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Abstract— In this paper, the filtering problem for a large
class of continuous-time, continuous-state stochastic dynam-
ical systems is considered. Inspired by recent advances in
asymptotically-optimal sampling-based motion planning algo-
rithms, such as the PRM∗ and the RRT∗, an incremen-
tal sampling-based algorithm is proposed. Using incremental
sampling, this approach constructs a sequence of Markov
chain approximations, and solves the filtering problem, in an
incremental manner, on these discrete approximations. It is
shown that the trajectories of the Markov chain approximations
converge in distribution to the trajectories of the original
stochastic system; moreover, the optimal filter calculated on
these Markov chains converges to the optimal continuous-
time nonlinear filter. The convergence results are verified in
a number of simulation examples.

I. INTRODUCTION

Stochastic filtering, initially developed in the works of
Wiener and Kolmogorov, is an essential problem in systems
and control theory. Among the main results in this area is the
Kalman filter, which has dominated optimal state estimation
of linear systems for decades now. Nonlinear filtering meth-
ods like Extended Kalman filter, and the Unscented Kalman
filter have been introduced to expand its applicability.

In many applications, however, nonlinear dynamics and
non-Gaussian noise prohibit closed-form expressions for the
optimal filter. The seminal paper by Gordon, Salmond and
Smith [1] introduced the bootstrap filter, which forms the
basis for a class of general filters known as sequential Monte-
Carlo methods [2]. They utilize a large number of random
samples (called “particles”) to represent arbitrary posterior
distributions, and are propagated in time using importance
sampling techniques. Moreover, sampling techniques, such
as posterior resampling [3] and adaptive sampling [4], allow
addressing a wide class of nonlinear and non-Gaussian
models. However, for robust execution, it is necessary to tune
the filtering algorithm for the problem at hand (see, e.g., [5]).
In fact, arguably, the crucial aspect of particle filtering is
estimating a good posterior to sample from.

A large amount of attention has been devoted also to
continuous-time filtering algorithms, such as the Kalman-
Bucy filter for continuous-time linear systems with additive
Gaussian noise. More recent results include continuous-time
particle filters that are inspired by weak approximations
of solutions of stochastic differential equations (SDEs) [6].
Moreover, nonlinear filtering algorithms have been con-
structed using numerical solutions to the partial differential
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equations arising from the Zakai equation and the Kushner-
Stratonovich equation. However, applications of this class
of algorithms have been limited due to computational in-
tractability or non-recursive nature which prevents them from
being used on real-world online applications.

In this paper, we focus on the continuous-time nonlinear
filtering problem. Our main results draw inspiration from
two main areas. Firstly, we are interested in the Markov
chain approximation approach, developed by Kushner [7],
which has been proposed as a method to generate discrete
approximations of ordinary SDEs with continuous represen-
tations of states, controls, and observations. The method is
applicable to a wide class of problems in optimal stochastic
control [7] and optimal estimation [8], but its applications in
the literature are scarce, arguably due to the computational
complexity incurred by “a priori” discretization of high-
dimensional state spaces.

In a different context, the curse of dimensionality has been
shown to be inevitable in almost all robot motion planning
problems. In particular, the motion planning problem, i.e.,
the problem of finding a dynamically feasible trajectory
around obstacles so as to reach a goal region is shown
to be PSPACE-hard [9]. Yet, algorithms with probabilistic
guarantees such as Probabilistic RoadMaps (PRM) [10] or
the Rapidly-exploring Random Trees (RRT) [11] have been
shown to work effectively in returning a feasible solution in
high-dimensional configuration spaces, relying on effective
discretization based on sampling. Most recently, in [12], two
novel motion planning algorithms were proposed, namely the
PRM∗ and the RRT∗, which guarantee asymptotic optimality,
i.e., almost-sure convergence to optimal trajectories, without
sacrificing computational efficiency. In particular, the RRT∗

algorithm has been successfully applied to many challeng-
ing motion planning problems involving high-dimensional
configuration spaces [13], complex dynamical systems [14].
Similar incremental sampling methods were also used to
tackle stochastic optimal control problems [15].

We leverage these results to construct incrementally re-
fined Markov chain approximations of stochastic systems,
and incrementally solve the filtering problem on these dis-
cretizations. The resulting algorithms inherit many features
of other sampling-based algorithms. In particular, they are
(i) fairly general, i.e., designed for a large class of stochastic
dynamical systems, (ii) easy to implement even for complex
dynamical systems and (iii) do not need to be explicitly tuned
for new platforms with different computational capabilities.

This paper is organized as follows. The continuous-time
nonlinear filtering problem for a stochastic dynamical system
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is defined in Section II. Section III is devoted to some pre-
liminary background and results. The construction of Markov
chain approximations is presented in Section IV. Section V
gives details of the application of these Markov chains for
filtering. Convergence proofs for the proposed algorithms are
outlined in Section VI. Results of computational experiments
are presented in Section VII.

II. PROBLEM DEFINITION

Let R denote the set of real numbers and Rn×k denote
the set of all n× k real-valued matrices. Consider the SDE

dx(t) = f(x(t)) dt+ F (x(t)) dw(t), x(0) = x0, (1)

where (i) x(t) ∈ Rd, (ii) f : Rd → Rd, F : Rd → Rd×k
are Borel-measurable functions, (iii) {w(t) : t ≥ 0} is the
standard k-dimensional Brownian motion, and x0 is bounded
with probability one. A solution to the differential form pre-
sented in Equation (1) is a stochastic process {x(t) : t ≥ 0}
that constitutes a solution to the following integral equation:

x(t) = x0 +

∫ t

0

f(x(τ))dτ +

∫ t

0

F (x(τ)) dw(τ), ∀ t ≥ 0,

where the second term on the right hand side is the usual
Itô integral [16]. We tacitly assume throughout that f(·) and
F (·) are bounded and continuous, to guarantee weak exis-
tence and weak uniqueness for the solutions of Equation (1).

In the nonlinear filtering problem [7], [16], one attempts
to estimate the process {x(t); t ≥ 0} using data available till
time t, defined by Yt := {y(s) : s ≤ t}, where {y(t) : t ≥ 0}
is a solution to the stochastic differential equation

dy(t) = g(x(t)) dt+G(x(t))dv(t), (2)

where g : Rd → Rm and G : Rd → Rm×l are Borel-
measurable functions, and {v(t) : t ≥ 0} is an l-dimensional
Brownian motion independent of {x(t) : t ≥ 0}. Similarly,
we assume that g(·) and G(·) are bounded and continuous to
guarantee weak existence and weak uniqueness of solutions
to Equation (2). As in [7], we formulate the problem so
that the system evolves inside a compact set, S ⊂ Rd. The
process is stopped, if it hits the boundary of S, i.e., at time
τ := inf{s : x(s) /∈ So}, where So denotes the interior of
S. The filtering problem can be formally defined as follows.

Problem 1 Given a set Yt := {y(s) : s ≤ t} of observations
generated by the process in Equation (2), find an estimate
x̂(t) such that (i) E[‖x(t) − x̂(t)‖2] is minimized and (ii)
the random variable x̂(t) is square integrable and Ht-
measurable, where Ht is the σ-algebra generated by Yt.

It is well known that, based on observations Yt, the error-
minimizing state estimate x̂(t) is x̂(t) = E[x(t) | Yt]. In
fact, this equation forms the basis of the Fujisaki-Kallianpur-
Kunita equation of filtering theory [16]. In some references
the filtering problem is posed as the estimation of the dis-
tribution of the random variable E[x(t) |Ht] (see, e.g., [7]),
which is equivalent to our formulation of the problem. Let

us also note that the solution of the filtering problem can
be given by the following formula [7]. If x̃(t) is a process
with the same distribution as that of x(t) but independent of
(x(t), y(t)), and φ(·) is any continuous real-valued function,
then the solution of the filtering problem is

E[φ(x(t)) | Yt] =
E[R(t)φ(x̃(t)) | Yt]

E[R(t) | Yt]
, (3)

where R(t) = exp
[∫ t

0
g(x̃(s))T dy(s)− 1

2

∫ t
0
|g(x̃(s))|2ds

]
.

Roughly speaking, in our approach, the Markov chain ap-
proximation method generates a process x̃(t) that has the
same law as the original process x(t); Then, Equation (3), a
limiting version of Bayes’ rule, gives the optimal filter.

III. PRELIMINARIES

A. Optimal Filter on a Markov chain

A Markov chain is denoted by the tuple M = (S, P ),
where S ⊂ S is a finite set of states and P (· | ·) : S × S →
R≥0 is a function that denotes the transition probabilities,
i.e., the function P (z | z′) is the probability that the next state
is z given that the current state is z′. Given an initial state
z0 ∈ S, let {ξi; i ∈ N} denote the (discrete-time) trajectory
of the Markov chain M starting from z0.

The optimal filtering problem for a discrete Markov chain
is similar to Problem 1. Given a Markov chain M = (S, P )
and a set Yk = {yi : i = 1, 2, . . . , k} of observations coming
from an equation of the form yk = g(ξk) +G(ξk)ṽ, where,
ṽ is unit-variance white Gaussian noise, we can calculate the
conditional distribution φk(z) = P(ξk = z |Yk) as φn(z) =∑
z′∈S P(ξn = z, ξn−1 = z′ |Yn), which can be written

using recursive Bayes’ rule as

φn(z) = η
∑
z′∈SP(yn | ξn = z, ξn−1 = z′) ×

P(ξn = z | ξn−1 = z′) φn−1(z′), (4)

where η is a normalization constant and φ0(z) is the initial
distribution of states. Note that the probability P(yn | ξn =
z, ξn−1 = z′) becomes P(yn | ξn = z) under our observation
equation. This formulation is similar to estimation on Hidden
Markov Models except for the fact that observations come
from an observation space instead of a finite set and the
same formulae hold. Also note that the observations in
Equation (2) are often discretized at times kδ as yk =
g(x(kδ))δ +G(x(kδ))[v(kδ)− v(kδ − δ)], or alternatively,

yk = g̃(xk) +G(xk) ṽk,

with g̃(xk) = g(x(kδ)) δ and ṽk = v(kδ)− v(kδ− δ) being
the white Gaussian noise constructed from the continuous
time Brownian motion v(t). Note that the observation noise
ṽk need not be Gaussian in our formulation.

B. The Markov Chain Approximation Method

Let M = (S, P,∆t) be a tuple where (S, P ) is a Markov
chain as defined above and ∆t : S → R>0 associates a time
interval to each state in S. The function ∆t is called the
function of interpolating times, or a holding time for short.
Roughly, ∆t(z) is the time that the chain spends at state



z, before making another transition. Henceforth, we call this
tuple a Markov chain for convenience. ξ(·) is the continuous-
time interpolation of a discrete trajectory {ξi; i ∈ N} under
holding times ∆t, i.e., ξ(τ) = ξi for all τ ∈ [ti, ti+1),
where ti =

∑i
j=1 ∆t(ξj).

Let {Mn;n ∈ N}, where Mn = (Sn, Pn,∆tn), denote a
sequence of Markov chains. For each n ∈ N, let {ξni ; i ∈
N} be the trajectory of Mn with initial state distributed
according to some distribution πn. The sequence of Markov
chains {Mn;n ∈ N} is said to be locally consistent [7] with
the original system described by Equation (1) if the following
criteria are satisfied for all z ∈ S.

◦ lim
n→∞

∆tn(z) = 0, (5)

◦ lim
n→∞

E[ξni+1 − ξni | ξni = z]/∆tn(z) = f(z), (6)

◦ lim
n→∞

Cov[ξni+1 − ξni | ξni = z]/∆tn(z) = F (z)F (z)T . (7)

As stated in the following theorem, under mild technical
assumptions, local consistency implies the convergence of
continuous-time interpolations of trajectories of the Markov
chain to trajectories of the stochastic dynamical system
described by Equation (1).

Theorem 2 (Theorem 10.4.1 in [7]) If {Mn; n ∈ N} is
a sequence of Markov chains, locally consistent with the
stochastic dynamical system given by Equation (1), ξn(·) has
a subsequence that converges in distribution to x(·) such that

x(t) = x0 +

∫ t

0

f(x(s))ds+

∫ t

0

F (x(s)) dw(s), (8)

where x0 is distributed according to limn→∞ πn, πn being
the prior distribution of the initial state of Mn.

IV. CONSTRUCTION OF APPROXIMATING CHAINS

A. Primitive procedures

a) Sampling: The Sample procedure returns states
sampled independently and uniformly from S ⊂ Rd.

b) Neighboring states: Given z ∈ S and a finite set
S ⊆ S of states, the procedure Near(z, S) returns the set of
all states within a distance r = γ (log n/n)1/d from z, i.e.,

Near(z, S) =

{
z′ ∈ S, z′ 6= z : ‖z′ − z‖2 ≤ γ

(
logn
n

)1/d
}

where n = |S|, d = dim(S), and γ > 0 is a constant that
will be specified in Section VI.

c) Time Intervals: Given a state z ∈ S, the procedure
ComputeHoldingTime(z, S) returns a holding time

∆t(z) = r2

‖F (z)FT (z)‖2+r‖f(z)‖2 ,

where r is as given in the procedure Near(z, S). The
expression of ∆t(z) is motivated by ∆t = distance

average velocity
.

d) Transition Probabilities: Local consistency condi-
tions are a set of linear equations for transition probabilities.
However, we can also use an approximation to get the
probabilities as follows. Given a state z ∈ S and a finite
set Znear ⊂ S, the ComputeTransProb(z, Znear,∆t(z))

Algorithm 1: Incremental Markov chain Construction
1 n← 0;
2 while n < N do
3 z ← Sample();
4 Sn ← Sn−1 ∪ {z};
5 ConnectState(z, (Sn, Pn−1,∆tn−1));
6 Pn ← Pn−1, ∆tn ← ∆tn−1;
7 Znear ← Near(z, Sn);
8 for znear ∈ Znear do
9 ConnectState(znear, (Sn, Pn,∆tn));

10 n← n+ 1;

11 return (SN , PN ,∆tN );

Algorithm 2: ConnectState(z, (S, P, T ))

1 ∆t(z)← ComputeHoldingTime(z, S);
2 Znear ← Near(z, S);
3 P (· | z)← ComputeTransProb(z, Znear,∆t(z));

procedure returns a function p(· | z) which is computed as
follows. Let Nµ,Σ(·) denote the density of the (possibly mul-
tivariate) Gaussian distribution with mean µ and variance Σ.
Define the transition probabilities as p(z′ | z) = η Nµ,Σ(z′)
where µ = z + f(z)∆t(z) and Σ = F (z)F (z)T∆t(z) and
the constant η ensures

∑
z′∈Znear

p(z′ | z) = 1. Lemma 3
in Section VI proves that this satisfies local consistency
conditions in the limit.

B. Incremental construction of the Markov chain

Algorithm 1 uses the procedures described above to gen-
erate the Markov chain. In particular, once it has a chain
Mn, it adds the (n + 1)th sample to create a more refined
chain Mn+1. Algorithm 1 thus creates the sequences of
Markov chains upon which we perform filtering. We prove
in Section VI that trajectories of an incremental construction
of a Markov chain approximation converge in distribution to
those of the original stochastic system.

C. Batch construction of the Markov chain

If N samples are drawn before-hand instead of sampling
incrementally, we can get rid off lines 6-8 in Algorithm 1.
The holding times ∆t(z) are then only a function of the final
N . Let us call this version the “batch construction” of the
Markov chain. We will use it as an intermediate step in the
proof for the incremental algorithm.

D. Computational complexity

Without providing the technical details, we sketch the
computational complexity of the proposed algorithms. The

Algorithm 3: Batch Markov chain construction
1 n← 0;
2 while n < N do
3 z ← Sample();
4 S ← S ∪ {z};
5 n← n+ 1;

6 for z ∈ SN do
7 ConnectState(z, (SN , PN ,∆tN ));

8 return (SN , PN ,∆tN );



Near procedure takes worst case O(log n) time using ap-
proximate nearest neighbor algorithms [17]. Note that the ex-
pected number of samples in a ball of radius γ (log n/n)1/d

is O(log n). The complexity of ConnectState is thus
O(log n) and it executes for an expected O(log n) samples in
lines 7-9 of Algorithm 1. Thus, the computational complexity
of creating the incremental Markov chain in Algorithm 1 is
O(n (log n)2). This reduces to O(n log n) if we sample the
states before-hand as in Algorithm 3.

V. FILTERING ON MARKOV CHAIN APPROXIMATIONS

Inorder to use Equation (4) to propagate estimates on the
Markov chain constructed in Section IV, we require single
step transition probabilities, i.e., roughly, the holding times
of all states need to be the same.

We use the Markov chain obtained in Section IV with
holding times ∆t(z), possibly different for different z ∈ S
along with a discretization δ of the time axis to obtain a
modified chain Mδ

n = (Sn, Pn, δ) so that the holding time
of every state is δ. This corresponds to augmenting the state-
space with a time dimension. Given a state z ∈ Sn and a
finite set Znear ⊂ Sn, the ComputeTransProb procedure
is replaced by ComputeTransProbTime(z, Znear,∆t, δ) that
returns a probability density function over Tδ×Znear, where
Tδ = {0, δ, 2δ, . . . , }. This probability density is denoted
by pδ(· | kδ, z) defined for z ∈ S and k ∈ {1, 2, . . . }.
Let p(· | z) = ComputeTransProb(z, Znear,∆t(z)) be com-
puted as described in Section IV-A. pδ(· | kδ, z) is con-
structed from p(· | z) as,

1− pδ
(
kδ + δ, z | kδ, z

)
= δ/∆t(z)

pδ
(
kδ, z | kδ, z′

)

1− pδ
(
kδ + δ, z | kδ, z

) = p(z | z′) (9)

Equations (9) also satisfy local consistency conditions and
thus the modified Markov chain can be used in Equation 4.

The condition δ ≤ minz∈Sn ∆t(z) is required to ensure
pδ(·, z | ·, z) ≤ 1 for all states z. If the Markov chain is
obtained from Algorithm 3, we fix a δ = minz∈Sn ∆t(z)
and modify the transition probabilities of every state z ∈ Sn
using Equations (9). If the Markov chain is being constructed
incrementally using Algorithm 1, we cannot fix such a δ
because ∆t(z) is decreasing as n → ∞. Instead, we incre-
mentally reduce the time discretization as δnew = δcurrent/2
and recalculate probabilities for all states in Sn every time
we add a new state that has ∆t(zn+1) ≤ δcurrent. Since δ ∼
∆t(z) = O(( logn

n )2/d) from Section IV-A, two successive
values of n, n1, and n2, when we have to recalculate the
probabilities are exponentially increasing i.e., n2 ∼ n12d/2

giving an amortized complexity of O(n(log n)2).
Let us note a few features of the modified Markov chain.

For a time-homogeneous SDE, the transition probabilities de-
pendend only on the state, not on any particular time. Hence,
it is not necessary to compute the transition probabilities
for each time in Tδ separately in an implementation. The
filtered estimate calculated using Equation (4) converges to
the optimal estimate as δ → 0 and n → ∞, for which we
provide a proof in Section VI.

VI. ANALYSIS

The theorems in this section operate along with Theorem
2 to prove that the approximation generated by Algorithm 1
converges, in some suitable sense to the original process
described by Equation (1). In particular, they prove that the
sequence of Markov chains {Mn;n ∈ N} can be generated
incrementally using uniform random sampling.

Lemma 3 ComputeTransProb procedure satisfies local
consistency conditions given in Equations (6) and (7).

Proof: The Fokker-Plank equation [18] is a partial
differential equation that describes the evolution of the
probability density, φ(x(t)) of the state of Equation (1),

∂

∂t
φ(x(t)) =

[
− ∂

∂x
f(x) +

1

2

∂

∂x
F (x)FT (x)

]
φ(x(t)).

Small time solution is given as, P (x′, t + ∆t |x, t) =
1√

2πF (x)FT (x)∆t
exp

(
− 1

2
[x′−x−f(x,t)∆t]2

F (x)FT (x)∆t

)
The Gaussian

approximation in ComputeTransProb procedure is thus the
small time solution of the Fokker-Planck equation. Also, it
can be proved that the number of samples in the neighbor-
hood of every sample (in every grid cell Gn(i) of Theorem 4
to be precise) is increasing [12], i.e., the small time solution
converges to the actual solution in the limit.

Theorem 4 The Markov chain (Sn, Pn,∆tn) returned by
Algorithm 3 is locally consistent with the stochastic dynam-
ical system described by Equation (1), with probability one.

Proof: For each n ∈ N, divide the state space S into
grid cells with side length γ

2 (log n/n)1/d as follows. Define
the grid cell Gn(i) for i ∈ Zd as

i

(
γ

2

log n

n

)1/d

+

[
−1

4
γ

(
log n

n

)1/d

,
1

4
γ

(
log n

n

)1/d
]d
,

where [−a, a]d denotes the d-dimensional cube with side
length 2 a centered at the origin. The expression above trans-
lates the d-dimensional cube with side length γ

2 (log n/n)1/d

to the point with coordinates i γ2 (log n/n)1/d. Let Kn denote
the indices of set of all cells that lie completely inside the
state space S, i.e., Kn = {i ∈ Zd : Gn(i) ⊆ S}.

We claim that for all large n, all grid cells in Kn

contain at least one vertex of Sn. Given an event A,
let Ac denote its complement. Let An,k denote the event
that the cell Gn(k) contains a vertex from Sn. Then,
for all k ∈ Kn, P

(
Acn,k

)
=

(
1− ( γ2 )−d

µ(S)
logn
n

)n
≤

exp
(
−((γ2 )d/µ(S)) log n

)
= n−( γ2 )d/µ(S), where µ(·) de-

notes the usual Lebesgue measure. Let An denote the event
that all cells Gn(i) contain at least one vertex of Sn. Then,

P(Acn) = P
((⋂

k∈Kn
An,k

)c)
= P

(⋃
k∈Kn

Acn,k

)

≤
∑

k∈Kn
P
(
Acn,k

)
= |Kn|n−( γ2 )d/µ(S),



where the first inequality follows from the union bound and
|Kn| denotes the cardinality of the Kn. Merely calculating
the maximum number of cubes that can fit into S, the latter
can be bounded by |Kn| ≤ µ(S)

( γ2 )d logn
n

= µ(S)
( γ2 )d

n
logn . Hence,

P (Acn) ≤ µ(S)

(γ2 )d
n

log n
n−( γ2 )d/µ(S) ≤ µ(S)

(γ2 )d
n1−( γ2 )d/µ(S),

which is summable for γ > 2 (2µ(S))1/d. Hence, by
the Borel-Cantelli lemma, the probability that Acn occurs
infinitely often is zero, which implies that the probability
that An occurs for all large n is one. Since the radius of the
ball in the procedure Near is γ(log n/n)1/d, every state z is
connected to at least one other state.

This ensures that Equations (6) and (7) are satisfied for all
samples z ∈ Sn. Finally since ∆t(z) → 0 as n → ∞, we
have proved that Algorithm 3 is locally consistent.

Theorem 5 Incremental construction of the approximating
chain using Algorithm 1 is also locally consistent for large
n, with probability one.

Proof: Equations (6) and (7) are satisfied for Algo-
rithm 1 by Theorem 4. We only to show that Equation (5)
is satisfied, i.e, ∆t(z) for any state z that is added to the
Markov chain at any iteration, say i, goes to zero. ∆t(z) is
a decreasing function of n. We thus essentially prove that
lines 7-9 are executed on every state z infinitely often.

Fix an iteration i and a state z ∈ Si. Let An, defined
for all n > i, denote the event that the state z belongs to
Near(zn, Sn) of the newly node zn at iteration n. It is thus
inside the ball of volume γd( logn

n ) centered at zn. Hence,
P(An) = γd

µ(S) ( logn
n ). Since

∑∞
n=i+1 P(An) = ∞ and the

event An is independent from Ai for all i 6= n, Borel-Cantelli
lemma implies P(lim supn→∞An) = 1. Hence, any state z
is reconnected infinitely often, with probability one.

Theorems 2, 4, and 5 imply that the trajectories of the suc-
cessive Markov chains (Sn, Pn, Tn) converge in distribution
to the trajectories of the system described by Equation (1).

Theorem 6 (see Theorem 4.1 in [8]) Let φ(·) be any con-
tinuous real-valued function, x(t) be defined by Equation (8)
and observations be given by y(t). If ξn(·) is a sequence
which converges in distribution as n → ∞ to x(t) and is
independent of (x(t), y(t)),

lim
n→∞

sup
t≤T

∣∣∣E[φ(ξn(t)) | Yt]− E[φ(x(t)) | Yt]
∣∣∣ = 0.

The above theorem coupled with the formula given in
Equation (3) proves that the filtered density calculated on
the Markov chain Mδ

n converges to the optimal nonlinear
filtering density as n→∞ and δ → 0.

VII. EXPERIMENTS

This section is devoted to experiments using the algorithms
proposed in this paper.

A. Convergence of trajectories

Consider the 2-dimensional stochastic dynamical system

dx1 = −1

2
x1 dt+ 0.03 dw1

dx2 = −x2 dt+ 0.03 dw2 (10)

In Figure 1, results from computational experiments in-
volving 50, 000 simulated trajectories of the Markov chain
(xMarkov(t)) and the original stochastic system (x(t)) are
shown. A scatter plot for the state of the system is shown
at five different time instants. Figure 2 shows the conver-
gence of error in moments calculated over the same set of
trajectories with the number of states ranging from 1, 000 to
100, 000. The experimental results presented in these figures
verify the theoretical results presented in Theorems 4 and 5.

B. Filtering

In this section, we compare the proposed filtering algo-
rithm with others such as the EKF and the particle filter.

1) Drifting ship: Consider a ship [19] confined to move
within a disc of radius 9 units. A large force fi(x(t)) acts on
the ship to make it move inwards if it is moving outwards
when it goes out of this disc as shown in Equation (11).
The ship is a 2-dimensional double integrator with forces
f1(x), f2(x). Dynamics of all states is assumed to have noise
of standard deviation e with observations being range and
heading as given in Equation (12). Figure 3 shows that the
tracking error is similar to that of the particle filter.

fi(x(t)) =
−50xi√
x2

1 + x2
2

I{√x2
1+x2

2≥9}I{x1x3+x2x4≥0} (11)

dy1 = [x2
1 + x2

2]1/2dt+ e1 dv1

dy2 = tan−1(x2/x1)dt+ e2 dv2 (12)

2) Van der Pol oscillator: Consider a noisy Van der Pol
oscillator given by Equation (13). This system is highly non-
linear with a stable limit cycle for µ > 0.

dx1 = x2 dt+ e1 dw1

dx2 = [−x1 + µ x1 (1− x1
2)] dt+ e2 dw2

dy = x1 dt+ e3 dv (13)
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Fig. 2: Figure (a) shows |E[ξn(T )]−E[x(T )]| versus the number
of samples n while Figure (b) shows a similar plot for the 2nd

moment, i.e., ‖E[ξn(T )ξTn (T )− x(T )xT (T )]‖2.



(a) 1000 samples (b) 10, 000 samples (c) 40, 000 samples

Fig. 1: Scatter plots show the distribution of states (x1, x2) of the Markov chain at five specific time instants t ∈ {0, 0.3, 0.5, 1.0, 2.0}
secs. Translucent ellipses are 3σ ellipses from the simulation of the original stochastic system as given in Equation (10). The dotted blue
and red lines show the mean of the original dynamics and Markov trajectories respectively for t ∈ [0, 2] secs. The mean trajectories
converge, i.e., the first moment of the distribution converges as more samples are added. The variance shown as a scatter plot is also seen
to converge. Both the Markov chain and the original system are started from the nearest state to (0.8, 0.8) in Sn.
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Fig. 3: Filter estimate for the drifting ship in Equation (11) with
e = 0.3, e1 = 0.03 and e2 = 0.03. EKF diverges near (0, 0) due to
large nonlinearity in bearing observations. The average estimated
state error, i.e., E[ 1

T

∫ T
0
‖x− x̂‖dt] is 5.02× 10−3 for the HMM

filter, 5.2×10−3 for the particle filter both with 100 particles (see
Section VII-C) and 1.36× 10−2 for the EKF.

The last equation is the scalar observation equation and
µ = 2. Figure 4 shows the performance of the proposed
algorithm on this system. Note that this system is typically
hard for the EKF which accumulates linearization error due
to varying time scales and, predictably, the EKF estimate of
x2(t) diverges. The proposed filter took 0.2 secs to execute
while the PF took 0.013 secs for 100 samples with similar
average error. This example shows that the proposed filter
performs as well as other filters both in terms of quality of
estimate and as also computationally tractability.

3) Parameter estimation: We compared these filters on
a modified version of a parameter estimation problem
from [20] as given in Equation (14). The parameter we are
estimating is φ = 0.5.

dx = x cos(2πφx) dt+ σx dw1

dφ = 0 dt+ σφ dw2

dy = x dt+ σv dv. (14)

To begin with, it is only known that φ ∼ N (0.8, 1). This is
a hard problem for a particle filter because the conditional
density of φ given data is not in the exponential family [20]
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Fig. 4: x1(t) and x2(t) for a Van der Pol oscillator. Mean error of
the estimate averaged over 100 runs was 0.1816 for the proposed
filter with 100 particles and 0.1849 for the particle filter with 100
particles.

which makes resampling difficult. Figure 5 shows an example
run with the particle filter using multinomial sampling. The
proposed filter consistently ends up with lower error.

C. Implementation details
The algorithms proposed here are general and can be used

to get a discrete approximation of a large class of stochastic
systems. We have demonstrated an application of this idea
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Fig. 5: x(t) and φ(t) for the parameter estimation problem with
σx = 0.1, σv = 0.1 and σφ = 0.1. Average state error over 100
Monte-Carlo runs was 1.44 for the proposed filter whereas it was
1.878 for the particle filter with 100 samples for both.
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Fig. 6: Decoded trajectories with σ = 0.1 and γ = 0.1. Total
error between the actual and estimated trajectory, calculated as∫ T
0
‖x(t) − x̂(t)‖22 dt, is 4.9 × 10−3 with 20, 000 samples in

Figure (a). The convergence of decoding error averaged over 100
trajectories is shown on a log-log plot in Figure (b). The red curve
shows a 10th order polynomial fit for the error data.

to optimal nonlinear filtering. Heuristics specific to the
filtering problem applied to our Markov chain construction
can vastly improve the computational complexity in practice.
Roughly, uniform sampling of the state-space results in the
convergence rate depending upon the size of state-space. We
can avoid this by concentrating samples around the estimated
posterior while creating the Markov chain. In the examples
given in Section VII-B, propagating mean and variance of an
assumed Gaussian prior enables an efficient online algorithm.

Next, we consider an application to MAP decoding, where
we directly use the incremental Markov chain construction.

D. Maximum a posteriori (MAP) trajectory

In this section, we focus on the discrete-time MAP tra-
jectory estimation (decoding) problem. Given observations
till a time t denoted as Yt = {y1, y2, . . . , yt}, it finds the
most probable trajectory x̂t = {x1, . . . , xt}, i.e., x̂t =
arg maxξ P(ξt |Yt) (see [21] for a more elaborate formu-
lation). A Markov chain Mδ

n = (Sn, Pn, δ) constructed
using Algorithm 1 can be used with the Viterbi algorithm
to get the most probable trajectory after t observations. The
observation probability is given by P(yk | z) for z ∈ Sn,
which can be obtained from the observation model. Figure 6
shows the decoded trajectory for x1(t) of a 2D linear system
with dynamics dx1 = −x1dt + σdw1 and observations
dy1 = x1dt + γdv1. The corresponding equations of x2(t)
are similar.

VIII. CONCLUSION

We proposed the Markov chain approximation method as
a way to generate a completely discrete approximation for
a large class of continuous time, continuous state stochas-
tic systems. The crucial idea of this paper is that this
method not only provides state estimates but also generates
a rich approximation for the whole dynamical system along
with it. The algorithms proposed here can generate this
approximation in an incremental fashion and hence are
amenable to practical applications. These algorithms were
applied to the nonlinear filtering problem and experiments
show that they compare favorably to the state of the art.
Incremental solutions to related estimation problems such
as smoothing (Forward-Backward algorithm) and trajectory

decoding (Viterbi algorithm) can be obtained easily using
the algorithms proposed here. Directions for future work in-
clude creating discrete approximations of partially observable
Markov decision process (POMDPs) that can be solved in
an incremental manner to converge to an optimal solution of
the general continuous time POMDP.
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