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Abstract—A lightweight solution for estimating posi-
tion and velocity relative to a known marker is pre-
sented. The marker consists of three infrared (IR) LEDs
in a fixed pattern. Using an IR camera with a 100 Hz
update rate, the range and bearing to the marker are
calculated. This information is then fused with inertial
sensor information to produce state estimates at 1 kHz
using a sigma point Kalman filter. The computation
takes place on a 14 gram custom autopilot, yielding a
lightweight system for generating high-rate relative state
information. The estimation scheme is compared to data
recorded with a motion capture system.

I. INTRODUCTION

During the past decade significant advances have

been made in the area of autonomous control and

navigation of robotic systems, especially with regard

to small, aerial vehicles navigating indoors where GPS

signals are weak and often unusable [1,2]. Using a va-

riety of sensors such as cameras, laser scanners, sonar,

etc., aerial vehicles are now able to autonomously map

and explore an unknown environment without the aid

of GPS [3,4]. Generally, these estimation algorithms

are concerned with estimating the state of the vehicle

relative to the world within which it is operating.

Additionally, substantial research focus has been

placed on controlling groups or flocks of autonomous

agents. Inspired by observing flocking behaviors in

species such as ants and bees, the idea is to create

many small, relatively simple units that work together

and collectively perform tasks impossible for any sin-

gle agent to perform [5]. Vehicle state estimation and

control in the context of robotic flocks is inherently

different from the problems faced by a single vehicle

exploring an unknown environment. Especially when
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Fig. 1. Quadrotor used in experiments. The sonar faces down for
measuring altitude and the IR camera faces forward for detecting
range and bearing to the IR markers.

the agents are operating in close proximity to each

other, each agent in the flock is concerned more

with navigation relative to its neighboring agents than

navigation and estimation relative to the world in

which the flock is operating. The flock as a whole must

still observe some notion of global state estimation and

control; however, for the agents to navigate properly,

global state information need not be available to every

agent. The vast majority of the agents should be able

to perform control and estimation tasks based solely

on relative measurements to neighboring agents.

Thus, in the context of aerial robotics, to coop-

eratively operate multiple vehicles in a GPS-denied

environment, only a few of the agents need to localize

and navigate relative to the global frame, while the

rest of the agents can localize and navigate relative to

each other. In the simplest case of two agents, this for-

mulation reduces to a leader-follower scenario, where

the leader robot navigates globally and the following

robot navigates relative to the leader. The primary

advantages of this framework lie in the reduced com-
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plexity, both computational and sensing, of the state

estimation for the following robots. By relying on the

global information available to the leader robots, the

following robots are able to navigate fully by solving

the potentially simpler problem of estimating their

state relative to the state of the leaders. Also, by esti-

mating state information relative to a known marker,

the following robots can be significantly smaller and

lighter because external sensors such as laser scanners

or stereo cameras are not needed.

The work presented in this paper describes a fast

and lightweight sensing solution for estimating the

state of a vehicle relative to one of its neighbors.

The key contributions of the work are the experi-

mental implementation and validation of the proposed

relative sensing solution for generating accurate and

high-rate range and bearing estimates relative to a

known marker. The framework utilizes an infrared

(IR) camera from a commercially available Nintendo

Wii1 controller and is implemented on an embedded

computer. The sensors and embedded computer weigh

just over 20 grams. State estimates are available to the

controller at 1 kHz, with position correction updates

coming at 100 Hz, enabling tight position and atti-

tude control. The sensing solution allows for small,

lightweight quadrotors with minimal sensing to fly

autonomously relative to other vehicles.

The remainder of the paper is organized as follows.

Section II summarizes the related work in the field.

Sections III and IV detail the sensors used and the

integration of the estimation framework. A comparison

of the proposed sensing scheme to data collected with

a motion capture system is presented in Section V.

Finally some conclusions and areas of future work are

described in Section VI.

II. RELATED WORK

Impressive recent results in the area of quadrotor

control have been achieved utilizing statically mounted

motion capture systems [6]–[8]. The motion capture

systems allow the researcher to focus efforts on con-

troller design and implementation without worrying

about state estimation. In addition to the highly accu-

rate measurements available from such systems, tight

control is possible in part due to the high rate at which

new measurements are taken (typically between 100

1http://www.nintendo.com/wii

and 200 Hz) and the low latency with which they are

available to the control algorithms.

Using laser scanners as the primary sensor, re-

searchers have demonstrated robust indoor navigation

in unstructured environments [1] and transitions be-

tween indoor and outdoor flight [2]. Autonomous flight

has also been robustly achieved using cameras for

position and velocity estimation [3]. Typically, these

vehicles are forced to fly slower and more conserva-

tively than those in a motion capture facility since they

must do significant on-board computation to generate

valid state estimates, thereby limiting the rate at which

global position and velocity solutions are available.

A notable exception to this convention of slow and

conservative flight was created by utilizing information

gathered about the environment a priori [9].

Very recent results have highlighted the benefits

of utilizing sensors with fast update rates. In [10],

the authors propose using a camera with a 100 Hz

update rate and are able to generate state estimates

relative to a vertical pole. The work presented in this

paper is focused on a cooperative scenario with active

markers and so is able to achieve similar state estimate

performance at a fraction of the size and computational

complexity.

Several papers have proposed new sensing tech-

niques for relative navigation of both ground and aerial

robots. Most of the solutions proposed in the literature

rely on either time of flight measurements or mea-

suring the received signal strength of a transmitting

sensor. One approach proposed sensing neighboring

vehicles through generated magnetic fields, thus avoid-

ing the problem of needing good state estimates of

the other agents [11]. A good overview of the recent

developments in the field is presented in [12] and the

associated references, two of which are mentioned here

for completeness.

In [12], a 3-D relative sensing solution is pro-

posed consisting of a ring of IR LED transmitters

and receivers on two (or more) quadrotors. While

this solution generates a full 3-D relative position

measurement and is not limited by camera view angles,

it requires many LEDs and receivers in a circular

pattern, leading to a relatively heavy design (more than

245 grams).

Similar to the idea proposed in this paper, the rel-

ative sensing solution proposed in [13] uses a camera

pointed at a set of fixed markers to gather relative

state information. However, the work presented here



differs by using a camera with integrated processing

and IR LEDs, thus avoiding any image processing and

associated computation. Also, in this work, the range

and bearing measurements from the IR camera are

fused together with IMU data, creating more robust

measurements. The IR camera and corresponding data

fusion create state estimates at 1 kHz with position

corrections at 100 Hz, significantly faster than typical

camera refresh rates.

Finally, previous work has demonstrated successful

flight using a similar Wii IR camera and active IR

LED markers on a quadrotor [14,15]. The work in

this paper builds on these results by combining the

relative position measurements from the camera with

on-board inertial sensors to create high-rate filtered

data. The filter creates a more robust solution since

false range and bearing measurements by the camera

will be compensated for by using the inertial sensors.

Additionally, in this work the IR LEDs are arranged

to allow omindirectional viewing of the marker, giving

the following vehicle the ability to fly around the

marker.

III. SENSING RANGE AND BEARING

Measuring range and bearing relative to a fixed

marker is accomplished by utilizing the IR camera

from a Nintendo Wii remote. The Wii functions by

extracting the locations of two sets of IR LEDs located

in the Nintendo sensor bar. Knowing that the LEDs

have a fixed baseline, the Wii remote can calculate

range and roll angle relative to the sensor bar [12,16].

Similarly, the sensing technique proposed here utilizes

a set of active IR LEDs in a known configuration with

the IR camera from a Wii remote to detect the IR

points [14,15].

Using the camera from a Wii remote offers several

distinct advantages over similar methods using vision

to detect relatively distinct features [10,13]. Most sig-

nificantly, the Wii IR camera, manufactured by PixArt

Imaging,2 is completely self-contained, including pro-

cessing. The camera detects and returns the sizes and

pixel centroid locations of the four brightest IR points

in the image frame with a 100 Hz refresh rate. The

fast update rate and self-contained processing leaves

the micro-controller free to run control and estimation

algorithms without having to allocate resources for

image processing. Additionally, the camera is very

2http://www.pixart.com.tw/index.asp
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Fig. 2. Definition of distances between detected IR points. The
known distances of the points on the marker allow the camera to
infer the x-y range, bearing, and z height relative to the markers.
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Fig. 3. Top down view of the IR camera looking at the marker.
The three LEDs are located at the three points of an equilateral
triangle. The three LEDs can be differentiated based on their
height, thus partitioning the possible bearing calculation into six
regions, n = 0, 1, . . . , 5.

light weight, weighing only 1.9 grams (including a

breakout printed circuit board, oscillator, and connec-

tor). The camera and breakout board are shown in

Figure 4. Finally, the camera is built, programmed, and

optimized specifically to detect IR light sources while

ignoring background light, yielding a fairly robust

sensor. However, the camera doesn’t work well in

direct sunlight because of extraneous IR radiation.

Also, the field of view of the camera is relatively



Fig. 4. Infrared camera from a Wii remote mounted on a custom
breakout board. The board and connector weigh 1.9 grams. The
camera has an IR filter in front to help block out unwanted light.

Fig. 5. Marker with three IR LEDs for the IR camera to measure
relative range and bearing. The reflective markers are for collecting
truth data via the motion capture system.

narrow, about 33 degrees horizontally and 23 degrees

vertically3. Characterizing the full operating regime of

the camera is an area of future research.

The fixed marker used in this work extends the

concept of the traditional sensor bar by utilizing three

points of IR light instead of just two. An example

marker is shown in Figure 5 where the IR LEDs are

in a ring around the top of each of the poles so the

beam will be visible from all angles. The marker is

divided into six regions based on the order in which

the three LEDs appear. The identity of the three LEDs

is uniquely determined by the camera based on the

relative height of each of the LEDs. A top-down view

of the markers is shown in Figure 3, including the

3http://wiibrew.org/wiki/Wiimote
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Fig. 6. Measured disparity between outer-most LEDs as a function
of range. The approximate data shows the second order least
squares fit to the truth data.

six distinct regions. Throughout this paper the marker

is assumed to be level. Future work will investigate

mounting the marker on a rotating body, such as

another quadrotor.

The camera detects the three IR light points and

returns the centroid location of each as displayed

in Figure 2. From the centroids of the three LEDs,

the bearing is calculated by comparing the relative

distances of the middle LED to the outer two LEDs.

When dx1 = dx2 the camera must be looking straight

at the marker. The bearing in each of the marker’s

regions can thereby be uniquely determined up to

±30 degrees. The bearing calculations for each region

and for the total bearing, χ, are

χn = (−1)n tan−1

[(
2dx1

dx1 + dx2
− 1

)
/
√
3

]
(1)

χ = χn + n
π

3
. (2)

The range to the marker is calculated by looking at

the disparity in the x axis between the two outer-most

LEDs. With the range fixed, the disparity value will

decrease as the bearing shifts away from center in each

region. Thus, the effective disparity, Dx, is calculated

and used based on the bearing angle.

Dx =
dx1 + dx2
cos(χn)

(3)

The range is then calculated by fitting a second order

polynomial to test data in log-log space. An example
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data set of disparity versus range with the correspond-

ing polynomial fit is shown in Figure 6. This shows

that the relationship is roughly linear in log-log space.

The coefficients, r1, r2, and r3, are found to minimize

the fit to the test data in a least squares sense. Using

the coefficients, the range is calculated as

R = e(r1(logDx)2+r2(logDx)+r3). (4)

The maximum measurable range of the camera is

limited by the brightness of the LEDs, the ability of

the camera to detect them, and by the spacing of the

LEDs on the marker. Tests are currently in progress

to determine the maximum usable range of the marker

and camera, primarily by exploring different IR LEDs.

IV. ESTIMATION FRAMEWORK

The range and bearing measurements calculated by

the IR camera are fused together with measurements

from inertial sensors, a compass, and a downward-

facing ultrasonic sonar. Similar to the estimation

scheme proposed in [2], the sensors are fused together

using a sigma point Kalman filter (SPKF). In partic-

ular, a square-root central difference Kalman filter is

implemented on a micro-controller using the algorithm

detailed in [17]. The SPKF integrates forward the

acceleration measurements, using the range, bearing,

and altitude measurements to estimate the hidden

accelerometer biases.

TABLE I. COMPUTATION TIME FOR VARIOUS COMPONENTS

OF THE ESTIMATION AND CONTROL ARCHITECTURE.

Process Computation
Time (μs)

Attitude Filter 18

Time Propagation 820

XY Measurement Update 940

Z Measurement Update 810

Attitude Controller 2

Position controller 51

Note that the range and bearing measurements from

the IR camera represent a relative measure of po-

sition between the camera and the markers. When

the markers are stationary, these relative measure-

ments can be directly fused with the on-board inertial

measurements. However, when the marker is moving,

the relative position measurements can no longer be

directly combined with inertial sensors on-board. Pro-

vided a communication link between the leader (with

the markers) and the follower (with the camera) and

provided the leader has a measure of its uncertainty

of its state estimates, the follower can combine the

state estimates of the leader with the relative position

estimates. In particular, by adding the communicated

position estimates of the leader to the relative position

estimates from the follower in x and y as

xmeas = xrel + x̂leader

ymeas = yrel + ŷleader

the follower can directly use xmeas and ymeas in its

filter. Additionally, as detailed in [18], the uncertainty

in these position estimates can be accurately accounted

for by adding the component of the covariance matrix

of the leader that lies in the direction of the camera

sensor to the uncertainty of the relative measurements.

A high level overview of the estimation framework

is given in Figure 7 with the color of the various blocks

denoting the rate at which the sensor is sampled or the

computation is performed. One of the key strengths of

the filter is the high rate at which data is processed and

available to the micro-controller for use in the control

loops. This allows the controller to quickly respond to

disturbances, yielding robust, smooth flight [19].

The attitude estimates and gyro biases are calculated

independently from the SPKF, using a complementary

filter. The gyro measurements are integrated at 1 kHz
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reads and data logging while the control core runs the filter and control algorithms.

and the biases are estimated and the integrated values

corrected at 50 Hz using the accelerometer measure-

ments. The correction step is preformed as detailed

in [20].

Keeping the attitude estimates separate from the

position and velocity SPKF is done primarily for

computational tractability. Estimating the attitude and

gyro biases in the SPKF framework (as demonstrated

in [17]) is too computationally expensive to be per-

formed quickly on our embedded computer. Also,

complementary filters have been shown to work well

for estimating attitude, even when operating in an

accelerating reference frame, such as on a quadro-

tor [21]. Future work will investigate the extent to

which the attitude estimates can be improved by using

an improved model of accelerometer measurements on

a quadrotor.

As the full details of the SPKF equations are given

in [17], only the details of the time propagation step

and measurement model are given here. The time

propagation step uses a simple kinematic model of

the quadrotor to propagate the estimated states forward

based on the current accelerometer readings. The total

estimated state is given by S =
[
xT ẋT ẍT

bias

]T
,

where each of the elements of S is a three by one

vector containing the x, y, and z components of the po-

sition, velocity, and accelerometer biases, respectively.

Given the current estimates of the state S at time i,
the current accelerometer readings ẍaccel, and the time

Fig. 9. Autopilot designed for this project. The processor
contains two cores and handles all the communication, control,
and estimation. Note that the barometer and magnetometer are not
used for the results in this paper, but are currently being integrated
into the estimation framework.

step Δt, the updated states are computed as

x[i+ 1] = x[i] + Δtẋ[i] (5)

ẍ[i] = ẍaccel[i]− ẍbias[i]− ηaccel (6)

ẋ[i+ 1] = ẋ[i] + Δt
(
Rẍ[i]− [

0 0 g
]T)

(7)

ẍbias[i+ 1] = ẍbias[i], (8)

where R is the current rotation matrix from the

body frame to the global frame and ηaccel is additive

Gaussian noise. Note that the accelerometer biases are

assumed constant. Modelling the biases as evolving

according to a random walk shows faster convergence

to the true biases [17], but this has not yet been

implemented on the embedded system.

The measurement updates are calculated by map-



ping the range and bearing estimates into Cartesian

coordinates, with the filter calculating all estimates and

uncertainty values in Cartesian coordinates instead of

polar coordinates, thus allowing the linear accelera-

tion measurements to be incorporated with the range

and bearing measurements from the IR camera. The

measurement model is therefore given by

z =

⎡
⎣−R cosχ
−R sinχ
zsonar

⎤
⎦+ ηposition, (9)

where ηposition is additive Gaussian noise. Future

work will investigate modeling the noise in polar

coordinates as described [22].

The estimation and control code is run on a single

Texas Instruments F28M35H52C micro-controller4.

An image of the autopilot designed around this pro-

cessor is shown in Figure 9. The micro-controller has

two separate cores, one dedicated to communication,

and one for estimation and control. The separate cores

simplify the implementation of the SPKF since the

control core can focus completely on running the

filter without having to process communication data.

The communication core handles all of the sensor

reads, communication with an off-board computer via

a wireless serial link, and data logging to a micro

SD card. Data is transferred between the cores using

a shared memory bus. The control core receives the

sensor measurements, runs the attitude filter, SPKF,

and control laws, and generates motor commands sent

to the four motor controllers. The general processor

outline is shown in Figure 8. With the control core run-

ning at 150 MHz, the processing time for the various

computational blocks is given in Table I, showing that

none of the individual computation routines requires

more than one millisecond.

The control laws implemented on the quadrotor

are described in [8] and consist of an attitude con-

troller and a position controller. Position and velocity

commands are sent to the quadrotor from an off-

board computer. They are then mapped into a desired

attitude, from which motor commands are generated.

V. RESULTS

The results in this section were collected using the

quadrotor in Figure 1. The reflective markers on the

vehicle enable the motion capture system to collect

4http://www.ti.com/product/f28m35h52c
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Fig. 11. Error in the range and bearing estimates from just the
IR camera.

truth data for the flights. The vehicle and autopilot

were designed at the Aerospace Controls Lab at MIT.

The autopilot weighs 14.2 grams, the sonar weighs

4.4 grams, and, as mentioned in Section III, the IR

camera weighs 1.9 grams. Thus the sensing and com-

putation for the total relative navigation framework

weighs just over 20 grams. Initial tests show power

consumption of about 170 mA when running the

full filter and about 300 mA when broadcasting state

information over the wireless radio.
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The first set of results in Figures 10 and 11 show

the performance of the IR camera estimating range and

bearing to the marker, independent of the SPKF. This

example data set showed a root means square (RMS)

error of 4.65 cm in range and 2.43 degrees in bearing.

These data were collected by moving the quadrotor

around the marker by hand.

Next, Figure 12 shows the output of the attitude

complimentary filter compared to truth data. This data

set was captured while the quadrotor was flying with

the attitude loop closed. Figure 13 contains position

data from another test flight. The position of the

vehicle was controlled using the estimated data, thus

closing the loop around the state estimates. However,

in these particular results, the attitude update (gyro

drift correction) information for the complimentary

filter is coming from the motion capture system. This

will soon be replaced by using the on-board magne-

tometer for yaw correction.

These results show the initial feasibility of the

lightweight sensing scheme for relative navigation.

Further work will increase the robustness of the filter

and more fully characterize the sensing technique

developed.

VI. CONCLUSIONS

This work details a sensing scheme for obtaining

fast and accurate state information relative to a known

marker. By utilizing a Wii IR camera, the estimator

is able to quickly and reliably detect the location

of the IR LEDs on the marker without requiring

addition external processing. An on-board estimator

combines the camera information with inertial sensors

and returns attitude, attitude rate, position, and velocity

information for use by a controller at 1 kHz. The

system is light weight, with the autopilot and sensors

weighing just over 20 grams.

There are many areas of future work. First, the

attitude yaw loop will be closed on-board using the

magnetometer, making the autopilot completely self-

contained. Further work will then investigate modify-

ing the estimation framework to allow for a moving

marker. With the marker mounted on another vehicle,

the estimator will need to account for both inertial

movements and movements relative to the marker.

Finally, the estimation scheme will be extended to

handle multiple vehicles flying relative to each other.
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