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Abstract

This work proposes a way to align statistical modeling with decision making. We provide a method

that propagates the uncertainty in predictive modeling to the uncertainty in operational cost, where

operational cost is the amount spent by the practitioner in solving the problem. The method allows

us to explore the range of operational costs associated with the set of reasonable statistical models,

so as to provide a useful way for practitioners to understand uncertainty. To do this, the operational

cost is cast as a regularization term in a learning algorithm’s objective function, allowing either

an optimistic or pessimistic view of possible costs, depending on the regularization parameter.

From another perspective, if we have prior knowledge about the operational cost, for instance

that it should be low, this knowledge can help to restrict the hypothesis space, and can help with

generalization. We provide a theoretical generalization bound for this scenario. We also show that

learning with operational costs is related to robust optimization.

Keywords: statistical learning theory, optimization, covering numbers, decision theory

1. Introduction

Machine learning algorithms are used to produce predictions, and these predictions are often used

to make a policy or plan of action afterwards, where there is a cost to implement the policy. In this

work, we would like to understand how the uncertainty in predictive modeling can translate into the

uncertainty in the cost for implementing the policy. This would help us answer questions like:

Q1. “What is a reasonable amount to allocate for this task so we can react best to whatever nature

brings?”

Q2. “Can we produce a reasonable probabilistic model, supported by data, where we might expect

to pay a specific amount?”

Q3. “Can our intuition about how much it will cost to solve a problem help us produce a better

probabilistic model?”

The three questions above cannot be answered by standard decision theory, where the goal is to

produce a single policy that minimizes expected cost. These questions also cannot be answered by
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robust optimization, where the goal is to produce a single policy that is robust to the uncertainty in

nature. Those paradigms produce a single policy decision that takes uncertainty into account, and

the chosen policy might not be a best response policy to any realistic situation. In contrast, our goal

is to understand the uncertainty and how to react to it, using policies that would be best responses

to individual situations.

There are many applications in which this method can be used. For example, in scheduling staff

for a medical clinic, predictions based on a statistical model of the number of patients might be used

to understand the possible policies and costs for staffing. In traffic flow problems, predictions based

on a model of the forecasted traffic might be useful for determining load balancing policies on the

network and their associated costs. In online advertising, predictions based on models for the payoff

and ad-click rate might be used to understand policies for when the ad should be displayed and the

associated revenue.

In order to propagate the uncertainty in modeling to the uncertainty in costs, we introduce what

we call the simultaneous process, where we explore the range of predictive models and correspond-

ing policy decisions at the same time. The simultaneous process was named to contrast with a more

traditional sequential process, where first, data are input into a statistical algorithm to produce a

predictive model, which makes recommendations for the future, and second, the user develops a

plan of action and projected cost for implementing the policy. The sequential process is commonly

used in practice, even though there may actually be a whole class of models that could be relevant

for the policy decision problem. The sequential process essentially assumes that the probabilistic

model is “correct enough” to make a decision that is “close enough.”

In the simultaneous process, the machine learning algorithm contains a regularization term en-

coding the policy and its associated cost, with an adjustable regularization parameter. If there is

some uncertainty about how much it will cost to solve the problem, the regularization parameter

can be swept through an interval to find a range of possible costs, from optimistic to pessimistic.

The method then produces the most likely scenario for each value of the cost. This way, by looking

at the full range of the regularization parameter, we sweep out costs for all of the reasonable prob-

abilistic models. This range can be used to determine how much might be reasonably allocated to

solve the problem.

Having the full range of costs for reasonable models can directly answer the question in the first

paragraph regarding allocation, “What is a reasonable amount to allocate for this task so we can

react best to whatever nature brings?” One might choose to allocate the maximum cost for the set

of reasonable predictive models for instance. The second question above is “Can we produce a rea-

sonable probabilistic model, supported by data, where we might expect to pay a specific amount?”

This is an important question, since business managers often like to know if there is some sce-

nario/decision pair that is supported by the data, but for which the operational cost is low (or high);

the simultaneous process would be able to find such scenarios directly. To do this, we would look

at the setting of the regularization parameter that resulted in the desired value of the cost, and then

look at the solution of the simultaneous formulation, which gives the model and its corresponding

policy decision.

Let us consider the third question above, which is “Can our intuition about how much it will

cost to solve a problem help us produce a better probabilistic model?” The regularization parameter

can be interpreted to regulate the strength of our belief in the operational cost. If we have a strong

belief in the cost to solve the problem, and if that belief is correct, this will guide the choice of

regularization parameter, and will help with prediction. In many real scenarios, a practitioner or
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domain expert might truly have a prior belief on the cost to complete a task. Arguably, a manager

having this more grounded type of prior belief is much more natural than, for instance, the manager

having a prior belief on the ℓ2 norm of the coefficients of a linear model, or the number of nonzero

coefficients in the model. Being able to encode this type of prior belief on cost could potentially

be helpful for prediction: as with other types of prior beliefs, it can help to restrict the hypothesis

space and can assist with generalization. In this work, we show that the restricted hypothesis spaces

resulting from our method can often be bounded by an intersection of an an ℓq ball with a halfspace

- and this is true for many different types of decision problems. We analyze the complexity of this

type of hypothesis space with a technique based on Maurey’s Lemma (Barron, 1993; Zhang, 2002)

that leads eventually to a counting problem, where we calculate the number of integer points within

a polyhedron in order to obtain a covering number bound.

The operational cost regularization term can be the optimal value of a complicated optimization

problem, like a scheduling problem. This means we will need to solve an optimization problem

each time we evaluate the learning algorithm’s objective. However, the practitioner must be able

to solve that problem anyway in order to develop a plan of action; it is the same problem they

need to solve in the traditional sequential process, or using standard decision theory. Since the

decision problem is solved only on data from the present, whose labels are not yet known, solving

the decision problem may not be difficult, especially if the number of unlabeled examples is small.

In that case, the method can still scale up to huge historical data sets, since the historical data factors

into the training error term but not the new regularization term, and both terms can be computed.

An example is to compute a schedule for a day, based on factors of the various meetings on the

schedule that day. We can use a very large amount of past meeting-length data for the training error

term, but then we use only the small set of possible meetings coming up that day to pass into the

scheduling problem. In that case, both the training error term and the regularization term are able to

be computed, and the objective can be minimized.

The simultaneous process is a type of decision theory. To give some background, there are

two types of relevant decision theories: normative (which assumes full information, rationality and

infinite computational power) and descriptive (models realistic human behavior). Normative deci-

sion theories that address decision making under uncertainty can be classified into those based on

ignorance (using no probabilistic information) and those based on risk (using probabilistic informa-

tion). The former include maximax, maximin (Wald), minimax regret (Savage), criterion of realism

(Hurwicz), equally likely (Laplace) approaches. The latter include utility based expected value and

bayesian approaches (Savage). Info-gap, Dempster-Shafer, fuzzy logic, and possibility theories of-

fer non-probabilistic alternatives to probability in Bayesian/expected value theories (French, 1986;

Hansson, 1994).

The simultaneous process does not fit into any of the decision theories listed above. For instance,

a core idea in the Bayesian approach is to choose a single policy that maximizes expected utility, or

minimizes expected cost. Our goal is not to find a single policy that is useful on average. In contrast,

our goal is to trace out a path of models, their specific (not average) optimal-response policies, and

their costs. The policy from the Bayesian approach may not correspond to the best decision for

any particular single model, whereas that is something we want in our case. We trace out this

path by changing our prior belief on the operational cost (that is, by changing the strength of our

regularization term). In Bayesian decision theory, the prior is over possible probabilistic models,

rather than on possible costs as in this paper. Constructing this prior over possible probabilistic

models can be challenging, and the prior often ends up being chosen arbitrarily, or as a matter of
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convenience. In contrast, we assume only an unknown probability measure over the data, and the

data itself defines the possible probabilistic models for which we compute policies.

Maximax (optimistic) and maximin (pessimistic) decision approaches contrast with the Bayesian

framework and do not assume a distribution on the possible probabilistic models. In Section 4 we

will discuss how these approaches are related to the simultaneous process. They overlap with the

simultaneous process but not completely. Robust optimization is a maximin approach to decision

making, and the simultaneous process also differs in principle from robust optimization. In robust

optimization, one would generally need to allocate much more than is necessary for any single re-

alistic situation, in order to produce a policy that is robust to almost all situations. However, this is

not always true; in fact, we show in this work that in some circumstances, while sweeping through

the regularization parameter, one of the results produced by the simultaneous process is the same as

the one coming from robust optimization.

We introduce the sequential and simultaneous processes in Section 2. In Section 3, we give

several examples of algorithms that incorporate these operational costs. In doing so, we provide

answers for the first two questions Q1 and Q2 above, with respect to specific problems.

Our first example application is a staffing problem at a medical clinic, where the decision prob-

lem is to staff a set of stations that patients must complete in a certain order. The time required for

patients to complete each station is random and estimated from past data. The second example is a

real-estate purchasing problem, where the policy decision is to purchase a subset of available prop-

erties. The values of the properties need to be estimated from comparable sales. The third example

is a call center staffing problem, where we need to create a staffing policy based on historical call

arrival and service time information. A fourth example is the “Machine Learning and Traveling Re-

pairman Problem” (ML&TRP) where the policy decision is a route for a repair crew. As mentioned

above, there is a large subset of problems that can be formulated using the simultaneous process

that have a special property: they are equivalent to robust optimization (RO) problems. Section 4

discusses this relationship and provides, under specific conditions, the equivalence of the simul-

taneous process with RO. Robust optimization, when used for decision-making, does not usually

include machine learning, nor any other type of statistical model, so we discuss how a statistical

model can be incorporated within an uncertainty set for an RO. Specifically, we discuss how differ-

ent loss functions from machine learning correspond to different uncertainty sets. We also discuss

the overlap between RO and the optimistic and pessimistic versions of the simultaneous process.

We consider the implications of the simultaneous process on statistical learning theory in Sec-

tion 5. In particular, we aim to understand how operational costs affect prediction (generalization)

ability. This helps answer the third question Q3, about how intuition about operational cost can help

produce a better probabilistic model.

We show first that the hypothesis spaces for most of the applications in Section 3 can be bounded

in a specific way - by an intersection of a ball and a halfspace - and this is true regardless of how com-

plicated the constraints of the optimization problem are, and how different the operational costs are

from each other in the different applications. Second, we bound the complexity of this type of hy-

pothesis space using a technique based on Maurey’s Lemma (Barron, 1993; Zhang, 2002) that leads

eventually to a counting problem, where we calculate the number of integer points within a polyhe-

dron in order to obtain a generalization bound. Our results show that it is possible to make use of

much more general structure in estimation problems, compared to the standard (norm-constrained)

structures like sparsity and smoothness; further, this additional structure can benefit generalization
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ability. A shorter version of this work has been previously published (see Tulabandhula and Rudin,

2012).

2. The Sequential and Simultaneous Processes

We have a training set of (random) labeled instances, {(xi,yi)}n
i=1, where xi ∈ X , yi ∈ Y that we will

use to learn a function f ∗ : X → Y . Commonly in machine learning this is done by choosing f to

be the solution of a minimization problem:

f ∗ ∈ argmin f∈F unc

(

n

∑
i=1

l( f (xi),yi)+C2R( f )

)

, (1)

for some loss function l : Y ×Y → R+, regularizer R : F unc → R, constant C2 and function class

F unc. Here, Y ⊂ R. Typical loss functions used in machine learning are the 0-1 loss, ramp loss,

hinge loss, logistic loss and the exponential loss. Function class F unc is commonly the class of

all linear functionals, where an element f ∈ F unc is of the form βT x, where X ⊂ R
p, β ∈ R

p. We

have used ‘unc’ in the superscript for F unc to refer to the word “unconstrained,” since it contains

all linear functionals. Typical regularizers R are the ℓ1 and ℓ2 norms of β. Note that nonlinearities

can be incorporated into F unc by allowing nonlinear features, so that we now would have f (x) =

∑
p
j=1 β jh j(x), where {h j} j is the set of features, which can be arbitrary nonlinear functions of x; for

simplicity in notation, we will equate h j(x) = x j and have X ⊂ R
p.

Consider an organization making policy decisions. Given a new collection of unlabeled in-

stances {x̃i}m
i=1, the organization wants to create a policy π∗ that minimizes a certain operational

cost OpCost(π, f ∗,{x̃i}i). Of course, if the organization knew the true labels for the {x̃i}i’s before-

hand, it would choose a policy to optimize the operational cost based directly on these labels, and

would not need f ∗. Since the labels are not known, the operational costs are calculated using the

model’s predictions, the f ∗(x̃i)’s. The difference between the traditional sequential process and the

new simultaneous process is whether f ∗ is chosen with or without knowledge of the operational

cost.

As an example, consider {x̃i}i as representing machines in a factory waiting to be repaired,

where the first feature x̃i,1 is the age of the machine, the second feature x̃i,2 is the condition at

its last inspection, etc. The value f ∗(x̃i) is the predicted probability of failure for x̃i. Policy π∗

is the order in which the machines {x̃i}i are repaired, which is chosen based on how likely they

are to fail, that is, { f ∗(x̃i)}i, and on the costs of the various types of repairs needed. The traditional

sequential process picks a model f ∗, based on past failure data without the knowledge of operational

cost, and afterwards computes π∗ based on an optimization problem involving the { f ∗(x̃i)}i’s and

the operational cost. The new simultaneous process picks f ∗ and π∗ at the same time, based on

optimism or pessimism on the operational cost of π∗.

Formally, the sequential process computes the policy according to two steps, as follows.

Step 1: Create function f ∗ based on {(xi,yi)}i according to (1). That is

f ∗ ∈ argmin f∈F unc

(

n

∑
i=1

l( f (xi),yi)+C2R( f )

)

.

Step 2: Choose policy π∗ to minimize the operational cost,

π∗ ∈ argminπ∈ΠOpCost(π, f ∗,{x̃i}i).
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The operational cost OpCost(π, f ∗,{x̃i}i) is the amount the organization will spend if policy π is

chosen in response to the values of { f ∗(x̃i)}i.

To define the simultaneous process, we combine Steps 1 and 2 of the sequential process. We

can choose an optimistic bias, where we prefer (all else being equal) a model providing lower

costs, or we can choose a pessimistic bias that prefers higher costs, where the degree of optimism

or pessimism is controlled by a parameter C1. in other words, the optimistic bias lowers costs when

there is uncertainty, whereas the pessimistic bias raises them. The new steps are as follows.

Step 1: Choose a model f ◦ obeying one of the following:

Optimistic Bias: f ◦ ∈ argmin
f∈F unc

[

n

∑
i=1

l ( f (xi),yi)

+C2R( f )+C1 min
π∈Π

OpCost(π, f ,{x̃i}i)

]

, (2)

Pessimistic Bias: f ◦ ∈ argmin
f∈F unc

[

n

∑
i=1

l ( f (xi),yi)

+C2R( f )−C1 min
π∈Π

OpCost(π, f ,{x̃i}i)

]

. (3)

Step 2: Compute the policy:

π◦ ∈ argmin
π∈Π

OpCost(π, f ◦,{x̃i}i) .

When C1 = 0, the simultaneous process becomes the sequential process; the sequential process

is a special case of the simultaneous process.

The optimization problem in the simultaneous process can be computationally difficult, particu-

larly if the subproblem to minimize OpCost involves discrete optimization. However, if the number

of unlabeled instances is small, or if the policy decision can be broken into several smaller subprob-

lems, then even if the training set is large, one can solve Step 1 using different types of mathematical

programming solvers, including MINLP solvers (Bonami et al., 2008), Nelder-Mead (Nelder and

Mead, 1965) and Alternating Minimization schemes (Tulabandhula et al., 2011). One needs to be

able to solve instances of that optimization problem in any case for Step 2 of the sequential process.

The simultaneous process is more intensive than the sequential process in that it requires repeated

solutions of that optimization problem, rather than a single solution.

The regularization term R( f ) can be for example, an ℓ1 or ℓ2 regularization term to encourage a

sparse or smooth solution.

As the C1 coefficient swings between large values for optimistic and pessimistic cases, the algo-

rithm finds the best solution (having the lowest loss with respect to the data) for each possible cost.

Once the regularization coefficient is too large, the algorithm will sacrifice empirical error in favor

of lower costs, and will thus obtain solutions that are not reasonable. When that happens, we know

we have already mapped out the full range of costs for reasonable solutions. This range can be used

for pre-allocation decisions.

By sweeping over a range of C1, we obtain a range of costs that we might incur. Based on

this range, we can choose to allocate a reasonable amount of resources so that we can react best

to whatever nature brings. This helps answer question Q1 in Section 1. In addition, we can pick a

value of C1 such that the resulting operational cost is a specific amount. In this case, we checking
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whether a probabilistic model exists, corresponding to that cost, that is reasonably supported by

data. This can answer question Q2 in Section 1.

It is possible for the set of feasible policies Π to depend on recommendations { f (x̃1), ..., f (x̃m)},

so that Π = Π( f ,{x̃i}i) in general. We will revisit this possibility in Section 4. It is also possible

for the optimization over π ∈ Π to be trivial, or the optimization problem could have a closed form

solution. Our notation does accommodate this, and is more general.

One should not view the operational cost as a utility function that needs to be estimated, as in

reinforcement learning, where we do not know the cost. Here one knows precisely what the cost

will be under each possible outcome. Unlike in reinforcement learning, we have a complicated one

shot decision problem at hand and have training data as well as future/unlabeled examples on which

the predictive model makes prediction on.

The use of unlabeled data {x̃i}i has been explored widely in the machine learning literature un-

der semi-supervised, transductive, and unsupervised learning. In particular, we point out that the

simultaneous process is not a semi-supervised learning method (see Chapelle et al., 2006), since it

does not use the unlabeled data to provide information about the underlying distribution. A small

unlabeled sample is not very useful for semi-supervised learning, but could be very useful for con-

structing a low-cost policy. The simultaneous process also has a resemblance to transductive learn-

ing (see Zhu, 2007), whose goal is to produce the output labels on the set of unlabeled examples; in

this case, we produce a function (namely the operational cost) applied to those output labels. The

simultaneous process, for a fixed choice of C1, can also be considered as a multi-objective machine

learning method, since it involves an optimization problem having two terms with competing goals

(see Jin, 2006).

2.1 The Simultaneous Process in the Context of Structural Risk Minimization

In the framework of statistical learning theory (e.g., Vapnik, 1998; Pollard, 1984; Anthony and

Bartlett, 1999; Zhang, 2002), prediction ability of a class of models is guaranteed when the class has

low “complexity,” where complexity is defined via covering numbers, VC (Vapnik-Chervonenkis)

dimension, Rademacher complexity, gaussian complexity, etc. Limiting the complexity of the hy-

pothesis space imposes a bias, and the classical image associated with the bias-variance tradeoff is

provided in Figure 1(a). The set of good models is indicated on the axis of the figure. Models that

are not good are either overfitted (explaining too much of the variance of the data, having a high

complexity), or underfitted (having too strong of a bias and a high empirical error). By understand-

ing complexity, we can find a model class where both the training error and the complexity are kept

low. An example of increasingly complex model classes is the set of nested classes of polynomials,

starting with constants, then linear functions, second order polynomials and so on.

In predictive modeling problems, there is often no one right statistical model when dealing with

finite data sets, in fact there may be a whole class of good models. In addition, it is possible that a

small change in the choice of predictive model could lead to a large change in the cost required to

implement the policy recommended by the model. This occurs, for instance, when costs are based

on objects (e.g., products) that come in discrete amounts. Figure 1(b) illustrates this possibility, by

showing that there may be a variety of costs amongst the class of good models. The simultaneous

process can find the range of costs for the set of good models, which can be used for allocation of

costs, as discussed in the first question Q1 in the introduction.
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Figure 1: In all three plots, the x-axis represents model classes with increasing complexity. a)

Relationship between training error and test error as a function of model complexity.

b) A possible operational cost as a function of model complexity. c) Another possible

operational cost.

Recall that question Q3 asked if our intuition about how much it will cost to solve a problem

can help us produce a better probabilistic model. Figure 1 can be used to illustrate how this question

can be answered. Assume we have a strong prior belief that the operational cost will not be above a

certain fixed amount.

Accordingly, we will choose only amongst the class of low cost models. This can significantly

limit the complexity of the hypothesis space, because the set of low-cost good models might be

much smaller than the full space of good models. Consider, for example, the cost displayed in

Figure 1(c), where only models on the left part of the plot would be considered, since they are

low cost models. Because the hypothesis space is smaller, we may be able to produce a tighter
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bound on the complexity of the hypothesis space, thereby obtaining a better prediction guarantee

for the simultaneous process than for the sequential process. In Section 5 we develop results of this

type. These results indicate that in some cases, the operational cost can be an important quantity for

generalization.

3. Conceptual Demonstrations

We provide four examples. In the first, we estimate manpower requirements for a scheduling task.

In the second, we estimate real estate prices for a purchasing decision. In the third, we estimate

call arrival rates for a call center staffing problem. In the fourth, we estimate failure probabilities

for manholes (access points to an underground electrical grid). The first two are small scale repro-

ducible examples, designed to demonstrate new types of constraints due to operational costs. In

the first example, the operational cost subproblem involves scheduling. In the second, it is a knap-

sack problem, and in the third, it is another multidimensional knapsack variant. In the fourth, it is

a routing problem. In the first, second and fourth examples, the operational cost leads to a linear

constraint, while in the third example, the cost leads to a quadratic constraint.

Throughout this section, we will assume that we are working with linear functions f of the form

βT x so that Π( f ,{x̃i}i) can be denoted by Π(β,{x̃i}i). We will set R( f ) to be equal to ‖β‖2
2. We

will also use the notation F R to denote the set of linear functions that satisfy an additional property:

F R := { f ∈ F unc : R( f )≤C∗
2},

where C∗
2 is a known constant greater than zero. We will use constant C2 from (1), and also C∗

2 from

the definition of F R, to control the extent of regularization. C2 is inversely related to C∗
2 . We use

both versions interchangeably throughout the paper.

3.1 Manpower Data and Scheduling with Precedence Constraints

We aim to schedule the starting times of medical staff, who work at 6 stations, for instance, ultra-

sound, X-ray, MRI, CT scan, nuclear imaging, and blood lab. Current and incoming patients need

to go through some of these stations in a particular order. The six stations and the possible orders

are shown in Figure 2. Each station is denoted by a line. Work starts at the check-in (at time π1) and

ends at the check-out (at time π5). The stations are numbered 6-11, in order to avoid confusion with

the times π1-π5. The clinic has precedence constraints, where a station cannot be staffed (or work

with patients) until the preceding stations are likely to finish with their patients. For instance, the

check-out should not start until all the previous stations finish. Also, as shown in Figure 2, station

11 should not start until stations 8 and 9 are complete at time π4, and station 9 should not start until

station 7 is complete at time π3. Stations 8 and 10 should not start until station 6 is complete. (This

is related to a similar problem called planning with preference posed by F. Malucelli, Politecnico di

Milano).

The operational goal is to minimize the total time of the clinic’s operation, from when the check-

in happens at time π1 until the check-out happens at time π5. We estimate the time it takes for each

station to finish its job with the patients based on two variables: the new load of patients for the

day at the station, and the number of current patients already present. The data are available as

manpower in the R-package bestglm, using “Hour,” “Load” and “Stay” columns. The training error

is chosen to be the least squares loss between the estimated time for stations to finish their jobs
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Figure 2: Staffing estimation with bias on scheduling with precedence constraints.

(βT xi) and the actual times it took to finish (yi). The unlabeled data are the new load and current

patients present at each station for a given period, given as x̃6, .., x̃11. Let π denote the 5-dimensional

real vector with coordinates π1, ...,π5.

The operational cost is the total time π5 −π1. Step 1, with an optimistic bias, can be written as:

min
{β:‖β‖2

2≤C∗
2}

n

∑
i=1

(yi −βT xi)
2 +C1 min

π∈Π(β,{x̃i}i)
(π5 −π1), (4)

where the feasible set Π(β,{x̃i}i) is defined by the following constraints:

πa +βT x̃i ≤ πb; (a, i,b) ∈ {(1,6,2),(1,7,3),(2,8,4),(3,9,4),(2,10,5),(4,11,5)}
πa ≥ 0 for a = 1, ...,5.

To solve (4) given values of C1 and C2, we used a function-evaluation-based scheme called Nelder-

Mead (Nelder and Mead, 1965) where at every iterate of β, the subproblem for π was solved to

optimality (using Gurobi).1 C2 was chosen heuristically based on (1) and kept fixed for the experi-

ment beforehand.

Figure 3 shows the operational cost, training loss, and r2 statistic2 for various values of C1. For

C1 values between 0 and 0.2, the operational cost varies substantially, by ∼16%. The r2 values for

both training and test vary much less, by ∼3.5%, where the best value happened to have the largest

value of C1. For small data sets, there is generally a variation between training and test: for this

data split, there is a 3.16% difference in r2 between training and test for plain least squares, and

this is similar across various splits of the training and test data. This means that for the scheduling

problem, there is a range of reasonable predictive models within about ∼3.5% of each other.

What we learn from this, in terms of the three questions in the introduction, is that: 1) There is

a wide range of possible costs within the range of reasonable optimistic models. 2) We have found

a reasonable scenario, supported by data, where the cost is 16% lower than in the sequential case.

1. Gurobi is the Gurobi Optimizer v3.0 from Gurobi Optimization, Inc. 2010.

2. If ŷi are the predicted labels and ȳ is the mean of {y1, ...,yn}, then the value of the r2 statistic is defined as 1−∑i(yi−
ŷi)

2/∑i(yi − ȳ)2. Thus r2 is an affine transformation of the sum of squares error. r2 allows training and test accuracy

to be measured on a comparable scale.
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Figure 3: Left: Operational cost vs C1. Center: Penalized training loss vs C1. Right: R-squared

statistic. C1 = 0 corresponds to the baseline, which is the sequential formulation.

3) If we have a prior belief that the cost will be lower, the models that are more accurate are the

ones with lower costs, and therefore we may not want to designate the full cost suggested by the

sequential process. We can perhaps designate up to 16% less.

Connection to learning theory: In the experiment, we used tradeoff parameter C1 to provide a

soft constraint. Considering instead the corresponding hard constraint minπ(π5 −π1)≤ α, the total

time must be at least the time for any of the three paths in Figure 2, and thus at least the average of

them:

α ≥ min
π∈Π{β,{x̃i}i}

π5 −π1

≥max{(x̃6 + x̃10)
T β,(x̃6 + x̃8 + x̃11)

T β,(x̃7 + x̃9 + x̃11)
T β}

≥zT β (5)

where

z =
1

3
[(x̃6 + x̃10)+(x̃6 + x̃8 + x̃11)+(x̃7 + x̃9 + x̃11)].

The main result in Section 5, Theorem 6, is a learning theoretic guarantee in the presence of this

kind of arbitrary linear constraint, zT β ≤ α.

3.2 Housing Prices and the Knapsack Problem

A developer will purchase 3 properties amongst the 6 that are currently for sale and in addition, will

remodel them. She wants to maximize the total value of the houses she picks (the value of a property

is its purchase cost plus the fixed remodeling cost). The fixed remodeling costs for the 6 properties

are denoted {ci}6
i=1. She estimates the purchase cost of each property from data regarding historical

sales, in this case, from the Boston Housing data set (Bache and Lichman, 2013), which has 13

features. Let policy π ∈ {0,1}6 be the 6-dimensional binary vector that indicates the properties she

purchases. Also, xi represents the features of property i in the training data and x̃i represents the

features of a different property that is currently on sale. The training loss is chosen to be the sum

of squares error between the estimated prices βT xi and the true house prices yi for historical sales.

The cost (in this case, total value) is the sum of the three property values plus the costs for repair

work. A pessimistic bias on total value is chosen to motivate a min-max formulation. The resulting
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(mixed-integer) program for Step 1 of the simultaneous process is:

min
β∈{β:β∈R13,‖β‖2

2≤C∗
2}

n

∑
i=1

(yi −βT xi)
2

+C1

[

max
π∈{0,1}6

6

∑
i=1

(βT x̃i + ci)πi subject to
6

∑
i=1

πi ≤ 3

]

. (6)

Notice that the second term above is a 1-dimensional {0,1} knapsack instance. Since the set of

policies Π does not depend on β, we can rewrite (6) in a cleaner way that was not possible directly

with (4):

min
β

max
π

[

n

∑
i=1

(yi −βT xi)
2 +C1

6

∑
i=1

(βT x̃i + ci)πi

]

subject to

β ∈ {β : β ∈ R
13,‖β‖2

2 ≤C∗
2}

π ∈
{

π : π ∈ {0,1}6,
6

∑
i=1

πi ≤ 3

}

. (7)

To solve (7) with user-defined parameters C1 and C2, we use fminimax, available through Mat-

lab’s Optimization toolbox.3

For the training and unlabeled set we chose, there is a change in policy above and below C1 =
0.05, where different properties are purchased. Figure 4 shows the operational cost which is the

predicted total value of the houses after remodeling, the training loss, and r2 values for a range of

C1. The training loss and r2 values change by less than ∼3.5%, whereas the total value changes

about 6.5%. We can again draw conclusions in terms of the questions in the introduction as follows.

The pessimistic bias shows that even if the developer chose the best response policy to the prices,

she might end up with the expected total value of the purchased properties on the order of 6.5% less

if she is unlucky. Also, we can now produce a realistic model where the total value is 6.5% less. We

can use this model to help her understand the uncertainty involved in her investment.

Before moving to the next application of the proposed framework, we provide a bound analo-

gous to that of (5). Let us replace the soft constraint represented by the second term of (6) with a

hard constraint and then obtain a lower bound:

α ≥ max
π∈{0,1}6,∑6

i=1 πi≤3

6

∑
i=1

(βT x̃i)πi ≥
6

∑
i=1

(βT x̃i)π
′
i, (8)

where π′ is some feasible solution of the linear programming relaxation of this problem that also

gives a lower objective value. For instance picking π′
i = 0.5 for i = 1, . . . ,6 is a valid lower bound

giving us a looser constraint. The constraint can be rewritten:

βT

(

1

2

n

∑
i=1

x̃i

)

≤ α.

3. The version of the toolbox used is Version 5.1, Matlab R2010b, Mathworks, Inc.
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Figure 4: Left: Operational cost (total value) vs C1. Center: Penalized training loss vs C1. Right: R-

squared statistic. C1 = 0 corresponds to the baseline, which is the sequential formulation.

This is again a linear constraint on the function class parametrized by β, which we can use for the

analysis in Section 5.

Note that if all six properties were being purchased by the developer instead of three, the knap-

sack problem would have a trivial solution and the regularization term would be explicit (rather than

implicit).

3.3 A Call Center’s Workload Estimation and Staff Scheduling

A call center management wants to come up with the per-half-hour schedule for the staff for a given

day between 10am to 10pm. The staff on duty should be enough to meet the demand based on

call arrival estimates N(i), i = 1, ...,24. The staff required will depend linearly on the demand per

half-hour. The demand per half-hour in turn will be computed based on the Erlang C model (Aldor-

Noiman et al., 2009) which is also known as the square-root staffing rule. This particular model

relates the demand D(i) to the call arrival rate N(i) in the following manner: D(i) ∝ N(i)+c
√

N(i)
where c determines where on the QED (Quality Efficiency Driven) curve the center wants to operate

on. We make the simplifying assumptions that the service time for each customer is constant, and

that the coefficient c is 0.

If we know the call arrival rate N(i), we can calculate the staffing requirements during each half

hour. If we do not know the call arrival rate, we can estimate it from past data, and make optimistic

or pessimistic staffing allocations.

There are additional staffing constraints as shown in Figure 5, namely, there are three sets of

employees who work at the center such that: the first set can work only from 10am-3pm, the second

can work from 1:30pm-6:30pm, and the third set works from 5pm-10pm. The operational cost is

the total number of employees hired to work that day (times a constant, which is the amount each

person is paid). The objective of the management is to reduce the number of staff on duty but at the

same time maintain a certain quality and efficiency.

The call arrivals are modeled as a poisson process (Aldor-Noiman et al., 2009). What previous

studies (Brown et al., 2001) have discovered about this estimation problem is that the square root

of the call arrival rate tends to behave as a linear function of several features, including: day of the

week, time of the day, whether it is a holiday/irregular day, and whether it is close to the end of the

billing cycle.
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Figure 5: The three shifts for the call center. The cells represent half-hour periods, and there are 24

periods per work day. Work starts at 10am and ends at 10pm.

Data for call arrivals and features were collected over a period of 10 months from Mid-February

2004 to the end of December 2004 (this is the same data set as in Aldor-Noiman et al., 2009). After

converting categorical variables into binary encodings (e.g., each of the 7 weekdays into 6 binary

features) the number of features is 36, and we randomly split the data into a training set and test set

(2764 instances for training; another 3308 for test).

We now formalize the optimization problem for the simultaneous process. Let policy π ∈ Z
3
+

be a size three vector indicating the number of employees for each of the three shifts. The training

loss is the sum of squares error between the estimated square root of the arrival rate βT xi and the

actual square root of the arrival rate yi :=
√

N(i). The cost is proportional to the total number of

employees signed up to work, ∑i πi. An optimistic bias on cost is chosen, so that the (mixed-integer)

program for Step 1 is:

min
β:‖β‖2

2≤C∗
2

n

∑
i=1

(yi −βT xi)
2

+C1

[

min
π

3

∑
i=1

πi subject to aT
i π ≥ (βT x̃i)

2 for i = 1, ...,24,π ∈ Z
3
+

]

, (9)

where Figure 5 illustrates the matrix A with the shaded cells containing entry 1 and 0 elsewhere.

The notation ai indicates the ith row of A:

ai( j) =

{

1 if staff j can work in half-hour period i

0 otherwise.

To solve (9) we first relax the ℓ2-norm constraint on β by adding another term to the function

evaluation, namely C2‖β‖2
2. This, way we can use a function-evaluation based scheme that works

for unconstrained optimization problems. As in the manpower scheduling example, we used an
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Figure 6: Left: Operational cost vs C1. Center: Penalized training loss vs C1. Right: R-squared

statistic. C1 = 0 corresponds to the baseline, which is the sequential formulation.

implementation of the Nelder-Mead algorithm, where at each step, Gurobi was used to solve the

mixed-integer subproblem for finding the policy.

Figure 6 shows the operational cost, the training loss, and r2 values for a range of C1. The

training loss and r2 values change only ∼1.6% and ∼3.9% respectively, whereas the operational

cost changes about 9.2%. Similar to the previous two examples, we can again draw conclusions in

terms of the questions in Section 1 as follows. The optimistic bias shows that the management might

incur operational costs on the order of 9% less if they are lucky. Further, the simultaneous process

produces a reasonable model where costs are about 9% less. If the management team believes they

will be reasonably lucky, they can justify designating substantially less than the amount suggested

by the traditional sequential process.

Let us now investigate the structure of the operational cost regularization term we have in (9).

For convenience, let us stack the quantities (βT x̃i)
2 as a vector b ∈ R

24. Also let boldface symbol 1

represent a vector of all ones. If we replace the soft constraint represented by the second term with

a hard constraint having an upper bound α, we get:

α ≥ min
π∈Z3

+;Aπ≥b

3

∑
i=1

1T π
(†)

≥ min
π∈R3

+;Aπ≥b

3

∑
i=1

1T π
(‡)
= max

w∈R24
+ ;AT w≤1

24

∑
i=1

wi(β
T x̃i)

2

(∗)
≥

24

∑
i=1

1

10
(βT x̃i)

2.

Here α is related to the choice of C1 and is fixed. (†) represents an LP relaxation of the integer

program with π now belonging to the positive orthant rather than the cartesian product of set of

positive integers. (‡) is due to LP strong duality and (∗) is by choosing an appropriate feasible dual

variable. Specifically, we pick wi =
1
10

for i = 1, . . . ,24, which is feasible because staff cannot work

more than 10 half hour shifts (or 5 hours). With the three inequalities, we now have a constraint on

β of the form:
24

∑
i=1

(βT x̃i)
2 ≤ 10α.

This is a quadratic form in β and gives an ellipsoidal feasible set. We already had a simple ellipsoidal

feasibility constraint while defining the minimization problem of (9) of the form ‖β‖2
2 ≤C∗

2 . Thus,

we can see that our effective hypothesis set (the set of linear functionals satisfying these constraints)
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has become smaller. This in turn affects generalization. We are investigating generalization bounds

for this type of hypothesis set in separate ongoing work.

3.4 The Machine Learning and Traveling Repairman Problem (ML&TRP) (Tulabandhula

et al., 2011)

Recently, power companies have been investing in intelligent “proactive” maintenance for the power

grid, in order to enhance public safety and reliability of electrical service. For instance, New York

City has implemented new inspection and repair programs for manholes, where a manhole is an

access point to the underground electrical system. Electrical grids can be extremely large (there are

on the order of 23,000-53,000 manholes in each borough of NYC), and parts of the underground

distribution network in many cities can be as old as 130 years, dating from the time of Thomas Edi-

son. Because of the difficulties in collecting and analyzing historical electrical grid data, electrical

grid repair and maintenance has been performed reactively (fix it only when it breaks), until recently

(Urbina, 2004). These new proactive maintenance programs open the door for machine learning to

assist with smart grid maintenance.

Machine learning models have started to be used for proactive maintenance in NYC, where

supervised ranking algorithms are used to rank the manholes in order of predicted susceptibility to

failure (fires, explosions, smoke) so that the most vulnerable manholes can be prioritized (Rudin

et al., 2010, 2012, 2011). The machine learning algorithms make reasonably accurate predictions

of manhole vulnerability; however, they do not (nor would they, using any other prediction-only

technique) take the cost of repairs into account when making the ranked lists. They do not know

that it is unreasonable, for example, if a repair crew has to travel across the city and back again

for each manhole inspection, losing important time in the process. The power company must solve

an optimization problem to determine the best repair route, based on the machine learning model’s

output. We might wish to find a policy that is not only supported by the historical power grid data

(that ranks more vulnerable manholes above less vulnerable ones), but also would give a better

route for the repair crew. An algorithm that could find such a route would lead to an improvement

in repair operations on NYC’s power grid, other power grids across the world, and improvements in

many different kinds of routing operations (delivery trucks, trains, airplanes).

The simultaneous process could be used to solve this problem, where the operational cost is

the price to route the repair crew along a graph, and the probabilities of failure at each node in the

graph must be estimated. We call this the “the machine learning and traveling repairman problem”

(ML&TRP) and in our ongoing work (Tulabandhula et al., 2011) , we have developed several for-

mulations for the ML&TRP. We demonstrated, using manholes from the Bronx region of NYC,

that it is possible to obtain a much more practical route using the ML&TRP, by taking the cost of

the route optimistically into account in the machine learning model. We showed also that from the

routing problem, we can obtain a linear constraint on the hypothesis space, in order to apply the

generalization analysis of Section 5 (and in order to address question Q3 of Section 1).

4. Connections to Robust Optimization

The goal of robust optimization (RO) is to provide the best possible policy that is acceptable under

a wide range of situations.4 This is different from the simultaneous process, which aims to find the

4. For more on Robust Optimation see http://en.wikipedia.org/wiki/Robust optimization.
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best policies and costs for specific situations. Note that it is not always desirable to have a policy

that is robust to a wide range of situations; this is a question of whether to respond to every situation

simultaneously or whether to understand the single worst situation that could reasonably occur

(which is what the pessimistic simultaneous formulation handles). In general, robust optimization

can be overly pessimistic, requiring us to allocate enough to handle all reasonable situations; it can

be substantially more pessimistic than the pessimistic simultaneous process.

In robust optimization, if there are several real-valued parameters involved in the optimization

problem, we might declare a reasonable range, called the “uncertainty set,” for each parameter

(e.g., a1 ∈ [9,10], a2 ∈ [1,2]). Using techniques of RO, we would minimize the largest possible

operational cost that could arise from parameter settings in these ranges. Estimation is not usually

involved in the study of robust optimization (with some exceptions, see Xu et al., 2009, who consider

support vector machines). On the other hand, one could choose the uncertainty set according to a

statistical model, which is how we will build a connection to RO. Here, we choose the uncertainty

set to be the class of models that fit the data to within ε, according to some fitting criteria.

The major goals of the field of RO include algorithms, geometry, and tractability in finding the

best policy, whereas our work is not concerned with finding a robust policy, but we are concerned

with estimation, taking the policy into account. Tractability for us is not always a main concern as

we need to be able to solve the optimization problem, even to use the sequential process. Using

even a small optimization problem as the operational cost might have a large impact on the model

and decision. If the unlabeled set is not too large, or if the policy optimization problem can be

broken into smaller subproblems, there is no problem with tractability. An example where the

policy optimization might be broken into smaller subproblems is when the policy involves routing

several different vehicles, where each vehicle must visit part of the unlabeled set; in that case there is

a small subproblem for each vehicle. On the other hand, even though the goals of the simultaneous

process and RO are entirely different, there is a strong connection with respect to the formulations

for the simultaneous process and RO, and a class of problems for which they are equivalent. We

will explore this connection in this section.

There are other methods that consider uncertainty in optimization, though not via the lens of

estimation and learning. In the simplest case, one can perform both local and global sensitivity

analysis for linear programs to ascertain uncertainty in the optimal solution and objective, but these

techniques generally only handle simple forms of uncertainty (Vanderbei, 2008). Our work is also

related to stochastic programming, where the goal is to find a policy that is robust to almost all of

the possible circumstances (rather than all of them), where there are random variables governing the

parameters of the problem, with known distributions (Birge and Louveaux, 1997). Again, our goal is

not to find a policy that is necessarily robust to (almost all of) the worst cases, and estimation is again

not the primary concern for stochastic programming, rather it is how to take known randomness into

account when determining the policy.

4.1 Equivalence Between RO and the Simultaneous Process in Some Cases

In this subsection we will formally introduce RO. In order to connect RO to estimation, we will

define the uncertainty set for RO, denoted Fgood , to be models for which the average loss on the

sample is within ε of the lowest possible. Then we will present the equivalence relationship between

RO and the simultaneous process, using a minimax theorem.
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In Section 2, we had introduced the notation {(xi,yi)}i and {x̃i}i for labeled and unlabeled data

respectively. We had also introduced the class F unc in which we were searching for a function f ∗

by minimizing an objective of the form (1). The uncertainty set Fgood will turn out to be a subset of

F unc that depends on {(xi,yi)}i and f ∗ but not on {x̃i}i.

We start with plain (non-robust) optimization, using a general version of the vanilla sequential

process. Let f denote an element of the set Fgood , where f is pre-determined, known and fixed. Let

the optimization problem for the policy decision π be defined by:

min
π∈Π( f ;{x̃}i)

OpCost(π, f ;{x̃i}), (Base problem) (10)

where Π( f ;{x̃i}) is the feasible set for the optimization problem. Note that this is a more general

version of the sequential process than in Section 2, since we have allowed the constraint set Π to be

a function of both f and {x̃i}i, whereas in (2) and (3), only the objective and not the constraint set

can depend on f and {x̃i}i. Allowing this more general version of Π will allow us to relate (10) to

RO more clearly, and will help us to specify the additional assumptions we need in order to show

the equivalence relationship. Specifically, in Section 2, OpCost depends on ( f ,{x̃i}i) but not Π;

whereas in RO, generally Π depends on ( f ,{x̃i}i) but not OpCost. The fact that OpCost does not

need to depend on f and {x̃i}i is not a serious issue, since we can generally remove their dependence

through auxiliary variables. For instance, if the problem is a minimization of the form (10), we can

use an auxiliary variable, say t, to obtain an equivalent problem:

min
π,t

t (Base problem reformulated)

such that π ∈ Π( f ;{x̃i})
OpCost(π, f ;{x̃i})≤ t

where the dependence on ( f ,{x̃i}i) is present only in the (new) feasible set. Since we had assumed

f to be fixed, this is a deterministic optimization problem (convex, mixed-integer, nonlinear, etc.).

Now, consider the case when f is not known exactly but only known to lie in the uncertainty set

Fgood . The robust counterpart to (10) can then be written as:

min
π∈ ∩

g∈Fgood

Π(g;{x̃}i)
max

f∈Fgood

OpCost(π, f ;{x̃i}) (Robust counterpart) (11)

where we obtain a “robustly feasible solution” that is guaranteed to remain feasible for all values of

f ∈ Fgood . In general, (11) is much harder to solve than (10) and is a topic of much interest in the

robust optimization community. As we discussed earlier, there is no focus in (11) on estimation, but

it is possible to embed an estimation problem within the description of the set Fgood , which we now

define formally.

In Section 3, F R (a subset of F unc) was defined as the set of linear functionals with the property

that R( f )≤C∗
2 . That is,

F R = { f : f ∈ F unc,R( f )≤C∗
2} .

We define Fgood as a subset of F R by adding an additional property:

Fgood =

{

f : f ∈ F R,
n

∑
i=1

l ( f (xi),yi)≤
n

∑
i=1

l ( f ∗(xi),yi)+ ε

}

, (12)
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for some fixed positive real ε. In (12), again f ∗ is a solution that minimizes the objective in (1)

over F unc. The right hand side of the inequality in (12) is thus constant, and we will henceforth

denote it with a single quantity C∗
1 . Substituting this definition of Fgood in (11), and further making

an important assumption (denoted A1) that Π is not a function of ( f ,{x̃i}i), we get the following

optimization problem:

min
π∈Π

max
{ f∈F R:∑n

i=1 l( f (xi),yi)≤C∗
1}

[

OpCost(π, f ,{x̃i}i)
]

(Robust counterpart with assumptions) (13)

where C∗
1 now controls the amount of the uncertainty via the set Fgood .

Before we state the equivalence relationship, we restate the formulations for optimistic and

pessimistic biases on operational cost in the simultaneous process from (2) and (3):

min
f∈F unc

[

n

∑
i=1

l ( f (xi),yi)+C2R( f )+C1 min
π∈Π

OpCost(π, f ,{x̃i}i)

]

(Simultaneous optimistic),

min
f∈F unc

[

n

∑
i=1

l ( f (xi),yi)+C2R( f )−C1 min
π∈Π

OpCost(π, f ,{x̃i}i)

]

(Simultaneous pessimistic). (14)

Apart from the assumption A1 on the decision set Π that we made in (13), we will also assume

that Fgood defined in (12) is convex; this will be assumption A2. If we also assume that the objective

OpCost satisfies some nice properties (A3), and that uncertainty is characterized via the set Fgood ,

then we can show that the two problems, namely (14) and (13), are equivalent. Let ⇔ denote

equivalence between two problems, meaning that a solution to one side translates into the solution

of the other side for some parameter values (C1,C
∗
1 ,C2,C

∗
2).

Proposition 1 Let Π( f ;{x̃i}i) = Π be compact, convex, and independent of parameters f and {x̃i}i

(assumption A1). Let { f ∈ F R : ∑n
i=1 l( f (xi),yi) ≤ C∗

1} be convex (assumption A2). Let the cost

(to be minimized) OpCost(π, f ,{x̃i}i) be concave continuous in f and convex continuous in π (as-

sumption A3). Then, the robust optimization problem (13) is equivalent to the pessimistic bias

optimization problem (14). That is,

min
π∈Π

max
{ f∈F R:∑n

i=1 l( f (xi),yi)≤C∗
1}

[

OpCost(π, f ,{x̃i}i)
]

⇔

min
f∈F unc

[

n

∑
i=1

l ( f (xi),yi)+C2R( f )−C1 min
π∈Π

OpCost(π, f ,{x̃i}i)

]

.

Remark 2 That the equivalence applies to linear programs (LPs) is clear because the objective

is linear and the feasible set is generally a polyhedron, and is thus convex. For integer programs,

the objective OpCost satisfies continuity, but the feasible set is typically not convex, and hence,

the result does not generally apply to integer programs. In other words, the requirement that the

constraint set Π be convex excludes integer programs.

To prove Proposition 1, we restate a well-known generalization of von Neumann’s minimax

theorem and some related definitions.
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Definition 3 A linear topological space (also called a topological vector space) is a vector space

over a topological field (typically, the real numbers with their standard topology) with a topology

such that vector addition and scalar multiplication are continuous functions. For example, any

normed vector space is a linear topological space. A function h is upper semicontinuous at a

point p0 if for every ε > 0 there exists a neighborhood U of p0 such that h(p) ≤ h(p0)+ ε for all

p ∈ U. A function h defined over a convex set is quasi-concave if for all p,q and λ ∈ [0,1] we

have h(λp+(1−λ)q) ≥ min(h(p),h(q)). Similar definitions follow for lower semicontinuity and

quasi-convexity.

Theorem 4 (Sion’s minimax theorem Sion, 1958) Let Π be a compact convex subset of a linear

topological space and Ξ be a convex subset of a linear topological space. Let G(π,ξ) be a real

function on Π×Ξ such that

(i) G(π, ·) is upper semicontinuous and quasi-concave on Ξ for each π ∈ Π;

(ii) G(·,ξ) is lower semicontinuous and quasi-convex on Π for each ξ ∈ Ξ.

Then

min
π∈Π

sup
ξ∈Ξ

G(π,ξ) = sup
ξ∈Ξ

min
π∈Π

G(π,ξ).

We can now proceed to the proof of Proposition (1).

Proof (Of Proposition 1) We start from the left hand side of the equivalence we want to prove:

min
π∈Π

max
{ f∈F R:∑n

i=1 l( f (xi),yi)≤C∗
1}

[

OpCost(π, f ,{x̃i}i)
]

(a)⇔ max
{ f∈F R:∑n

i=1 l( f (xi),yi)≤C∗
1}

min
π∈Π

[

OpCost(π, f ,{x̃i}i)
]

(b)⇔ max
f∈F unc

[

− 1

C1

( n

∑
i=1

l( f (xi),yi)−C∗
1

)

− C2

C1

(

R( f )−C∗
2

)

+min
π∈Π

OpCost(π, f ,{x̃i}i)
]

(c)⇔ min
f∈F unc

[

n

∑
i=1

l ( f (xi),yi)+C2R( f )−C1 min
π∈Π

OpCost(π, f ,{x̃i}i)

]

.

which is the right hand side of the logical equivalence in the statement of the theorem. In step

(a) we applied Sion’s minimax theorem (Theorem 4) which is satisfied because of the assump-

tions we made. In step (b), we picked Lagrange coefficients, namely 1
C1

and C2

C1
, both of which are

positive. In particular, C∗
1 and C1 as well as C∗

2 and C2 are related by the Lagrange relaxation equiv-

alence (strong duality). In (c), we multiplied the objective with C1 throughout, pulled the negative

sign in front, and removed the constant terms C∗
1 and C2C∗

2 and used the following observation:

maxa−g(a) = −mina g(a); and finally, removed the negative sign in front as this does not affect

equivalence.

The equivalence relationship of Proposition 1 shows that there is a problem class in which each

instance can be viewed either as a RO problem or an estimation problem with an operational cost

bias. We can use ideas from RO to make the simultaneous process more general. Before doing so,

we will characterize Fgood for several specific loss functions.
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4.2 Creating Uncertainty Sets for RO Using Loss Functions from Machine Learning

Let us for simplicity specialize our loss function to the least squares loss. Let X be an n× p matrix

with each training instance xi forming the ith row. Also let Y be the n-dimensional vector of all the

labels yi. Then the loss term of (1) can be written as:

n

∑
i=1

(yi − f (xi))
2 =

n

∑
i=1

(yi −βT xi)
2 = ‖Y −Xβ‖2

2.

Let β∗ be a parameter corresponding to f ∗ in (1). Then the definition of Fgood in terms of the least

squares loss is:

Fgood = { f : f ∈ F R,‖Y −Xβ‖2
2 ≤ ‖Y −Xβ∗‖2

2 + ε}= { f : f ∈ F R,‖Y −Xβ‖2
2 ≤C∗

1}.

Since each f ∈ Fgood corresponds to at least one β, the optimization of (1) can be performed with

respect to β. In particular, the constraint ‖Y −Xβ‖ ≤ C∗
1 is an ellipsoid constraint on β. For the

purposes of the robust counterpart in (11), we can thus say that the uncertainty is of the ellipsoidal

form. In fact, ellipsoidal constraints on uncertain parameters are widely used in robust optimization,

especially because the resulting optimization problems often remain tractable.

Box constraints are also a popular way of incorporating uncertainty into robust optimization.

For box constraints, the uncertainty over the p-dimensional parameter vector β = [β1, ...,βp]
T is

written for i = 1, ..., p as LBi ≤ βi ≤UBi, where {LBi}i and {UBi}i are real-valued upper and lower

bounds that together define the box intervals.

Our main point in this subsection is that one can potentially derive a very wide range of un-

certainty sets for robust optimization using different loss functions from machine learning. Box

constraints and ellipsoidal constraints are two simple types of constraints that could potentially be

the set Fgood , which arise from two different loss functions, as we have shown. The least squares

loss leads to ellipsoidal constraints on the uncertainty set, but it is unclear what the structure would

be for uncertainty sets arising from the 0-1 loss, ramp loss, hinge loss, logistic loss and exponential

loss among others. Further, it is possible to create a loss function for fitting data to a probabilistic

model using the method of maximum likelihood; uncertainty sets for maximum likelihood could

thus be established. Table 4.2 shows several different popular loss functions and the uncertainty

sets they might lead to. Many of these new uncertainty sets do not always give tractable mathe-

matical programs, which could explain why they are not commonly considered in the optimization

literature.

The sequential process for RO. If we design the uncertainty sets as described above, with respect

to a machine learning loss function, the sequential process described in Section 2 can be used with

robust optimization. This proceeds in three steps:

1. use a learning algorithm on the training data to get f ∗,

2. establish an uncertainty set based on the loss function and f ∗, for example, ellipsoidal con-

straints arising from the least squares loss (or one could use any of the new uncertainty sets

discussed in the previous paragraph),

3. use specialized optimization techniques to solve for the best policy, with respect to the uncer-

tainty set.
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Loss function Uncertainty set description

least squares ‖Y −Xβ‖2
2 ≤ ‖Y −Xβ∗‖2

2 + ε (ellipsoid)

0-1 loss 1[ f (xi) 6=yi] ≤ 1[ f ∗(xi) 6=yi]+ ε

logistic loss ∑n
i=1 log(1+ e−yi f (xi))≤ ∑n

i=1 log(1+ e−yi f ∗(xi))+ ε

exponential loss ∑n
i=1 e−yi f (xi) ≤ ∑n

i=1 e−yi f ∗(xi)+ ε

ramp loss ∑n
i=1 min(1,max(0,1− yi f (xi)))≤ ∑n

i=1 min(1,max(0,1− yi f ∗(xi)))+ ε

hinge loss ∑n
i=1 max(0,1− yi f (xi))≤ ∑n

i=1 max(0,1− yi f ∗(xi))+ ε

Table 1: Table showing a summary of different possible uncertainty set descriptions that are based

on ML loss functions.

We note that the uncertainty sets created by the 0-1 loss and ramp loss for instance, are non-

convex, consequently assumption (A2) and Proposition 1 do not hold for robust optimization prob-

lems that use these sets.

4.3 The Overlap Between The Simultaneous Process and RO

On the other end of the spectrum from robust optimization, one can think of “optimistic” optimiza-

tion where we are seeking the best value of the objective in the best possible situation (as oppose

to the worst possible situation in RO). For optimistic optimization, more uncertainty is favorable,

and we find the best policy for the best possible situation. This could be useful in many real appli-

cations where one not only wants to know the worst-case conservative policy but also the best case

risk-taking policy. A typical formulation, following (11) can be written as:

min
π∈ ∪

g∈Fgood

Π(g;{x̃}i)
min

f∈Fgood

OpCost(π, f ;{x̃i}). (Optimistic optimization)

In optimistic optimization, we view operational cost optimistically (min f∈Fgood
OpCost) whereas in

the robust optimization counterpart (11), we view operational cost conservatively (max f∈Fgood
OpCost).

The policy π∗ is feasible in more situations in RO (minπ∈∩g∈Fgood Π
) since it must be feasible with re-

spect to each g ∈ Fgood , whereas the OpCost is lower in optimistic optimization (minπ∈∪g∈Fgood
Π)

since it need only be feasible with respect to at least one of the g’s. Optimistic optimization has not

been heavily studied, possibly because a (min-min) formulation is relatively easier to solve than its

(min-max) robust counterpart, and so is less computationally interesting. Also, one generally plans

for the worst case more often than for the best case, particularly when no estimation is involved. In

the case where estimation is involved, both optimistic and robust optimization could potentially be

useful to a practitioner.

Both optimistic optimization and robust optimization, considered with respect to uncertainty

sets Fgood , have non-trivial overlap with the simultaneous process. In particular, we showed in

Proposition 1 that pessimistic bias on operational cost is equivalent to robust optimization under

specific conditions on OpCost and Π. Using an analogous proof, one can show that optimistic

bias on operational cost is equivalent to optimistic optimization under the same set of conditions.

Both robust and optimistic optimization and the simultaneous process encompass large classes of

problems, some of which overlap. Figure 7 represents the overlap between the three classes of
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Figure 7: Set based description of the proposed framework (top circle) and its relation to robust

(right circle) and optimistic (left circle) optimizations. The regions of intersection are

where the conditions on the objective OpCost and the feasible set Π are satisfied.

problems. There is a class of problems that fall into the simultaneous process, but are not equivalent

to robust or optimistic optimization problems. These are problems where we use operational cost to

assist with estimation, as in the call center example and ML&TRP discussed in Section 3. Typically

problems in this class have Π = Π( f ;{x̃i}i). This class includes problems where the bias can be

either optimistic or pessimistic, and for which Fgood has a complicated structure, beyond ellipsoidal

or box constraints. There are also problems contained in either robust optimization or optimistic

optimization alone and do not belong to the simultaneous process. Typically, again, this is when Π

depends on f . Note that the housing problem presented in Section 3 lies within the intersection of

optimistic optimization and the simultaneous process; this can be deduced from (7).

In Section 5, we will provide statistical guarantees for the simultaneous process. These are very

different from the style of probabilistic guarantees in the robust optimization literature. There are

some “sample complexity” bounds in the RO literature of the following form: how many observa-

tions of uncertain data are required (and applied as simultaneous constraints) to maintain robustness

of the solution with high probability? There is an unfortunate overlap in terminology; these are

totally different problems to the sample complexity bounds in statistical learning theory. From the

learning theory perspective, we ask: how many training instances does it take to come up with a

model β that we reasonably know to be good? We will answer that question for a very general class

of estimation problems.

5. Generalization Bound with New Linear Constraints

In this section, we give statistical learning theoretic results for the simultaneous process that involve

counting integer points in convex bodies. Generalization bounds are probabilistic guarantees, that

often depend on some measure of the complexity of the hypothesis space. Limiting the complexity

of the hypothesis space equates to a better bound. In this section, we consider the complexity of

hypothesis spaces that results from an operational cost bias.

This enables us to answer in a quantitative manner, question Q3 in the introduction: “Can our

intuition about how much it will cost to solve a problem help us produce a better probabilistic

model?”
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Figure 8: Left: hypothesis space for intersection of good models (circular, to represent ℓq ball)

with low cost models (models below cost threshold, one side of wiggly curve). Right:

relaxation to intersection of a half space with an ℓq ball.

Generalization bounds have been well established for norm-based constraints on the hypothesis

space, but the emphasis has been more on qualitative dependence (e.g., using big-O notation) and

the constants are not emphasized. On the other hand, for a practitioner, every prior belief should

reduce the number of examples they need to collect, as these examples may each be expensive to

obtain; thus constants within the bounds, and even their approximate values, become important

(Bousquet, 2003). We thus provide bounds on the covering number for new types of hypothesis

spaces, emphasizing the role of constants.

To establish the bound, it is sufficient to provide an upper bound on the covering number. There

are many existing generic generalization bounds in the literature (e.g., Bartlett and Mendelson,

2002), which combined with our bound, will yield a specific generalization bound for machine

learning with operational costs, as we will construct in Theorem 10.

In Section 3, we showed that a bias on the operational cost can sometimes be transformed into

linear constraints on model parameter β (see Equations (5) and (8)). There is a broad class of other

problems for which this is true, for example, for applications related to those presented in Section 3.

Because we are able to obtain linear constraints for such a broad class of problems, we will analyze

the case of linear constraints here. The hypothesis we consider is thus the intersection of an ℓq ball

and a halfspace. This is illustrated in Figure 8.

The plan for the rest of the section is as follows. We will introduce the quantities on which our

main result in this section depends. Then, we will state the main result (Theorem 6). Following

that, we will build up to a generalization bound (Theorem 10) that incorporates Theorem 6. After

that will be the proof of Theorem 6.

Definition 5 (Covering Number, Kolmogorov and Tikhomirov, 1959) Let A ⊆ Γ be an arbitrary set

and (Γ,ρ) a (pseudo-)metric space. Let | · | denote set size.

• For any ε > 0, an ε-cover for A is a finite set U ⊆ Γ (not necessarily ⊆ A) s.t. ∀a ∈ A,∃u ∈U

with dρ(a,u)≤ ε.

• The covering number of A is N(ε,A,ρ) := infU |U | where U is an ε-cover for A.

We are given the set of n instances S := {xi}n
i=1 with each xi ∈ X ⊆ R

p where X = {x : ‖x‖r ≤
Xb}, 2≤ r ≤∞ and Xb is a known constant. Let µX be a probability measure on X . Let xi be arranged

as rows of a matrix X . We can represent the columns of X = [x1 . . . xn]
T with h j ∈ R

n, j = 1, ..., p,
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so X can also be written as [h1 · · ·hp]. Define function class F as the set of linear functionals whose

coefficients lie in an ℓq ball and with a set of linear constraints:

F := { f : f (x) = βT x,β ∈ B} where

B :=

{

β ∈ R
p : ‖β‖q ≤ Bb,

p

∑
j=1

c jνβ j +δν ≤ 1,δν > 0,ν = 1, ...,V

}

,

where 1/r+1/q = 1 and {c jν} j,ν, {δν}ν and Bb are known constants. The linear constraints given

by the c jν’s force the hypothesis space F to be smaller, which will help with generalization - this

will be shown formally by our main result in this section. Let F|S be defined as the restriction of F

with respect to S.

Let {c̃ jν} j,ν be proportional to {c jν} j,ν:

c̃ jν :=
c jνn1/rXbBb

‖h j‖r

∀ j = 1, ..., p and ν = 1, ...,V.

Let K be a positive number. Further, let the sets PK parameterized by K and PK
c parameterized by K

and {c̃ jν} j,ν be defined as

PK :=

{

(k1, ...,kp) ∈ Z
p :

p

∑
j=1

|k j| ≤ K

}

.

PK
c :=

{

(k1, ...,kp) ∈ PK :
p

∑
j=1

c̃ jνk j ≤ K ∀ν = 1, ...,V

}

. (15)

Let |PK | and |PK
c | be the sizes of the sets PK and PK

c respectively. The subscript c in PK
c denotes

that this polyhedron is a constrained version of PK . As the linear constraints given by the c jν’s

force the hypothesis space to be smaller, they force |PK
c | to be smaller. Define X̃ to be equal to X

times a diagonal matrix whose jth diagonal element is n1/rXbBb

‖h j‖r
. Define λmin(X̃

T X̃) to be the smallest

eigenvalue of the matrix X̃T X̃ , which will thus be non-negative. Using these definitions, we state

our main result of this section.

Theorem 6 (Main result, covering number bound)

N(
√

nε,F|S,‖ · ‖2)≤
{

min{|PK0 |, |PK
c |} if ε < XbBb

1 otherwise
, (16)

where

K0 =

⌈

X2
b B2

b

ε2

⌉

and

K = max











K0,











nX2
b B2

b

λmin(X̃T X̃)
[

minν=1,...,V
δν

∑
p
j=1 |c̃ jν|

]2





















.
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The theorem gives a bound on the ℓ2 covering number for the specially constrained class F|S. The

bound improves as the constraints given by c jν on the operational cost become tighter. In other

words, as the c jν impose more restrictions on the hypothesis space, |PK
c | decreases, and the covering

number bound becomes smaller. This bound can be plugged directly into an established generaliza-

tion bound that incorporates covering numbers, and this is done in what follows to obtain Theorem

10.

Note that min{|PK0 |, |PK
c |} can be tighter than |PK

c | when ε is large. When ε is larger than XbBb,

we only need one closed ball of radius
√

nε to cover F|S, so N(
√

nε,F|S,‖ · ‖2) = 1. In that case,

the covering number in Theorem 6 is appropriately bounded by 1. If ε is large, but not larger than

XbBb, then |PK
c | can be smaller than |PK0 |. |PK0 | is the size of the polytope without the operational

cost constraints. |PK
c | is the size of a potentially bigger polytope, but with additional constraints.

For this problem we generally assume that n > p; that is the number of examples is greater than

the dimensionality p. In such a case, λmin(X̃
T X̃) can be shown to be bounded away from zero for a

wide variety of distributions µX (e.g., sub-gaussian zero-mean). When λmin(X̃
T X̃) = 0, the covering

number bound becomes vacuous.

Let us introduce some notation in order to state the generalization bound results. Given any

function f ∈ F , we would like to minimize the expected future loss (also known as the expected

risk), defined as:

Rtrue(l ◦ f ) := E(x,y)∼µX×Y

[

l( f (x),y)
]

=
∫

l( f (x),y)∂µX×Y (x,y),

where l : Y ×Y → R is the (fixed) loss function we had previously defined in Section 2. The loss

on the training sample (also known as the empirical risk) is:

Remp(l ◦ f ,{(xi,yi)}n
1) :=

1

n

n

∑
i=1

l( f (xi),yi).

We would like to know that Rtrue(l ◦ f ) is not too much more than Remp(l ◦ f ,{(xi,yi)}n
1), no

matter which f we choose from F . A typical form of generalization bound that holds with high

probability for every function in F is

Rtrue(l ◦ f )≤ Remp(l ◦ f ,{(xi,yi)}n
1)+Bound(complexity(F ),n), (17)

where the complexity term takes into account the constraints on F , both the linear constraints, and

the ℓq-ball constraint. Theorem 6 gives an upper bound on the term Bound(complexity(F ),n) in

(17) above. In order to show this explicitly, we will give the definition of Rademacher complexity,

restate how it appears in the relation between expected future loss and loss on training examples,

and state an upper-bound for it in terms of the covering number.

Definition 7 (Rademacher Complexity) The empirical Rademacher complexity of F|S is5

R̂ (F|S) = Eσ

[

sup
f∈F

2

n

n

∑
i=1

σi f (xi)

]

(18)

where {σi} are Rademacher random variables (σi = 1 with prob. 1/2 and −1 with prob. 1/2). The

Rademacher complexity is its expectation: Rn(F ) = ES∼(µX )n [R̂ (F|S)].

5. The factor 2 in the defining equation (18) is not very important. Some authors omit this factor and include it explicitly

as a pre-factor in, for example, Theorem 8.
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The empirical Rademacher complexity R̂ (F|S) can be computed given S and F , and by concen-

tration, will be close to the Rademacher complexity. The following result relates the true risk to

the empirical risk and empirical Rademacher complexity for any function class H (see Bartlett and

Mendelson, 2002, and references therein). Let the quantities H|S,R
true(l◦h) and Remp(l◦h,{xi,yi}n

1)
be analogous to those we had defined for our specific class F .

Theorem 8 (Rademacher Generalization Bound) For all δ > 0, with probability at least 1−δ,∀h ∈
H ,

Rtrue(l ◦h)≤ Remp(l ◦h,{xi,yi}n
1)+L · R̂ (H|S)+

3√
2

√

log 1
δ

n
, (19)

where L is the Lipschitz constant of the loss function.

Note that (19) is an explicit form of (17). We will now relate R̂ (F|S) to covering numbers

thus justifying the importance of statement (16) in Theorem 6. In particular the following infinite

chaining argument also known as Dudley’s integral (see Talagrand, 2005) relates R̂ (F|S) to the

covering number of the set F|S.

Theorem 9 (Relating Rademacher Complexity to Covering Numbers) We are given that ∀x ∈ X ,

we have f (x) ∈ [−XbBb,XbBb]. Then,

1

XbBb

R̂ (F|S)≤ 12

∫ ∞

0

√

2logN(α,F ,L2(µ
n
X ))

n
dα = 12

∫ ∞

0

√

2logN(
√

nα,F|S,‖ · ‖2)

n
dα.

Our main result in Theorem 6 can be used in conjunction with Theorems 8 and 9, to directly see

how the true error relates to the empirical error and the constraints on the restricted function class

F (the ℓq-norm bound on β and linear constraint on β from the operational cost bias). Explicitly,

that bound is here.

Theorem 10 (Generalization Bound for ML with Operational Costs) For all δ > 0, with probability

at least 1−δ,∀ f ∈ F ,

Rtrue(l ◦ f )≤ Remp(l ◦ f ,{xi,yi}n
1)+12LXbBb

∫ ∞

0

√

2logN(
√

nε,F|S,‖ · ‖2)

n
dε+

3√
2

√

log 1
δ

n
,

where

N(
√

nε,F|S,‖ · ‖2)≤
{

min{|PK0 |, |PK
c |} if ε < XbBb

1 otherwise
,

K0 =

⌈

X2
b B2

b

ε2

⌉

,

and

K = max











K0,











nX2
b B2

b

λmin(X̃T X̃)
[

minν=1,...,V
δν

∑
p
j=1 |c̃ jν|

]2





















are functions of ε.
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This bound implies that prior knowledge about the operational cost can be important for general-

ization. As our prior knowledge on the cost becomes stronger, the size of the hypothesis space

becomes more restrictive, as seen through the constraints given by the c jν. When this happens, the

|PK
c | terms become smaller, and the whole bound becomes smaller. Note that the integral over ε is

taken from ε = 0 to ε = ∞. When ε is larger than XbBb, as noted earlier, N(
√

nε,F|S,‖ · ‖2) = 1 and

thus logN(
√

nε,F|S,‖ · ‖2) = 0.

Before we move onto building the necessary tools to prove Theorem 6, we compare our result

with the bound in our work on the ML&TRP (Tulabandhula et al., 2011). In that work, we con-

sidered a linear function class with a constraint on the ℓ2-norm and one additional linear inequality

constraint on β. We then used a sample independent volumetric cap argument to get a covering

number bound. Theorem 6 is in some ways an improvement of the other result: (1) we can now

have multiple linear constraints on β; (2) our new result involves a sample-specific bounding tech-

nique for covering numbers, which is generally tighter; (3) our result applies to ℓq balls for q ∈ [1,2]
whereas the previous analysis holds only for q = 2. The volumetric argument in Tulabandhula

et al. (2011) provided a scaling of the covering number. Specifically, the operational cost term for

the ML&TRP allowed us to reduce the covering number term in the bound from
√

logN(·, ·, ·) to
√

log(αN(·, ·,‖ · ‖2)), or equivalently
√

logN(·, ·,‖ · ‖2)+ logα, where α is a function of the op-

erational cost constraint. If α obeys α ≪ 1, then there is a noticeable effect on the generalization

bound, compared to almost no effect when α ≈ 1. In the present work, the bound does not scale the

covering number like this, instead it is a very different approach giving a more direct bound.

5.1 Proof of Theorem 6

We make use of Maurey’s Lemma (Barron, 1993) in our proof (in the same spirit as Zhang, 2002).

The main ideas of Maurey’s Lemma are used in many machine learning papers in various contexts

(e.g., Koltchinskii and Panchenko, 2005; Schapire et al., 1998; Rudin and Schapire, 2009). Our

proof of Theorem 6 adapts Maurey’s Lemma to handle polyhedrons, and allows us to apply counting

techniques to bound the covering number.

Recall that X = [x1 . . .xn]
T was also defined column-wise as [h1 . . . hp]. We introduce two scaled

sets {h̃ j} j and {β̃ j} j corresponding to {h j} j and {β j} j as follows:

h̃ j :=
n1/rXbBb

‖h j‖r

h j for j = 1, ..., p; and

β̃ j :=
‖h j‖r

n1/rXbBb

β j for j = 1, ..., p.

These scaled sets will be convenient in places where we do not want to carry the scaling terms

separately.
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Any vector y that is equal to Xβ can thus be written in three different ways:

y =
p

∑
j=1

β jh j, or

y =
p

∑
j=1

β̃ jh̃ j, or

y =
p

∑
j=1

|β̃ j|sign(β̃ j)h̃ j.

Our first lemma is a restatement of Maurey’s lemma (revised version of Lemma 1 in Zhang,

2002). We provide a proof based on the law of large numbers (Barron, 1993) though other proof

techniques also exist (see Jones, 1992, for a proof based on iterative approximation).

The lemma states that every point y in the convex hull of {h j} j is close to one of the points yK

in a particular finite set.

Lemma 11 Let max j=1,...,p ‖h̃ j‖ be less than or equal to some constant b. If y belongs to the convex

hull of set {h̃ j} j, then for every positive integer K ≥ 1, there exists yK in the convex hull of K points

of set {h̃ j} j such that ‖y− yK‖2 ≤ b2

K
.

Proof Let y be written in the form:

y =
p

∑
i=1

γ̄ jh̃ j,

where for each j = 1, ..., p, γ̄ j ≥ 0 and ∑
p
j=1 γ̄ j ≤ 1. Let γ̄p+1 := 1−∑

p
j=1 γ̄ j.

Consider a discrete distribution D formed by the coefficient vector (γ̄1, .., γ̄p, γ̄p+1). Associate

a random variable h̃ with support set {h̃1, ..., h̃p,0}. That is, Pr(h̃ = h̃ j) = γ̄ j, j = 1, ..., p and

Pr(h̃= 0) = γ̄p+1.

Draw K observations {h̃1, ..., h̃K} uniformly and independently from D and form the sample

average yK := 1
K ∑K

s=1 h̃s. Here, we are using the superscript index to denote the observation number.

The mean of this random variable yK is:

ED [yK ] =
1

K

K

∑
s=1

ED [h̃s] where

ED [h̃s] =
p+1

∑
j=1

Pr(h̃= h̃ j)h̃ j =
p

∑
j=1

γ̄ jh̃ j = y

hence ED [yK ] = y.
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The expected distance between yK and y is:

ED [‖yK − y‖2] = ED [‖yK −ED [yK ]‖2] = E

[

n

∑
i=1

(yK −ED [yK ])
2
i

]

(†)
=

n

∑
i=1

Var((yK)i)
(∗)
=

n

∑
i=1

1

K
Var((h̃)i)

(‡)
=

1

K

n

∑
i=1

(

ED [(h̃)2
i ]−ED [(h̃)i]

2
)

(◦)
=

1

K

(

ED [‖h̃‖2]−‖ED [h̃]‖2
)

≤ 1

K
ED [‖h̃‖2]≤ b2

K
(20)

where we have used i to be the index for the ith coordinate of the n dimensional vectors. (†)
follows from the definition of variance coordinate-wise. (∗) follows because each component of

yK is a sample average. (‡) also follows from the definition of variance. At step (◦), we rewrite

the previous summations involving squares into ones that use the Hilbert norm. Our assumption on

max j=1,...,p ‖h̃ j‖ tells us that ED [‖h̃‖2] ≤ b2 leading to (20). Since the squared Hilbert norm of the

sample mean is bounded in this way, there exists a yK that satisfies the inequality, so that

‖yK − y‖2 ≤ b2

K
.

The following corollary states explicitly that an approximation to y exists that is a linear combi-

nation with coefficients chosen from a particular discrete set.

Corollary 12 For any y and K as considered above, we can find non-negative integers m1, ...,mp

such that ∑
p
j=1 m j ≤ K and ‖y−∑

p
j=1

m j

K
h̃ j‖2 ≤ b2

K
.

This follows immediately from the proof of Lemma 11, choosing m j to be the coefficients of the

h̃ j’s such that yK = ∑ j
m j

K
h̃ j.

The above corollary means that counting the number of p-tuple non-negative integers m1, ...,mp

gives us a covering of the set that y belongs to. In the case of Lemma 11, this set is the convex hull

of {h̃ j} j.

Before we can go further, we need to generalize the argument from the positive orthant of the ℓ1

ball to handle any coefficients that are in the whole unit-length ℓ1-ball. This is what the following

lemma accomplishes.

Lemma 13 Let max j=1,...,p ‖h̃ j‖ be less than or equal to some constant b. For any y = ∑
p
j=1 β̃ jh̃ j

such that ‖β̃‖1 ≤ 1, given a positive integer K, we can find a yK such that

‖y− yK‖2
2 ≤

b2

K

where yK = ∑
p
j=1

k j

K
h̃ j is a combination of {h̃ j} with integers k1, ...,kp such that ∑

p
j=1 |k j| ≤ K.
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Proof Lemma 11 cannot be applied directly since the {β̃ j} j can be negative. We rewrite y or

equivalently ∑
p
j=1 β̃ jh̃ j as

y =
p

∑
j=1

|β̃ j|sign(β̃ j)h̃ j.

Thus y lies in the convex combination of {sign(β̃ j)h̃ j} j. Note that this step makes the convex hull

depend on the y or {β̃ j} j we start with. Nonetheless, we know by substituting {sign(β̃ j)h̃ j} j for

{h̃ j} j in the statement of Lemma 11 and Corollary 12 that

1. we can find yK , or equivalently

2. we can find non-negative integers m1, ...,mp with ∑
p
j=1 m j ≤ K,

such that ‖y− yK‖2
2 ≤ b2

K
where yK = ∑

p
j=1

m j

K
sign(β̃ j)h̃ j holds. This implies there exist integers

k1, ...,kp such that yK = ∑
p
j=1

k j

K
h̃ j where ∑

p
j=1 |k j| ≤ K. We simply let k j = m jsign(β̃ j). Thus, we

absorbed the signs of the β̃ j’s, and the coefficients no longer need to be nonnegative.

In other words, we have shown that if a particular yK is in the convex hull of points {sign(β̃ j)h̃ j} j,

then the same yK is a linear combination of {h̃ j} j where the coefficients of the combination

k1/K, ...,kp/K obey ∑
p
j=1 |k j| ≤ K. This concludes the proof.

We now want to answer the question of whether the k1/K, ...,kp/K can obey (related) linear

constraints if the original {β̃ j} j did so. These constraints on the {β̃ j} j’s are the ones coming from

constraints on the operational cost. In other words, we want to know that our (discretized) approxi-

mation of y also obeys a constraint coming from the operational cost.

Let {β̃ j} j satisfy the linear constraints within the definition of B , in addition to satisfying ‖β̃‖1 ≤
1:

p

∑
j=1

c̃ jνβ̃ j +δν ≤ 1, for fixed δν > 0,ν = 1, ...,V.

We now want that for large enough K, the p-tuple k1/K, ...,kp/K also meets certain related linear

constraints.

We will make use of the matrix X̃ , defined before Theorem 6. It has the elements of the scaled

set {h̃ j} j as its columns: X̃ := [h̃1 . . . h̃p].

Lemma 14 Take any y = ∑
p
j=1 β̃ jh̃ j, and any yK = ∑

p
j=1

k j

K
h̃ j, with:

p

∑
j=1

c̃ jνβ̃ j +δν ≤ 1, for fixed δν > 0,ν = 1, ...,V where ‖β̃‖1 ≤ 1

and ‖y− yK‖2
2 ≤ b2/K. Whenever

K ≥ b2

[

minν=1,...,V
δν

∑
p
j=1 |c̃ jν|

]2

λmin(X̃T X̃)

,
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then the following linear constraints on k1/K, ...,kp/K hold:

p

∑
j=1

c̃ jν
k j

K
≤ 1, ν = 1, ...,V.

This lemma states that as long as the discretization is fine enough, our approximation yK obeys

similar operational cost constraints to y.

Proof

Let κ := [k1/K . . . kp/K]T . Using the definition of X̃ ,

b2

K
≥ ‖y− yK‖2

2 = ‖X̃ β̃− X̃κ‖2
2 = ‖X̃(β̃−κ)‖2

2

= (β̃−κ)T X̃T X̃(β̃−κ)
(∗)
≥ λmin(X̃

T X̃)‖β̃−κ‖2
2. (21)

In (∗), we used the fact that for a positive (semi-)definite matrix M and for every non-zero vector

z, zT Mz ≥ λmin(M)zT Iz. (If β̃ = κ, we are done since κ will obey the constraints β̃ obeys.) Also,

for any z, in each coordinate j, |z j| ≤ max j=1,...,p |z j|= ‖z‖∞ ≤ ‖z‖2. Combining this with (21), we

have:
∣

∣

∣

∣

β̃ j −
k j

K

∣

∣

∣

∣

≤ ‖β̃−κ‖2 ≤
b

√

Kλmin(X̃T X̃)
.

This implies that κ itself component-wise satisfies

β̃ j −A ≤ k j

K
≤ β̃ j +A where A :=

b
√

Kλmin(X̃T X̃)
.

So far we know that for all ν = 1, ...,V , ∑
p
j=1 c̃ jνβ̃ j + δν ≤ 1, with δν > 0, and each coordinate

k j/K within κ varies from β̃ j by at most an amount A. We would like to establish that the linear

constraints ∑
p
j=1 c̃ jν

k j

K
≤ 1, ν = 1, ...,V ; always hold for such a κ. For each constraint ν, substituting

the extremal values of k j according to the sign of c̃ jν, we get the following upper bound:

p

∑
j=1

c̃ jν
k j

K
≤ ∑

c̃ jν>0

c̃ jν(β̃ j +A)+ ∑
c̃ jν<0

c̃ jν(β̃ j −A) =
p

∑
j=1

c̃ jνβ̃ j +A

p

∑
j=1

|c̃ jν|.

This sum ∑
p
j=1 c̃ jνβ̃ j +A∑

p
j=1 |c̃ jν| is less than or equal to 1 iff A∑

p
j=1 |c̃ jν| ≤ δν.

Thus we would like A ≤ δν

∑
p
j=1 |c̃ jν| for all ν = 1, ...,V . That is,

b
√

Kλmin(X̃T X̃)
= A ≤ min

ν=1,...,V

δν

∑
p
j=1 |c̃ jν|

⇔ K ≥ b2

[

minν=1,...,V
δν

∑
p
j=1 |c̃ jν|

]2

λmin(X̃T X̃)

.
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We now proceed with the proof of our main result of this section. The result involves covering

numbers, where the cover for the set will be the vectors with discretized coefficients that we have

been working with in the lemmas above.

Proof (of Theorem 6)

Recall that

• the matrix X is defined as [h1 ... hp];

• the scaled versions of vector {h j} j are h̃ j =
n1/rXbBb

‖h j‖r
h j for j = 1, ..., p;

• the scaled versions of coefficients {β j} j are β̃ j =
‖h j‖r

n1/rXbBb
β j for j = 1, ..., p; and

• any vector y = Xβ = ∑
p
j=1 β jh j can be rewritten as ∑

p
j=1 β̃ jh̃ j.

We will prove three technical facts leading up to the result.

Fact 1. If ‖β‖q ≤ Bb, then ‖β̃‖1 ≤ 1.

Because 1/r+1/q = 1, by Hölder’s inequality we have:

p

∑
j=1

|β̃ j|=
1

n1/rBbXb

p

∑
j=1

‖h j‖r|β j| (22)

≤ 1

n1/rBbXb

(

p

∑
j=1

‖h j‖r
r

)1/r(
p

∑
j=1

|β j|q
)1/q

.

To bound the above notice that in our notation, (h j)i = (xi) j. That is, the ith component of feature

vector h j, that is, (h j)i is also the jth component of example xi. Thus,

(

p

∑
j=1

‖h j‖r
r

)1/r

=

(

p

∑
j=1

n

∑
i=1

((h j)i)
r

)1/r

=

(

n

∑
i=1

p

∑
j=1

((h j)i)
r

)1/r

=

(

n

∑
i=1

‖xi‖r
r

)1/r

≤ (nX r
b)

1/r = n1/rXb.

Plugging this into (22), and using the fact that ‖β‖q ≤ Bb, we have

p

∑
j=1

|β̃ j| ≤
1

n1/rBbXb

n1/rXbBb = 1,

that is, ‖β̃‖1 ≤ 1.

Fact 2. Corresponding to the set of linear constraints on β:

p

∑
j=1

c jνβ j +δν ≤ 1,δν > 0,ν = 1, ...,V,

2021



TULABANDHULA AND RUDIN

there is a set of linear constraints on β̃ j, namely ∑
p
j=1 c̃ jνβ̃ j +δν ≤ 1,ν = 1, ...,V .

Recall that β ∈ B also means that ∑
p
j=1 c jνβ j +δν ≤ 1 for some δν > 0 for all ν = 1, ...,V . Thus,

for all ν = 1, ...,V :

p

∑
j=1

c jνβ j +δν ≤ 1

⇔
p

∑
j=1

c jν

(

n1/rXbBb

‖h j‖r

‖h j‖r

n1/rXbBb

)

β j +δν ≤ 1

⇔
p

∑
j=1

c̃ jνβ̃ j +δν ≤ 1

which is the set of corresponding linear constraints on {β̃ j} j we want.

Fact 3. ∀ j = 1, ..., p, ‖h̃ j‖2 ≤ n1/2XbBb.

Jensen’s inequality implies that for any vector z in R
n, and for any r ≥ 2, it is true that 1

n1/2 ‖z‖2 ≤
1

n1/r ‖z‖r. Using this for our particular vector h̃ j and our given r, we get

‖h̃ j‖2 ≤ ‖h̃ j‖rn
1/2 1

n1/r
.

But we know

‖h̃ j‖r =

∥

∥

∥

∥

∥

n1/rXbBb

‖h j‖r

h j

∥

∥

∥

∥

∥

r

=
n1/rXbBb

‖h j‖r

‖h j‖r = n1/rXbBb.

Thus, we have ‖h̃ j‖2 ≤ n1/2XbBb for each j, and thus, max j=1,...,p ‖h̃ j‖2 ≤ n1/2XbBb.

With those three facts established, we can proceed with the proof of Theorem 6. Facts 1 and 2

show that the requirements on β̃ for Lemma 13 and Lemma 14 are satisfied. Fact 3 shows that the

requirement on {h̃ j} j for Lemma 13 is satisfied with constant b being set to n1/2XbBb. Since the

requirements on {h̃ j} j and {β̃ j} j are satisfied, we want to choose the right value of positive integer

K such that Lemma 14 is satisfied and also we would like the squared distance between y and yK

to be less than nε2. To do this, we pick K to be the bigger of the two quantities: X2
b B2

b/ε2 and that

given in Lemma 14. That is,

K =















max



















X2
b B2

b

ε2
,

nX2
b B2

b
[

min
ν=1,...,V

δν

∑
p
j=1 |c̃ jν|

]2

λmin(X̃T X̃)

































. (23)

This will force our discretization for the cover to be sufficiently fine that things will work out: we

will be able to count the number of cover points in our finite set, and that will be our covering

number.

To summarize, with this choice, for any y ∈ F|S, we can find integers k1, ...,kp such that the

following hold simultaneously:

a. (It gives a valid discretization of y.) ∑
p
i=1 |ki| ≤ K,
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b. (It gives a good approximation to y.) The approximation yK = ∑
p
j=1

ki

K
h̃ j is ε

√
n close to

y = ∑
p
j=1 β̃ jh̃ j. That is,

‖y− yK‖2
2 ≤

nX2
b B2

b

K
≤ nε2,and

c. (It obeys operational cost constraints.) ∑
p
j=1 c̃ jν

k j

K
≤ 1, ν = 1, ...,V .

In the above, the existence of k1, ...,kp satisfying (a) and (b) comes from Lemma 13 where we

have also used K satisfying K ≥ X2
b B2

b/ε2 ≥ 1. Lemma 14 along with the choice of K from (23)

guarantees that (c) holds as well for this choice of k1, ...,kp.

Thus, by (b), any y ∈ F|S is within ε
√

n in ℓ2 distance of at least one of the vectors with coeffi-

cients k1/K, ...,kp/K. Therefore counting the number of p-tuple integers k1, ...,kp such that (a) and

(c) hold, or equivalently the number of solutions to (15), gives a bound on the covering number,

which is |PK
c |. That is,

N(
√

nε,F|S,‖ · ‖2)≤ |PK
c |.

If we did not have any linear constraints, we would have the following bound,

N(
√

nε,F|S,‖ · ‖2)≤ |PK0 |,

where K0 :=
⌈

X2
b B2

b

ε2

⌉

by using Lemma 13 and very similar arguments as above.

In addition, when ε ≥ XbBb, the covering number is exactly equal to 1 since we can cover the

set F|S by a closed ball of radius
√

nXbBb.

Thus we modify our upper bound by taking the minimum of the two quantities |PK0 | and |PK
c |

appropriately to get the result:

N(
√

nε,F|S,‖ · ‖2)≤
{

min{|PK0 |, |PK
c |} if ε < XbBb

1 otherwise.

Since Theorem 6 suggests that |PK
c | may be an important quantity for the learning process,

we discuss how to compute it. We assume that c̃ jν are rationals for all j = 1, .., p,ν = 1, ...,V,
so that we can multiply each of the V constraints describing PK

c by the corresponding gcd of the

p denominators. This is without loss of generality because the rationals are dense in the reals.

This ensures that all the constraints describing polyhedron PK
c have integer coefficients. Once this

is achieved, we can run Barvinok’s algorithm (using for example, Lattice Point Enumeration, see

De Loera, 2005, and references therein) that counts integer points inside polyhedra and runs in

polynomial time for fixed dimension (which is p here). Using the output of this algorithm within

our generalization bound will yield a much tighter bound than in previous works (for example, the

bound in Zhang, 2002, Theorem 3), especially when (r,q) = (∞,1); this is true simply because

we are counting more carefully. Note that counting integer points in polyhedrons is a fundamental

question in a variety of fields including number theory, discrete optimization, combinatorics to name

a few, and making an explicit connection to bounds on the covering number for linear function

classes can potentially open doors for better sample complexity bounds.
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6. Discussion and Conclusion

The perspective taken in this work contrasts with traditional decision analysis and predictive mod-

eling; in these fields, a single decision is often the only end goal. Our goal involves exploring how

predictive modeling influences decisions and their costs. Unlike traditional predictive modeling, our

regularization terms involve optimization problems, and are not the usual vector norms.

The simultaneous process serves as a way to understand uncertainty in decision-making, and

can be directly applied to real problems. We centered our discussion and demonstrations around

three questions, namely: “What is a reasonable amount to allocate for this task so we can react best

to whatever nature brings?” (answered in Section 3), “Can we produce a reasonable probabilistic

model, supported by data, where we might expect to pay a specific amount?” (answered in Section

3), and “Can our intuition about how much it will cost to solve a problem help us produce a better

probabilistic model?” (answered in Section 5). The first two were answered by exploring how

optimistic and pessimistic views can influence the probabilistic models and the operational cost

range. Given the range of reasonable costs, we could allocate resources effectively for whatever

nature brings. Also given a specific cost value, we could pick a corresponding probabilistic model

and verify that it can be supported by data. The third question was comprehensively answered in

Section 5 by evaluating how intuition about the operational cost can restrict the probabilistic model

space and in turn lead to better sample complexity if the intuition is correct.

These are questions that are not handled in a natural way by current paradigms. Answering these

three questions are not the only uses for the simultaneous process. For instance, domain experts

could use the simultaneous process to explore the space of probabilistic models and policies, and

then simply pick the policy among these that most agrees with their intuition. Or, they could use the

method to refine the probabilistic model, in order to exclude solutions that the simultaneous process

found that did not agree with their intuition.

The simultaneous process is useful in cases where there are many potentially good probabilistic

models, yielding a large number of (optimal-response) policies. This happens when the training

data are scarce, or the dimensionality of the problem is large compared to the sample size, and the

operational cost is not smooth. These conditions are not difficult to satisfy, and do occur commonly.

For instance, data can be scarce (relative to the number of features) when they are expensive to col-

lect, or when each each instance represents a real-world entity where few exist; for instance, each

example might be a product, customer, purchase record, or historic event. Operational cost calcu-

lations commonly involve discrete optimization; there can be many scheduling, knapsack, routing,

constraint-satisfaction, facility location, and matching problems, well beyond what we considered

in our simple examples. The simultaneous process can be used in cases where the optimization

problem is difficult enough that sampling the posterior of Bayesian models, with computing the

policy at each round, is not feasible.

We end the paper by discussing the applicability of our policy-oriented estimation strategy in the

real world. Prediction is the end goal for machine learning problems in vision, image processing and

biology, and in other scientific domains, but there are many domains where the learning algorithm is

used to make recommendations for a subsequent task. We showed applications in Section 3 but it is

not hard to find applications in other domains, where using either the traditional sequential process,

decision theory, or robust optimization may not suffice. Here are some other potential domains:

• Internet advertising, where the goal of the advertising platform is to choose which ad to show

a customer. For each customer and advertiser, there is an uncertain estimate of the probability
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that the customer will click the ad from that advertiser. These estimates determine which ad

will be shown next, which is a discrete decision (Muthukrishnan et al., 2007).

• Portfolio management, where we allocate our budget among n risky assets with uncertain

returns, and each asset has a different cost associated with the investment (Konno and Ya-

mazaki, 1991).

• Maintenance applications (in addition to the ML&TRP Tulabandhula et al., 2011), where we

estimate probabilities of failure for each piece of equipment, and create a policy for repairing,

inspecting, or replacing the equipment. Certain repairs are more expensive than others, so the

costs of various policy decisions could potentially change steeply as the probability model

changes.

• Traffic flows on transportation networks, where the problem can be that of load balancing

based on resource constraints and forecasted demands (Koulakezian et al., 2012).

• Policy decisions based on dynamical system simulations, for instance, climate policy, where

a politician wants to understand the uncertainty in policy decisions based on the results of a

large-scale simulation. If the simulation cannot be computed for all initial values, its result

can be estimated using a machine learning algorithm (Barton et al., 2010).

• Pharmaceutical companies choosing a subset of possible drug targets to test, where the drugs

are predicted to be effective, and cannot be overly expensive to produce (Yu et al., 2012). This

might be similar in many ways to the real-estate purchasing problem discussed in Section 3.

• Machine task scheduling on multi-core processors, where we need to allocate processors

to various jobs during a large computation. This could be very similar to the problem of

scheduling with constraints addressed in Section 3. If we optimistically estimate the amount

of time each job takes, we will hopefully free up processors on time so they can be ready for

the next part of the computation.

We believe the simultaneous process will open the door for other methods dealing with the inter-

action of machine learning and decision-making that fall outside the realm of the usual paradigms.
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