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The performance of many complex UAV decision-making problems can be ex-
tremely sensitive to small errors in the model parameters. One way of mitigating
this sensitivity is by designing algorithms that more effectively learn the model
throughout the course of a mission. This paper addresses this important prob-
lem by considering model uncertainty in a multi-agent Markov Decision Process
(MDP) and using an active learning approach to quickly learn transition model
parameters. We build on previous research that allowed UAVs to passively update
model parameter estimates by incorporating new state transition observations. In
this work, however, the UAVs choose to actively reduce the uncertainty in their
model parameters by taking exploratory and informative actions. These actions
result in a faster adaptation and, by explicitly accounting for UAV fuel dynamics,
also mitigates the risk of the exploration. This paper compares the nominal, pas-
sive learning approach against two methods for incorporating active learning into
the MDP framework: (1) All state transitions are rewarded equally, and (2) State
transition rewards are weighted according to the expected resulting reduction in
the variance of the model parameter. In both cases, agent behaviors emerge that
enable faster convergence of the uncertain model parameters to their true values.

I. Introduction

Markov decision processes (MDPs) are a natural framework for solving multi-agent planning
problems as their versatility allows modeling of stochastic system dynamics as well as interde-
pendencies between agents.1–5 Under the MDP framework however, accurate system models are
important as it has been shown that small errors in model parameters may lead to severely de-
graded performance.6–8 The focus of this research is to actively learn these uncertain MDP model
parameters in real-time so as to mitigate the associated degradations.

One method for handling model uncertainty in the MDP framework is by updating the pa-
rameters of the model in real-time, and evaluating a new policy online.9 The uncertain, and/or
time-varying nature of the model motivates the use of traditional indirect adaptive techniques10,11
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where the system model is continuously estimated and an updated control law, i.e. policy, is com-
puted at every time step. Unlike traditional adaptive control however, the system in this case
is modeled by a general, stochastic MDP which can specifically account for the known modes of
uncertainty.

Active learning in the context of such MDPs has been extensively developed under reinforcement
learning12–14 and, in particular, in model free contexts such as Q-learning15 and TD-λ.11 The
policies resulting from methods such as these explicitly contain exploratory actions that help the
agent learn more about the environment: for example, actions that are specifically taken to learn
more about the rewards or system dynamics. Learning in groups of agents has also been investigated
for MDPs, both in the context of multi-agent systems16,17 and Markov Games.18

Persistent surveillance is a practical scenario including multi-agent elements and can show well
the benefits of agent cooperation. The uncertain model in our persistent surveillance mission is
a fuel consumption model based on the probability of a vehicle burning fuel at the nominal rate,
pnom. That is, with probability pnom, vehicle i will burn fuel at the known nominal rate during
time step j, ∀(i, j) When pnom is known exactly, a policy can be constructed to optimally hedge
against crashing while maximizing surveillance time and minimizing fuel consumption. Otherwise,
policies constructed under overly conservative (pnom too high) or naive (pnom too low) estimates
of pnom will respectively result in more frequent vehicle crashes (due to running out of fuel) or a
higher frequency of vehicle phasing (which translates to unnecessarily high fuel consumption).

This paper addresses the cases when the model is uncertain and also time-varying. We extend
our previous work on the passive estimation of time-varying models to the case when a system can
perform actions to actively reduce the model uncertainty. The key distinction of this work is that
the objective function is modified to include an exploration term, and the resulting policy generates
control actions that lead to the reduction of uncertainty in the model estimate.

The paper proceeds as follows: Section II formulates the underlying MDP in detail. Section III
explains how the active learning methods are integrated into the MDP framework and Section IV
gives simulation results addressing a few interesting scenarios.

II. Persistent Surveillance Problem Formulation

This section provides an overview of the persistent surveillance problem formulation first pro-
posed by Bethke et al.19 In the persistent surveillance problem, there is a group of n UAVs equipped
with cameras or other types of sensors. The UAVs are initially located at a base location, which
is separated by some (possibly large) distance from the surveillance location. The objective of the
problem is to maintain a specified number r of requested UAVs over the surveillance location at
all times. Figure 1 shows the layout of the mission, where the base location is denoted by Yb, the
surveillance location is denoted by Ys, and a discretized set of intermediate locations are denoted
by {Y0, . . . , Ys − 1}. Vehicles, shown as triangles, can move between adjacent locations at a rate of
one unit per time step.

The UAV vehicle dynamics provide a number of interesting health management aspects to the
problem. In particular, management of fuel is an important concern in extended-duration missions
such as the persistent surveillance problem. The UAVs have a specified maximum fuel capacity
Fmax, and we assume that the rate Ḟburn at which they burn fuel may vary randomly during the
mission due to aggressive maneuvering that may be required for short time periods, engine wear
and tear, adverse environmental conditions, damage sustained during flight, etc. Thus, the total
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Figure 1: Persistent surveillance problem

flight time each vehicle achieves on a given flight is a random variable, and this uncertainty must
be accounted for in the problem. If a vehicle runs out of fuel while in flight, it crashes and is lost.
The vehicles can refuel (at a rate Ḟrefuel) by returning to the base location.

II.A. MDP Formulation

Given the qualitative description of the persistent surveillance problem, an MDP can now be
formulated. The MDP is specified by (S,A, P, g), where S is the state space, A is the action space,
Pxy(u) gives the transition probability from state x to state y under action u, and g(x,u) gives
the cost of taking action u in state x. Future costs are discounted by a factor 0 < α < 1. A policy
of the MDP is denoted by µ : S → A. Given the MDP specification, the problem is to minimize
the so-called cost-to-go function Jµ over the set of admissible policies Π:

min
µ∈Π

Jµ(x0) = min
µ∈Π

E

[ ∞∑
k=0

αkg(xk, µ(xk))

]
.

II.A.1. State Space S

The state of each UAV is given by two scalar variables describing the vehicle’s flight status and
fuel remaining. The flight status yi describes the UAV location,

yi ∈ {Yb, Y0, Y1, . . . , Ys, Yc}

where Yb is the base location, Ys is the surveillance location, {Y0, Y1, . . . , Ys−1} are transition states
between the base and surveillance locations (capturing the fact that it takes finite time to fly
between the two locations), and Yc is a special state denoting that the vehicle has crashed.

Similarly, the fuel state fi is described by a discrete set of possible fuel quantities,

fi ∈ {0,∆f, 2∆f, . . . , Fmax −∆f, Fmax}

where ∆f is an appropriate discrete fuel quantity. The total system state vector x is thus given by
the states yi and fi for each UAV, along with r, the number of requested vehicles:

x = (y1, y2, . . . , yn; f1, f2, . . . , fn; r)T

II.A.2. Control Space A

The controls ui available for the ith UAV depend on the UAV’s current flight status yi.
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• If yi ∈ {Y0, . . . , Ys − 1}, then the vehicle is in the transition area and may either move away
from base or toward base: ui ∈ {“ + ”, “− ”}

• If yi = Yc, then the vehicle has crashed and no action for that vehicle can be taken: ui = ∅

• If yi = Yb, then the vehicle is at base and may either take off or remain at base: ui ∈ {“take
off”,“remain at base”}

• If yi = Ys, then the vehicle is at the surveillance location and may loiter there or move toward
base: ui ∈ {“loiter”,“− ”}

The full control vector u is thus given by the controls for each UAV:

u = (u1, . . . , un)T (1)

II.A.3. State Transition Model P

The state transition model P captures the qualitative description of the dynamics given at the start
of this section. The model can be partitioned into dynamics for each individual UAV.

The dynamics for the flight status yi are described by the following rules:

• If yi ∈ {Y0, . . . , Ys − 1}, then the UAV moves one unit away from or toward base as specified
by the action ui ∈ {“ + ”, “− ”}.

• If yi = Yc, then the vehicle has crashed and remains in the crashed state forever afterward.

• If yi = Yb, then the UAV remains at the base location if the action “remain at base” is
selected. If the action “take off” is selected, it moves to state Y0.

• If yi = Ys, then if the action “loiter” is selected, the UAV remains at the surveillance location.
Otherwise, if the action “−” is selected, it moves one unit toward base.

• If at any time the UAV’s fuel level fi reaches zero, the UAV transitions to the crashed state
(yi = Yc).

The dynamics for the fuel state fi are described by the following rules:

• If yi = Yb, then fi increases at the rate Ḟrefuel (the vehicle refuels).

• If yi = Yc, then the fuel state remains the same (the vehicle is crashed).

• Otherwise, the vehicle is in a flying state and burns fuel at a stochastically modeled rate: fi

decreases by Ḟburn with probability pnom and decreases by 2Ḟburn with probability (1−pnom).

II.A.4. Cost Function g

The cost function g(x,u) penalizes three undesirable outcomes in the persistent surveillance mission.
First, any gaps in surveillance coverage (i.e. times when fewer vehicles are on station in the
surveillance area than were requested) are penalized with a high cost. Second, a small cost is
associated with each unit of fuel used. This cost is meant to prevent the system from simply
launching every UAV on hand; this approach would certainly result in good surveillance coverage
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but is undesirable from an efficiency standpoint. Finally, a high cost is associated with any vehicle
crashes. The cost function can be expressed as

g(x,u) = Cloc max{0, (r − ns(x))}+ Ccrashncrashed(x) + Cfnf (x)

where:

• ns(x): number of UAVs in surveillance area in state x,
• ncrashed(x): number of crashed UAVs in state x,
• nf (x): total number of fuel units burned in state x,

and Cloc, Ccrash, and Cf are the relative costs of loss of coverage events, crashes, and fuel usage,
respectively.

Previous work9,20 presented an adaptation architecture developed for the MDP framework
that allowed the system policy to be continually updated online using information from a model
estimator. This architecture was shown to reduce the time to successfully estimate the underlying
model and compute the updated policy, allowing the system to respond to both initially poor
estimates of the model, as well as dynamic changes to the model as the system is running and
resulted in improved system performance over non-adaptive approaches.

Figure 2: Representative mission with an embedded adaptation mechanism. The vehicle policy is
initialized for an pessimistic set of parameters, but throughout the course of the mission, the model
estimator concludes that a more optimistic model is running the system, and the policy is updated
with a more appropriate decision to remain at the surveillance location for increased time.

A representative mission with this adaptation embedded is given in Figure 2, with physical
vehicle states shown on the left axis and fuel state shown on the right. Vehicle 1 (red) is initialized
with a conservative policy (i.e. initial estimate of p̂nom = 0, while the true value is pnom = 1) and
travels from the base location through the intermediate transition area to the surveillance location.
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Due to its pessimistic policy, Vehicle 1 only spends one time step at the surveillance location.
However, these initial steps have given Vehicle 1 enough fuel transition observations to update its
estimate p̂nom and form a new policy. These state transitions are made available to all vehicles,
which results in Vehicle 2 (blue) remaining on surveillance for one additional time step (for a total
of 2 time steps). After only a few “phases” of surveillance plus refueling/waiting, each vehicles’
estimate p̂nom has converged and the consequent policy results in an increased surveillance time of
4 time steps.

Essentially, this adaptive architecture showed the sensitivity of the policy to changes in the
estimated model paramter and provided a feedback mechanism for utilizing updated model esimates
in on-line policy generation. These model estimates were updated using passive observations of state
transitions and showed improved performance. The focus of this research is to actively seek state
transition observations so as to learn the model parameters more quickly and thus leading to better
system performance. We approach this focus with uniform and directed exploration strategies, as
detailed in Section III

III. Integrated Learning with Persistent Surveillance

In this section, we begin by outlining the on-line parameter estimator that runs alongside each
of the exploration strategies, providing a means for bilateral comparison between approaches. We
then discuss each active learning method in depth and show how it is integrated into the formulation
of the Markov decision process via the cost, or reward, function.

III.A. Parameter Estimation

In the context of the persistent surveillance mission described earlier, a reasonable prior for the
probability of nominal fuel flow, pnom, is the Beta density (Dirichlet density if the fuel is discretized
to 3 or more different burn rates) given by

fB(p | α) = K pα1−1(1− p)α2−1 (2)

where K is a normalizing constant that ensures fB(p | α) is a proper density, and (α1, α2) are the
prior observation counts that we have observed on fuel flow transitions. For example, if 3 nominal
transitions and 2 off-nominal transition had been observed, then α1 = 3 and α2 = 2. The maximum
likelihood (ML) estimate of the unknown parameter is given by

p̂nom =
α1

α1 + α2
(3)

Conjugacy of the Beta distribution with a Bernoulli distribution implies that the updated Beta
distribution on the fuel flow transition can be expressed in closed form. If the observation are
distributed according to

fM (γ | p) ∝ pγ1−1(1− p)γ2−1 (4)

where γ1 (and γ2) denote the number of nominal (and off-nominal, respectively) transitions, then
the posterior density is given by

f+
B (p | α

′
) ∝ fB(p | α) fM (γ| p) (5)
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By exploiting the conjugacy properties of the Beta with the Bernoulli distribution, Bayes Rule
can be used to update the prior information α1 and α2 by incrementing the counts with each
observation, for example

α
′
i = αi + γi ∀i (6)

Updating the estimate with N = γ1+γ2 observations, results in the following Maximum A Posteriori
(MAP) estimator

MAP: p̂nom =
α

′
1

α
′
1 + α

′
2

=
α1 + γ1

α1 + α2 + N
(7)

This MAP is asymptotically unbiased, and we refer to it as the undiscounted estimator in this
paper. Recent work20 has shown that probability updates that exploit this conjugacy property for
the generalization of the Beta, the Dirichlet distribution, can be slow to responding to changes in
the transition probability, and a modified estimator has been proposed that is much more responsive
to time-varying probabilities. One of the main results is that the Bayesian updates on the counts
α can be expressed as

α
′
i = λ αi + γi ∀i (8)

where λ < 1 is a discounting parameter that effectively fades away older observations. The new,
discounted estimator can be constructed as before

Discounted MAP: p̂nom =
λα1 + γ1

λ(α1 + α2) + N
(9)

As seen from the formulation above, only those state transitions that offer a glimpse of the fuel
dynamics can influence the parameter estimator. In other words, only those transitions where the
vehicle actually consumes fuel can affect the counts for nominal and off-nominal fuel use (α1 and α2

respectively) and therefore affect the estimate of pnom. For example, transitions from any state to
crashed, ∗ → Yc, or from base to base, Yb → Yb, are not modeled as consuming fuel and therefore do
not affect the estimate. We therefore introduce the notion of influential state transitions as those
that consume fuel and thereby offer a glimpse of the fuel dynamics. For this paper, this notion
holds similarly for observations of state transitions and is used interchangeably.

III.B. No Exploration

For the case when no exploration is explicitly encouraged, the only state transitions to occur are
those in support of minimizing the loss-of-coverage and/or the probability of crashing, since the
objective function remains as originally posed in Section II.A.4, namely

g(x,u) = Cloc max{0, (r − ns(x))}+ Ccrashncrashed(x) + Cfnf (x) (10)

where ns(x) is the number of UAVs in surveillance area in state x, ncrashed(x) represents the
number of crashed UAVs in state x, nf (x) denotes the total number of fuel units burned in state
x, and Cloc, Ccrash, and Cf are the relative costs of loss of coverage events, crashes, and fuel usage,
respectively. We expect from this formulation a similar behavior as shown in Figure 2, where the
vehicles exhibit a “phasing” behavior, meaning they switch between the surveillance location, Ys,
and base, Yb. Additionally, we expect the idle vehicle, that is, the vehicle not tasked for surveillance,
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to remain at Yb until needed and therefore provide no additional influential state transitions. This
corresponds to a policy where choosing an action always exploits the current information to find
the minimum cost rather than choosing an action to improve/extend the current information in
the hope that by doing so, lower cost actions will arise (i.e. exploration).

III.C. Uniform Exploration

As implemented in our earlier work,8,9 passive adaptation can be used to mitigate these effects
of uncertainty, and as agents observe fuel transition throughout the mission, the estimate can be
updated using Bayes Rule. Alternatively, active exploration11 can be explicitly encoded as a new set
of high-level decisions available to the agents to speed up the estimation process. In the persistent
surveillance framework, this exploration actually has a very appealing feature: we have noted that
vehicles that can refuel immediately are frequently left at the base location for longer times in an
idle fashion, effectively waiting for the other surveillance vehicles to begin to return to base (see
Figure 2, for example). Our key idea for the exploration problem relies on taking advantage of this
idle state of the refueled UAVs, and use their idle time more proactively, such as to perform small,
exploratory actions that can help improve the model estimates by providing additional influential
state transition observations that can be shared with the other agents.

To encourage this type of active exploration, one simple approach is to add a reward into the
cost function for any action that results in an influential state transition. The new cost function
can be written as

g(x,u) = Cloc max{0, (r − ns(x))}+ Ccrashncrashed(x) + Cfnf (x) + Cstonsto(x) (11)

where Csto represents the cost (in our case, reward) of observing an influential state transition
and nsto(x) denotes the number observed at the current stage (nsto(x) ≤ n). The benefits of this
approach include:

• Simplicity - simple cost function modification
• Non-augmented state space of size equal to “No Exploration” case
• Well suited for time-varying model parameters

The limitations of Uniform Exploration include:

• Does not intelligently choose which transitions to perform when exploring - all are weighted
equally

• Exploration is continuous - the benefit of exploration may decay with time, this formulation
does not account for this

III.D. Directed Exploration

While vehicle safety is directly accounted for in the system dynamics, the cost function of Equa-
tion (11) does not account for errors in the fuel flow probability. This cost function is solved using
a Certainty Equivalence-like argument, in which the ML estimate of the model p̂nom is used to find
the optimal policy. However, the substitution of this ML estimate can lead to brittle policies that
can result in increased vehicle crashes.

In addition, a drawback associated with uniform exploration is its inability to gauge the infor-
mation content of the state transitions resulting from exploration. Since certainly all influential
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state transitions do not affect the estimator equally, which ones influence the estimator in the
“best” way? These are the transitions we want the policy to choose when actively exploring. To
address this, we embed a ML estimator into the MDP formulation such that the resulting policy
will bias exploration toward the influential state transitions that will result in the largest reduction
in the expected variance of the ML estimate p̂nom. The resulting cost function is then formed as

g(x,u) = Cloc max{0, (r − ns(x))}+ Ccrashncrashed(x) + Cfnf (x) + Cσ2σ2(p̂nom)(x)

where Cσ2 represents a scalar gain that acts as a knob we can turn to weight exploration, and
σ2(p̂nom)(x) denotes the variance of the model estimate in state x.

The variance of the Beta distribution is expressed as

σ2(p̂nom)(x) =
α1(x)α2(x)

(α1(x) + α2(x))2(α1(x) + α2(x) + 1)

where α1(x) and α2(x) denote the counts of nominal and off-nominal fuel flow transitions in state
x respectively, as described in Section III.A. However, in order to justify using a function of α1

and α2 inside the MDP cost function, α1 and α2 need to be part of the state space. Specifically,
for each state in the current state space, a set of new states must be added which enumerate all
possible combinations of α1 and α2. If we let αi ∈ {1 . . . 10}, this will increase the size of the state
space by a factor of 102 . Like many before us, we too curse dimensionality.21 However, all is not
lost as we can still produce a policy in a reasonable amount of time (on the order of a couple hours
on a decent machine).
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Figure 3: Options for the exploration term in the MDP cost function for a directed exploration
strategy. (Left) A function of the variance of the Beta distribution parameters α1 and α2. (Right)
A quadratic function of α1 + α2.
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Referring now to Figure 3, we see on the left the shape of Cσ2σ2(p̂nom) for p̂nom = f(α1, α2),
α1, α2 ∈ {1 . . . 10}. While the variance of the Beta distribution has a significant meaning, the
portion of the cost function relating to the variance of the parameter overly favors exploration
when αi is small, and too little when αi is large. To remedy this, one could shape a new reward
function based also on α1 and α2 that still captures the desired effect of a greater reward (i.e. lower
cost) for transitions that lead to a greater reduction in the variance, but perhaps one that does
not encode such a drastic difference between these weights. One such possibility is shown on the
right-side of Figure 3, where a quadratic function of (α1 + α2) is used.

IV. Simulation Results

In this section, we describe the simulation setup and give various results for each of the explo-
ration strategies under the persistent surveillance mission scenario as described in Section I and
formulated in Section II. For each approach to exploration, a multi-agent MDP was formulated
with 2 agents (n = 2), a crash cost of 50 (Ccrash = 50), a loss-of-coverage cost of 25 (Cloc = 25), a
fuel cost of 1 (Cf = 1) and an 80% probability of burning fuel at the nominal rate (pnom = 0.8).
In forming the associated cost functions, the exploration term was weighted less than the loss-of-
coverage cost, and much less than the cost of a crash. This essentially prioritizes the constraints.
The flight status portion of the state is set as yi ∈ {Yc, Yb, Y0, Ys}, with a single transition state Y0.
The MDP was solved exactly via value iteration with a discount factor α = .9. When simulating
the policy, each vehicle was placed initially at base, Yb, with fuel quantity at capacity Fmax.

We organize the results as follows: Section IV.A shows that a vehicle’s fuel capacity directly
affects its ability to satisfy any of the objectives in the cost function. In other words, a vehicle with
too little fuel will not be able to persistently survey a given location, much less expend additional
fuel for the sake of exploration. In Section IV.B, after getting a feel for the amount of fuel necessary
to achieve persistent surveillance, we fix each vehicle’s fuel capacity well above this lower bound and
vary the fuel cost to see how each exploration strategy handles a rising cost of fuel. In Section IV.C,
we fix both fuel capacity and cost to see how each exploration strategy affects our estimate of the
probability of nominal fuel burn, pnom. Finally, we allow pnom to vary over time in Section IV.C.5
and examine how p̂nom reacts under each exploration strategy.

IV.A. Fuel Capacity

In this section, we search for the minimum fuel capacity needed to persistently observe the surveil-
lance location. Since in all cases, exploration is weighted such that loss-of-coverage and crashing
are both more important constraints to meet, this minimum provides a lower bound on the fuel
capacity needed in order for an exploration strategy to influence on agent behavior. Figure 4 shows
a mission setup where each vehicle can only hold 5 units of fuel. As seen, this is insufficient to
maintain persistent coverage of the surveillance area. In addition, Figure 4 shows each vehicle’s
location, fuel depletion/replenishment and the overall fuel flow estimate, p̂nom, throughout the
mission.

In Figure 5, we compare the persistency of coverage for a handful of vehicle fuel capacities and
note that a fuel capacity of less than approximately 8 units is insufficient to achieve the persistent
surveillance objective. Therefore, a fuel capacity greater than 8 will allow the vehicle some legroom
for exploration. Moving forward, we will fix each vehicle’s fuel capacity at 10 units, giving ample
fuel to meet both crash and coverage constraints with enough remaining to engage in exploration
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Figure 4: Persistent surveillance mission with a fuel capacity of 5 units. As seen, this is insufficient
to maintain persistent surveillance.

as each policy dictates.

IV.B. Fuel Cost

In this section, we increase the cost of fuel and observe how exploration decreases until the cost of
using fuel is greater than the cost associated with loss-of-coverage and the vehicle remains at base,
Yb for all time. As a metric for exploration, we can measure the amount of time the vehicles spend
at base as a function of the cost of fuel for each of the exploration approaches and compare this
against the no-exploration case. This curve, averaged over 1000 simulations, is given in Figure 6
and shows that under a no-exploration strategy (red), the time spent at base vs. fuel-cost curve is
fairly flat until the threshold is reached where the cost of fuel outweighs the cost of loss-of-coverage.
The vehicles then decide to simply remain at base. Under uniform exploration (green), the cost of
fuel has a much smaller effect on the amount of time spent at base. This is due to the fact that
exploration is set up as a reward, rather than a cost for not exploring, in this formulation. Directed
exploration (blue) shows a similar shape as no-exploration, in that a knee appears at the threshold
where the cost of coverage (due to fuel use) outweighs the cost of loss-of-coverage. However, the
plot is shifted importantly toward less time spent at base and overall shows a balance between the
other two approaches.

IV.C. Exploration for Model Learning

In this section, the cost per unit and capacity per vehicle of fuel is fixed at 1 and 10 respectively. We
compare the rate at which the model parameter pnom is learned using the MAP model estimator
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Figure 5: Persistent surveillance mission with varying fuel capacity and no exploration strategy. A
fuel capacity below 8 units is insufficient to ensure persistent coverage.

given in Section III.A. First, we give simulation results for each exploration approach, followed by
a Monte-Carlo comparison of the three approaches.

IV.C.1. No Exploration

Under a strategy that does not explicitly encourage exporation, we see the idle vehicle (i.e. the
vehicle not tasked with surveillance) remains at the base location until needed, as evidenced in
Figure 7. This behavior provides influential state transitions due to the active vehicle only (i.e. the
vehicle actively surveying) and leads to slow convergence of p̂nom, to pnom.

IV.C.2. Uniform Exploration

Essentially, under a uniform exploration strategy, the current stage cost of the MDP is discounted
by a set amount when any state transition occurs that results in an observation of the fuel dynamics.
This lowered cost effectively encourages an agent to engage in more state transitions when possible.
For example, we now see the idle agent leave the base to make additional observations.

In Figure 8, we see that when an agent is given more than enough fuel to achieve persistent
surveillance, the idle agent chooses to explore rather than stay at the base location until needed. A
particular drawback to uniform exploration is the fact that there is no mechanism to favor specific
transitions over others. It is easy to envision a situation where certain state transitions might be
more valuable to observe than others, from a learning or estimation perspective. In such a case,
transitions whose associated observations are information rich would lead to a reduction in the
variance of our estimated, or learned, parameter and should be weighted accordingly.

IV.C.3. Directed Exploration

In an effort to address the issues with uniform exploration, we implemented directed exploration
strategy that aims to reduce the expected variance of p̂nom via exploration.

In Figure 9, we see that the idle agent immediately leaves base for the sake of exploration,
engaging in those transitions that lead to the greatest reduction in the expected variance of p̂nom.
Due to the limited count range for α1 and α2 inside the MDP formulation, so that the time required
for policy construction is reasonable, the agent only “explores” until the embedded α’s saturate at
their upper limits, which for all directed exploration simulations is 10.
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Figure 6: Persistent surveillance mission where the cost per unit of fuel varies. Under a no-
exploration strategy (red), the time-at-base vs. fuel-cost curve is flat until the threshold is reached
where fuel cost of persistent coverage outweighs the cost of loss-of-coverage. Under uniform ex-
ploration (green), the cost of fuel has relatively little effect as exploration is rewarded in this
formulation. Directed exploration (blue) shows a balance between the two extremes.

IV.C.4. Comparison of Exploration Strategies wrt Model Learning

When comparing the exploration strategies with no-exploration and with each other, we calculate
several metrics, averaged over 1000 simulation runs. These metrics include: The total number of
influential state transitions, total fuel consumed and the total number of vehicles crashed. Table 1
summarizes these metrics for each exploration approach.

Table 1: Comparison of averaged results over 1000 simulations

No Exploration Uniform Exploration Directed Exploration
# of Vehicles Crashed 0 0 0

Units of Fuel Consumed 101 115 105
# of Observations 84 96 87

It is interesting to see, in Table 1, that no vehicles crashed under any of the exploration ap-
proaches, despite the additional state transition observations provided by the uniform and directed
strategies. As this paper is not currently focused on robustness issues, in each case the policy was
both constructed and simulated with pnom = 0.8. Thus, the policy accurately dictated vehicle
actions to account for this known probability and therefore mitigate vehicle crashes. In addition,
all external estimators, as well as the internal estimator in the case of directed exploration, were
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Figure 7: Persistent surveillance mission with 10 units of fuel and no exploration strategy. Fuel
is sufficient to achieve persistent coverage of the surveillance location, but fewer state transition
observations lead to slower convergence of p̂nom to pnom.

conservatively initialized at pnom = 0.6. This is seen in Figures 7, 8, 9 and 11. As for the number
of state transitions observed and the amount of fuel consumed, the results confirm the intuition
that directed exploration observes fewer transitions and burns less fuel than uniform exploration,
but more than no-exploration. The time-history of these numbers are shown in Figure 10 where
we see that under a uniform exploration strategy the number of state transitions observed (as well
as the closely-related number of fuel units consumed) rises faster than the other strategies and
continues at this rate throughout the simulation.

Figure 11 shows the time-history of p̂nom under the different exploration strategies and is con-
sistent with intuition in that p̂nom converges slowest under no-exploration and both uniform and
directed exploration techniques converge slightly faster. The small difference in convergence rate
is due to the small number of additional state transitions the uniform and directed strategies gain
over no-exploration. Note that under no-exploration, each idle vehicle currently remains at base for
only a few time steps before switching roles with the active vehicle. However, as the fuel capacity is
increased per vehicle, the idle vehicle will remain at base for longer periods and we therefore expect
the difference in the convergence rate of p̂nom between exploration and no-exploration approaches
to become greater. This is due to the fact that, under an exploration approach, what was once idle
time becomes exploration time to observe influential state transitions and cause the estimator to
converge faster.

To verify that as the vehicles are given more fuel the difference in convergence rates of p̂nom

between exploration and no-exploration approaches widens, we ran 1000 simulations where each
vehicle is given double the amount of fuel as previous (20 units). The results are given in Figure 12
and confirm intuition, though the difference is not drastic.
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Figure 8: Persistent surveillance mission where each vehicle has 10 units of fuel and implements
a uniform exploration strategy with a state transition observation reward of 10. The fundamental
change in agent behavior here is that they choose not to stay at base when idle. Rather, the agent’s
choose to explore and observe additional state transitions for the sole purpose of learning pnom more
quickly.

IV.C.5. Time-Varying Model

We now allow the model parameter pnom to vary with time and compare the results of p̂nom for
each of the exploration approaches. The results are given in Figure 13 and show that none of the
approaches as formulated are particularly good at following pnom as it varies over time. We note
here that the estimates for each exploration type are generated using the undiscounted estimator
presented in Section III.A. When the model estimate begins to change, the undiscounted estimator
has already seen a handful of state transitions, enough to bring α1 and α2 away from the peaked
region of the variance shown in Figure 3. Hence, additional observations, regardless of the direction
they push the mean, do not influence the mean (likewise the variance) as heavily as the initial
observations. Therefore, the estimator is slow to respond to changes over time.

To address this, we implemented a discounted estimator where λ = 0.95, and ran another batch
of simulations. The results are given in Figure 14 and show much improvement in the parameter
estimate.

V. Conclusions

This paper has extended previous work on persistent multi-UAV missions operating with un-
certainty in the model parameters. We have shown that UAV exploratory actions to reduce the
parameter uncertainty arise naturally from a modification of the underlying MDP cost function, and
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Figure 9: Persistent surveillance mission where each vehicle has 10 units of fuel and implements a
directed exploration strategy with a variance-based cost function and a Beta distribution parameter
range of αi ∈ {1 . . . 10}. Exploration is immediate (annotated) as is shortly thereafter not beneficial
as the counts internal to the MDP state have reached their threshold of 10.

have shown the value of active learning in improving the convergence speed to the true parameter.
We are currently implementing the proposed methodology in our hardware testbed. Our ongoing
work is addressing the role of hedging and robustness in the uncertain model. While adaptation
is a key component of any dynamic UAV mission, there is a potential risk in simply replacing the
uncertain model with the most likely model, even while actively learning. By explicitly accounting
for both model robustness and adaptation (both passive and active), safer UAV missions can be
performed, mitigating the potential for catastrophic behavior such as vehicle crashes. Another
aspect of our research is addressing the role of model consensus across a distributed fleet of UAVs.
This problem is of particular relevance to the case when a large fleet of UAVs may lack sufficient
connectivity to communicate all their local information to the members of the team. Model con-
flict can results in a conflicted policy for each agent, and we are investigating methods for reaching
agreement across potentially disparate models.
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Figure 11: Comparison of averaged p̂nom for the differing exploration strategies. Under both
exploration types, estimates approach pnom slightly faster than no-exploration due to the idle time
steps under the latter being used to provide a few additional observations of vehicle fuel dynamics.
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Figure 12: Comparison of averaged p̂nom when each vehicle is given 20 units of fuel. The no-
exploration case has more idle time than for the case of 10 fuel units which again, under both
exploration types is used for gaining more glimpses of the vehicle fuel dynamics and causes a
slightly faster convergence of p̂nom.
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Figure 13: Average of 1000 persistent surveillance missions with time-varying model parameter
pnom using an undiscounted estimator where additional observations, regardless of the direction
they push the mean, do not influence the mean (or variance) as heavily as the initial observations.
Therefore, the estimator is slow to respond to changes over time.
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Figure 14: Average of 1000 persistent surveillance missions with time-varying model parameter pnom

and using a discounted estimator, as formulated in Section III.A. This results in faster reaction to
changes in the model parameter over time.
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