
Incremental Temporal Logic Synthesis of Control Policies for Robots
Interacting with Dynamic Agents

Tichakorn Wongpiromsarn, Alphan Ulusoy, Calin Belta, Emilio Frazzoli and Daniela Rus

Abstract— We consider the synthesis of control policies from
temporal logic specifications for robots that interact with
multiple dynamic environment agents. Each environment agent
is modeled by a Markov chain whereas the robot is modeled by
a finite transition system (in the deterministic case) or Markov
decision process (in the stochastic case). Existing results in
probabilistic verification are adapted to solve the synthesis
problem. To partially address the state explosion issue, we
propose an incremental approach where only a small subset of
environment agents is incorporated in the synthesis procedure
initially and more agents are successively added until we hit the
constraints on computational resources. Our algorithm runs in
an anytime fashion where the probability that the robot satisfies
its specification increases as the algorithm progresses.

I. INTRODUCTION

Temporal logics [1], [2], [3] have been recently employed
to precisely express complex behaviors of robots. In partic-
ular, given a robot specification expressed as a formula in
a temporal logic, control policies that ensure or maximize
the probability that the robot satisfies the specification can
be automatically synthesized based on exhaustive exploration
of the state space [4], [5], [6], [7], [8], [9], [10], [11], [12].
Consequently, the main limitation of existing approaches for
synthesizing control policies from temporal logic specifica-
tions is almost invariably due to a combinatorial blow up
of the state space, commonly known as the state explosion
problem.

In many applications, robots need to interact with exter-
nal, potentially dynamic agents, including human and other
robots. As a result, the control policy synthesis problem
becomes more computationally complex as more external
agents are incorporated in the synthesis procedure. Consider,
as an example, the problem where an autonomous vehicle
needs to go through a pedestrian crossing while there are
multiple pedestrians who are already at or approaching the
crossing. The state space of the complete system (i.e., the
vehicle and all the pedestrians) grows exponentially with the
number of the pedestrians. Hence, given a limited budget of
computational resources, solving the control policy synthesis
problem with respect to temporal logic specifications may not
be feasible when there are a large number of pedestrians.

In this paper, we partially address the aforementioned issue
and propose an algorithm for computing a robot control
policy in an anytime manner. Our algorithm progressively

T. Wongpiromsarn is with the Singapore-MIT Alliance for Research and
Technology, Singapore 117543, Singapore. nok@smart.mit.edu

A. Ulusoy and C. Belta are with Boston University, Boston, MA, USA
alphan@bu.edu, cbelta@bu.edu

E. Frazzoli and D. Rus are with the Massachusetts Institute of Technology,
Cambridge, MA, USA frazzoli@mit.edu, rus@csail.mit.edu

computes a sequence of control policies, taking into account
only a small subset of the environment agents initially and
successively adds more agents to the synthesis procedure in
each iteration until the computational resource constraints
are exceeded. As opposed to existing incremental synthesis
approaches that handle temporal logic specifications where
representative robot states are incrementally added to the
synthesis procedure [8], we consider incrementally adding
representative environment agents instead.

The main contribution of this paper is twofold. First, we
propose an anytime algorithm for synthesizing a control pol-
icy for a robot interacting with multiple environment agents
with the objective of maximizing the probability for the
robot to satisfy a given temporal logic specification. Second,
an incremental construction of various objects needed to be
computed during the synthesis procedure is proposed. Such
an incremental construction makes our anytime algorithm
more efficient by avoiding unnecessary computation and
exploiting the objects computed in the previous iteration.
Experimental results show that not only we obtain a rea-
sonable solution much faster, but we are also able to obtain
an optimal solution faster than existing approaches.

The rest of the paper is organized as follows: We provide
useful definitions and descriptions of the formalisms in the
following section. Section III is dedicated to the problem
formulation. Section IV provides a complete solution to
the control policy synthesis problem for robots that interact
with environment agents. Incremental computation of control
policies is discussed in Section V. Section VI presents
experimental results. Finally, Section VII concludes the paper
and discusses future work.

II. PRELIMINARIES

We consider systems that comprise multiple (possibly
stochastic) components. In this section, we define the for-
malisms used in this paper to describe such systems and
their desired properties. Throughout the paper, we let X∗,
Xω and X+ denote the set of finite, infinite and nonempty
finite strings, respectively, of a set X .

A. Automata

Definition 1: A deterministic finite automaton (DFA) is a
tuple A = (Q,Σ, δ, qinit, F) where
• Q is a finite set of states,
• Σ is a finite set called alphabet,
• δ : Q× Σ→ Q is a transition function,
• qinit ∈ Q is the initial state, and
• F ⊆ Q is a set of final states.

ar
X

iv
:1

20
3.

11
80

v1
 [

cs
.R

O
]

 6
 M

ar
 2

01
2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/18173587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We use the relation notation, q w−→ q′ to denote δ(q, w) = q′.
Consider a finite string σ = σ1σ2 . . . σn ∈ Σ∗. A run for

σ in a DFA A = (Q,Σ, δ, qinit, F) is a finite sequence of
states q0q1 . . . qn such that q0 = qinit and q0

σ1−→ q1
σ2−→

q2
σ3−→ . . .

σn−→ qn. A run is accepting if qn ∈ F . A string
σ ∈ Σ∗ is accepted by A if there is an accepting run of σ
in A. The language accepted by A, denoted by L(A), is the
set of all accepted strings of A.

B. Linear Temporal Logic

Linear temporal logic (LTL) is a branch of logic that can
be used to reason about a time line. An LTL formula is built
up from a set Π of atomic propositions, the logic connectives
¬, ∨, ∧ and =⇒ and the temporal modal operators #
(“next”), � (“always”), 3 (“eventually”) and U (“until”).
An LTL formula over a set Π of atomic propositions is
inductively defined as

ϕ := True | p | ¬ϕ | ϕ ∧ ϕ | # ϕ | ϕ U ϕ

where p ∈ Π. Other operators can be defined as follows:
ϕ∧ψ = ¬(¬ϕ∨¬ψ), ϕ =⇒ ψ = ¬ϕ∨ψ, 3ϕ = True U ϕ,
and �ϕ = ¬3¬ϕ.

Semantics of LTL: LTL formulas are interpreted on infi-
nite strings over 2Π. Let σ = σ0σ1σ2 . . . where σi ∈ 2Π for
all i ≥ 0. The satisfaction relation |= is defined inductively
on LTL formulas as follows:
• σ |= True ,
• for an atomic proposition p ∈ Π, σ |= p if and only if
p ∈ σ0,

• σ |= ¬ϕ if and only if σ 6|= ϕ,
• σ |= ϕ1 ∧ ϕ2 if and only if σ |= ϕ1 and σ |= ϕ2,
• σ |= #ϕ if and only if σ1σ2 . . . |= ϕ, and
• σ |= ϕ1 U ϕ2 if and only if there exists j ≥ 0 such

that σjσj+1 . . . |= ϕ2 and for all i such all 0 ≤ i < j,
σiσi+1 . . . |= ϕ1.

More details on LTL can be found, e.g., in [1], [2], [3].
In this paper, we are particularly interested in a class of

LTL known as co-safety formulas. An important property of
a co-safety formula is that any word satisfying the formula
has a finite good prefix, i.e., a finite prefix that cannot
be extended to violate the formula. Specifically, given an
alphabet Σ, a language L ⊆ Σω is co-safety if and only
if every w ∈ L has a good prefix x ∈ Σ∗ such that
for all y ∈ Σω , we have x · y ∈ L. In general, the
problem of determining whether an LTL formula is co-
safety is PSPACE-complete [13]. However, there is a class
of co-safety formulas, known as syntactically co-safe LTL
formulas, which can be easily characterized. A syntactically
co-safe LTL formula over Π is an LTL formula over Π whose
only temporal operators are #, 3 and U when written in
positive normal form where the negation operator ¬ occurs
only in front of atomic propositions [3], [13]. It can be shown
that for any syntactically co-safe formula ϕ, there exists a
DFA Aϕ that accepts all and only words in pref(ϕ), i.e.,
L(Aϕ) = pref(ϕ), where pref(ϕ) denote the set of all
good prefixes for ϕ [9].

C. Systems and Control Policies

We consider the case where each component of the system
can be modeled by a deterministic finite transition system,
Markov chain or Markov decision process, depending on the
characteristics of that component. These different models are
defined as follows.

Definition 2: A deterministic finite transition system
(DFTS) is a tuple T = (S,Act,−→, sinit,Π, L) where
• S is a finite set of states,
• Act is a finite set of actions,
• −→⊆ S × Act × S is a transition relation such that

for all s ∈ S and α ∈ Act, |Post(s, α)| ≤ 1 where
Post(s, α) = {s′ ∈ S | (s, α, s′) ∈−→},

• sinit ∈ S is the initial state,
• Π is a set of atomic propositions, and
• L : S → 2Π is a labeling function.
(s, α, s′) ∈−→ is denoted by s

α−→ s′. An action α is
enabled in state s if and only if there exists s′ such that
s

α−→ s′.
Definition 3: A (discrete-time) Markov chain (MC) is a

tuple M = (S,P, ıinit,Π, L) where S, Π and L are defined
as in DFTS and
• P : S×S → [0, 1] is the transition probability function

such that for any state s ∈ S,
∑
s′∈S P(s, s′) = 1, and

• ıinit : S → [0, 1] is the initial state distribution
satisfying

∑
s∈S ıinit(s) = 1.

Definition 4: A Markov decision process (MDP) is a tuple
M = (S,Act,P, ıinit,Π, L) where S, Act, ıinit, Π and L
are defined as in DFTS and MC and P : S×Act×S → [0, 1]
is the transition probability function such that for any state
s ∈ S and action α ∈ Act,

∑
s′∈S P(s, α, s′) ∈ {0, 1}.

An action α is enabled in state s if and only if∑
s′∈S P(s, α, s′) = 1. Let Act(s) denote the set of enabled

actions in s.
Given a complete system as the composition of all its

components, we are interested in computing a control policy
for the system that optimizes certain objectives. We define a
control policy for a system modeled by an MDP as follows.

Definition 5: Let M = (S,Act,P, ıinit,Π, L) be a
Markov decision process. A control policy for M is a
function C : S+ → Act such that C(s0s1 . . . sn) ∈ Act(sn)
for all s0s1 . . . sn ∈ S+.

Let M = (S,Act,P, ıinit,Π, L) be an MDP and C :
S+ → Act be a control policy for M. Given an initial
state s0 of M such that ıinit(s0) > 0, an infinite sequence
rCM = s0s1 . . . on M generated under policy C is called
a path on M if P(si, C(s0s1 . . . si), si+1) > 0 for all i.
The subsequence s0s1 . . . sn where n ≥ 0 is the prefix
of length n of rCM. We define PathsCM and FPathsCM
as the set of all infinite paths of M under policy C and
their finite prefixes, respectively, starting from any state s0

with ıinit(s0) > 0. For s0s1 . . . sn ∈ FPathsCM, we let
PathsCM(s0s1 . . . sn) denote the set of all paths in PathsCM
with the prefix s0s1 . . . sn.

The σ-algebra associated withM under policy C is defined
as the smallest σ-algebra that contains PathsCM(r̂CM) where

r̂CM ranges over all finite paths in FPathsCM. It follows
that there exists a unique probability measure PrCM on the
σ−algebra associated withM under policy C where for any
s0s1 . . . sn ∈ FPathsCM,

PrCM{PathsCM(s0s1 . . . sn)} =
ıinit(s0)

∏
0≤i<nP(si, C(s0s1 . . . si), si+1).

Given an LTL formula ϕ, one can show that the set
{s0s1 . . . ∈ PathsCM | L(s0)L(s1) . . . |= ϕ} is measurable
[3]. The probability for M to satisfy ϕ under policy C is
then defined as

PrCM(ϕ) = PrCM{s0s1 . . . ∈ PathsCM | L(s0)L(s1) . . . |= ϕ}.

For a given (possibly noninitial) state s ∈ S, we let
Ms = (S,Act,P, ısinit,Π, L) where ısinit(t) = 1 if s = t and
ısinit(t) = 0 otherwise. We define PrCM(s |= ϕ) = PrCMs(ϕ)
as the probability forM to satisfy ϕ under policy C, starting
from s.

A control policy essentially resolves all nondeterministic
choices in an MDP and induces a Markov chain MC that
formalizes the behavior of M under control policy C [3]. In
general, MC contains all the states in S+ and hence may
not be finite even thoughM is finite. However, for a special
case where C is memoryless, it can be shown that MC can
be identified with a finite MC.

Definition 6: Let M = (S,Act,P, ıinit,Π, L) be a
Markov decision process. A control policy C on M is
memoryless if and only if for each sequence s0s1 . . . sn
and t0t1 . . . tm ∈ S+ with sn = tm, C(s0s1 . . . sn) =
C(t0t1 . . . tm). A memoryless control policy C can be de-
scribed by a function C : S → Act.

III. PROBLEM FORMULATION

Consider a system that comprises the plant (e.g., the robot)
and N independent environment agents. We assume that at
any time instance, the state of the system, which incorporates
the state of the plant and the environment agents, can be
precisely observed. The system can regulate the state of the
plant but has no control over the state of the environment
agents. Hence, we do not distinguish between a control
policy for the system and a control policy for the plant and
refer to them as a control policy in general, as there is no
confusion that in both cases, only the state of the plant can
be regulated and both the system and the plant can precisely
observe the current state of the complete system. Hence, even
though a control policy may be implemented on the plant, it
may be defined over the state of the complete system.

We assume that each environment agent can be modeled
by a finite Markov chain. Let Mi = (Si,Pi, ıinit,i,Πi, Li)
be the model of the ith environment agent. The plant is
modeled either by a deterministic finite transition system or
by a finite Markov decision process, depending on whether
each control action leads to a deterministic state transition.
We use T to denote the model of the plant and let T =
(S0, Act,−→, sinit,0,Π0, L0) for the case where T is a
DFTS and T = (S0, Act,P0, ıinit,0,Π0, L0) for the case
where T is an MDP. For the simplicity of the presentation,

we assume that for all s ∈ S0, Act(s) 6= ∅. In addition, we
assume that all the components T ,M1,M2, . . . ,MN in the
system make a transition simultaneously, i.e., each of them
makes a transition at every time step.

Example 1: Consider a problem where an autonomous
vehicle (plant) needs to go through a pedestrian crossing
while there are N pedestrians (agents) who are already at or
approaching the crossing. Suppose the road is discretized into
a finite number of cells c0, c2, . . . , cM . The vehicle is mod-
eled by either a DFTS T = (S0, Act,−→, sinit,0,Π0, L0)
or an MDP T = (S0, Act,P0, ıinit,0,Π0, L0) whose state
s ∈ S0 describes the cell occupied by the vehicle and whose
action α ∈ Act corresponds to a motion primitive of the
vehicle (e.g., stop, accelerate, decelerate). If each motion
primitive leads to a deterministic change in the vehicle’s
state, then T is a DFTS. Otherwise, T is an MDP. The
motion of the ith pedestrian is modeled by an MC Mi =
(Si,Pi, ıinit,i,Πi, Li) whose state s ∈ Si describes the cell
occupied by the ith pedestrian. The labeling function Li, i ∈
{0, . . . , N} essentially maps each cell to its label, indexed
by the agent ID, i.e., Li(cj) = cij for all j ∈ {0, . . .M}.

Control Policy Synthesis Problem: Given a system
model described by T ,M1, . . . ,MN and a syntactically co-
safe LTL formula ϕ over Π0 ∪ Π1 ∪ . . . ∪ ΠN , we want to
automatically synthesize a control policy that maximizes the
probability for the system to satisfy ϕ.

Example 2: Consider the autonomous vehicle problem
described in Example 1 and the desired property stating
that the vehicle does not collide with any pedestrian until
it reaches cell cM (e.g., the other side of the pedestrian
crossing). In this case, the specification ϕ is given by ϕ =(
¬
∨
i≥1,j≥0(c0j ∧ cij)

)
U c0M . Using simple logic manipu-

lation, it can be checked that ϕ is a co-safe LTL formula.

IV. CONTROL POLICY SYNTHESIS

We employ existing results in probabilistic verification and
consider the following 3 main steps to solve the control
policy synthesis problem defined in Section III:

1) Compute the composition of all the system components
to obtain the complete system.

2) Construct the product MDP.
3) Extract an optimal control policy for the product MDP.
In this section, we describe these steps in more detail

and discuss their connection to our control policy synthesis
problem described in Section III.

A. Parallel Composition of System Components

Assuming that all the components of the system make a
transition simultaneously, we first construct the synchronous
parallel composition of all the components to obtain the com-
plete system. Synchronous parallel composition of different
types of components is defined as follows.

Definition 7: Let M1 = (S1,P1, ıinit,1,Π1, L1) and
M2 = (S2,P2, ıinit,2,Π2, L2) be Markov chains. Their
synchronous parallel composition, denoted by M1||M2, is
the MC M = (S1 × S2,P, ıinit,Π1 ∪Π2, L) where:

• For each s1, s
′
1 ∈ S1 and s2, s

′
2 ∈ S2,

P(〈s1, s2〉, 〈s′1, s′2〉) = P1(s1, s
′
1)P2(s2, s

′
2).

• For each s1 ∈ S1 and s2 ∈ S2, ıinit(〈s1, s2〉) =
ıinit,1(s1)ıinit,2(s2).

• For each s1 ∈ S1 and s2 ∈ S2, L(〈s1, s2〉) = L(s1) ∪
L(s2).

Definition 8: Let T1 = (S1, Act,−→, sinit,Π1, L1) be
a deterministic finite transition system and M2 =
(S2,P2, ıinit,2,Π2, L2) be a Markov chain. Their syn-
chronous parallel composition, denoted by T1||M2, is the
MDP M = (S1 × S2, Act,P, ıinit,Π1 ∪Π2, L) where:

• For each s1, s
′
1 ∈ S1, s2, s

′
2 ∈ S2 and α ∈ Act,

P(〈s1, s2〉, α, 〈s′1, s′2〉) = P2(s2, s
′
2) if s1

α−→ s′1 and
P(〈s1, s2〉, α, 〈s′1, s′2〉) = 0 otherwise.

• For each s2 ∈ S2, ıinit(〈sinit, s2〉) = ıinit,2(s2) and
ıinit(〈s1, s2〉) = 0 for all s1 ∈ S \ {sinit}.

• For each s1 ∈ S1 and s2 ∈ S2, L(〈s1, s2〉) = L(s1) ∪
L(s2).

Definition 9: LetM1 = (S1, Act,P1, ıinit,1,Π1, L1) be a
Markov decision process andM2 = (S2,P2, ıinit,2,Π2, L2)
be a Markov chain. Their synchronous parallel composi-
tion, denoted by M1||M2, is the MDP M = (S1 ×
S2, Act,P, ıinit,Π1 ∪Π2, L) where:

• For each s1, s
′
1 ∈ S1, s2, s

′
2 ∈ S2 and α ∈ Act,

P(〈s1, s2〉, α, 〈s′1, s′2〉) = P1(s1, α, s
′
1)P2(s2, s

′
2).

• For each s1 ∈ S1 and s2 ∈ S2, ıinit(〈s1, s2〉) =
ıinit,1(s1)ıinit,2(s2).

• For each s1 ∈ S1 and s2 ∈ S2, L(〈s1, s2〉) = L(s1) ∪
L(s2).

From the above definitions, our complete system can
be modeled by the MDP T ||M1|| . . . ||MN , regardless of
whether T is a DFTS or an MDP. We denote this MDP by
M = (S,Act,P, ıinit,Π, L).

B. Construction of Product MDP

Let Aϕ = (Q, 2Π, δ, qinit, F) be a DFA that recognizes
the good prefixes of ϕ. Such Aϕ can be automatically
constructed using existing tools [14]. Our next step is to
obtain a finite MDP Mp = (Sp, Actp,Pp, ıp,init, Q, Lp) as
the product of M and Aϕ, defined as follows.

Definition 10: Let M = (S,Act,P, ıinit,Π, L) be an
MDP and let A = (Q, 2Π, δ, qinit, F) be a DFA. The product
of M and A is the MDP Mp = M ⊗ A defined by1

Mp = (Sp, Act,Pp, ıp,init,Π, Lp) where Sp = S × Q and
Lp(〈s, q〉) = L(s). Pp is defined as

Pp(〈s, q〉, α, 〈s′, q′〉) =

 P̃p(〈s, q〉, α, 〈s′, q′〉)
if q′ = δ(q, L(s′))

0 otherwise
,

(1)
where P̃p(〈s, q〉, α, 〈s′, q′〉) = P(s, α, s′). For the rest of
the paper, we refer to P̃p : Sp × Act × Sp → [0, 1] as the

1We slightly modify the definition of atomic propositions and labeling
function of the product MDP from the definition often used in literature to
facilitate incremental construction of product MDP, which is explained in
Section V-B.

intermediate transition probability function forMp. Finally,

ıp,init(〈s, q〉) =

{
ı̃p,init(〈s, q〉) if q = δ(qinit, L(s))
0 otherwise ,

(2)
where ı̃p,init(〈s, q〉) = ıinit(s). For the rest of the paper, we
refer to ı̃p,init : Sp → [0, 1] as the intermediate initial state
distribution for Mp.

Stepping through the above definition shows that given
a path r

Cp
Mp

= 〈s0, q0〉〈s1, q1〉 . . . on Mp generated under
some control policy Cp, the corresponding path s0s1 . . . on
M generates a word L(s0)L(s1) . . . that satisfies ϕ if and
only if there exists n ≥ 0 such that qn ∈ F (and hence
q0q1 . . . qn is an accepting run on Aϕ), in which case we
say that rCpMp

is accepting. Therefore, each accepting path
of Mp uniquely corresponds to a path of M whose word
satisfies ϕ. In addition, a control policy Cp on Mp induces
the corresponding control policy C on M. The details for
generating C from Cp can be found, e.g. in [3], [10].

Based on this argument, our control policy synthesis
problem defined in Section III can be reduced to computing
a control policy for Mp that maximizes the probability of
reaching a state in Bp = {〈s, q〉 ∈ Sp | q ∈ F}.

C. Control Policy Synthesis for Product MDP

For each s ∈ Sp, let xs denote the maximum probability
of reaching a state in Bp, starting from s. Formall, xs =
supC PrCMp

(s |= 3Bp), where, with an abuse of notation,
Bp in 3Bp is a proposition that is satisfied by all states
in Bp. There are two main techniques for computing the
probability xs for each s ∈ Sp: linear programming (LP) and
value iteration. LP-based techniques yield an exact solution
but it typically does not scale as well as value iteration.
On the other hand, value iteration is an iterative numerical
technique. This method works by successively computing the
probability vector (x

(k)
s)s∈Sp

for increasing k ≥ 0 such that
limk→∞ x

(k)
s = xs for all s ∈ Sp. Initially, we set x(0)

s = 1

if s ∈ Bp and x(0)
s = 0 otherwise. In the (k + 1)th iteration

where k ≥ 0, we set

x(k+1)
s =

1 if s ∈ Bp

max
α∈Actp(s)

∑
t∈Sp

Pp(s, α, t)x
(k)
t otherwise.

(3)
In practice, we terminate the computation and say

that x(k)
s converges when a termination criterion such as

maxs∈Sp
|x(k+1)
s − x

(k)
s | < ε is satisfied for some fixed

(typically very small) threshold ε.
As discussed in [15], [16], decomposition of Mp into

strongly connected components (SCC) can help speed up
value iteration. C ⊆ Sp is an SCC of Mp if there is a
path in Mp between any two states in C and C is maximal
(i.e., there does not exist any C̃ ⊆ Sp such that C ⊂ C̃ and
C̃ is an SCC). The algorithm proposed in [17] allows us to
identify all the SCCs ofMp with time and space complexity
that is linear in the size of Mp.

The SCC-based value iteration works as follows. First,
we set x(0)

s = 1 if s ∈ Bp and x
(0)
s = 0 otherwise.2

Next, we identify all the SCCs C
Mp

1 , . . . , C
Mp
m of Mp.

From the definition of SCC, we get that CMp

i ∩ CMp

j =

∅,∀i 6= j and
⋃
i C
Mp

i = Sp. For each SCC C
Mp

i , we define
Succ(C

Mp

i) ⊆ Sp \C
Mp

i to be the set of all the immediate
successors of states in CMp

i that are not in CMp

i . A (strict)
partial order, ≺Mp , among C

Mp

1 , . . . , C
Mp
m can be defined

such that CMp

j ≺Mp
C
Mp

i if Succ(CMp

i)∩CMp

j 6= ∅. (Note
that from the definition of SCC and Succ, there cannot be
cyclic dependency among SCCs; hence, such a partial order
can always be defined.)

An important property of SCCs and their partial order that
we will exploit in the computation of the probability vector
(xs)s∈Sp

is that the probability values of states in C
Mp

i

can be affected only by the probability values of states in
C
Mp

i and all CMp

j ≺Mp
C
Mp

i . Thus, our next step is to
generate an order OMp among C

Mp

1 , . . . , C
Mp
m such that

C
Mp

i appears before C
Mp

j in OMp if CMp

i ≺Mp
C
Mp

j .
We can then process each SCC separately, according to the
order in OMp , since the probability values of states in CMp

j

that appears after CMp

i in OMp cannot affect the probability
values of states in CMp

i . Processing of SCC C
Mp

i terminates
at the kth iteration where all x(k)

s , s ∈ CMp

i converges. Let
xs be the value to which x

(k)
s converges. When processing

C
Mp

i , we exploit the order in OMp and existing values of
xt for all t ∈ Succ(CMp

i) to determine the set of s ∈ CMp

i

where x(k+1)
s needs to be updated from x

(k)
s . The formula

in (3) with x(k)
t replaced by xt for all t ∈ Succ(CMp

i) can
be used to update those x(k+1)

s . We refer the reader to [15],
[16] for more details.

Note that computation of an order OMp requires O(|Sp|2)
time. Thus, the pre-computation required by the SCC-based
value iteration can be computationally expensive, unless all
the SCCs of Mp and an order OMp are provided a-priori.
As a result, the SCC-based value iteration may require more
computation time than the normal value iteration, if the pre-
computation time is also taken into account.

Once the vector (xs)s∈Sp
is computed, a memoryless

control policy C such that for any s ∈ Sp, PrCM(s |= 3Bp) =
xs can be constructed as follows. For each state s ∈ Sp,
let Actmaxp (s) ⊆ Actp(s) be the set of actions such that
for all α ∈ Actmaxp (s), xs =

∑
t∈Sp

P(s, α, t)xt. For each
s ∈ Sp with xs > 0, let ‖s‖ be the length of a shortest
path from s to a state in Bp, using only actions in Actmaxp .
C(s) ∈ Actmaxp (s) for a state s ∈ Sp \ Bp with xs > 0 is
then chosen such that Pp(s, C(s), t) > 0 for some t ∈ Sp
with ‖t‖ = ‖s‖ − 1. For a state s ∈ Sp with xs = 0 or a
state s ∈ Bp, C(s) ∈ Actp(s) can be chosen arbitrarily.

2In the original algorithm, all the states s ∈ Sp with xs = 1 and all the
states that cannot reach Bp under any control policy need to be identified but
it has been shown in [16] that this step is not necessary for the correctness
of the algorithm.

V. INCREMENTAL COMPUTATION OF CONTROL POLICIES

Automatic synthesis described in the previous section
suffers from the state explosion problem as the composition
of T and all M1, . . . ,MN needs to be constructed, leading
to an exponential blow up of the state space. In this section,
we propose an incremental synthesis approach where we
progressively compute a sequence of control policies, taking
into account only a small subset of the environment agents
initially and successively add more agents to the synthesis
procedure in each iteration until we hit the computational
resource constraints. Hence, even though the complete syn-
thesis problem cannot be solved due to the computational
resource limitation, we can still obtain a reasonably good
control policy.

A. Overview of Incremental Computation of Control Policies

Initially, we consider a small subset M0 ⊂
{M1, . . . ,MN} of the environment agents. For each
Mi = (Si,Pi, ıinit,i,Πi, Li) 6∈ M0, we consider a
simplified model M̃i that essentially assumes that the
ith environment agent is stationary (i.e., we take into
account their presence but do not consider their full model).
Formally, M̃i = ({si}, P̃i, ı̃init,i,Πi, L̃i) where si ∈ Si
can be chosen arbitrarily, P̃i(si, si) = 1, ı̃init,i(si) = 1 and
L̃i(si) = Li(si). Note that the choice of si ∈ Si may affect
the performance of our incremental synthesis algorithm;
hence, it should be chosen such that it is the most likely state
ofMi. We let M̃0 = {M̃i | Mi ∈ {M1, . . . ,MN}\M0}.

The composition of T , allMi ∈M0 and all M̃j ∈ M̃0 is
then constructed. We let MM0 be the MDP that represents
such composition. Note that since M̃i is typically smaller
Mi, MM0 is typically much smaller than the composition
of T ,M1, . . . ,MN . We identify all the SCCs of MM0

and their partial order. Following the steps for synthesizing
a control policy described in Section IV, we construct
MM0

p = MM0 ⊗ Aϕ where Aϕ = (Q, 2Π, δ, qinit, F) is
a DFA that recognizes the good prefixes of ϕ. We also
store the intermediate transition probability function and the
intermediate initial state distribution for MM0

p and denote
these functions by P̃M0

p and ı̃M0
p,init, respectively.

At the end of the initialization period (i.e., the 0th it-
eration), we obtain a control policy CM0 that maximizes
the probability for MM0 to satisfy ϕ. CM0 resolves all
nondeterministic choices in MM0 and induces a Markov
chain, which we denote by MM0

CM0
.

Our algorithm then successively adds more full models of
the rest of the environment agents to the synthesis procedure
at each iteration. In the (k + 1)th iteration where k ≥
0, we consider Mk+1 = Mk ∪ {Ml} for some Ml ∈
{M1, . . . ,MN} \Mk. Such Ml may be picked such that
the probability for MM0

CM0
||Ml to satisfy ϕ is the minimum

among all Mi ∈ {M1, . . . ,MN} \Mk. This probability
can be efficiently computed using probabilistic verification
[3]. (As an MC can be considered a special case of MDP
with exactly one action enabled in each state, we can easily
adapt the techniques for computing the probability vector of
a product MDP described in Section IV-C to compute the

probability that MM0

CM0
||Ml satisfies ϕ.) We let M̃k+1 =

M̃k \ {M̃l} and let MMk+1 be the MDP that represents
the composition of T , all Mi ∈ Mk+1 and all M̃j ∈
M̃k+1. Next, we construct MMk+1

p = MMk+1 ⊗ Aϕ and
obtain a control policy CMk+1 that maximizes the probability
for MMk+1 to satisfy ϕ. Similar to the initialization step,
during the construction ofMMk+1

p , we store the intermediate
transition probability function and the intermediate initial
state distribution for MMk+1

p and denote these functions by
P̃

Mk+1
p and ı̃

Mk+1

p,init , respectively.
The process outlined in the previous paragraph terminates

at the Kth iteration where MK = {M1, . . . ,MN} or
when the computational resource constraints are exceeded.
To make this process more efficient, we avoid unnecessary
computation and exploit the objects computed in the previous
iteration. Consider an arbitrary iteration k ≥ 0. In Section
V-B, we show how MMk+1

p , P̃
Mk+1
p , and ı̃

Mk+1

p,init can be
incrementally constructed from MMk

p , P̃Mk
p and ı̃Mk

p,init.
Hence, we can avoid computing MMk+1 . In addition, as
previously discussed in Section IV-C, generating an order
of SCCs can be computationally expensive. Hence, we
only compute the SCCs and their order for MM0 and all
Mj ∈ {M1, . . . ,MN} \M0, which are typically small.
Incremental construction of SCCs ofMMk+1 and their order
from those of MMk is considered in Section V-C. (Note
that we do not compute MMk but only maintain its SCCs
and their order, which are incrementally constructed using
the results from the previous iteration.) Finally, Section V-D
describes computation of CMk , using a method adapted from
SCC-based value iteration where we avoid having to identify
the SCCs of MMk

p and their order. Instead, we exploit the
SCCs of MMk and their order, which can be incrementally
constructed using the approach described in Section V-C.

B. Incremental Construction of Product MDP

For an iteration k ≥ 0, let Mk+1 = Mk ∪ {Ml}
for some Ml ∈ {M1, . . . ,MN} \ Mk. In general, one
can construct MMk+1

p by first computing MMk+1 , which
requires taking the composition of a DFTS or an MDP with
N MCs, and then constructing MMk+1 ⊗Aϕ. To accelerate
the process of computingMMk+1

p , we exploit the presence of
MMk

p , its intermediate transition probability function P̃Mk
p

and intermediate initial state distribution ı̃Mk
p,init, which are

computed in the previous iteration.
First, note that a state sp of MMk

p is of the form sp =
〈s, q〉 where s = 〈s0, s1, . . . , sN 〉 ∈ S0 × S1 × . . . × SN
and q ∈ Q. For s = 〈s0, s1, . . . , sN 〉 ∈ S0 × S1 × . . . ×
SN , i ∈ {0, . . . , N} and r ∈ Si, we define s|i←r =
〈s0, . . . , si−1, r, si+1, . . . , sN 〉, i.e., s|i←r is obtained by
replacing the ith element of s by r.

Lemma 1: Consider an arbitrary iteration k ≥ 0. Let
Mk+1 = Mk ∪ {Ml} where Ml ∈ {M1, . . . ,MN} \Mk.
Suppose MMk

p = (SMk
p , ActMk

p ,PMk
p , ıMk

p,init,Π
Mk
p , LMk

p)
and Ml = (Sl,Pl, ıinit,l,Πl, Ll). Assuming that for
any i, j ∈ {0, . . . , N}, Πi ∩ Πj = ∅, then MMk+1

p =

(S
Mk+1
p , Act

Mk+1
p ,P

Mk+1
p , ı

Mk+1

p,init ,Π
Mk
p , L

Mk+1
p) where

S
Mk+1
p = {〈s|l←r, q〉 | 〈s, q〉 ∈ SMk

p and r ∈ Sl},
Act

Mk+1
p = ActMk

p , Π
Mk+1
p = ΠMk

p , and for any
s = 〈s0, . . . , sN 〉, s′ = 〈s′0, . . . , s′N 〉 ∈ S0 × . . . SN and
q, q′ ∈ Q,
• P

Mk+1
p (〈s, q〉, α, 〈s′, q′〉) = P̃

Mk+1
p (〈s, q〉, α, 〈s′, q′〉)

if q′ = δ(q, L
Mk+1
p (〈s′, q′〉))

0 otherwise
,

where the intermediate transition probability function
is given by

P̃
Mk+1
p (〈s, q〉, α, 〈s′, q′〉) =

Pl(sl, s
′
l)P̃

Mk
p (〈s̃, q〉, α, 〈s̃′, q′〉)

(4)

for any 〈s̃, q〉, 〈s̃′, q′〉 ∈ SMk
p such that s̃|l←sl = s and

s̃′|l←s′l = s′,

• ı
Mk+1

p,init (〈s, q〉) =

ı̃
Mk+1

p,init (〈s, q〉)
if q = δ(qinit, L

Mk+1
p (〈s, q〉))

0 otherwise
where the intermediate initial state distribution is given
by

ı̃
Mk+1

p,init (〈s, q〉) = ıinit,l(sl)̃ı
Mk
p,init(〈s̃, q〉) (5)

for any 〈s̃, q〉 ∈ SMk
p such that s̃|l←sl = s, and

• L
Mk+1
p (〈s, q〉) =

(
LMk
p (〈s̃, q〉) \ Ll(s̃l)

)
∪ Ll(sl) for

any 〈s̃, q〉 ∈ SMk
p such that s̃|l←sl = s.

Proof: The correctness of SMk+1
p , ActMk+1

p , Π
Mk+1
p

and LMk+1
p is straightforward to verify. Hence, we will only

provide the proof for the correctness of PMk+1
p and P̃

Mk+1
p .

The correctness of ı
Mk+1

p,init and ı̃
Mk+1

p,init can be proved in a
similar way.

Consider an arbitrary iteration k ≥ 0 and let MMk =
(SMk , ActMk ,PMk , ıMk

init,Π
Mk , LMk) and MMk+1 =

(SMk+1 , ActMk+1 ,PMk+1 , ı
Mk+1

init ,ΠMk+1 , LMk+1). It
is obvious from the definition of product MDP that
P

Mk+1
p is correct as long as P̃

Mk+1
p is correct, i.e.,

P̃
Mk+1
p (〈s, q〉, α, 〈s′, q′〉) = PMk+1(s, α, s′) for all
〈s, q〉, 〈s′, q′〉 ∈ SMk+1

p and α ∈ ActMk+1
p . Hence, we only

need to prove the correctness of P̃Mk+1
p .

Assume that P̃Mk
p is correct, i.e.,

P̃Mk
p (〈s, q〉, α, 〈s′, q′〉) = PMk(s, α, s′) for all
〈s, q〉, 〈s′, q′〉 ∈ SMk

p and α ∈ ActMk
p . Let l be the

index such that Mk+1 = Mk ∪ {Ml}. Consider arbitrary
〈s, q〉, 〈s′, q′〉 ∈ S

Mk+1
p and α ∈ Act

Mk+1
p . Suppose

s = 〈s0, . . . , sN 〉 and s′ = 〈s′0, . . . , s′N 〉. Note that since
M̃l only contains one state, there exists exactly one
〈s̃, q〉 ∈ SMk

p and exactly one 〈s̃′, q′〉 ∈ SMk
p such that

s̃|l←sl = s and s̃′|l←s′l = s′. Since Mk is the composition
of T , allMi ∈Mk and all M̃j ∈ M̃k and sinceMl 6∈Mk

and P̃l(·, ·) = 1, it follows that if T is a DFTS, then

PMk(s̃, α, s̃′) =

∏

i∈{1,...,N}\{l}

Pi(si, s
′
i) if s0

α−→ s′0

0 otherwise
,

and if T is an MDP, then

PMk(s̃, α, s̃′) = P0(s0, α, s
′
0)

∏
i∈{1,...,N}\{l}

Pi(si, s
′
i).

Thus, PMk+1(s, α, s′) = Pl(sl, s
′
l)P

Mk(s̃, α, s̃′). Com-
bining this with (4), we get

P̃Mk+1
p (〈s, q〉, α, 〈s′, q′〉)

= Pl(sl, s
′
l)P̃

Mk
p (〈s̃, q〉, α, 〈s̃′, q′〉)

= Pl(sl, s
′
l)P

Mk(s̃, α, s̃′)

= PMk+1(s, α, s′).

By definition, we can conclude that P̃Mk+1
p is correct.

C. Incremental Construction of SCCs

Consider an arbitrary iteration k ≥ 0. Let l be the index
of the environment agent such that Mk+1 = Mk∪{Ml}. In
this section, we first provide a way to incrementally identify
all the SCCs of MMk+1 from all the SCCs of MMk and
Ml. We conclude the section with incremental construction
of the partial order over the SCCs ofMMk+1 from the partial
order defined over the SCCs of MMk and Ml.

Lemma 2: Let CMk be an SCC of MMk and Cl be an
SCC ofMl where Mk+1 = Mk ∪{Ml}. Suppose either of
the following conditions holds:

Cond 1: |CMk | = 1 and the state in CMk does not have
a self-loop in MMk .

Cond 2: |Cl| = 1 and the state in Cl does not have a
self-loop in Ml.

Then, for any s ∈ CMk and r ∈ Cl, {s|l←r} is an SCC of
MMk+1 . Otherwise, {s|l←r | s ∈ CMk , r ∈ Cl} is an SCC
of MMk+1 .

Proof: First, we consider the case where Cond 1
or Cond 2 holds and consider arbitrary s ∈ CMk and
r ∈ Cl. To show that {s|l←r} is an SCC of MMk+1 ,
we will show that there is no path from s|l←r to itself in
MMk+1 . Since condition (1) or condition (2) holds, either
there is no path from s to itself in MMk or there is
no path from r to itself in Cl. Assume, by contradiction,
that there is a path from s|l←r to itself in MMk+1 . Let
this path be s|l←r, s1, s2, . . . , sn, s|l←r where for each i ∈
{1, . . . , n}, si = 〈si0, . . . , siN 〉. From the proof of Lemma 1,
we get that PMk+1(s|l←r, α, s1) = Pl(r, s

1
l)P

Mk(s, α, s̃1),
PMk+1(sn, α, s|l←r) = Pl(s

n
l , r)P

Mk(s̃n, α, s) and
PMk+1(si, α, si+1) = Pl(s

i
l, s

i+1
l)PMk(s̃i, α, s̃i+1) for all

α ∈ ActMk+1 where for each i ∈ {1, . . . , n}, s̃i ∈ SMk

such that s̃i|l←sil = si.
Since s|l←r, s1, s2, . . . , sn, s|l←r is a path in

MMk+1 , there exist α0, . . . , αn ∈ ActMk+1 such
that PMk+1(s|l←r, α0, s

1), PMk+1(sn, αn, s|l←r),
PMk+1(si, αi, s

i+1) > 0 for all i ∈ {1, . . . , n}. Thus, it
must be the case that Pl(r, s1

l), Pl(snl , r), Pl(sil, s
i+1
l) > 0

and PMk(s, α, s̃1), PMk(s̃n, α, s), PMk(s̃i, α, s̃i+1) > 0
for all i ∈ {1, . . . , n}. But then, r, s1

l , . . . , s
n
l , r is a path

in Cl and s, s̃1, . . . , s̃n, s is a path in MMk , leading to a
contradiction.

Next, consider the case where both Cond 1 and Cond 2
do not hold. To show that CMk+1 = {s|l←r | s ∈ CMk , r ∈
Cl} is an SCC of MMk+1 , we need to show that for any
s, s̃ ∈ CMk+1 and any s′ /∈ CMk+1 , (1) there is a path in
MMk+1 from s to s̃, and (2) there is no path in MMk+1

either from s to s′ or from s′ to s. Both of these statements
can be proved by contradiction, using the same reasoning as
in the proof above for the case where either Cond 1 or Cond
2 holds.

We say that an SCC CMk+1 of MMk+1 is derived from
〈CMk , Cl〉, where CMk is an SCC of MMk and Cl is an
SCC of Ml, if CMk+1 is constructed from CMk and Cl

according to Lemma 2, i.e., CMk+1 = {s|l←r} for some
s ∈ CMk and r ∈ Cl if Cond 1 or Cond 2 in Lemma 2
holds; otherwise, CMk+1 = {s|l←r | s ∈ CMk , r ∈ Cl}.

Lemma 3: For each SCC CMk+1 ofMMk+1 , there exists
a unique 〈CMk , Cl〉 from which CMk+1 is derived.

Proof: Similar to Lemma 1, it can be checked that
SMk+1 = {s|l←r | s ∈ SMk and r ∈ Sl} is the set of states
of MMk+1 . Consider an arbitrary SCC CMk+1 of MMk+1

and an arbitrary s = 〈s0, . . . , sN 〉 ∈ CMk+1 .
By definition, for any arbitrary SCC CMk of MMk and

arbitrary SCC Cl ofMl, CMk+1 is derived from 〈CMk , Cl〉
only if sl ∈ Cl and there exist s′ ∈ CMk such that
s′|l←sl = s. But since M̃l contains exactly one state, there
exists a unique s′ ∈ SMk such that s′|l←sl = s. Also, from
the definition of SCC, there exist a unique SCC CMk of
MMk and a unique SCC Cl of Ml such that s′ ∈ CMk

and sl ∈ Cl. Thus, it cannot be the case that CMk+1 is
derived from 〈C̃Mk , C̃l〉 where C̃Mk 6= CMk or C̃l 6= Cl.
Applying Lemma 2, we get that there exists an SCC C̃Mk+1

of MMk+1 that is derived from 〈CMk , Cl〉 and contains s.
Since s ∈ CMk+1 and s ∈ C̃Mk+1 , from the definition of
SCC, it must be the case that CMk+1 = C̃Mk+1 ; thus, CMk+1

must be derived from 〈CMk , Cl〉.
Lemma 2 and Lemma 3 provide a way to generate all the

SCCs of MMk+1 from all the SCCs of MMk and Ml as
formally stated below.

Corollary 1: The set of all the SCCs of MMk+1 is given
by{
CMk+1 derived from 〈CMk , Cl〉 |
CMk is an SCC of MMk and Cl is an SCC of Ml

}
.

Finally, in the following lemma, we provide a necessary
condition, based on the partial order over the SCCs ofMMk

and Ml, for the existence of the partial order between two
SCCs of MMk+1 .

Lemma 4: Let CMk+1

1 and CMk+1

2 be SCCs of MMk+1 .
Suppose C

Mk+1

1 is derived from 〈CMk
1 , Cl1〉 and C

Mk+1

2

is derived from 〈CMk
2 , Cl2〉 where CMk

1 and CMk
2 are

SCCs of MMk and Cl1 and Cl2 are SCCs of Ml. Then,
C

Mk+1

1 ≺MMk+1 C
Mk+1

2 only if CMk
1 ≺MMk CMk

2 and
Cl1 ≺Ml

Cl2.
Proof: Consider the case where C

Mk+1

1 ≺MMk+1

C
Mk+1

2 . By definition, Succ(CMk+1

2) ∩ CMk+1

1 6= ∅. Con-
sider a state s′ = 〈s′0, . . . , s′N 〉 ∈ Succ(C

Mk+1

2) ∩ CMk+1

1 .
Since s′ ∈ Succ(CMk+1

2), there exists s = 〈s0, . . . , sN 〉 ∈
C

Mk+1

2 and α ∈ ActMk+1 such that PMk+1(s, α, s′) >
0. But from the proof of Lemma 1, PMk+1(s, α, s′) =
Pl(sl, s

′
l)P

Mk(s̃, α, s̃′) where s̃ and s̃′ are unique states in
SMk such that s̃|l←sl = s and s̃′|l←s′l = s′. Thus, it must
be the case that Pl(sl, s

′
l) > 0 and PMk(s̃, α, s̃′) > 0.

In addition, since C
Mk+1

1 is derived from 〈CMk
1 , Cl1〉 and

C
Mk+1

2 is derived from 〈CMk
2 , Cl2〉, from Lemma 2 and

Lemma 3, it must be the case that s̃ ∈ CMk
2 , s̃′ ∈ CMk

1 ,
sl ∈ Cl2 and s′l ∈ Cl1. Since s̃ ∈ CMk

2 , s̃′ ∈ CMk
1 and

PMk(s̃, α, s̃′) > 0, we can conclude that s̃′ ∈ Succ(CMk
2)∩

CMk
1 , and therefore, by definition, CMk

1 ≺MMk CMk
2 .

Similarly, since sl ∈ Cl2, s′l ∈ Cl1 and Pl(sl, s
′
l) > 0, we

can conclude that s′l ∈ Succ(Cl2) ∩ Cl1, and therefore, by
definition, Cl1 ≺Ml

Cl2.

D. Computation of Probability Vector and Control Policy for
MMk

p from SCCs of MMk

Consider an arbitrary iteration k ≥ 0
and the associated product MDP MMk

p =

(SMk
p , ActMk

p ,PMk
p , ıMk

p,init,Π
Mk
p , LMk

p). Similar to the
SCC-based value iteration, we want to generate a
partition {DMk

p,1 , . . . , D
Mk
p,mk
} of SMk

p with a partial
order ≺MMk

p
such that DMk

p,j ≺MMk
p

D
Mk+1

p,i if

Succ(DMk
p,i) ∩ DMk

p,j 6= ∅. However, we relax the condition
that each DMk

p,i , i ∈ {1, . . . ,mk} is an SCC of MMk
p and

only require that if DMk
p,i contains a state in an SCC CMk

p of
MMk

p , then it has to contain all the states in CMk
p . Hence,

DMk
i may include all the states in multiple SCCs of MMk

p .
The following lemmas provide a method for constructing
{DMk

1 , . . . , DMk
mk
} and their partial order from SCCs of

MMk and their partial order, which can be incrementally
constructed as described in Section V-C.

Lemma 5: Let CMk
p be an SCC of MMk

p . Then, there
exists a unique SCC CMk of MMk such that CMk

p ⊆
CMk ×Q.

Proof: This follows from the definition of product MDP
that for any s, s′ ∈ SMk and q, q′ ∈ Q, there is a path from
〈s, q〉 to 〈s′, q′〉 in MMk

p only if there is a path from s to s′

in MMk .
Lemma 6: Let CMk

p and C̃Mk
p be SCCs of MMk

p . Sup-
pose CMk and C̃Mk are unique SCCs of MMk such
that CMk

p ⊆ CMk × Q and C̃Mk
p ⊆ C̃Mk × Q. Then,

CMk
p ≺MMk

p
C̃Mk
p only if CMk ≺MMk C̃

Mk .
Proof: This follows from the definition of product MDP

since for any 〈s, q〉 ∈ SMk
p , 〈s̃, q̃〉 ∈ SMk

p is a successor of
〈s, q〉 in MMk

p only if s̃ is a successor of s in MMk .
Lemma 7: Let CMk

1 , . . . , CMk
mk

be all the SCCs of MMk

and for each i ∈ {1, . . . ,mk}, let DMk
p,1 = CMk

i ×Q. Then,
{DMk

p,1 , . . . , D
Mk
p,mk
} is a partition of SMk

p . In addition, the
following statements hold for all i, j ∈ {1, . . . ,mk}.
• If DMk

p,i contains a state in an SCC CMk
p ofMMk

p , then
it contains all the states in CMk

p .
• Succ(DMk

p,i) ∩DMk
p,j 6= ∅ only if CMk

j ≺MMk C
Mk
i .

Proof: Consider arbitrary i, j ∈ {1, . . . ,mk}. It follows
directly from Lemma 5 that if DMk

p,i contains a state in an
SCC CMk

p of MMk
p , then it contains all the states in CMk

p .
Next, consider the case where Succ(DMk

p,i) ∩ DMk
p,j 6= ∅.

Then, from Lemma 5, there exist SCCs CMk
p,i ⊆ DMk

p,i and
CMk
p,j ⊆ DMk

p,j of MMk
p such that Succ(CMk

p,i) ∩ CMk
p,j 6=

c4
c3

c0
c1
c2

Fig. 1. The road and its partition used in the autonomous vehicle example.

∅. Thus, CMk
p,j ≺MMk

p
CMk
p,i . Applying Lemma 6, we get

CMk
j ≺MMk C

Mk
i .

Applying Lemma 7, we generate a partition
{DMk

p,1 , . . . , D
Mk
p,mk
} of SMk

p where for each
i ∈ {1, . . . ,mk}, DMk

p,1 = CMk
i × Q and CMk

1 , . . . , CMk
mk

are all the SCCs of MMk . A partial order ≺MMk
p

over

this partition is defined such that DMk
p,j ≺MMk

p
D

Mk+1

p,i

if CMk
j ≺MMk CMk

i . Hence, an order OMk
p among

DMk
p,1 , . . . , D

Mk
p,mk

can be simply derived from the order of
CMk

1 , . . . , CMk
mk

, which can be incrementally constructed
based on Lemma 4. This order OMk

p has the property
that the probability values of states in DMk

p,j that appears
after DMk

p,i in OMk
p cannot affect the probability values of

states in DMk
p,i . Hence, we can follow the SCC-based value

iteration and process each DMk
p,i separately, according to

the order in OMk
p to compute the probability xs for all

s ∈ DMk
p,i . Finally, we generate a memoryless control policy

CMk from the probability vector (xs)s∈SMk
p

as described at
the end of Section IV.

VI. EXPERIMENTAL RESULTS

Consider, once again, the autonomous vehicle problem
described in Example 1 and Example 2. Suppose the road is
discretized into 5 cells c0, . . . , c4 where c2 is the pedestrian
crossing area as shown in Figure 1. The vehicle starts in cell
c0 and has to reach cell c4. There are 5 pedestrians, modeled
by MCs M1, . . . ,M5, initially at cell c1. The models of
the vehicle and the pedestrians are shown in Figure 2. A
DFA Aϕ that accepts all and only words in pref(ϕ) where
ϕ =

(
¬
∨
i≥1,j≥0(c0j ∧ cij)

)
U c04 is shown in Figure 3.

First, we apply the LP-based, value iteration and SCC-
based value iteration techniques described in Section IV to
synthesize a control policy that maximizes the probability
that the complete system M = T ||M1||M2|| . . . ||M5

satisfies ϕ. The time required for each step of computation
is summarized in Table I. All the approaches yield the
probability of 0.8 that M satisfies ϕ under the synthesized
control policy. The comparison of the total computation time
required for these different approaches is shown in Figure
4. As discussed in Section IV-C, although the SCC-based
value iteration itself takes significantly less computation time
than the LP-based technique or value iteration, the time
spent in identifying SCCs and their order renders the total

c0start c2 c4

α1

α2

α1

α2

α1

(a) The vehicle model T

c1start c2 c3

0.6

0.4

0.2

0.8

1

(b) The pedestrian models M1, . . . ,M4

c1start c2 c3

0.6
0.4

0.2
0.4

0.4

0.6

0.4

(c) The pedestrian model M5

Fig. 2. The models of vehicle and pedestrians.

q0start

q1

q2

¬col ∧ ¬c04 c04

col ∧ ¬c04

True

True

Fig. 3. A DFA Aϕ that recognizes the prefixes of ϕ = ¬col U c04 where
col is defined as col =

∨
i≥1,j≥0(c

0
j ∧ cij). q1 is the accepting state.

computation time of the SCC-based value iteration more than
the other two approaches.

Technique Mp

SCCs
& order
of Mp

Prob
vector

Control
policy Total

LP 156.3 - 8.8 6.8 171.9
Value

iteration 156.3 - 31.3 6.8 194.4

SCC-based
value iteration 156.3 71.1 1.9 6.8 236.1

TABLE I
TIME REQUIRED (IN SECONDS) FOR COMPUTING VARIOUS OBJECTS

USING DIFFERENT TECHNIQUES WHEN THE FULL MODELS OF ALL THE

ENVIRONMENT AGENTS ARE CONSIDERED.

Next, we apply the incremental technique where we
progressively compute a sequence of control policies as
more agents are added to the synthesis procedure in each
iteration as described in Section V. We let M0 = ∅, M1 =
{M1}, M2 = {M1,M2}, . . ., M6 = {M1, . . . ,M5},
i.e., we successively add each pedestrianM1,M2, . . . ,M5,
respectively, in each iteration. We consider 2 cases: (1) no
incremental construction of various objects is employed (i.e.,
when MMk+1 and MMk+1

p , k ≥ 0 are computed from
scratch in every iteration), and (2) incremental construction
of various objects as described in Section V-B–V-D is

0 50 100 150 2000

0.2

0.4

0.6

0.8

1

Computation time (s)

Pr
ob

ab
ilit

y
of

 s
at

is
fy

in
g

th
e

sp
ec

ifi
ca

tio
n

Solving full problem using LP based approach
Solving full problem using value iteration
Solving full problem using SCC based value iteration
Successively adding agents, without incremental
construction of product MDP and SCCs
Successively adding agents, with incremental
construction of product MDP and SCCs

Fig. 4. Comparison of the computation time and the probability for the
system to satisfy the specification computed using different techniques.

applied. For the first case, we apply the LP-based technique
to compute the probability vector as it has been shown to be
the fastest technique when applied to this problem, taking
into account the required pre-computation, which needs to
be done in every iteration. For both cases, 6 control policies
CM0 , . . . , CM5 are generated for MM0 , . . . ,MM5 , respec-
tively. For each policy CMk , we compute the probability
PrC

Mk

M (ϕ) that the complete system M satisfies ϕ under
policy CMk . (Note that CMk , when applied to M, is only
a function of states of Mi ∈ Mk since it assumes that
the other agents Mj 6∈ Mk are stationary.) These proba-
bilities are given by PrC

M0

M (ϕ) = 0.08, PrC
M1

M (ϕ) = 0.46,
PrC

M2

M (ϕ) = 0.57, PrC
M3

M (ϕ) = 0.63, PrC
M4

M (ϕ) = 0.67 and
PrC

M5

M (ϕ) = 0.8.

The comparison of the cases where the incremental con-
struction of various objects is not and is employed is shown
in Figure 4. A jump in the probability occurs each time a
new control policy is computed. The time spent during each
step of computation is summarized in Table II and Table III
for the first and the second case, respectively. Notice that the
time required for identifying the SCCs and their order when
the incremental approach is applied is significantly less than
when the full model of all the pedestrians is considered in
one shot sinceMM0 ,M1, . . . ,M5, each of which contains
3 states, are much smaller than Mp, which contains 2187
states.

From Figure 4, our incremental approach is able to obtain
an optimal control policy faster than any other techniques.
This is mainly due to the efficiency of our incremental
construction of SCCs and their order. In addition, we are
able to obtain a reasonable solution, with 0.67 probability
of satisfying ϕ, within 12 seconds while the maximum
probability of satisfying ϕ is 0.8, which requires 160 seconds
of computation (or 171.9 seconds without employing the
incremental approach).

Iteration MMk MMk
p

Prob
vector

Control
policy Total

0 0.0064 0.0185 0.0464 0.0084 0.08
1 0.0123 0.0762 0.0203 0.0104 0.12
2 0.0154 0.3383 0.0231 0.0296 0.41
3 0.0357 1.7055 0.0542 0.1503 1.95
4 0.1393 9.1950 0.2155 0.7975 10.35
5 3.1836 152.86 8.2302 6.8938 171.17

TABLE II
TIME REQUIRED (IN SECONDS) FOR COMPUTING VARIOUS OBJECTS IN

EACH ITERATION WHEN INCREMENTAL CONSTRUCTION IS NOT APPLIED.

Iter-
ation MM0

SCCs & order
of MM0 ,

M1, . . . ,M5

MMk
p ,

partition
& order

Prob
vector

Control
policy Total

0 0.0055 0.0043 0.0203 0.0112 0.0036 0.04
1 - - 0.0726 0.0102 0.0087 0.09
2 - - 0.3239 0.0193 0.0282 0.37
3 - - 1.6036 0.0567 0.1424 1.80
4 - - 8.6955 0.1876 0.7755 9.66
5 - - 139.27 1.6122 7.0125 147.89

TABLE III
TIME REQUIRED (IN SECONDS) FOR COMPUTING VARIOUS OBJECTS IN

EACH ITERATION WHEN INCREMENTAL CONSTRUCTION IS APPLIED.

VII. CONCLUSIONS AND FUTURE WORK

An anytime algorithm for synthesizing a control policy for
a robot interacting with multiple environment agents with
the objective of maximizing the probability for the robot to
satisfy a given temporal logic specification was proposed.
Each environment agent is modeled by a Markov chain
whereas the robot is modeled by a finite transition system
(in the deterministic case) or Markov decision process (in
the stochastic case). The proposed algorithm progressively
computes a sequence of control policies, taking into account
only a small subset of the environment agents initially and
successively adding more agents to the synthesis procedure
in each iteration until we hit the constraints on computational
resources. Incremental construction of various objects needed
to be computed during the synthesis procedure was proposed.
Experimental results showed that not only we obtain a
reasonable solution much faster than existing approaches,
but we are also able to obtain an optimal solution faster
than existing approaches.

Future work includes extending the algorithm to handle
full LTL specifications. This direction appears to be promis-
ing because the remaining step is only to incrementally
construct accepting maximal end components of an MDP.
We are also examining an effective approach to determine an
agent to be added in each iteration. As mentioned in Section
V-A, such an agent may be picked based on the result from
probabilistic verification but this comes at the extra cost of
adding the verification phase.

REFERENCES

[1] E. A. Emerson, “Temporal and modal logic,” Handbook of Theoretical
Computer Science (Vol. B): Formal Models and Semantics, pp. 995–
1072, 1990.

[2] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent
systems. Springer-Verlag, 1992.

[3] C. Baier and J.-P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[4] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Temporal logic motion
planning for mobile robots,” in IEEE International Conference on
Robotics and Automation, pp. 2020–2025, 2005.

[5] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Where’s Waldo? Sensor-
based temporal logic motion planning,” in IEEE International Confer-
ence on Robotics and Automation, pp. 3116–3121, 2007.

[6] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G. Pappas, “Symbolic planning and control of robot motion [grand
challenges of robotics],” IEEE Robotics & Automation Magazine,
vol. 14, no. 1, pp. 61–70, 2007.

[7] D. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G. Pappas, “Valet
parking without a valet,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2007, pp. 572–577, 2007.

[8] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proc. of IEEE Conference
on Decision and Control, 2009.

[9] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion
planning with temporal goals,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 2689–2696, 2010.

[10] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “LTL control in
uncertain environments with probabilistic satisfaction guarantees,” in
IFAC World Congress, 2011.

[11] A. I. Medina Ayala, S. B. Andersson, and C. Belta, “Temporal logic
control in dynamic environments with probabilistic satisfaction guar-
antees,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007, pp. 3108–3113, 2011.

[12] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive
robot control from abstraction and temporal logic specifications,”
Special Issue of the IEEE Robotics & Automation Magazine on Formal
Methods for Robotics and Automation, vol. 18, pp. 65–74, 2011.

[13] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, pp. 291–314, 2001.

[14] T. Latvala, “Efficient model checking of safety properties,” in Model
Checking Software. 10th International SPIN Workshop, pp. 74–88,
Springer, 2003.

[15] F. Ciesinski, C. Baier, M. Größer, and J. Klein, “Reduction techniques
for model checking markov decision processes,” in Proceedings of
the 2008 Fifth International Conference on Quantitative Evaluation
of Systems, pp. 45–54, 2008.

[16] M. Kwiatkowska, D. Parker, and H. Qu, “Incremental quantitative ver-
ification for markov decision processes,” in IEEE/IFIP International
Conference on Dependable Systems & Networks, pp. 359–370, 2011.

[17] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, pp. 146–160, 1972.

	I Introduction
	II Preliminaries
	II-A Automata
	II-B Linear Temporal Logic
	II-C Systems and Control Policies

	III Problem Formulation
	IV Control Policy Synthesis
	IV-A Parallel Composition of System Components
	IV-B Construction of Product MDP
	IV-C Control Policy Synthesis for Product MDP

	V Incremental Computation of Control Policies
	V-A Overview of Incremental Computation of Control Policies
	V-B Incremental Construction of Product MDP
	V-C Incremental Construction of SCCs
	V-D Computation of Probability Vector and Control Policy for MMkp from SCCs of MMk

	VI Experimental Results
	VII Conclusions and Future Work
	References

