arbitrary but finite set of states of nature and π = {π1, ..., πM},
πm ≥ 0,

∑m=M
m=1 πm = 1 is a probability distribution over S11 . The ran-

domization scheme works as follows: at t = 0, no agent, including the bank,
observes sm while at t = 1, before any choices are made, the realized value
of sm is revealed to all depositors but not the bank and as before, each de-
positor privately observes her own type. A random allocation is a collec-
tion (γ̃, x̃, x̃b) where γ̃ ∈ [0, 1], x̃ : S → <4

+ and x̃b : S → <2
+. Let S̄ ={

sm ∈ S : x̃kt (sm) ≥ 0, λx̃1
1 (sm) + (1− λ) x̃2

1 (sm) ≥ 1
}
, M̄ =

{
m : sm ∈ S̄

}
and

let π̄ =
∑
m∈M̄ πm. The interpretation is that whenever sm ∈ S̄, the asset

needs to be liquidated at t = 1 and therefore, π̄ is the probability of a bank run.
Therefore, at t = 1, both the bank and the depositors can condition any choices
they make on sm.
For γ ∈ [0, 1], let Rγ = γRA + (1− γ)RB . The maximization problem

(labelled as (P̃ ) for later reference) is:

max
{S,π,γ̃,x̃,x̃b}

∑
sm∈S

πmg(x̃ (sm) , x̃b (sm))

9One interpretation of the payoff inequalities studied in this part of the paper, consistent
with Hart and Moore, is as follows. Assume that the "private" payoff of the bank has two
components: (i) a fixed fraction rbA (respectively, rbB) of the public return generated by the
asset A (respectively, asset B) and obtained by the bank upon termination in either period,
and (ii) cash flows generated by the asset which can be stolen (because they cannot be accessed
by the social planner or depositors) by the bank which is normalised to zero for both asset
A and asset B if termination occurs at t = 1 but a positive quantity Γ (respectively, zero)
for asset B (respectively, asset A) if termination occurs at t = 2. As cA > cB , the inequality
rbA − cA > rbB − cB implies that rbA > rbB . In effect we are assuming that r

b
B < rbA < RbA =

rbARA < R
b
B = rbBRB + Γ. Specifically, we assume that the cash flow that the bank can steal

before termination occurs in t = 2 is big enough i.e Γ > rbARA− rbBRB . When the bank
invests in asset technology B, a bank run prevents it from accessing Γ.
10By assumption, no other agent can replace the bank to take over the operation of either

illiquid asset from the bank at t = 1 which, in turn, implies that the second-best banking
contract studied below is renegotiation proof.
11Obviously, there are other ways of introducing randomness in the social planner’s problem.

We choose the randomization scheme presented here as a matter of convenience.
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subject to(
P̃1
)

Rγ̃
(
λx̃1

1 (sm) + (1− λ) x̃2
1 (sm)

)
+
(
λx̃1

2 (sm) + (1− λ)x̃2
2 (sm)

)
≤

Rγ̃ , sm ∈ S
(P̃2) x̃kt (sm) ≥ 0, k = 1, 2, t = 1, 2, sm ∈ S,
(P̃3) u(x̃1

1 (sm)) ≥ u(x̃2
1 (sm)), sm ∈ S,

(P̃4) u(x̃2
1 (sm) + x̃2

2 (sm)) ≥ u(x̃1
1 (sm) + x̃1

2 (sm)), sm ∈ S,

(P̃5) γ̃ ∈ arg maxγ∈[0,1]

{
π̄
(
γrbA + (1− γ) rbB

)
+ (1− π̄)

(
γRbA + (1− γ)RbB

)
− [γcA + (1− γ) cB ]

}
.

Fix a pair (S, π), M ≥ 2, such that S̄ is non-empty. Production effi ciency
and hence, constrained effi cient risk-sharing requires that γ̃ = 1. Evaluated at
γ̃ = 1, the payoffs of the bank is given by the expression

π̄rbA + (1− π̄)RbA − cA.

For the moral hazard constraint (P̃5) to be satisfied, we require that

π̄rbA + (1− π̄)RbA − cA

≥

 π̄
(
γrbA + (1− γ) rbB

)
+ (1− π̄)

(
γRbA + (1− γ)RbB

)
− [γcA + (1− γ) cB ]


for all γ ∈ [0, 1]. When π̄ = 0, as RbA < RbB , (P̃5) will always be violated for
all γ ∈ [0, 1]. On the other hand when π̄ = 1, as rbA − cA > rbB − cB , (P̃5)
will hold as a strict inequality for all γ ∈ [0, 1]. Further, both sides of the
inequality are continuous in π and RbA > rbA, the expression π̄r

b
A + (1− π̄)RbA

is also decreasing in π̄ at the rate rbA − RbA; moreover, as R
b
B > 1, for each

γ ∈ [0, 1], the expression π̄
(
γrbA + (1− γ) rbB

)
+ (1− π̄)

(
γRbA + (1− γ)RbB

)
is

also decreasing in π̄ at the rate
(
γrbA + (1− γ) rbB

)
−
(
γRbA + (1− γ)RbB

)
. It

follows that for each γ ∈ [0, 1], as RbB > RbA > rbA > rbB ,∣∣rbA −RbA∣∣
=

∣∣RbA − rbA∣∣
<

∣∣(γRbA + (1− γ)RbB
)
−
(
γrbA + (1− γ) rbB

)∣∣
=

∣∣(γrbA + (1− γ) rbB
)
−
(
γRbA + (1− γ)RbB

)∣∣
and therefore, there exists a unique threshold π̃, 0 < π̃ < 1, such that for all
π̄ > π̃, π̄ < 1, the moral hazard constraint (P̃5) holds as a strict inequality for
all γ ∈ [0, 1].
Next, note that
(1′) x̃2∗

1 (sm) = 0, sm ∈ S,
(3′) RA

(
λx̃1∗

1 (sm) + (1− λ) x̃2∗
1 (sm)

)
+ (1− λ)x̃2∗

2 (sm) = RA, sm ∈ S,
(4′a) x̃b∗1 (sm) = rbA, sm ∈ S̄,
(4′b) x̃b∗1 (sm) = 0, sm ∈ S\S̄,
(4′c) x̃b∗2 (sm) = 0, sm ∈ S̄,
(4′d) x̃b∗2 (sm) = RbA, sm ∈ S\S̄.
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By construction,
(2′a) x̃2∗

2 (sm) = 0, sm ∈ S̄,
and as u′(.) > 0, using (P̃3) and (P̃4), we obtain that
(2′b) x̃1∗

1 (sm) = x̃2∗
1 (sm) , sm ∈ S̄,

while using (3′),
(2′c) x̃1∗

1 (sm) = x̃2∗
1 (sm) = 1, sm ∈ S̄,

as when there is a bank run, this is the only allocation consistent with the
feasibility and participation constraints in P̃ . It follows that

(2′d) x̃2∗
1 (sm) = 0, sm ∈ S\S̄,

and
(2′e) u′(x̃1∗

1 (sm)) = RAu
′(x̃2∗

2 (sm)), sm ∈ S\S̄,
and therefore
(2′f) x̃1∗

1 (sm) = x1∗
1 , sm ∈ S\S̄,

(2′g) x̃2∗
2 (sm) = x2∗

2 , sm ∈ S\S̄.
It follows that for a fixed pair (S, π), M ≥ 2, such that S̄ is non-empty

and π̄ ≥ π̃, π̄ < 1, there is a unique random allocation satisfying (1′) − (4′).
For a fixed pair (S, π), such that either S̄ is empty or π̄ < π̃, we have already
established that there is no allocation that satisfies (1′)−(4′). Finally, for a fixed
pair (S, π), such that either S\S̄ is empty or π̄ = 1, both x̃1∗

1 (sm) = x̃2∗
2 (sm) =

1, x̃b∗1 (sm) = rbA and x̃
b∗
2 (sm) = 0 for all sm ∈ S. In this case observe that

though the moral hazard constraint (4′) always holds, there is no state at which
there is effi cient risk-sharing.
Next, we examine the (constrained) optimal choice of the pair (S, π). First

note that at any optimal choice of (S, π), generating a unique random allocation
satisfying (1′)−(4′), both S\S̄ and S̄ will have to be non empty. Fix a pair (S, π),
M ≥ 2, generating a unique random allocation satisfying (1′)− (4′) denoted by
(x̃, x̃b). Then, there is a pair (S′, π′), S′ = {s′1, s′2} and π′ = {π′1, π′2} so that
(a) x̃ (sm) = x̃ (s′1) and x̃b (sm) = x̃b (s′1) for all sm ∈ S\S̄, (b) x̃ (sm) = x̃ (s′2)
and x̃b (sm) = x̃b (s′2) for all sm ∈ S̄, (c) π′1 = (1− π̄) and π′2 = π̄ and therefore,∑

sm∈S
πmg(x̃ (sm) , x̃b (sm)) = π′1g(x̃ (s′1) , x̃b (s′1)) + π′2g(x̃ (s′2) , x̃b (s′2))

It follows that without loss of generality, we can restrict attention to S′ such
that M = 2. Finally, as the representative depositor wants to maximize the
probability with which effi cient risk sharing is implemented, she will choose the
lowest value of π′2 compatible with (P̃5) being satisfied as a strict inequality i.e.
choose π′2 = π̃+ ε < 1, where ε > 0 is small but strictly positive number so that
(P̃5) is satisfied as a strict inequality. Setting π′2 = π̃ will imply that (P̃5) will
be satisfied as an equality in which case the representative depositor will have
to rely on the bank choosing a tie-breaking rule in favour of asset technology A.
It remains to specify a random banking contract that will implement the ran-

dom allocation satisfying (1′)− (4′). A random banking contract12 is described
12As before we assume that at t = 0, no agent, including the bank, observes sm while

at t = 1, before any choices are made, the realized value of sm is revealed to all agents.
Thererfore, at t = 1, both the bank and the depositers can condition any choices they make
on sm.

14



by the vector
(
S′, π′, γ̃, r̃, k̃

)
where the pair (S′, π′) are as in the preceding

paragraph, γ̃ = 1 and r̃1 (s′1) = x1∗
1 , r̃1 (s′2) = 1, r̃2 (s′1) = x2∗

2 , r̃2 (s′2) = 1,
k̃ (s′1) = λ, k̃ (s′2) = 1. The interpretation is that subject to a sequential service
constraint and suspension of convertibility, each depositor who withdraws in
period 1 obtains a random claim r̃1 (s′m), s′m ∈ S′ per unit deposited at t = 0.
If banking continues to t = 2, each agent who withdraws at t = 2, obtains
a random claim r̃2 (s′m), s′m ∈ S′ per unit deposited at t = 0. With such a
contract, given s′m ∈ S′, the payoff to per unit of deposit withdrawn at t = 1,
which depends on the fraction of deposits serviced before agent j, kj , is given
by the expression

ṽ1(fj , r̃1 (s′m) , k̃ (s′m) , s′m) =

{
u (r̃1 (s′m)) , if fj ≤ k̃ (s′m)

u (0) , kj > k̃ (s′m)

while the period 2 payoff per unit deposit withdrawn at t = 2, which depends
on total fraction of deposits withdrawn in period 1, k (s′m), is given by the
expression

ṽ2(f, r̃1 (s′m) , s′m) =

{
u (r̃2 (s′m)) , if 1 > k (s′m) r̃1 (s′m)

0, otherwise

At t = 1, for each value of s′m ∈ S′, the above contract induces a noncooperative
game between depositors where each depositor chooses what fraction of their
deposits to withdraw. Fix s′m ∈ S′. Suppose depositor j withdraws a fraction
µj (s′m) Then, a type 1 depositor obtains a payoffµj (s′m) ṽ1(fj , r̃1 (s′m) , k̃ (s′m) , s′m)

while a type 2 depositor obtains a payoff of µj (s′m) ṽ1(fj , r̃1 (s′m) , k̃ (s′m) , s′m)+(
1− µj (s′m)

)
ṽ2(f, r̃1 (s′m) , s′m). Remark that for a type 1 depositor, µj (s′m) =

0 strictly dominates all other actions. For s′1, as k̃ (s′1) = λ, r̃1 (s′1) = x1∗
1 and

r̃2 (s′1) = x2∗
2 , it follows that ṽ2(f, r̃1 (s′1) , s′1) > ṽ1(fj , r̃1 (s′1) , k̃ (s′1) , s′1) and for

type 2 depositors, µj (s′1) = 0 strictly dominates all other actions. For s′2, as
r̃1 (s′2) = 1 while r̃2 (s′2) = 0, it follows that for type 2 depositors, µj (s′2) = 1
strictly dominates all other actions. Therefore, (i) for s′1, the unique Nash equi-
librium in strictly dominant actions is µj (s′1) = 1 if j is a type 1 depositor while
µj (s′1) = 0 if j is a type 2 depositor and (ii) s′2, the unique Nash equilibrium in
strictly dominant actions is µj (s′1) = 1 for all j. At t = 0, the bank’s payoffs
are:

ṽb (γ) = π′2 + π′2
(
γRbA + (1− γ)RbB

)
− [γcA + (1− γ) cB ]

As (6′) holds as a strict inequality, it follows that choosing γ = γ̃ = 1 is the
strictly dominant choice for the bank.
The above random banking contract implements the allocation satisfying

(1′)− (4′).
We summarize the above discussion with the following proposition:

Proposition 2 When RbA − cA < RbB − cB but rbA − cA > rbB − cB the second-
best allocation determined by (1′)− (4′) is implemented by the random banking

contract
(
S′, π′, γ̃, r̃, k̃

)
.
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The above result makes clear that whenever the moral hazard constraint
binds, bank runs are an endemic feature of the second-best banking contract
and limits liquidity provision by banks.
Remark: In the preceding analysis, what is critical is that the aggregate

proportion λ of type 1 depositors is commonly observed at t = 1. Consider a
modification of the problem so that the aggregate proportion λ of type 1 de-
positors can be any one element from a set {λ1, ..., λN} and at t = 0 there is
a common probability distribution over {λ1, ..., λN}. However, at t = 1, the
realized value of λ is commonly observed. In such a case, the effi cient risk-
sharing allocation will be contingent on λ ∈ {λ1, ..., λN} and all the preceding
results, after appropriate reformulation, continue to apply. In this sense, our
results don’t require but can be extended to scenarios with exogenous uncer-
tainty. With exogenous uncertainty, the class of random contracts studied here,
introduce noise that is independent of fundamentals in the banking process.

3 Local moral hazard and contagion

3.1 The model

In this section, we extend the model studied in section 2 to allow for multiple
banks and moral hazard in banking along the lines of Allen and Gale (2000).
There are three time periods, t = 0, 1, 2. In each period there is a single per-
ishable good xt. There are two regions, n = 1, 2. In each region, there is a
continuum of identical depositors in [0, 1], indexed by i, of mass one, each en-
dowed with one unit of the perishable good at time period t = 0 and nothing at
t = 1 and t = 2. Each depositor has access to a storage technology that allows
him to convert one unit of the consumption good invested at t = 0 to 1 unit of
the consumption good at t = 1 or to 1 unit of the consumption good at t = 2.
Depositors preferences over consumption are as before. The main difference

is that now in each state of nature, there is a proportion λn,θ of the continuum
of agents in region l who are of type 1 and conditional on the state of nature,
each agent has an equal and independent chance of being type 1. For simplicity,
it will be assumed that there two states of the world so that θ ∈ {θ1, θ2}.
When θ = θ1, in region n = 1, λ1 = λL while in region n = 2, λ2 = λH with
0 < λL < λH < 1. Symmetrically, when θ = θ2, in region n = 2, λ2 = λL while
in region c = 1, λ1 = λH . It is assumed that ex-ante at t = 0, there is a prior
distribution over {θ1, θ2} given by {p, 1− p}.
In addition, in each region c, there is a bank, denoted by bn. Bank preferences

over consumption is also as before. As before, neither bank has any endowments
of the consumption good at t = 0 but are endowed with two different asset
technologies, j = A,B, that convert inputs of the perishable good at t = 0 to
outputs of the perishable consumption good at t = 1 or t = 2. As before, we will
assume that the size of either bank is large relative to the size of an individual
depositor.
The asset technology is similar to the case of a monopoly bank in a closed
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region. As before, there are two asset technologies. The “public”returns gener-
ated by each asset is as in the case of the monopoly bank. In addition, for each
unit of the consumption good invested in t = 0, asset technology j, j = A,B,
yields rbn unit of the “private”non-contractible component of the consumption
good if the project is terminated at t = 1, or Rbnj > 0 units of the “private”
component of the consumption good at t = 2 if the project continues to t = 2.
In addition, at t = 0, the bank incurs a direct private utility cost cj per unit of
the consumption good invested in asset j at t = 0.

As before, operating either of these two asset technologies requires each bank
to mobilize the endowments of the depositors within its own region: we do not
allow for the possibility that the bank in region 1 is able to mobilize the deposits
of some depositors in region 2 and vice versa.
At t = 0, we assume that mobilizing depositors’ endowments requires a

banking contract in each region that specifies an allocation for each type of
depositor and an investment portfolio for the bank within that region.
As before, the investment decision of either bank at t = 0 is non-contractible13 .

Further, within each region, depositor preferences and asset returns satisfy as-
sumptions (A1)− (A6) above.
An allocation is a vector (γns, γn, xn, x

bn : n = 1, 2) where (γns, γn) is
the asset (equivalently, investment) portfolio (chosen at t = 0) and describes
the proportion of endowments invested in the storage technology and asset
technology A (with proportion 1 − γns − γ invested in asset technology B),
xn = (x1

n1, x
2
n1, x

1
n2, x

2
n2) is the consumption allocation of the depositors (xknt is

the consumption of type k depositor in time period t in region n k = 1, 2 and
t = 1, 2) and describes what each type of depositor consumes in each period and

xbn =
(
xbn1 , xbn2

)
describes the consumption allocation to the bank. A conse-

quence of assumptions (A4) and (A5) is that productive effi ciency, and hence
social effi ciency, requires that γn = 1.

For simplicity, in this section, we assume that depositors have all the bargain-
ing power. In this case, as all depositors are identical ex-ante, a representative
depositor, acting on behalf of all other depositors, makes a "take-it-or-leave-it"
offer of a banking contract to the bank, which the bank can either accept or
reject.

3.2 Inter-bank markets and the first-best benchmark

Let λ̄ = pλL + (1 − p)λH . Clearly, the objective function of the representative
depositor in each region is

g(x) = λ̄u(x1
n1) + (1− λ̄)u(x2

n1 + x2
n2)

where g(x) is the expected utility of type 1 and type 2 depositors preferences.
When there is no monitoring technology available, the representative depositor

13Specifically, we assume that the bank in region 2 doesnot have the human capital to
operate the assets controlled by the bank in region 1 and vice versa. This rules out the
possibility of a banking contract that involves the takeover of one bank by another.
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cannot condition transfers to the bank at t = 1 or at t = 2 on the invest-
ment portfolio chosen by the bank at t = 0. In this case, making transfers to
the bank will have no impact on the bank’s incentives. Without a monitoring
technology, in any banking contract written by the representative depositor, no
transfers, over and above the private non-contractible payoff the bank receives
by operating either asset technology, will be made to the bank.
Consider the case when RbnA − cA ≥ RbnB − cB . In this case, we claim that

the social planner can design a banking contract that implements the ex ante
effi cient risk-sharing without bank runs. In each region, the social planner solves
the following maximization problem (labelled (R) for later reference):

max
{γn,xn,xbn}

g(x)

subject to
(R1) RA ≥ RA

(
λ̄x1

n1 +
(
1− λ̄

)
x2
n1

)
+
(
λ̄x1

n2 +
(
1− λ̄

)
x2
n2

)
,

(R2) xknt ≥ 0, k = 1, 2, t = 1, 2,
(R3) u

(
x1
n1

)
≥ u

(
x2
n1

)
,

(R4) u(x2
n1 + x2

n2) ≥ u(x1
n1 + x1

n2).
The solutions to (R) satisfy the equations
(1′′) x2∗

n1 = x1∗
n2 = 0,

(2′′) u′(x1∗
n1) = RAu

′(x2∗
n2),

(3′′) RA = λ̄RAx
1∗
n1 +

(
1− λ̄

)
x2∗
n2,

while for the banks
(4′′a) γ∗n = 1,
(4′′b) xbn∗1 = 0,
(4′′c) xbn∗2 = RbnA .
Allocations characterized by (1′′) − (4′′) correspond to the first-best allo-

cations. Clearly γ∗n = γ∗n′ , x
∗
n = x∗n′ , x

bn∗ = xbn′∗, n, n′ = 1, 2. Moreover,
λ̄x1∗

1 < 1. It follows that x2∗
n2 = x2∗

2 > x1∗
n1 = x1∗

1 while x1∗
1 > 1 while x2∗

2 < RA.
In what follows, we assume that λHx1∗

1 > 1. In this case, note that without
a ex-ante interbank market, in the region with the high liquidity shock, there
will be ineffi ciently early liquidation of the long-term asset. It follows that a
combination of a regional banking contract (along the lines of Diamond-Dybvig
(1983)) with an ex-ante inter-bank market (along the lines of Allen and Gale
(2000)) are both required to implement the ex-ante optimal risk-sharing alloca-
tion.
Ex-ante, in the interbank market, each bank exchanges claims to half of

the deposits mobilized within its own region. Suppose conditional on the re-
alization of the liquidity shock, region 1 faces a high liquidity shock so that
proportion of type traders in region is λH . In this case, the bank in region
1 liquidates its claims against the bank in region 2 to meet its own extra
liquidity needs which amount to

(
λH − λ̄

)
x1∗

1 . Moreover, by computation,[
λL +

(
λH − λ̄

)]
x1∗

1 = λ̄x1∗
1 < 1 so that the bank in region 2 doesn’t have

to liquidate all of its asset either. To prevent bank runs driven by depositor
coordination failure, the suspension of convertibility threshold has to be set at
λH . At t = 2, the bank in region 1 makes a payout of

(
λ̄− λL

)
x2∗

2 to the bank
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in region 2. The details of such a contract follows closely the specification of
the banking contract in section 2.2 and is omitted. Taken together, the inter-
bank market and suspension of convertibility implements first-best risk sharing
between depositors.
The above discussion can be summarized as the following result:

Proposition 3 When RbnA − cA > RbnB − cB, n = 1, 2, the first-best allocation
is implemented by combining trade in the inter-bank market with an appropriate
banking contract embodying suspension of convertibility.

3.3 Bank runs and contagion with local moral hazard

Suppose for some n, for concreteness n = 1, Rb1A − cA < Rb1B − cB . To fix ideas,
consider what happens when the two banks seek to implement the first-best risk
allocation (γ∗r , x

∗
r : r = 1, 2). We argue that the ex-ante optimal allocation can

no longer be implemented. Note that implementing the effi cient allocation re-
quires that the existence of an inter-bank market where banks exchange claims
to each others long term assets. When Rb1A − cA < Rb1B − cB , with a zero prob-
ability of a bank run, bank 1 will choose γ1 = 0. Anticipating this possibility,
bank 2 will be unwilling to hold any of bank 1′s long-term assets. Thus, the
inter-bank market will break down and the effi cient allocation can no longer be
implemented.
If rb1A − cA > rb1B − cB , provided there is enough chance of a bank run

(equivalently, asset liquidation)14 at t = 1, so that technology A gets to generate
a higher private utility return to bank 1 than technology B, one might get the
bank 1 to invest all available resources at t = 0 in asset technology A. So a run
is clearly necessary to implement any allocation with γ > 0. That it is suffi cient
and may involve contagion is proved below.
Let π̄1 be the ex-ante (before the realization of any liquidity shocks) prob-

ability of early liquidation for bank 1. Given π̄1, for each γ1 ∈ [0, 1], bank 1′s
payoff is

f1(π̄1, γ1) = π̄1

(
γ1r

b1
A + (1− γ1) rb1B

)
+ (1− π̄1)

(
γ1R

b1
A + (1− γ1)Rb1B

)
− [γ1cA + (1− γ1) cB ]

We want to ensure that given π̄1, γ1 = 1maximizes f1(π̄1, γ1). This is equivalent
to requiring that the following inequality holds for all γ1 ∈ [0, 1]

π̄1r
b1
A + (1− π̄1)Rb1A − cA ≥


π̄1

(
γ1r

b1
A + (1− γ1) rb1B

)
+ (1− π̄1)

(
γ1R

b1
A + (1− γ1)Rb1B

)
− [γ1cA + (1− γ1) cB ]


14By assumption, no other agent (including bank 2) can replace the bank 1 to take over

the operation of either illiquid asset from the bank at t = 1 which, in turn, implies that the
second-best banking contract studied below is renegotiation proof.
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By an analogous argument to the one presented in section 2.4, there exists a
unique threshold π̃1, 0 < π̃1 < 1, such that for all π̄1 > π̃1, π̄1 < 1, the moral
hazard constraint for bank 1 holds as a strict inequality for all γ1 ∈ [0, 1].
Note that the decision of a depositor to withdraw is made only after she

observes her own type. Therefore, necessarily, a bank run on bank 1 can only
be implemented after the realization of the liquidity shock. For a bank run on
bank 1 not to involve contagion, it must be the case that the bank run occurs
conditional on θ2 when λ1 = λH and λ2 = λL. However, if (1−p) < π̃1, even if a
bank run on bank 1 occurs with probability one conditional on θ2, the incentive
constraint of bank 1 cannot be satisfied. In such cases, there must be a positive
probability of a bank run on bank 1 conditional on θ1 which necessarily implies
contagion.
Assume (1 − p) < π̃1. Consider a randomization scheme (S, π) where S =

{s1, s2} and π (θ) = {π1 (θ) , π2 (θ)} is a probability distribution over S such that
π1 (θ1) = π̃1 − (1 − p) + ε (where ε is small positive number), π1 (θ2) = 1 and
π2 (θ) = 1 − π1 (θ), θ ∈ {θ1, θ2}. The randomization scheme works as follows:
at t = 0, no agent, including the bank, observes sm while at t = 1, before any
choices are made and after θ has been observed and each depositor privately
observes her own type, the realized value of sm is revealed to all depositors
but not the bank. Ex-ante, in the interbank market, each bank exchanges
contingent claims to half of the deposits mobilized within its own region where
claims are made contingent on {s1, s2} × {θ1, θ2}. Clearly, claims contingent
on (s2, θ2) are not exchanged as the contingency (s2, θ2) has a zero probability.
The returns on claims contingent on (s1, θ), θ ∈ {θ1, θ2}, are zero while each
unit of a claim contingent on (s2, θ1) yields a

(
λH − λ̄

)
x1∗

1 at t = 1 with a
payout of

(
λ̄− λL

)
x2∗

2 at t = 2. The suspension of convertibility threshold
is also made contingent on {s1, s2} × {θ1, θ2} so that it is set at zero for all
contingencies except for (s2, θ1) when its is set at λH . The details of such
a contract follows closely the specification of the banking contract in section
2.4 and is omitted. Taken together, the inter-bank market and suspension of
convertibility implements first-best risk sharing between depositors.
Therefore, in a second-best contract where the incentive compatibility con-

straint of bank 1 binds, there is trade in the inter-bank market even allowing
for the possibility of bank runs and contagion after the realization of liquidity
shocks.
We summarize the above discussion with the following proposition:

Proposition 4 When Rb1A −cA < Rb1B −cB, r
b1
A −cA > rb1B −cB and (1−p) < π̃1

the second-best allocation is implemented by a combination of trade in the inter-
bank market alongwith contagion induced by the random banking contract.
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4 Policy discussion: key features of an optimal
ex-ante intervention regime

As noted in the introduction, a key assumption of our formal analysis is that
once the investment decision by a bank has been made, the bank cannot be
prevented from accessing its "private" benefits. For the bulk of this section, we
focus on the case of a single bank and study scenarios where this assumption
is relaxed by appropriate policy interventions which involve both elements of
conditional monitoring, bank equity and/or contractibility of bank payoffs.
We assume that although an ex-ante intervention regime is put in place,

all intervention is conditional on there being a bank run. The sequence of
events involved is as follows. Initially, temporary bailout measures are put in
place (depositor protection via emergency liquidity provision), followed by a
discovery phase when the books of the bank are examined and finally, there is a
restructuring phase. Restructuring can consist of a decision to either liquidate
the bank, confiscate bank payoffs, initiate a bank takeover or leave the bank’s
status unchanged15 , (see, for instance, Hoggarth and Reidhill (2003), Bank of
England (2009)).
In what follows, we characterize the structure of second-best intervention in

sequential monitoring scenarios where no other agent can replace the bank at
t = 1.
In this part of the paper, we will assume that conditional on a bank run it

becomes common knowledge that the social planner has invested in a monitor-
ing technology with a resource cost m. In keeping with the timing of events,
we will assume that the resource cost is paid at t = 1. By investing in the
monitoring technology, conditional on γ being chosen by the bank at t = 0, the
representative depositor observes a signal χ, defined over subsets of [0, 1] so that
χ = γ with probability q̂ > 0 while χ = [0, 1] with probability 1− q̂. Conditional
on monitoring at t = 1, the resource constraint is

RA ≥ RA
(
λx1

1 + (1− λ)x2
1 +m

)
+
(
λx1

2 + (1− λ)x2
2

)
.

For simplicity of exposition we focus on the case when there is an allocation,
denoted by xm, which is a solution to (1), (2), (5) and the preceding inequality.
To keep the exposition simple, we look at two cases: the case where bank
"private" payoffs aren’t contractible and the case where they aren’t. To begin
with, assume the former case holds.
Let Sm = {sm1 , sm2 } and πm = {πm1 , πm2 } be a randomization scheme, defined

independently, of the randomization scheme S′, π′ studied in section 2.3. Let
ω ∈ {0, 1} where ω = 0 indicates a situation without monitoring and ω = 1
indicates a situation with monitoring. Let rm (., ., ., .) be a function defined
from S′ × {0, 1} × Ω × Sm to <2

+ and let kM (., ., .) be function defined from
S′ × {0, 1} × Ω× Sm to [0, 1].

15This timing of events is consistent with the sequential service constraint which requires
that the return obtained by a depositor depends only on her position in the queue of depositors
wishing to withdraw. That a depositor can announce a desire withdraw, then await the signal
and decide not to withdraw is equivalent to assuming that she can leave the queue when she
changes her mind.
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Consider the banking contract, subject to a sequential service constraint,
described by a vector (S′, π′, Sm, πm, γm, rm, km) such that:
(i) for all ω ∈ {0, 1}, χ ∈ Ω and sm ∈ Sm,

rm1 (s′1, {ω} , {χ} , sm) = x1∗
1

per unit deposited at t = 0, and

km (s′1, {ω} , {χ} , sm) = λ,

rm2 (s′1, {ω} , {χ} , sm) = x2∗
2

per unit deposited at t = 0 and not withdrawn at t = 1,
(ii) for all χ ∈ Ω ,sm ∈ Sm,

rm1 (s′2, {0} , {χ} , sm) = 1

per unit deposited at t = 0, and

km (s′2, {0} , {χ} , sm) = 1,

rm2 (s′2, {0} , {χ} , sm) = 0

per unit deposited at t = 0 and not withdrawn at t = 1,
(iii) for all sm ∈ Sm,

rm1 (s′2, {1} , {1} , sm) = xm,11

per unit deposited at t = 0, and

km (s′2, {1} , {1} , sm) = λ,

rm2 (s′2, {1} , {1} , sm) = xm,11

per unit deposited at t = 0 and not withdrawn at t = 1,
(iv) when s′ = s′2

16 ,

rm1 (s′2, {1} , {γ} , sm) = 1−m

per unit deposited at t = 0, and

km (s′2, {1} , {γ} , sm) = 1,

rm2 (s′2, {1} , {γ} , sm) = 0

per unit deposited at t = 0 and not withdrawn at t = 1,
(v) when s′ = s′2,

rm1 (s′2, {1} , {[0, 1]} , sm1 ) = xm,11

16We assume that 0 < m < m̂ < 1 where m̂ is suffi ciently small so that farsighted depositors
always have an incentive to participate in banking.
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per unit deposited at t = 0,

km (s′2, {1} , {[0, 1]} , sm1 ) = λ,

rm2 (s′2, {1} , {[0, 1]} , sm1 ) = xm,22

per unit deposited at t = 0 and not withdrawn at t = 1,
(vi) when s′ = s′2,

rm1 (s′2, {1} , {[0, 1]} , sm2 ) = 1−m

per unit deposited at t = 0,

km (s′2, {1} , {[0, 1]} , sm2 ) = 1,

rm2 (s′2, {1} , {[0, 1]} , sm2 ) = 0

per unit deposited at t = 0 and not withdrawn at t = 1. The contract also
specifies the bank’s asset portfolio where γm = 1.

The sequence of events is as follows. At t = 0, the representative depositor
offers the contract (S′, π′, Sm, πm, γm, rm, km). Conditional on such a contract
being accepted by the bank, depositors’endowments are mobilized by the bank
who, then, allocates funds across the two assets. At t = 1, a state s ∈ S′ is
selected according to the probability distribution π′, only depositors (but not
the bank) observes the realized s and a proportion λ′ of depositors choose to
withdraw their deposits. If λ′ ≤ λ, there is no monitoring and each depositor j
who chooses to withdraw a fraction µj of her deposits obtains a return of x

1∗
1 per

unit deposited at t = 0 while a depositor j who withdraws a fraction 1−µj of her
deposits obtains a return of x2∗

2 per unit deposited at t = 0 and not withdrawn
at t = 1. If on the other hand, λ′ > λ, there is a temporary suspension of
convertibility for all depositors, and the representative depositor operates the
monitoring technology at a fixed cost m. Conditional on monitoring taking
place, a state sm ∈ Sm is chosen according to the probability distribution πm.
Conditional on s ∈ S′, the signal χ and the state of the world sm, the suspension
of convertibility threshold is set according to km. At this point, each depositor
who has chosen to withdraw a positive fraction her deposits can leave the queue
of depositors. If a depositor j remains in the queue, and continues to choose
to withdraw a fraction µj of her deposits, then, subject to a sequential service
constraint, she obtains a return of rm1 per unit deposited at t = 0 while a
depositor j who leaves the queue obtains a return of rm2 per unit deposited at
t = 0 and not withdrawn at t = 1.

Using arguments symmetric to the ones used in establishing proposition 2,
for each s ∈ S′, it is a dominant action for type one depositors to withdraw,
while it is a dominant action for type two depositors not to withdraw at t = 1
if the realized state is s′1, and for type two depositors to withdraw at t = 1 if
the realized state is s′2. Therefore, there is no monitoring at t = 1 if the realized
state is s′1 while monitoring is triggered if the realized state is s

′
2. Conditional

on monitoring, it is a dominant action for type one depositors to not to leave
the queue of depositors. If χ = 1 or χ = [0, 1] and conditional on monitoring,
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the realized state is sm1 , then it is a dominant action for type one depositors to
not to leave the queue of depositors but if χ < 1 or χ = [0, 1] and conditional
on monitoring, the realized state is sm2 , then it is a dominant action for type
two depositors not to leave the queue and continue to want to withdraw their
deposits at t = 1. Let π̄m = π′2 (1− q̂)πm2 . Anticipating this behavior by
depositors, the bank will choose γ = γm = 1 if and only if

{
π̄m + (1− π̄m)RbA

}
≥


(π′2q̂ + π̄m)

+ (1− (π′2q̂ + π̄m))
(
γRbA + (1− γ)RbB

)
− (γcA + (1− γ) cB)


It follows, using arguments symmetric to the one used in establishing proposition
2, there exists π̃m > 0, π̃m < 1 such that the bank’s incentive compatibility
constraint is satisfied iff πm ≥ π̃m. Therefore, setting πm = π̃m + ε, for some
ε strictly positive but close to zero makes it a dominant action for the bank to
choose γ = γm = 1.

In this set-up, conditional on γ = 1, the probability of termination is
π′2 (1− q̂)πm2 < π̃: in other words, effi cient risk-sharing in implemented with
higher probability when there is costly but imperfect monitoring relative to the
random contract studied earlier.
So far we have assumed that the bank’s payoffs are non-contractible and

cannot be attached or confiscated by an outside agent (a court). What are the
consequences of dropping this assumption?
We first, examine the case where a proportion β of the bank’s non-contractible

payoffs can be seized directly by an outside agent like a benevolent social planner
or a court. Next, we study what happens if, in addition to mobilizing deposits,
there is bank equity which can be used a collateral.
First, assume that a proportion β, 0 ≤ β ≤ 1, of the bank’s private payoffs

can be seized by a court. For simplicity, assume that all the other assump-
tions made in section 2 continue to hold. When β is large enough, i.e. when
βRbB − cB < RbA − cA, it immediately follows that there is a banking con-
tract which will implement the allocation x∗. Indeed, consider the conditional
monitoring contract (S′, π′, Sm, πm, γm, rm, km) studied above augmented by a
commitment by the social planner to confiscate βRbB if banking continues to
t = 2. In such case, it is easily checked that at t = 0, the bank will choose γ = 1
and it will be dominant strategy for type one depositors to withdraw at t = 1
and type two depositors to withdraw at t = 2.
Of course, when βRbB > RbA, the positive probability of bank runs on the

equilibrium path of play will be required to satisfy the bank’s incentives. With
monitoring and transfers, either the threat of bank runs off the equilibrium path
of play and/or the positive probability of bank runs on the equilibrium path of
play may be required to satisfy the bank’s incentives.
So far we have assumed that the bank has no endowment of the good at

t = 0. Suppose now the bank is endowed with K > 0 units of the good at t = 0.
Then, in addition to mobilizing the deposits of investors, the bank can invest
its own endowment in either of the two asset technologies. We will assume that
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any investment the bank makes of its own endowments at t = 0 is treated by the
representative depositor as collateral i.e. as an asset the representative depositor
can seize contingent on the information the she has on the action chosen by
the bank. Again, for simplicity, assume that all the other assumptions made in
section 2 continue to hold. In such a case, the funds available to the bank at t = 0
is (1 +K) and if the bank invests γ in asset technology A, the public return,
if banking continues to t = 2 will be (1 +K) (γRA + (1− γ)RB) while the
private non-contractible return to the bank will be (1 +K)

(
γRbA + (1− γ)RbB

)
.

If at t = 2, the representative depositor seizes the collateral, the return to the
bank will be

(
γRbA + (1− γ)RbB

)
; in other words, by confiscating the bank’s

collateral, a proportional portion of its private, non-contractible payoffs can be
seized by the representative depositor. It follows that for γ = 1 to be incentive
compatible for the bank, K must satisfy the inequality

(1 +K)RbA − cA ≥ RbB − cB

or equivalently, K ≥ K̂ where K̂ =
RbB−cB
RbA−cA

− 1.

Let xK denote the solution to the representative depositor’s maximization

problem
(
Ã
)
when the resource constraint

(
Ã1
)
is replaced by the resource

constraint

RA (1 +K) ≥ RA
(
λx1

1 + (1− λ)x2
1

)
+
(
λx1

2 + (1− λ)x2
2

) (
Ã1
)C

Suppose K ≥ K̂. Suppose the social planner can verify the collateral put up
by the bank at t = 0 but, as before, cannot verify how the bank chooses to
distribute the total funds mobilized for investment between the two assets. In
this case the banking contract

(
S′, π′, Sm, πm, γm, rK , km

)
where rK1 = xK,11

per unit deposited at t = 0, while rK2 = xK,22 per unit deposited at t = 0 and
not withdrawn at t = 1, will implement xK in dominant strategies.
However, when K < K̂ the positive probability of bank runs on the equi-

librium path of play will be required to satisfy the bank’s incentives. Remark

that RbB−cB
RbA−cA

− 1 is a measure of the the non-contractible payoff gains, to the
bank, from choosing by investing in asset B relative to investing in asset A.
When K < K̂, the physical collateral put up by the bank is small relative to
the (non-contractible) payoff gains generated by moral hazard.
With monitoring and transfers, either the threat of bank runs off the equilib-

rium path of play and/or the positive probability of bank runs on the equilibrium
path of play may be required to satisfy the bank’s incentives.
Remark: How would the policy change if there were multiple banks? Con-

sider the scenario studied in section 3. A precondition for the threat of takeovers
to work, it must be the case that the bank in region 2 has the human capital to
operate the assets controlled by the bank in region 1. In this case, the threat
of a takeover, conditional on the realization of the liquidity shock and possibly
the sunspot variable, would implement the ex ante effi cient allocation.
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5 Conclusion

We interpret the significance of our results in four ways. First, our results show
that with moral hazard, bank runs and contagion are necessary elements in
second-best banking scenarios and the randomness introduced by banking con-
tracts studied here is uncorrelated with fundamentals driven purely by incen-
tives. In this sense our results provide a theoretical foundation for the doctrine
of "creative ambiguity". Second, we show that global contagion can result with
even local moral hazard. Third, our result shows that in low asset economies,
where productive agents like banks or firms with little or no collateral, appropri-
ately designed random demandable debt contracts Pareto improve on autarky.
Finally, we examine how appropriate policy interventions could improve banking
outcomes by eliminating ineffi cient early termination via an ex ante intervention
regime with monitoring using bank equity as collateral and/or restoring partial
contractibility of "private" bank payoffs. Of course, in scenario with multiple
banks, as in section 3, the threat of takeovers could also be used, under certain
conditions, as a key feature of such an intervention regime.
Extending our result to examine episodes of twinned bank runs and currency

crises is a topic for future research.
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Appendix
Consider the banking contract

(
γ̂, r̂, k̂

)
as specified in section 2.2. The

payoff to per unit of deposit withdrawn at t = 1, which depends on the fraction
of deposits serviced before agent j, kj , is given by the expression

v̂1(fj , r̂1, k̂) =

{
u (r̂1) , if kj ≤ k̂,
u (0) , kj > k̂

while the period 2 payoff per unit deposit withdrawn at t = 2, which depends
on total fraction of deposits withdrawn in period 1, k, is given by the expression

v̂2(f, r̂1) =

{
u (r̂2) , if 1 > kr̂1,

0, otherwise

At t = 1, the above contract induces a noncooperative game between depos-
itors where each depositor chooses what fraction of their deposits to with-
draw. Suppose depositor j withdraws a fraction µj . Then, a type 1 deposi-

tor obtains a payoff µj v̂1(kj , r̂1, k̂) while a type 2 depositor obtains a payoff of

µj v̂1(kj , r̂1, k̂) +
(
1− µj

)
v̂2(k, r̂1). Remark that for a type 1 depositor, µj = 1

strictly dominates all other actions. As k̂ = λ, r̂1 = x1∗
1 and r̂2 = x2∗

2 , it follows
that v̂2(k, r̂1) > v̂1(kj , r̂1) and for type 2 depositors, µj = 0 strictly dominates

all other actions and therefore, k = k̂ = λ. The bank’s payoffs are

v̂b (γ) = γRbA + (1− γ)RbB − (γcA + (1− γ) cB)

There is only one subgame at t = 1 (as depositors don’t observe the bank’s
choice of γ). As RbA − cA < RbB − cB and , at t = 1, 1 − k̂r̂1 > 0, choosing
γ = γ̂A is a strictly dominant choice for the bank. �
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