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Abstract— Submodularity is a powerful property that can be
exploited for provable performance and convergence guarantees
in distributed task allocation algorithms. However, some mission
scenarios cannot easily be approximated as submodular a
priori. This paper introduces an algorithmic extension for dis-
tributed multi-agent multi-task assignment algorithms that en-
ables them to converge using non-submodular score functions.
These enhancements utilize non-submodular ranking of tasks
within each agent’s internal decision making, while externally
enforcing that shared bids appear as if they were created using
submodular score functions. It is proven that external to each
agent, it seems as if a submodular score function is being used
(even though this function is never explicitly created), and thus
all convergence and performance guarantees hold with respect
to this apparent submodular score function. The results of this
effort show significant improvements over hand-tuned heuristic
approaches that approximate the true non-submodular score
functions.

I. INTRODUCTION

Distributed and decentralized task allocation algorithms
are used in environments where communications may be
unreliable due to high latency, high cost, or simply be-
ing unavailable. As a result, distributed planning methods
which eliminate the need for a central server have been
explored [11], [6], [17]. Many of these methods often assume
perfect communication links with infinite bandwidth in order
to ensure that agents have the same situational awareness
before planning. In the presence of inconsistencies in situ-
ational awareness, these distributed tasking algorithms can
be augmented with consensus algorithms [15], [13], [12],
[2], [14] to converge on a consistent state before performing
the task allocation. Although consensus algorithms guarantee
convergence on information, they may take a significant
amount of time and often require transmitting large amounts
of data [3]. Other popular task allocation methods involve
using distributed auction algorithms [16], [1], which have
been shown to efficiently produce sub-optimal solutions.
Two recent approaches are a distributed algorithm called
the consensus based bundle algorithm (CBBA) [5] and a
decentralized asynchronous version called the asynchronous
consensus based bundle algorithm (ACBBA) [9]. These
task allocation algorithms use a greedy auction to produce
multi-task assignments for each agent. These algorithms can
produce provably good solutions with respect to the optimal
if the score function obeys a property called submodularity.
The importance of submodularity was identified in Section
IV.C.1 [5] for CBBA, and the form it takes in these algo-
rithms is called Diminishing Marginal Gains (DMG). This
DMG property is required for both the convergence and
performance guarantees made for CBBA, and score functions

that violate this property cannot be used directly within the
algorithmic framework but must be modified using heuristics
that satisfy submodularity. While DMG ensures convergence
of the algorithm, it can be a limiting constraint for many
problems of interest in which the true score function is not
submodular. Previous work identified modifications to the
score that employ heuristics to ensure that DMG is satisfied
[5], but these heuristics typically lead to poor performance
and are not usually intuitive to design. The main contribution
of this paper is to provide new algorithmic modifications to
the CBBA algorithm itself that enable the use of non-DMG
score functions, and thus lead to plans that more closely align
with mission designer intentions.

A. Problem Formulation

This section presents the general problem statement and
formalizes the language and variables used throughout this
paper. Given a list of Na agents and Nt tasks, the goal of the
task allocation algorithm is to find a conflict-free matching
of tasks to agents that maximizes the global reward. An
assignment is said to be conflict-free if each task is assigned
to no more than one agent. The global objective function for
the mission is given by a sum over local objective functions
for each agent, while each local reward is determined as
a function of the tasks assigned to that agent, the times at
which those tasks will be executed, and the set of planning
parameters. This task assignment problem can be written as
the following mixed-integer (possibly nonlinear) program:

max
x,τ

Na∑
i=1

Nt∑
j=1

Fij(x, τ ) xij (1)

s.t. H(x, τ ) ≤ d

x ∈ {0, 1}Na×Nt , τ ∈ {R+ ∪ ∅}Na×Nt

where x ∈ {0, 1}Na×Nt , is a set of Na×Nt binary decision
variables, xij , which are used to indicate whether or not task
j is assigned to agent i; τ ∈ {R+ ∪ ∅}Na×Nt is the set of
real-positive decision variables τij indicating when agent i
will service its assigned task j (where τij = ∅ if task j
is not assigned to agent i); Fij is the score function for
agent i servicing task j given the overall assignment; and
H =

[
h1 . . .hNc

]T
, with d =

[
d1 . . . dNc

]T
, define a set of

Nc possibly nonlinear constraints of the form hk(x, τ ) ≤
dk that capture transition dynamics, resource limitations,
etc. This generalized problem formulation can accommodate
several different design objectives and constraints commonly
used in multi-agent decision making problems (e.g. search
and surveillance missions where Fij represents the value
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of acquired information and the constraints hk capture fuel
limitations and/or no-fly zones, or rescue operations where
Fij is time-critical favoring earlier τij execution times, etc).
An important observation is that, in Equation (1), the scoring
and constraint functions explicitly depend on the decision
variables x and τ , which makes this general mixed-integer
programming problem very difficult to solve (NP-hard) due
to the inherent system inter-dependencies [4].

The algorithms used in this paper solve distributed greedy
multi-agent multi-assignment problems. For each agent, these
problems take a similar form to Equation (1), except indi-
vidual agents independently create greedy assignments for
themselves, and then iterate with others using a consensus
algorithm to produce a final fleet-wide assignment. The
details of this process will be explored throughout the rest
of this paper.

II. BACKGROUND

The submodularity condition is based on a well defined
and extensively studied mathematical construct [7]. As ap-
plied to the distributed greedy allocation problem it can be
defined as follows: the marginal score function F (s,A) for
adding a task s to an existing task environment A, must
satisfy the following

F (s,A′) ≥ F (s,A) (2)
∀A′ s.t. A′ ⊂ A

Equation (2) roughly means that a particular task cannot
increase in value because of the presence of other assign-
ments. Although many score functions typically used in task
allocation satisfy this submodularity condition (for example
the information theory community [10]), many also do not.

It is simple to demonstrate that the distributed greedy
multi-assignment problem may fail to converge with a non-
submodular score function, even with as few as 2 tasks and
2 agents. Consider the following example, where notation
for an agent’s task group is (task ID, task score), and the
sequential order added moves from left to right. The structure
of this simple algorithm is that each agent produces bids on
a set of desired tasks, then shares these with the other agents.
This process repeats until no agent has incentive to deviate
from their current allocation. In the following examples, the
nominal score achieved for servicing a task will be defined as
T . The actual value achieved for servicing the task may be a
function of other things the agent has already committed to.
In the above example, ε is defined as some value, 0 < ε < T .

Example 1: Allocations with a submodular score function
Iteration 1

Agent 1: {(1, T ), (2, T − ε)}
Agent 2: {(2, T ), (1, T − ε)}

Iteration 2
Agent 1: {(1, T )}
Agent 2: {(2, T )}

In Iteration 1, each agent bids on both tasks 1 and 2,

but the bid value for the second task placed by both agents is
ε less than the bid for the first task. This result is consistent
with submodularity since the score has not increased because
of the presence of the first task (in fact it has decreased).
Between Iteration 1 and Iteration 2 both agents
share their bids with each other and a consistent assignment
is reached in Iteration 2 that greedily maximizes the
global score.

The following example highlights how convergence breaks
when non-submodular score functions are used. In this

Example 2: Allocations with a non-submodular score
function

Iteration 1
Agent 1: {(1, T ), (2, T + ε)}
Agent 2: {(2, T ), (1, T + ε)}

Iteration 2
Agent 1: {}
Agent 2: {}

Iteration 3
Agent 1: {(1, T ), (2, T + ε)}
Agent 2: {(2, T ), (1, T + ε)}

example, ε is defined to be some value, 0 < ε < ∞.
In Iteration 1 both agents again bid on both tasks,
however, this time the score on the second task has increased
because of the presence of the first task. This explicitly
violates the submodularity condition as presented in Equation
(2). Like before, between Iteration 1 and Iteration
2 the agents share their bids with each other. In Iteration
2 both agents have been outbid on their first task and thus
their bids on their second tasks are invalidated. For simplicity
assume that without the presence of the first task, neither
agent can even place a positive bid on their second task1 and
thus for this iteration neither agent places bids. Iteration
3 then exactly repeats Iteration 1 and the cycle will
repeat forever.

One may wonder if there is a simple fix to detecting
these cycles. The short answer is no, because these cycles
can take the form of an arbitrary number of tasks being
traded between an arbitrary number of agents during the
consensus process. Even worse, is that breaking out of
one cycle does not guarantee that the agents will enter
another cycle at a later stage in the convergence process. In
practice, any non-submodular score functions very often lead
to fairly malicious cycling behavior. The following example
will attempt to highlight that these conditions are not exotic
and in fact occur in many fairly simple environments.
Example 3 Consider the potential task environment illus-
trated in Figure 1 involving one agent (blue) and two tasks
(red). For the purpose of this example assume that da2 >
da1 >> d12. An intuitive score function Fij(x, τ ) for this

1This assumption is required for a 2 iteration cycle. Other assumptions
can still produce cycles but these would be longer and involve more complex
bid histories.



Fig. 1: A potential task environment where a represents the
agent, and 1 and 2 are task locations. The notation duv is
the distance measured from location u to location v.

environment is defined as follows:

Fij(x, τ ) = R− fidx⊕j (3)

where R is the reward obtained for servicing a task, fi is
the fuel penalty per unit distance for agent i, and dx⊕j is
the increase in distance traveled by inserting task j into the
current assignment x. If a multi-assignment greedy algorithm
were run in this environment, it would first assign task 1
because R−fida1 > R−fida2. When the greedy algorithm
assigns task 2 using the score function presented in Equation
(3), the score obtained is R − fid12. This results in the
bid on the second task being greater than the first task
(R − fid12 > R − fida1) which is exactly the situation
shown in Example 2 for a non-submodular score function.
Depending on bids made by other agents in the fleet this can
easily lead to cycling. A typical strategy utilized to solve
this problem is to submodularize the score function using
a heuristic. For example, the score function in Equation (3)
can be approximated as:

Fij(x, τ ) = R− fidaj (4)

where the only difference is that the distance metric daj
represents the distance measured from the agent’s initial
location to task j. With this score function the first bid will
again be on task 1, R− fida1 > R− fida2, and the second
bid will be on task 2, but this time the bid will have the score
R− fida2. This preserves the submodularity result since the
score on task 2 did not increase because of the previous
assignment of task 1. However, this score function is unable
to capture the fact that, since task 1 is being serviced, task
2 should seem much more favorable. The purpose of the
approach presented in this paper is to enable the algorithms
to use score functions that do capture these non-submodular
effects without having to sacrifice convergence guarantees.

A. Allowing non-submodular score functions

The convergence failures highlighted above in Example
2 are a direct result of multiple tasks being assigned si-
multaneously. [8] identifies a class of algorithms that can
utilize distributed computation and can converge using non-
submodular score functions. However, the thesis argues
that the algorithms mentioned are not good distributed and
decentralized implementations because: 1) they require that
every iteration of the algorithm be synchronized across the
entire fleet (a very hard constraint to enforce in real systems),

and 2) require many more iterations to converge in practice
than algorithms that assign multiple tasks simultaneously. For
these reasons, this paper focuses on augmenting algorithms
that can assign multiple tasks simultaneously with the ability
to converge using non-submodular score functions. The
approach exploits the algorithmic structure associated with
the sharing of information in distributed and decentralized
algorithms.

1) Since each distributed agent is isolated from all other
agents, the only task allocation interaction that each
agent makes with each other is through distributed
messages with bid information.

2) Given insight 1, it is not really the score function that
needs to be submodular. It is the bid values that need to
appear as if they were created using some submodular
score function to ensure that the fleet will converge.

Using the insights provided above, it is possible for an agent
to use a non-submodular score function to rank prospective
tasks, then rely on some externally visible warping function
to produce bids that are consistent with submodularity. If the
external bids are created correctly, to all other agents partici-
pating in the task allocation process it will appear as if there
were some submodular score function creating those bids.
Thus algorithms that rely on submodularity (including CBBA
and ACBBA) will actually converge. The main improvement
comes from the fact that ranking the tasks internally in
a non-submodular way allows each agent to retain some
structure present in the non-submodular score function, while
still producing submodular bids. The following section will
outline exactly how this is achieved.

III. SOLUTION APPROACH

This section focuses on the algorithmic modifications
specific to CBBA, but similar techniques may be used for
other multi-assignment task allocation problems.

A. Baseline CBBA

CBBA is a distributed auction algorithm that provides
provably good task assignments for multi-agent, multi-task
allocation problems. The algorithmic structure of CBBA is
an iterative, 2 phase algorithm. These two phases are: a
bundle building phase where each vehicle greedily generates
an ordered bundle of tasks, and a task consensus phase where
conflicting assignments are identified and resolved through
local communication between neighboring agents. These
two phases are repeated until the algorithm has reached
convergence. To further explain the relevant details of the
algorithm, some notation will first be formalized.

1) A bid is represented as a triple: sij = (i, j, cij), where
i represents the bidding agent’s index, j represents the
task’s index, and cij represents the bid value for this
task agent pair.

2) A bundle is an ordered data structure internal to each
agent i, bi = {sij1 , . . . , sijn} that consists of all n
of its current bids. When new bids are made, they are
appended to the end of the bundle, thus the order in
the bundle reflects the relative age of each bid.



Algorithm 1 CBBA: Bundle Building Phase

1: procedure BUILD BUNDLE(Ai)
2: for all k such that sijk ∈ Ai do
3: Ai \ sijk
4: end for
5: set bi = ∅
6: while |bi| < Lt do
7: for all j ∈ {1, . . . , Nt} \ bi do
8: cij = Fij(bi),
9: hij = I(cij > si′j ∈ Ai), ∀i′ ∈ {1, . . . , Na}

10: end for
11: j? = argmaxj cij · hij
12: sij? = (i, j?, cij?)
13: if cij? > 0 then
14: bi = bi ⊕ sij?
15: else
16: break
17: end if
18: end while
19: end procedure

3) The bid space is an unordered set of bids, defined as
A = {si1j1 , . . . , siN jN }. This set contains a globally
consistent set of the current winning bids in the fleet.
A local bid space Ai is defined as a set that contains
agent i’s current local understanding of the global bid
space. In a fully connected network, Ai = A after each
consensus phase, but in general, the geometry of agents
in the network may lead to information propagation
latencies and thus non-identical bid spaces.

Bundle Building Phase For each agent i the bundle building
phase is run independently.

1) At the beginning of the bundle building phase, the
previous bundle is cleared and all bids that were won
by agent i located in the local bid space, Ai, are
also removed. This step is required for the optimality
guarantees of the algorithm2, but in most cases, the
agent will re-add each of the tasks it has just dropped
from Ai as it is building back up the bundle.

2) For each task j available in the environment, each
agent i uses its local internal score function Fij(bi) =
cij , which is a function of its current bundle, to create
a score cij . These scores are then ordered from highest
to lowest.

3) The ordered scores cij are compared with the winning
bid information for the corresponding task j located
in the agent’s local bid space Ai. The first (and thus
largest) score that would outbid the current winner in
the local bid space is chosen as agent i’s next bid. A bid
sij is created and placed at the end of the bundle, and
replaces the current bid on task j in the local bid space.
Steps 2 and 3 are repeated until no tasks are able to

2Agent i may want to change its bids in light of new information obtained
through communication, instead of being “stuck” with the bids made in the
previous iteration.

outbid Ai or the maximum bundle length is reached,
at which point the bundle building phase terminates.
It is worth noting that in this formulation the values
cij are used to rank the tasks, and the values sij are
communicated as bids to other agents. The main result
of this paper is to separate these two values in order
to enable a larger class of score functions.

Consensus Phase After the bundle building phase completes,
each agent i synchronously shares its current local bid space
Ai with each of its adjacent neighbors. This local bid space,
in combination with time-stamp information, is then passed
through a decision table (see [5], Table 1 for details) that
provides all of the conflict resolution logic to merge local
bid spaces. In general, the consensus logic prefers larger
and more recent bids. If the consensus phase has occurred
more than twice the network diameter times without any
bids changing, the algorithm has converged and terminates;
if not, each agent re-enters the bundle building phase and
the algorithm continues.
Score Function Fundamental to all of the convergence and
performance guarantees for CBBA is that it must use a DMG
satisfying score function. This DMG condition is a subset of
the submodularity condition introduced in the background
section, and was recognized in the seminal description of
CBBA [5]. It is defined as

Fij(bi) ≥ Fij(bi ⊕end sik?) ∀k? ∈ {1, . . . , Nt} (5)

where bi ⊕end sik? refers to adding a bid sik? to an already
existing bundle bi. Roughly this condition means that no bids
sik? can be made that would increase cij , agent i’s score for
task j.

B. Expanding CBBA to Handle Non-DMG Score Functions

The approach introduced in this paper changes two fun-
damental aspects of placing bids. First, the ranking of task
scores is allowed to use a function that need not satisfy
DMG; second, the external bid values are not identical to the
scores used for the internal ranking, and are created in a way
such that they are guaranteed to satisfy DMG. To highlight
the algorithmic changes an additional piece of notation is
needed.

1) A bid warping function, Gij(cij ,bi) = c̄ij , is a
function that produces an output c̄ij based on the
internal score function cij and the current bundle bi.
This function G is defined as

c̄ij = min(cij , c̄ijk) ∀k ∈ {1, . . . , |bi|} (6)

where c̄ijk is the score of the kth element in the current
bundle.

C. Distributed Greedy Algorithms with Non-Submodular
Score Functions

This section presents the main algorithmic modifications
required for CBBA to use non-submodular score functions.
Bundle Building Phase Again, for each agent i, the bundle
building phase is run independently.



Algorithm 2 CBBA: Bundle Building with Non-DMG
Scores

1: procedure BUILD BUNDLE(Ai)
2: for all k such that s̄ijk ∈ Ai do
3: Ai \ s̄ijk
4: end for
5: set bi = ∅
6: while |bi| < Lt do
7: for all j ∈ {1, . . . , Nt} \ bi do
8: cij = Fij(bi)
9: c̄ij = Gij(cij ,bi)

10: hij = I(c̄ij > s̄i′j ∈ Ai), ∀i′ ∈ {1, . . . , Na}
11: end for
12: j? = argmaxj cij · hij
13: s̄ij? = (i, j?, c̄ij?)
14: if c̄ij? > 0 then
15: bi = bi ⊕ s̄ij?
16: else
17: break
18: end if
19: end while
20: end procedure

1) At the beginning of the bundle building phase, the
previous bundle is cleared and all bids that were won
by agent i located in the local bid space, Ai, are also
removed.

2) For each task j available in the environment, each
agent i uses its local internal score function Fij(bi) =
cij , which is a function of its current bundle, to create
a score cij . The only requirement on the score function
Fij in this formulation is that, for each agent i, the re-
turned scores must be repeatable. In this context, being
repeatable means that with identical initial conditions
the function returns an identical score.

3) The score values cij are then warped using the bid
warping function Gij(cij ,bi) = c̄ij to create the
warped bids c̄ij .

4) Each of the c̄ij are compared with the winning bid
for the corresponding task j located in the local bid
space Ai. The task j with the largest original score
cij , whose warped bid c̄ij would outbid the current
winner in the local bid space is chosen as agent i’s
next bid. A bid s̄ij is created and placed at the end of
the bundle, and also replaces the current bid on task
j in the local bid space. If no tasks are able to outbid
Ai or the maximum bundle length Li is reached, the
bundle building phase terminates; if not, Step 2 and 3
are repeated. The key insight in this algorithm is that
the value cij is used to rank the tasks but the warped
bid s̄ij is what is actually shared with the other agents.

Consensus Phase There are no changes to the algorithm in
this phase. There is a slight theoretical change because the
algorithm is now using the warped bid to perform consensus
instead of the value produced by each agent’s internal score

function. Because of the form in which this bid was created,
the algorithm will converge as if it were using a DMG
satisfying score function.

The end result of these two modifications is that, to an
external agent, it seems as if there is some submodular cost
function that is creating bids. In actuality, the agent is using
a non-submodular cost function to make decisions on local
bids, then warping these bid values when sharing them with
other agents.

D. Bids Guaranteeing DMG

This section proves that every bid produced with the warp-
ing function G satisfies DMG. For this proof, the following
assumption is needed: given identical initial conditions (local
bid space Ai and bundle bi), the subsequent bid values are
repeatable. This condition still allows for score functions that
are stochastic, however, the stochastic value must be sampled
deterministically. This can be done by either enforcing a
common seed when simulating the stochastic score, or by
saving the stochastic particles used to compute the bids.

Theorem 1: If bundles are fully reconstructed at every
bundle building phase, the resulting bundles are always
monotonically decreasing in score.

Proof: By induction: Base Case |bi| = 1. The first bid
in the bundle will be s̄ij1 . By definition, a single element will
be monotonically decreasing. Next assume that the bundle bi,
where |bi| = n, is monotonically decreasing. According to
the definition of the bid warping function, the bid values are
defined as

bi(n+ 1) = s̄ijn+1 = min(s̄ijn , sijn+1) (7)

therefore s̄ijn+1 ≤ s̄ijn =⇒ bi(n + 1) ≤ bi(n) and the
bundle bi is monotonically decreasing.

Theorem 2: If a bundle is monotonic, ∃ some DMG
satisfying score function Ḡ that would produce an identical
bundle (tasks and scores).

Proof: By induction: Base case |bi| = 1. The bid
located in position 1 of agent i’s bundle, s̄ij1 , will always
satisfy DMG as long as bids are repeatable. Assume up to a
bundle length of n a DMG satisfying score function Ḡ could
have produced the bundle bi. Given monotonicity implied by
Theorem 1, ∃αk ≥ 0 s.t.:

Ḡijk(bi) = Ḡijn+1
(bi) + αk, (8)

|bi| = k − 1, ∀k = {1, . . . , n}

where Ḡijk(bi) is the DMG satisfying score function for the
kth task in agent i’s bundle that is a function of the first k−1
elements in the bundle. Ḡijn+1(bi) is the score function for
the task that will be the (n + 1)th element of the bundle,
evaluated when the bundle only contained the first k − 1
elements. When constructing the function Ḡ, it is possible
to pick a set of αk such that

Ḡijn+1(bi) = Gijn+1(b?
i ) = c̄ijn+1 (9)

|b?
i | = n, |bi| = k − 1, ∀k = {1, . . . , n+ 1}

where Gijn+1(bi) is the actual bid warping score function
(defined in Section III-B), which is also equal to the actual



bid placed on task jn+1, c̄ijn+1
. Since in the relation above,

Ḡijn+1
is identical for all subsets of the length n bundle, b?

i ,
this relation trivially implies that

Ḡijn+1
(bi) = Ḡijn+1

(bi ⊕end sijk) (10)
|bi| = k − 1, ∀k = {1, . . . , n}

which satisfies DMG.
Theorem 3: If two score functions G and Ḡ produce iden-

tical bundles, then they produce the exact same intermediate
and final bid spaces.

Proof: This result is a relatively trivial result. If each
agent i is considered as a black box that, given a bid space,
returns a candidate bundle, it follows that if two internal
score functions produce the same result it will be impossible
to tell the difference between them, and thus the fleet-wide
bid spaces will progress identically.
Since there exists a DMG satisfying score function that
would have produced the exact same intermediate and final
bid spaces as those produced by the warping function G (by
combining Theorems 2 and 3), all provable properties about
the algorithm’s performance and optimality guarantees hold
w.r.t. a DMG score function Ḡ.

E. Dealing with Non-Deterministic Score Functions

As was mentioned above, it is important to have repeatable
score functions. This actually accommodates score functions
with some stochastic behavior. If the algorithm uses the same
set of particles for sampling the uncertainty, or the same
algorithm seed at every evaluation of the score function, then
the function will return a repeatable value. Truly stochastic
function evaluations, however, do not have absolute conver-
gence guarantees with this approach. Certain distributions
may converge with high probability, but these special cases
are not further explored in this paper.

F. Alternate Approach

It was postulated as Lemma 4 in [5] that a trick for
augmenting the score function to satisfy the DMG condi-
tion would be to ensure that the bids were monotonic in
subsequent iterations:

c̄ij(t) = min{cij , c̄ij(t− 1)} (11)

where cij is the initial score at iteration t and c̄ij(t) is the
augmented score at iteration t. Unfortunately this approach
tends to create a significant performance degradation in some
environments. If this approach is applied to the environment
presented in Example 2, after Iteration 2 the algorithm
will not be able to bid above 0 on either task 1 or 2. This is
clearly not a desired result and a more elegant solution has
been presented in this paper.

IV. CASE STUDY: CONSENSUS BASED BUNDLE
ALGORITHM

The algorithm improvements described in Section III-C
were implemented within the distributed CBBA framework
to enable the use of non-submodular score functions. This
section presents results that compare the performance of this
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Fig. 2: Comparison of planner performance for a 2 agent,
30 task mission. Fig (a) shows the planned paths using the
original CBBA algorithm with a submodular heuristic score
function that satisfies DMG. Fig (b) shows the planned paths
for the same scenario using CBBA augmented to handle non-
submodular (true) score functions as proposed in Section III-
C.

improved algorithm against the original CBBA baseline algo-
rithm in 3 different domains that highlight key improvements
associated with this new approach.

The first example considers a simple mission where agents
must travel to and service tasks at different locations. The
score function associated with this mission is defined as:

J =

Na∑
i=1

50

 Nt∑
j=1

(xij)

− fidi(bi)

 (12)

where a reward of 50 is obtained for each task visited,
and again a fuel cost fi is multiplied by the distance
traveled di(bi) by agent i for its assigned set of tasks bi.
Figure 2 compares the planned paths for a 2 agent, 30 task
mission, using the original baseline CBBA algorithm (left)
and the new CBBA augmented to handle non-submodular
score functions (right). As explained in Figure 1 of Section
II, a heuristic approach to ensure submodularity within the
original CBBA framework involves approximating the fuel
penalty in Equation (12) by a constant value based on the
initial agent position and the task location. This heuristic
score function cannot explicitly capture how order matters
in task execution, producing task scores that are independent
of previous tasks in the agent’s bundle. This results in the
algorithm selecting tasks that are closest to the agent’s initial
position instead of correctly predicting the agent position
based on tasks already in the agent’s bundle (Figure 2(a)).
On the other hand, enabling the use of non-submodular
cost functions allows the algorithm to capture the benefit
associated with doing tasks that are closer to those already
in the agent’s bundle, leading to higher scoring paths (Figure
2(b)).

Figure 3 presents Monte Carlo simulation results for a
6 agent team as a function of the number of tasks in the
environment. As shown in the plot, the new CBBA ap-
proach outperforms baseline CBBA, achieving much higher
mission scores. For each scenario, a centralized sequential
greedy algorithm was also run for comparison. The full
description of this centralized algorithm is introduced in
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Fig. 3: Monte Carlo simulation results for a 6 agent team. Re-
sults show that the distributed CBBA approach, augmented
to handle non-submodular score functions, achieves higher
performance than baseline CBBA and similar scores to the
centralized sequential greedy planner.

[8] but its two relevant features are: 1) it returns the same
solution as CBBA for submodular score functions and 2)
it retains guaranteed convergence for non-submodular score
functions. The results from Figure 3 show that the distributed
CBBA approach augmented to enable non-submodular score
functions achieves the same performance as the central-
ized sequential greedy algorithm. Although these are not
always guaranteed to be equal for all non-submodular score
functions, for many natural problems of interest (such as
the example presented above), the distributed solution tends
to match the centralized one. Another important thing to
note is that the non-submodular score function allows the
algorithm to accurately predict the mission score, whereas
the heuristic score function leads to score predictions that
are usually inaccurate. In addition to increased confidence in
the planner’s predictions, this effect has two main benefits.
First, the variability of the produced plan is lower, since the
algorithm can capture the true dynamics of the mission, and
the plan quality therefore is not associated with choosing a
good or bad DMG satisfying heuristic. This can be seen in
Figure 3 where the error bars for the baseline CBBA case are
much larger than those of the planners using the true score
function. The second benefit is that plan stability increases;
to mitigate the effect of the heuristic approximation, one
can replan as the agent location changes, however, the plans
produced after each consecutive replan are likely to look
quite different. Using the true non-DMG satisfying score
function during the task allocation process leads to plans
that are accurate initially, therefore replanning is not likely
to change the solution much, and thus the task allocations
are consistent across replans.

The third scenario considered involves a similar mis-
sion, where agents must service tasks at different locations,
however this time there is uncertainty in the planning pa-

rameters and task rewards are time-critical. In particular,
the agents have uncertain velocities and service times for
tasks, although the distributions of these are known a priori
(log-normal). The objective is to maximize a risk-aware
robust mission score, where the probability of obtaining
a score lower than predicted is below a certain threshold,
ε. In this stochastic setting, the DMG condition is broken
because the stochastic metrics implicitly couple the effects of
parameter uncertainty, and therefore couple task scores. This
leads to dependencies between tasks which, as illustrated
in the example of Figure 1, cause non-submodularity in the
score function. This type of coupling and non-submodularity
is typically non-trivial, and designing a submodular score
function to fix it is difficult. This example demonstrates
that the CBBA algorithmic modifications can be successfully
used for distributed stochastic planning. The algorithm uses a
“repeatable stochastic score function” which reuses samples
associated with planning parameters, making the problem
look like a higher dimensional deterministic problem to
the planner. It is worth noting that DMG violation in
stochastic settings is usually an issue even when the mean
score function is submodular, however, for consistency, this
example uses the non-submodular form for the mean score
function as presented in the previous case study (with non-
submodularity caused by fuel penalties). Figure 4 presents
Monte Carlo results for a 6 agent, 60 task, time-critical
mission, with uncertain travel times and task durations. The
plot shows the risk-optimized mission scores for a central-
ized robust sequential greedy planner, the distributed robust
CBBA approach with non-submodular scores, and a baseline
deterministic CBBA with submodular scores (a submodular
approximation to the true robust problem). Once again the
new CBBA approach achieves similar performance to the
centralized planner and clearly outperforms the baseline
CBBA approach.

V. CONCLUSION

Submodularity is a powerful property that can be exploited
for provable performance and convergence guarantees in dis-
tributed task allocation algorithms. However, some mission
scenarios cannot easily be approximated as submodular a
priori. This paper introduced an algorithmic extension for
distributed multi-agent multi-task assignment algorithms that
enabled them to converge using non-submodular score func-
tions. These enhancements utilized non-submodular ranking
of tasks within each agent’s internal decision making, while
externally enforcing that shared bids appear as if they were
created using submodular score functions. It was proved that
external to each agent, it seems as if a submodular score
function is being used (even though this function is never
explicitly created), and thus all convergence and performance
guarantees hold with respect to this apparent submodular
score function. The results of this effort showed significant
improvements over hand-tuned heuristic approaches that
approximate the true non-submodular score functions.
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Fig. 4: Monte Carlo results for a 6 agent, 60 task, time-
critical mission, with uncertain travel times and task dura-
tions. Results show risk-optimized robust mission scores for
the different planning approaches.
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