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A Process Algebra Genetic Algorithm
Sertac Karaman Tal Shima Emilio Frazzoli

Abstract—A genetic algorithm that utilizes process algebra for
coding of solution chromosomes and for defining evolutionary
based operators is presented. The algorithm is applicable to
mission planning and optimization problems. As an example
the high level mission planning for a cooperative group of
uninhabited aerial vehicles is investigated. The mission planning
problem is cast as an assignment problem, and solutions to the
assignment problem are given in the form of chromosomes that
are manipulated by evolutionary operators. The evolutionary
operators of crossover and mutation are formally defined using
the process algebra methodology, along with specific algorithms
needed for their execution. The viability of the approach is inves-
tigated using simulations and the effectiveness of the algorithm
is shown in small, medium, and large scale problems.

Index Terms—Genetic algorithms, process algebra, UAV task
assignment.

I. INTRODUCTION

UNinhabited aerial vehicles (UAVs) are becoming in-
creasingly effective in performing missions that have

previously been performed by manned airplanes. Their ef-
ficacy mainly stems from the lack of an on-board human
operator. This enables development of systems with significant
weight savings, lower costs, and allows performance of long
endurance tasks. Currently, basic tasks of UAVs such as flying
and trajectory planning from way-point to way-point can be
automated. To enable the simultaneous cooperative operation
of multiple such systems in complex missions, higher levels
of autonomy are constantly sought. Within the last decade, co-
operative control algorithms have been proposed to coordinate
such multi agent systems in a preferably optimal way (see for
example Refs. [1], [2], [3], [4], [5]).

Recently, cooperative control algorithms have been ex-
tended to handle more complex tasks and constraints, called
the mission specifications, which are expressed using formal
languages (see for example Refs. [6], [7]). These mission
specifications include, but are not limited to, combinations of
temporal ordering among tasks as well as conjunctive and dis-
junctive logical constraints. Specification languages with strict
deadlines to specify and solve more complex UAV missions
also have been considered (see, for example, Ref. [8]).

In Ref. [7], Process Algebra (PA) is used to specify a
class of complex coupling constraints between tasks in UAV
missions. This paper also adopts PA as the specification lan-
guage for reasons to be outlined shortly. In computer science,
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process algebra is used for reasoning about the time behavior
of software. For such reasoning, the software is assumed to be
able to execute actions from a set A in some order. An action
is a very general abstraction; it may refer to a blink of light,
writing into a file, or moving a robotic arm. A behavior of the
system is, then, a sequence of actions which are ordered with
respect to the order that they were executed by the software.
The sequence (a1, a2, . . . , an) for which a1, a2, . . . , an ∈ A,
for instance, would be a behavior of the system. Then, using
the process algebra terms one can indeed specify the set of
behaviors that a system can exhibit. This can be used as a
design specification for automatic generation of software; or
it can be used for checking whether a given software satisfies
such a criterion.

In many military multiple-UAV missions, individual tasks
like area search, classifying, or destroying a target, can be
coupled with each other with temporal and logical constraints.
Intuitively, these tasks, which we will refer to as atomic
objectives, correspond to the actions, whereas the coupling
constraints will be represented by the process algebra terms.
High level tasks will be described using sets of atomic
objectives, coupled through process algebra terms. We will
denote such high level tasks as complex objectives. In the end,
the entire UAV mission can be given as a single specification,
i.e., a single complex objective.

The assignment of multiple cooperating UAVs to multiple
tasks, such as collections of the atomic objectives mentioned
above, requires the solution of a combinatorial optimization
problem. The significant difficulty in solving many combi-
natorial optimization problems is that they are NP-hard and
therefore cannot be solved in polynomial time by deterministic
methods. So, due to the prohibitive computational complexity
of the problem, the traditional deterministic search algorithms
provide an optimal solution only for small-sized problems. For
large sized problems they may provide a feasible solution in
a given bounded run-time. Approximation algorithms can also
be used for solving such problems. These algorithms give a
solution of cost J to the problem with optimal cost J* such
that the ratio J/J* is bounded by a known constant [9].

If optimality is not sought and the goal is to obtain a good
feasible solution quickly, then stochastic search algorithms
that employ a degree of randomness as part of their logic
can be used. An algorithm of this type uses a random
input to guide its behavior in the hope of achieving good
performance in the “average case” and converge to a good
solution in the expected runtime. Evolutionary algorithms
(EA), which are inspired by the mutation selection process
witnessed in nature, are common stochastic search methods
used to solve many combinatorial optimization problems.
These methods involve iteratively manipulating populations of
solutions, termed chromosomes, that encode candidate good
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solutions. The generational process is performed by applying
evolutionary operators like selection, crossover, and mutation.
Candidate solution selection is performed by evaluating the
fitness (commonly chosen as inversely proportional to the
cost) of each chromosome in the population. Historically, there
were three main types of EAs: genetic algorithms (GAs),
evolutionary strategies, and evolutionary programming, with
GA being the most popular one [10].

Much work in applying GAs to combinatorial optimization
problems is concerned with the encoding of the chromosomes
and the use of special crossover operators that preserve the
validity of the solution defined by the chromosome. The
encoding and definitions of the evolutionary operators are
problem specific. Recently, GAs have been proposed for solv-
ing UAV cooperative assignment problems [11], [12]. In Ref.
[11], a GA was proposed for a scenario where a homogeneous
set of multiple UAVs cooperate in performing multiple tasks
(such as classify, attack, and verify) on multiple stationary
ground targets. Solving such problems required assigning
different tasks to different vehicles and consequently assigning
each vehicle with a flyable path that it must follow. In Ref.
[12], a GA was used to solve a cooperative UAV assignment
problem where targets required simultaneous actions from
several UAVs. In both of these studies simulation results
showed the effectiveness of GAs in providing in real-time good
quality suboptimal feasible solutions. Evolutionary algorithms
have also been applied to related problems, such as the vehicle
routing problem [13], [14].

Our work in this paper is mostly related to our previous
work in Refs. [3], [6], [7], [8], [15], [11], [12], [16]. In Ref.
[6], [8], [15], formal languages such as Linear Temporal Logic
(LTL) and Metric Temporal Logic (MTL) were employed
to describe complex tasks and constraints in military UAV
operations. Although LTL and MTL are highly expressive
specification languages, the algorithms presented in Ref. [6],
[8] are limited to small problem sizes due to computational
intractability of checking whether a specification given in LTL
or MTL can be satisfied. To handle larger-scale problems more
effectively, in Ref. [7], computationally more tractable process
algebra specifications were incorporated into a tree search
based task assignment algorithm (see Ref. [3] for the details
of tree search). The computational efficiency of the algorithms
tailored to handle process algebra specifications made their
implementation on state-of-the-art UAV platforms possible.
The algorithm proposed in [7] was recently demonstrated on
a team of three UAVs in a joint U.S.A.-Australian military
exercise in Australia [17]. Process algebra type specifications,
if not as expressive as the temporal logics, were shown to
describe a broad class of complex mission specifications of
practical importance in Ref. [7]. Genetic algorithms, on the
other hand, were used in Refs. [11], [12] to improve the
computational effectiveness of the task assignment algorithms;
however, their integration with complex mission specifications
were never considered. This paper fills this gap by proposing
a computationally effective algorithm, which can yet handle a
broad class of complex tasks specified using process algebra.

The main contribution of this paper is a genetic algorithm
solution to an assignment problem with high-level specifica-

tions represented via process algebra terms, as well as the
PA based definition of the evolutionary operators of crossover
and mutation. The paper is organized as follows. Notation is
provided in the next section. In Section III the process algebra
specification framework is introduced. Section IV is devoted
to the specification of complex multiple UAV missions using
PA. Then, the GA-based task assignment algorithm that can
handle PA specifications is given in Section V, followed by the
results of a Monte-Carlo simulation study which is presented
in Section VI. The paper is concluded with remarks in Section
VII. Proofs of important results are given in the appendix.

II. NOTATION

The sets of natural numbers, positive natural numbers, real
numbers, and positive real numbers are denoted by N, N+, R,
and R+, respectively. A finite sequence (of distinct elements)
on a set S is an injective map σ from {1, 2, . . . ,K} to S
where K ∈ N+. A finite sequence will often be written as
σ = (σ(1), σ(2), . . . , σ(K) ). For the sake of brevity, a finite
sequence will be simply referred to as a sequence from this
point on. An empty sequence, a special structure used in the
paper, is represented by δ. An element s is said to be an
element of a sequence σ, denoted by s ∈ σ, with a slight
abuse of notation, if there exists k ∈ {1, 2, . . . ,K} such that
σ(k) = s. The notation |σ| is used to denote the number of
elements of a sequence σ, i.e., |σ| = K. Given two sequences
σ1 and σ2 both defined on the same set S, we will denote
their concatenation by σ1|σ2, which itself is also a sequence
defined on the set S with domain {1, 2, . . . , |σ1|+ |σ2|}. More
precisely, (σ1|σ2)(k) = σ1(k) for all k ∈ {1, 2, . . . , |σ1|} and
(σ1|σ2)(|σ1| + k) = σ2(k) for all k ∈ {1, 2, . . . , |σ2|}. The
concatenation of a sequence σ with the empty string δ is σ
itself. For any two elements s1, s2 ∈ S, the ordering relation
<σ defined on the elements of the sequence σ is formalized
as follows: s1 <σ s2 if there exists i, j ∈ {1, 2, . . . ,K} with
i < j such that σ(i) = s1 and σ(j) = s2. Given a sequence
σ defined on a set S, an order preserving projection of σ on
to a set S′ ⊂ S is defined as the sequence σ′, for which
the following hold: (i) for all s ∈ σ, we have that s ∈ S′

implies s ∈ σ′, and (ii) for any s1, s2 ∈ σ′, s1 <σ s2 implies
s1 <σ′ s2. Given a sequence σ defined on a set S, its order
preserving projection on to a set S′ ⊂ S will be denoted as
[σ]S′ . Given a set S, we denote the set of all sequences on set
S by ΣS .

III. PROCESS ALGEBRA

Most engineering systems have a set of actions that allows
them to communicate with the outer world or manipulate the
objects therein to accomplish a high-level task. Of course, in
this context, the definition of the high-level task, as well as the
actions, depend on the granularity of the abstraction; but we
will assume that these notions are such that the system under
consideration will be designed to handle only one high-level
task and the actions are atomic in the sense that they can not
be accomplished by executing a sequence of other actions.

Even though systems that do not terminate and operate in
a persistent manner exist and they are interesting in their own
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right, most of the real-world systems execute a sequence of
actions, which eventually lead to accomplishment of the high-
level task and termination of the system. In the rest of the
paper, we will assume that each high-level task, if it can be
accomplished at all, can be accomplished by a terminating
execution of the system, i.e., a finite sequence of actions.
Such an execution is called a “behavior” of the system. It
is important to note at this point that, most of the time,
such a behavior that leads to successful fulfillment of the
requirements is not unique, and it is crucial and challenging
to naturally and formally “specify” the set of desired behavior
of a system. Moreover, given the specification, designing
algorithms that automatically enable the system to fulfill the
specification is important and challenging in its own right.

Along with many other formalizations such as temporal
logics [18], µ−calculus [19], or Petri nets [20], process
algebra [21], [22], [23] is a methodology that can be used
to specify the desired behavior of a system. Initiated and
used in Computer Science to reason about computer software,
process algebras found many applications in several diverse
fields from web applications to hybrid systems [24]. Using
process algebra for specification of UAV missions was first
considered in Ref. [7]. This section presents an introduction to
the process algebra based specification framework of Ref. [7].

An important notion in process algebra is the definition of
the set of terms, which is formally given as follows:

Definition III.1 (Terms of Process Algebra) Given a finite
set A of actions, the set T of PA terms (defined on A) is
defined inductively as follows:
• each action a ∈ A is in T;
• if p, p′ ∈ T holds, then p + p′ ∈ T, p · p′ ∈ T, and
p ‖ p′ ∈ T also hold.

Each element of T is called a PA term, or a term for short.

Terms are related to each other as they can evolve from
one to another.1 This evolution is made through a transition,
denoted as p a−→ p′, where p, p′ ∈ T, and a ∈ A. This transition
is read as “Process p can evolve into process p′ by executing
the action a”. There is also a special process, denoted as

√
,

which corresponds to the terminated process. By definition,
the process

√
has no actions to execute and can not evolve

into any other process.
Following the definition of the set of terms, each action can

be a term such as p = a, where a ∈ A. Informally speaking,
the system specified as a has only one behavior: it can execute
a and then terminate, which is denoted as a a−→

√
. To specify

more complex systems, the PA specification framework offers
the operators (+), (·), and (‖), which are called the alternative,
sequential, and parallel composition operators, respectively.
Intuitively, a process that is specified with the term p + p′

behaves either like p or p′, i.e., either executes a behavior of
p or executes one of p′ (but not both). The term p · p′, on the
other hand, first executes a behavior of the process p, and right
after p terminates, it executes a behavior of p′. The process

1The words “evolve” and “evolution” are used here in the context of process
algebra, and they should not be confused with the same terms commonly used
in describing evolutionary algorithms.

p · p′ is said to terminate when p′ terminates. The process
p ‖ p′ executes a behavior of each of p and p′ concurrently.
The process p ‖ p′ is said to have terminated, when both p and
p′ terminate.

This informal presentation of the behavior of processes can
be formalized by the operational semantics, which is defined
as a set of transition system specifications (TSSs). A TSS is
composed of a set H of premises and a conclusion π, denoted
as H

π , where π is a transition and H is a set of transitions.
A TSS states that if the premisses H are possible transitions,
then so is the transition π. The semantics (meaning) of each
PA term is defined using the operational semantics of process
algebra given as follows:

Definition III.2 (Operational Semantics of PA) The opera-
tional semantics of the process algebra is given by the follow-
ing set of transition system specifications:

a
a−→
√

p1
a−→
√

p1 + p2
a−→
√

p1
a−→ p′1

p1 + p2
a−→ p′1

p2
a−→
√

p1 + p2
a−→
√

p2
a−→ p′2

p1 + p2
a−→ p′2

p1
a−→
√

p1 · p2
a−→ p2

p1
a−→ p′1

p1 · p2
a−→ p′1 · p2

p1
a−→
√

p1‖p2
a−→ p2

p1
a−→ p′1

p1‖p2
a−→ p′1‖p2

p2
a−→
√

p1‖p2
a−→ p1

p2
a−→ p′2

p1‖p2
a−→ p1‖p′2

where a ∈ A and p1, p
′
1, p2, p

′
2 ∈ T

Notice that the first TSS formally states that any action a ∈ A
can execute a and then evolve to the terminated process,
without requiring any other premisses to hold. The next four
TSSs provide the semantics of the alternative composition
operator. Essentially, the second TSS states that if a process p1

can execute an action a and evolve to the terminated process,
then so does the process p1 + p2 for any PA term p2. The
next three TSSs complement the semantics with other cases.
The other TSSs in Definition III.2 provide the semantics of
the sequential and parallel composition operators similarly.

With its recursive definition, the operational semantics as-
sociates each process with a set of traces that the process
can execute. This set is merely the set of all behaviors of the
system. More formally, any sequence σ = (a1, a2, . . . , ak)
of actions is called a trace of a term p0 if and only if there
exists a set of processes p1, p2, . . . , pk such that pi−1

ai−→ pi
for all i ∈ {1, 2, . . . , k} and pk =

√
. In other words, a trace

of a process is a behavior of the process as it is a sequence
of its available actions which lead to successful termination.
Moreover, the set of all such traces of a process p0, which
will be denoted by Γp0 , formally defines the behavior of the
process p0.

Example Let A = {a1, a2, a3, a4, a5} be a set of actions.
Consider the process p1 := a1 which can execute the action
a1 and terminate. Thus, a1

a1−→
√

is a legitimate transition,
which yields the trace (a1). Notice that this is the only trace of
p1; hence, the behavior of a1 is the set {(a1)}, which includes
its only trace.
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Let us consider p2 := a1 +a2. Notice that, for this process,
a1 +a2

a1−→
√

is a legitimate transition, since a1
a1−→
√

is also
a legitimate transition (recall the second TSS in the operational
semantics). Hence, (a1) is a trace of p2. Furthermore, notice
that (a2) is another trace. Thus, the behavior of p2 is the set
{(a1), (a2)} of its traces.

Finally consider a larger example: p3 :=
(a1 + a2) · (a3 ‖ (a4 · a5)). Proceeding as
above, the behavior of p3 can be determined as
{(a1, a3, a4, a5), (a1, a4, a3, a5), (a1, a4, a5, a3), (a2, a3, a4,
a5), (a2, a4, a3, a5), (a2, a4, a5, a3)}.

Each process algebra term can be represented by a special
data structure called a parse tree. The parse tree of a process
algebra term is a binary tree composed of nodes, each of which
encode either an operator or an action from a set A of actions.
More precisely, each leaf node in the tree encodes an action
and every other node (this includes the root if the parse tree
is not a single node) encodes an operator.

Given a term p ∈ T its parse tree is recursively defined as
follows:
• If p ∈ A, i.e., p is an action itself, then the parse tree of
p is a single node which is labeled with p.

• If p = p1 ./ p2, where ./∈ {·,+, ‖}, then the parse tree
of p is a binary tree which is rooted at a node labeled
with ./ and has the parse tree of p1 and p2 as its left and
right children, respectively.

Example Consider the process (a1 +a2) · (a3 ‖ (a4 ·a5)). The
parse tree of this process is presented in Figure 1. Notice that
this parse tree is indeed a combination of the parse tree of
the two processes a1 + a2 and a3 ‖ (a4 + a5), bound with the
sequential composition operator. Notice also that the former
process has a parse tree formed by binding the parse trees of
a1 and a2 with an alternative composition operator. The parse
tree of a3 ‖ (a4+a5) can also be investigated with its subtrees,
similarly.

Fig. 1. Parse tree of the process (a1 + a2) · (a3 ‖ (a4 · a5)).

Some of the algorithms that will be introduced in the next
sections heavily employ the parse tree of the given specifica-
tion. To render these algorithms more readable, let us present
some notation, which will be used throughout the paper. Let
Np denote the set of nodes in the parse tree of a process
p, and let n be a node from the set Np. Then, the function
Parentp(n) : Np → Np ∪ {δ} returns the parent node of a
given node. If n has no parent, then we have Parentp(n) = δ.
The function Leafp(n) : Np → {false, true} returns True if
node n is a leaf, i.e., it has no children, and False otherwise.

As mentioned before, each node in the tree encodes either an
operator or an action. The functions Operatorp(n) : Np →
{+, ·, ‖} and Actionp(n) : Np → A return the encoded oper-
ator and the action, respectively. While the function Action

is defined only for the leaf nodes, Operator is defined for
all the other nodes in Np. Finally, the function Childrenp(n)
maps each node to an ordered sequence of its children such
that the left child is the first element of the sequence, whereas
the right child is the last one.

IV. HIGH-LEVEL SPECIFICATION OF GENERIC OBJECTIVES

In this section, the process algebra framework is used to
specify a class of vehicle routing problems. Although process
algebra is not as expressive as other formalisms to express tem-
poral logic constraints (e.g., Linear Temporal Logic), in this
paper we choose process algebra for two reasons. First, process
algebra offers computationally efficient algorithms, e.g., for
checking whether a given string satisfies a given specification.
This property allows us to design computationally efficient
valid GA operators. Second, the hierarchical specification
methodology of the process algebra allows building more
complex specifications from simpler ones, which is illustrated
with examples throughout this section.

Most of the material in this section is derived from that
in [7], where the reader is referred to for a more thorough
discussion in the context of UAV mission planning.

We consider a vehicle routing problem, in which a set
O of atomic objectives are assigned to a set V of vehicles,
so as to optimize a given cost function, while satisfying
a specification given in the PA language. First, we define
atomic objectives and employ process algebra to represent
more generic objectives in terms of atomic ones. Then, we
proceed with some preliminary definitions, followed by a
formalization of the problem definition.

A. Objectives

Intuitively speaking, an atomic objective is a task that can
not be represented by a combination of any others. In essence,
atomic objectives are abstractions of individual tasks in a
vehicle routing problem. In the context of, for instance, UAV
mission planning, the first such abstractions were presented
recently in Ref. [25] and further developed and employed in
Ref. [7].

Definition IV.1 An atomic objective o is a tuple
(xio, x

f
o , T

e
o , vo) where

• xio ∈ R2 is the entry point
• xfo ∈ R2 is the exit point
• T e0 ∈ R+ is the execution time
• v0 ∈ V is a capable vehicle

Intuitively, only vo can execute the atomic objective o in ex-
actly T eo amount of time; moreover, vo moves to the coordinate
xio to start executing o and ends up at coordinate xfo after the
execution.

We will assume, without any loss of generality, that o can
not be executed by any vehicle other than v0. Later in the
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paper, we will show that the tasks that can be executed by
one of several vehicles can be represented as a combination
of different atomic objectives.

The definition of atomic objectives is quite general and can
capture many different types of individual tasks for vehicle
routing problems. In [25], Rasmussen and Kingston show that
a similar abstraction can model, e.g., sector or area search,
classification, attack, rescue, target tracking, reconnaissance,
et cetera, in the UAV mission planning context.

Using the process algebra specification framework, more
generic objectives, which impose temporal and logical con-
straints, can be composed from simpler ones. Given a set O
of atomic objectives, a (generic) objective is represented by a
process algebra term p defined on O as the set of actions.

Example Let us present examples of atomic and generic
objectives in the context of vehicle routing. Let us consider a
scenario, in which a heterogenous set {v1, v2, v3, v4} of four
vehicles are bound to visit four cities, named A, B, C, and D,
respecting the following constraints. The first and the second
vehicles can only visit A, the third vehicle can visit only B,
and the fourth vehicle can visit the remaining two cities, C,
and D. The mission is to first visit A by either v1 or v2, then
obtaining a certain intelligence, e.g., surveillance data, from
A, visit B, C, and D, in any order such that C is visited
before D as some cargo has to be moved from C to D by the
fourth vehicle.

This high-level specification of the vehicle-routing problem
at hand can be described within the process algebra framework
as follows. Let O = {o1, o2, o3, o4, o5} denote the set of
atomic objectives. The atomic objectives o1 and o2 visit the
city A, whereas the atomic objectives o3, o4, and o5 visit the
cities B, C, and D, respectively; the atomic objective o1 can
be executed by v1, o2 by v2, o3 by v3, and o4 and o5 by v4.

Notice that the constraint that the city A must be visited
either by v1 or by v2 can be represented by the process o1+o2.
Similarly, the whole mission can be specified by the process
algebra string (o1 + o2) · (o3 ‖ (o4 · o5)).

For more examples of specifications of vehicle routing
problems using the process algebra framework, we refer the
reader to [7].

B. Schedules, Observations, and Specifications

A single vehicle schedule is a sequence of distinct pairs
of atomic objectives and time instants. Intuitively speaking,
a single vehicle schedule σv for vehicle v is a list of atomic
objectives and their execution times to be executed by v. More
precisely, if (o, t) ∈ σv for some o ∈ O and t ∈ R+, then the
atomic objective o is said to be scheduled to be executed at
time t by vehicle v. Note that the atomic objective and time
pairs in a single vehicle schedule σv are ordered according to
their time component, i.e,, (oi, ti) <σv

(oj , tj) only if ti ≤ tj
for all (oi, ti), (oj , tj) ∈ σv . A complete schedule, or schedule
for short, is a set S of single vehicle schedules that contains
exactly one single vehicle schedule for each vehicle in V .

Given two atomic objectives oi and oj , let us denote the
time it takes for vehicle v to travel from the exit point of
oi to the entry point of oj as T tv,oi,oj . Then, a complete

schedule P is said to be valid if for each vehicle v ∈ V
and for all pairs (oi, ti) ∈ σv the atomic objective oi can
indeed be executed at time ti by vehicle v. More precisely, for
any σv = {(o1, t1), (o2, t2), . . . , (ok, tk)} in P , the following
holds: ti−1 + T eoi−1

+ T tv,oi−1,oi ≤ ti for all i ∈ {2, . . . , k}.
A sequence π = (o1, o2, . . . , ok) of atomic objectives is an

observation of the schedule S if the following holds: (i) any
atomic objective o that is scheduled in S is an element of π,
and (ii) for each atomic objective o ∈ π there exists a time
instance t̄ such that t ≤ t̄ ≤ t + T eo , where t is such that
(o, t) ∈ σv for some v ∈ V , T eo is the execution time of o,
and (iii) for all we have oi, oj ∈ π, oi <π oj if and only if
t̄i ≤ t̄j , where t̄i and t̄j are the time instances corresponding
to oi and oj , respectively. Intuitively, an observation is a
sequence π of atomic objectives such that corresponding to
each oi that appear in π one can find a time instance t̄i within
the execution interval of the atomic objective oi so that the
ordering of these time instances is the same as the ordering
of their corresponding atomic objectives in π. From here on,
we will denote the set of all observations of a valid complete
schedule S by ΠS .

Following the definition of observations, a specification and
its satisfaction is formalized as follows.

Definition IV.2 (Specification) A specification is a process
algebra term defined on the set O of atomic objectives. A
valid schedule S is said to satisfy a specification p if and only
if any observation of S is a trace of p, i.e., ΠS ⊆ Γp holds.

Example Consider the scenario in the previous example. Re-
call that the specification was pspec = (o1+o2)·(o3 ‖ (o4 ·o5)).
Consider the schedule that assigns S = {σv1 , σv2 , σv3 , σv4},
where σv1 = ((o1, t1)), σv2 = δ, σv3 = ((o3, t3)), and
σv4 = ((o4, t4), (o5, t5)). The time instances ti are depicted
in Figure 2. Notice that this schedule has exactly three
observations: π1 = (o1, o3, o4, o5), π2 = (o1, o4, o3, o5), and
π3 = (o1, o4, o5, o3) (see Figure 3 for depictions of the time
instances t̄i that lead to these observations). Notice that all
these observations are indeed traces of pspec. Hence, S satisfies
pspec.

Fig. 2. A timeline of the example schedule.

C. Problem Definition

Given a schedule S = {σv | v ∈ V}, each single vehicle
schedule σv in S can be naturally associated with a real
number τv , which represents the time that vehicle v is finished
with the execution of its last atomic objective. More formally,
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(a) (b) (c)

Fig. 3. The time instances t̄i that lead to the three observations of the example schedule are shown in (a), (b), and (c) as dots.

τv = t′ + T eo′ , where (o′, t′) = σv(|σv|). The real number τv
will be referred to as the completion time of σv . Using the
completion times {τv}v∈V , it is possible to define the cost
of the schedule S in many ways. Two of the common cost
functions include the total completion time J1 and maximum
completion time J2, which are defined, respectively, as

J1(S) =
∑
v∈V

τv, J2(S) = max
v∈V

τv. (1)

The problem definition is given as follows.

Problem IV.3 Given a set V of vehicles, a set O of atomic
objectives, traveling times T tv,oi,oj for all v ∈ V and all
oi, oj ∈ O, and a process algebra specification pspec defined
on O, the optimal planning problem with PA specifications
is to find a valid schedule S such that (i) S satisfies the
specification pspec, and (ii) the cost function J1(S) (or J2(S))
is minimized.

Recently, a tree search based solution to a similar problem
was given in [7], which extends the algorithm in [3] to handle
process algebra specifications. The tree search algorithm pre-
sented in these references effectively searches the state space
of all solutions and returns a feasible solution to the problem
in time polynomial with respect to the size of the specification
pspec as well as the number of vehicles. Moreover, given extra
time, the algorithm improves the existing solution with the
guarantee of termination with an optimum solution in finite
time. In the next section, we provide a genetic algorithm
heuristic solution to Problem IV.3.

V. GENETIC ALGORITHM

Given a specification pspec, any trace of pspec is a chromo-
some, usually denoted by X,X1, X2 et cetera. The genetic
algorithm (GA) maintains a set X of chromosomes called
the generation. The GA is initialized with a randomly created
generation of chromosomes. At each iteration, (i) parent chro-
mosomes are selected stochastically from X according to their
fitness, (ii) new chromosomes are generated from their parents
using the crossover operation, (iii) some of the chromosomes
are generated by mutating the existing ones randomly, and
(iv) the chromosomes that are more fit than others are carried
to the next generation. In this section, we first present the
details of these four evolutionary operators, after discussing
the relationship between the schedules and the chromosomes.
We also present the genetic algorithm solution as a whole and
discuss its correctness.

A. The Relationship Between Chromosomes and Schedules

Each chromosome Xi corresponds naturally to a valid
complete schedule denoted as S(Xi). Before formalizing
the construction of S(Xi), let us introduce the following
definition. An atomic objective ō is said to be a predecessor of
another atomic objective o in a specification p if the following
two conditions hold: (i) there exists a trace γ of p, in which
ō appears before o in γ, i.e., ō <γ o, (ii) there is no trace
of p, in which o appears before ō. Equivalently, it can be
shown that ō is a predecessor of o in p if and only if the
parse tree of p includes a node that binds two terms p1 and
p2 with a sequential composition operator as in p1 · p2, where
p1 includes ō and p2 includes o as an atomic objective (see
Ref. [7]). We will denote the set of all predecessors of a
given atomic objective o in a specification p by Predp(o).
Notice that the sets Predp(o) for all o ∈ O can be formed
efficiently by observing the parse tree of p. This process can
be executed (only once before starting the algorithm) in time
that is bounded by a polynomial in the size of p.

Given a chromosome X , the complete schedule S(X) is
generated recursively as follows:
• For a chromosome of the form X = (o), where o =

(xio, x
f
o , To, vo), we define S(X) to be a schedule that

assigns the atomic objective o to vehicle vo to be executed
at time t, where t is the time required for vo to travel from
its initial position to the entry point xio of the atomic ob-
jective oi. More precisely, S(X) := {σv1 , σv2 , . . . , σvN },
where σvo = ( (o, t) ), with t being the time it takes vi to
travel from its initial position to xio, and for all vj 6= vo
and vj ∈ V , σvj is an empty sequence. Note that N
represents the number of vehicles, i.e. N = |V|.

• Given a chromosome X with |X| = K > 1, let o =
(xio, x

j
o, To, vo) be the last atomic objective that appears

in X , i.e., o = X(|X|), and X ′ be the sequence that is
the same as X , except that it does not contain o; more
formally, X ′ is such that X = X ′|(o) holds. Let us denote
S(X ′) as {σ′v1 , σ

′
v2 , . . . , σ

′
vN }. Then, the schedule S(X)

is defined as {σv1 , σv2 , . . . , σvN }, where σvi = σ′vi for
all vi 6= vo and σvo is such that σvo(k) = σ′vo(k) for all
k ∈ {1, 2, . . . , |σ′vo |} and σvo(|σ′vo |+1) = (o, t̄). That is,
S(X) is the same as S(X ′) except that, in addition, in
S(X) atomic objective o is assigned to vehicle vo to be
executed at time t̄. The execution time t̄ is computed as
follows. Recall that τσ′vo denotes the completion time of
the schedule σ′vo . The execution time, t̄i, is the smallest
time that is greater than both τσ′vo and the maximum
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execution time of any predecessor of o that is scheduled
in S(X ′), i.e.,

t̄i = max
{
τσ′ui

,

max{tõ | (õ, tõ) ∈ σ′uj
, σ′uj

∈ S(X ′), õ ∈ Predp(o)}
}

Given a chromosome X with |X| = K, let
X1, X2, . . . , XK−1 be the sequences defined as follows:
for all k ∈ {1, 2, . . . ,K − 1}, we have |Xk| = k and
Xk(i) = X(i) for all i ∈ {1, 2, . . . , k}. Notice that,
algorithmically, S(X1) can be computed easily, and S(Xk)
can be computed using S(Xk−1). Hence, S(X) can be
constructed recursively starting from S(X1).

Example Consider the scenario in the previous example.
Recall that the specification was (o1 + o2) · (o3 ‖ (o4 · o5)). It
can be shown that o1 and o2 have no predecessors. However,
o3 and o4 both have o1 and o2 as their predecessors. The
atomic objective o5, on the other hand, has o1, o2, and o4 as
its predecessor.

Traces of this process algebra term were presented in an
earlier example. One of these traces was (o1, o4, o3, o5). Al-
gorithmically, the schedule corresponding to this chromosome
is formed as follows. First, the atomic objective o1 is handled:
it is assigned to v1, since v1 is the capable vehicle for o1; the
time of execution t1 is selected such that t1 is the least time
that, starting from its initial position, v1 gets to A. Next, o4 is
scheduled to be executed by its capable vehicle, v4, at time t4.
Recall that o1 is a predecessor of o4. Hence, t4 set after both
the arrival time of v4 to the city C as well as the completion
time of o1. Continuing this procedure similarly, o3 is scheduled
next to be executed by v3 at time t3, where t3 is after both
the arrival of v3 to the city B and the completion time of o1.
Finally, o5 is assigned to be executed at time t5 such that t5
is after the arrival of v4 to D coming from C and after the
end execution of all its predecessor atomic objectives, o1, o3,
and o4.

Hence, we have generated the complete schedule S =
{σv1 , σv2 , σv3 , σv4}, where σv1 = ((o1, t1)), σv2 = δ, σv3 =
((o3, t3)), and σv4 = (o4, t4), (o5, t5) (Recall Figure 2 for its
representation).

B. Evolutionary Operators

In this section detailed discussions of random chromosome
generation as well as the other four phases of the GA are
provided.

1) Random Chromosome Generation: Notice that generat-
ing chromosomes at random can not be accomplished by solely
picking a random sequence of atomic objectives, since each
chromosome must be a trace of the given specification. In this
section, we provide an algorithm, which randomly generates a
chromosome, i.e., a trace of the specification, such that there
is a nonzero probability for any trace of the specification to be
chosen. The algorithm heavily employs a procedure denoted
as Next, which maps a given term p to the set of all pairs
(p′, o′) of terms and atomic objectives such that for any (p′, o′)
in Next(p) we have that p can evolve into p′ by executing o′,
i.e., the transition p o′−→ p′ holds. An algorithmic procedure to

compute Next(p) is provided in Algorithm 1, the correctness
of which follows easily from the operational semantics of
process algebra.

The Next algorithm runs recursively. Its execution is best
visualized with the parse tree of the process algebra term,
p, that it takes as a parameter. By the semantics of alter-
native composition operator, the atomic objectives that can
be executed next by p = p1 + p2 is exactly those that can
be executed either by p1 or p2. Hence, if the root node of
the parse tree of p is a + operator, i.e., p is of the form
p = p1 + p2, then the algorithm calls itself recursively
with parameters p1 and p2, and returns the union of that
returned after these two calls (Lines 2-3). The semantics of
the sequential composition operator is such that the atomic
objectives that can be executed next by p = p1 · p2 is exactly
those that can be executed by p1; However, if p1 evolves to
p′1 after executing an atomic objective, p evolves to p′1 · p2

after executing the same atomic objective. Hence, if p is of
the form p = p1 ·p2, then the algorithm calls itself recursively
with parameter p1, concatenates p2 to the end of p′1 in all
pairs (p′1, t

′) returned by this recursive call, and returns all
the resulting pairs (Lines 4-5). The semantics of the parallel
composition operator is such that p = p1 ‖ p2 can execute the
atomic objectives that either p1 or p2 can execute. If, p is of the
form p1 ‖ p2, then the algorithm recursively calls itself twice
with parameters p1 and p2. The pairs returned after these calls
are appropriately concatenated by p1 and p2, and all resulting
pairs are returned (Lines 6-7). Finally, if the p = o, where
o is an atomic objective, then the algorithm returns (

√
, o)

(Lines 8-9), since p can only execute the atomic objective o
and evolve to the terminated process,

√
.

Algorithm 1: Next(p) Procedure

1 switch p do
2 case p = p1 + p2

3 return Next(p1) ∪ Next(p2)
4 case p = p1 · p2

5 return {(p′1 · p2, t
′) | (p′1, t′) = Next(p2)}

6 case p = p1 ‖ p2

7 return {(p′1 ‖ p2, t
′) | (p′1, t′) = Next(p1)} ∪

{(p1 ‖ p′2, t′) | (p′2, t′) = Next(p2)}
8 case p = o ∈ O
9 return {(

√
, o)}

10 endsw
11 endsw

Algorithm 1 recursively explores the parse tree of p in this
manner, and extracts all the atomic objectives that can be
executed next. Note that each node in the parse tree is explored
at most once in the algorithm, which implies that the running
time of the algorithm is linear with respect to the size of the
specification even in the worst case.

Given a finite set S of elements, let Rand(S) be a pro-
cedure that returns an element of S uniformly at random.
The algorithm that generates a random chromosome, de-
noted as RandomGenerate, is given in Algorithm 2. The
RandomGenerate(p) procedure runs the Next(p) procedure
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(Line 4), randomly picks one of the atomic objectives returned
by Next, say o′ (Line 5), and runs itself recursively with the
process p′ that p evolves to after executing o′ (Line 6). The
recursion ends when the algorithm is run with the terminated
process (Line 2). The chromosome that is returned is essen-
tially a concatenation of the atomic objectives that were picked
randomly along the way during the recursion.

Algorithm 2: RandomGenerate(p) Procedure

1 if p =
√

then
2 return δ
3 else
4 S ← Next(p)
5 (p′, o′)← Rand(S)
6 γ′ ← Randomgenerate(p′)
7 return o′|γ′
8 end

Note that Algorithm 2 returns exactly one random trace
of p. Using Algorithm 2 repeatedly, however, a set X of
chromosomes can be generated to initialize the GA. After
this initialization, each iteration of the GA proceeds with
the aforementioned five phases, detailed after the next short
example.

Example To illustrate the random chromosome generation,
consider the running example specification pspec = (o1 +o2) ·
(o3 ‖ (o4 · o5)).

The algorithm RandomGenerate(pspec) first calls the Next

procedure with pspec, which returns S = {(p1, o1), (p2, o2)},
where p1 = p2 = o3 ‖ (o4 · o5). Say the Rand(S) procedure
returns the pair (p2, o2) among the two elements of S. Then,
the RandomGenerate algorithm calls itself with p2, which
generates a second call to Next procedure, this time with
p2, which returns {(p3, o3), (p4, o4)}, where p3 = o4 · o5

and p4 = o3 ‖ o5. Assume that, in this iteration, the Rand(S)
procedure returns (p4, o4). The RandomGenerate algorithm,
this time, runs itself with p4. The Next(p4) call returns
S = {(p5, o3), (p6, o5)}, where p5 = o5 and p6 = o3. Assume
that Rand(S) returns (p5, o3). Finally, the RandomGenerate

procedure calls itself with p5, which results in Next(p5)
returning S = (

√
, o5) and Rand(S) returning o5. The final

call of RandonGenerate with
√

, then, returns δ, and the pro-
cedure terminates. After termination the random chromosome
obtained is X = (o2, o4, o3, o5).

2) Selection: In the selection phase, pairs of chromosomes
are selected randomly from the set X of all chromosomes
to be the parents of the next generation. The randomization
is biased, however, so that those chromosomes that are more
“fit” than others are selected to be parents with higher prob-
ability. Throughout this paper, the fitness of a chromosome
is evaluated using the cost of its corresponding schedule as
follows:

fXi =
1

Ji (S(Xi))
,

where i = 1, 2 (see Equation (1)). That is, the chromosomes
with lower-cost corresponding schedules are rated as more fit

ones.
After the selection phase, a child chromosome is produced

from these two parent chromosomes via the crossover opera-
tion.

3) Crossover: The crossover operation generates a child
chromosome X ′ from a given pair X1 and X2 of parent
chromosomes. Note that merely picking a cutting point and
joining parts of two valid chromosomes does not necessarily
produce a valid chromosome in this case. In this section, a
cut and splice crossover operator that always produces a valid
chromosome is provided.

Informally speaking, the crossover operation first partitions
the set O of atomic objectives into two sets of atomic objec-
tives denoted as S1 and S2. Then, two different sequences,
σ1 and σ2, are formed such that σi is the order preserving
projection of Xi onto the set Si for i = 1, 2. In the end, the
child chromosome is the concatenation of σ1 and σ2.

Let us first identify four primitive procedures, which help
clarify the presentation of the crossover algorithm. Let p be a
process algebra term. The procedure ChildrenAOp(n) takes
a node n of the parse tree of p and returns the set of all
actions (equivalently, atomic objectives) that are labels of the
leaf nodes of the tree rooted at n. An algorithmic procedure
for computing ChidlrenAOp(n) is given in a recursive form
in Algorithm 3. The procedure RightMostChildp(n) returns
the rightmost leaf of the tree rooted by node n. This function
is presented in an algorithmic form in Algorithm 4. Given
an atomic objective o ∈ O, let the functions Leftp(o)
and Rightp(o) return the set of atomic objectives that are,
intuitively speaking, to the left of n and right of n, respectively.
More precisely, we have õ ∈ Leftp(o) if and only if there
exists n,mleft,mright ∈ Np such that
• (mleft,mright) = Childrenp(n),
• õ ∈ ChildrenAOp(mleft) but õ /∈ ChildrenAOp(mright),
• o ∈ ChildrenAOp(mright) but o /∈ ChildrenAOp(mleft).

The procedure Rightp(o) is defined symmetrically.
As mentioned earlier, the crossover algorithm first creates

two disjoint sets S1 and S2 of atomic objectives, such that
S1 ∪S2 = O. The sets S1 and S2 are, indeed, formed using a
natural ordering of the atomic objectives, which comes from
the parse tree itself. Intuitively speaking, the atomic objectives
in a parse tree can be ordered such that o1 ≺p o2 if and only
if o1 is to the left of o2 in the tree.

More precisely, first a “cutting point” atomic objective,
say o, is chosen according to some procedure to be outlined
shortly, and S1 and S2 are defined as S1 := Leftp(o) ∪ {o}
and S2 := Rightp(o). It can be shown rather easily that this
selection of S1 and S2 satisfies S1∩S2 = ∅ and S1∪S2 = O.
Then, the child chromosome can be generated using S1 and
S2 as outlined above. Note, however, that not all choices
of o would yield a valid chromosome, i.e., a trace of the
specification. Yet, it is possible to select the cutting point
atomic objective so that the resulting chromosome will be
valid. Such a procedure runs as follows. Informally speaking,
first, the parse tree of the specification is randomly rearranged,
while preserving the behavior (set of traces that can be
generated) of the specification. The rearrangement is done by
randomly choosing to either switch the left and right children
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of each alternative and parallel composition operator in the
parse tree or keep them as is. This procedure is denoted
as RandomRearrange, which takes a process p and returns
the rearranged one. RandomRearrange allows a variety of
different schemes for cutting the parent chromosomes, as will
be clear later. Then, an atomic objective orand is selected
at random among O, and used as a cutting point if the
resulting child chromosome yields a feasible assignment. If
not, the “nearest” atomic proposition, to the right of orand, that
would yield a feasible assignment. This procedure is given in
Algorithm 5.

Algorithm 3: ChildrenAOp(n) Procedure

1 if Leafp(n) = True then
2 S ← {n}
3 else
4 σ ← Childrenp(n)
5 S ← ∅
6 for i← 1 to |σ| do
7 S ← S ∪ ChildrenAOp(σ(i))
8 end
9 end

10 return S

Algorithm 4: RightMostChildp(n) Procedure

1 while Leafp(n) = False do
2 σ ← Childrenp(n)
3 n← σ(|σ|)
4 end
5 return n

Algorithm 5: CutAtomicObjectivep(X1, X2) Pro-
cedure

1 orand ← Rand(O)
2 S ← {orand}
3 while (o /∈ X1 for ∀o ∈ S) or (o /∈ X2 for ∀o ∈ S)

do
4 while Operatorp(n) = + do
5 n← Parentp(n)
6 end
7 S ← ChildrenAOp(n)
8 end
9 if Leafp(n) = False then

10 n← RightMostChildp(n)
11 end
12 ocut ← Actionp(n)
13 return ocut

The crossover operation is summarized in Algorithm 6.
Given two chromosomes X1 and X2, the crossover algo-
rithm first generates a cut point atomic objective ocut via
Algorithm 5. In the second step, it generates the two sets

S1 := Left(ocut) ∪ {ocut} and S2 := Right(ocut), which
represent the set of atomic objectives to the left of ocut and
the ones to the right of ocut, respectively. Using these two sets,
two sequences, σ1 and σ2, are generated from chromosomes
X1 and X2. Finally, the resulting child chromosome X ′ is the
concatenation of the two sequences σ1 and σ2.

Algorithm 6: Crossoverp(X1, X2) Procedure

1 p′ ← RandomRearrange(p)
2 ocut := CutAtomicObjectivep′(X1, X2)
3 S1 := Leftp′(ocut) ∪ {ocut}
4 S2 := Rightp′(ocut)
5 σ1 := [X1]S1

6 σ2 := [X2]S2

7 return σ1|σ2

Example Consider the running example with the specification
pspec = (o1 + o2) · (o3 ‖ (o4 + o5)). Consider the two chromo-
somes X1 = (o1, o3, o4, o5) and X2 = (o2, o4, o3, o5). First,
the crossover operation calls the random rearrange procedure,
which switches the left and right children of alternative and
parallel composition operators or keeps them as is with equal
probability. The parse tree of pspec was given in Figure 1.
Notice that there is exactly one alternative and one parallel
operator, each of which can have their children switched with
probability 1/2. Let us assume that the RandomRearrange

procedure switches the children of the parallel composition op-
erator, while keeping unchanged that of the alternative compo-
sition operator. The new parse tree is shown in Figure 4. Next,
the CutAtomicObjectivep′ procedure is run with X1 and
X2. Assume that the orand turns out to be o4, which is included
in both of the chromosomes. Hence, CutAtomicObjective
procedure returns ocut = o4. From the parse tree presented in
Figure 4, notice that we have S1 = Leftp′(ocut) ∪ {ocut} =
{o1, o2, o4} and S2 = Rightp′(ocut) = {o3, o5}. Hence, we
get σ1 = [X1]S1

= (o1, o4) and σ2 = [X2]S2
= (o3, o5).

Thus, we find that X = (o1, o4, o3, o5), which is also a trace
of pspec, thus a valid chromosome.

Notice that this crossover procedure combined the charac-
teristics of the parent chromosomes, X1 and X2, in the child
chromosome X . The choice of executing o1 rather than o2 is
inherited from X1, whereas the choice of executing o3 after
o4 is inherited from X2.

Fig. 4. Parse tree of the process (a1 + a2) · (a3 ‖ (a4 · a5)).

It is worthwhile to mention the role of the
RandomRearrange procedure at this point. Clearly, a
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parse tree rooted with an alternative or a parallel composition
operator can be represented in two different ways. Consider,
for instance, the process p1 +p2, which has the same behavior
exhibited by p2 + p1. Independent of which representation
of the (same) specification the algorithm is started with, the
RandomRearrange procedure removes the biased cutting
point decisions that may come out of the crossover procedure
by randomly picking one of the two representations.

Finally, let us note that it is not clear at this stage whether
Crossoverp(X1, X2) always returns a child chromosome that
is indeed a trace of p. We postpone this discussion until
Section V-C.

4) Mutation: The mutation operation is used for making
random changes in some small portion of the generation so
as to avoid local minima during optimization. In the mutation
phase of the algorithm, a set of chromosomes are selected from
the current generation; each selected chromosome is modified
randomly to another chromosome and carried over to the next
generation. However, this operation, again, is not trivial, since
the modified chromosome must also be a valid chromosome,
i.e., a trace of the specification pspec.

The mutation phase, given in Algorithm 7, proceeds as fol-
lows. Firstly, a number of chromosomes are picked at random
from the set X of chromosomes. Secondly, for each such chro-
mosome X , an atomic objective omid ∈ X is picked uniformly
at random. Then, X is partitioned into two sequences, σ1

and σ2, such that σ′|σ′′ = X and σ′′(1) = omid. Finally,
the mutated chromosome X ′ is computed by employing the
RandomGenerate procedure (Algorithm 2): X ′ = σ′|σrand,
where σrand = RandomGenerate(p′) and p′ ∈ T is such that
p
σ′−→ p′.

Algorithm 7: Mutatep(X) Procedure

1 omid ← Rand({o ∈ O | o ∈ X})
2 σ′, σ′′ ∈ ΣO are such that p = σ′|σ′′ and
σ′′(1) = omid

3 p′ is such that p σ′−→ p′

4 σrand ← RandomGenerate(p′)
5 return σ′|σrand

In essence, after the chromosome is partitioned into two,
the first part of the chromosome is kept whereas the second
part is re-generated randomly.

Example Consider the chromosome X = (o2, o4, o3, o5)
from the previous example. Let us illustrate the mutation
algorithm on this example.

The mutation operator first picks an element of X using a
uniformly random distribution. Let us assume that this element
turns out to be o3. Then, the algorithm partitions the chromo-
some into two as in X = σ1 |σ2, where σ1 = (o2, o4) and
σ2 = (o3, o5). Notice that p σ1−→ p′ holds, where p′ = o3 ‖ o5.
The mutation operator, then, runs the RandomGenerate pro-
cedure with p′, which might either return σ3 = (o3, o5) or
σ4 = (o5, o3). Assume that it returns the latter. Then, the
resulting mutated chromosome is the concatenation of σ1 and
σ4, i.e., (o2, o4, o5, o3).

5) Elitism: In the elitism phase, the chromosomes with
high fitness are selected to move into the next generation.
The selection is made randomly, even though biased towards
chromosomes with high fitness values. However, we determin-
istically choose a small set of chromosomes, called the elite
members, of the current generation with the highest fitness
values, in order to rule out the possibility of loosing all the
good solutions in a given generation. This provides us with a
solution that is monotonically improving.

C. Algorithm and Correctness

Let us extend the primitive procedure Rand as follows. Let
Rand(S, φ, k) be a primitive procedure, where S is a finite
set, φ : S → R+ is a function, and k is number such that
k < |S|. The function Rand(S, value, k) returns a set of k
distinct elements from S by randomly picking an element
s ∈ S with probability φ(s)/

∑
s′∈S φ(s′) repeatedly, until k

distinct elements are selected. Let also SelectBest(S, φ, k)
be another procedure that returns the k elements with highest
values of the function φ. More precisely, SelectBest(S, φ, k)
is a set of k elements from set S such that for all s ∈
SelectBest(S, φ, k) and for all s′ ∈ S\SelectBest(S, φ, k)
we have that φ(s) ≥ φ(s′).

The GA is formalized in Algorithm 8, where the initializa-
tion phase (Lines 2-4) as well as the selection (Lines 6-8),
crossover (Lines 9-16), mutation (Lines 17-23), and elitism
(Line 24) operations are shown explicitly.

Algorithm 8: GA(pspec,Ktotal,Kchildren,Kelite,Kmutate, N)

1 X ← ∅
2 for i← 1 to Ktotal do
3 X ← X ∪ RandomGenerate(pspec)
4 end
5 for j ← 1 to N do
6 for all Xk ∈ X do
7 fitness(Xk)← 1/J(PC(Xk))
8 end
9 C ← ∅

10 for i← 1 to Kchildren do
11 X1 ← Rand(X , fitness, 1)
12 X2 ← Rand(X , fitness, 1)
13 C ← Crossover(X1, X2)
14 fitness(C)← 1/J(PC(C))
15 C ← C ∪ C
16 end
17 M← ∅
18 for i← 1 to Kmutate do
19 X ← Rand(X , fitness, 1)
20 M ← Mutate(X)
21 fitness(M)← 1/J(PC(C))
22 M←M∪M
23 end
24 X ← SelectBest(X ,Kelite) ∪ Rand(X ∪ C ∪

M, fitness,Ktotal −Kelite)
25 end
26 return SelectBest(X , 1)
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Let us discuss the correctness of the algorithm. Firstly,
notice that the RandomGenerate(pspec) function presented in
Algorithm 2 is correct in the sense that it returns only those
traces that are in Γpspec

. This fact follows from the correctness
of the Next function, for which an algorithmic procedure
was presented in Algorithm 1. Let us show that each trace in
Γpspec

is selected by RandomGenerate(pspec) with non-zero
probability.

Proposition V.1 Given any specification pspec ∈ T defined
on a given set of atomic objectives O, the probability that
γ = RandomGenerate(pspec) is at least 1/|O||O|.

This proposition guarantees that the first generation has the set
of all chromosomes as its support. It also allows the mutation
operator to consider all possible options during mutation.

Next, let us note that the crossover operation is correct in the
sense that Crossover(X1, X2) returns a valid chromosome
whenever X1 and X2 are valid chromosomes.

Proposition V.2 Given any specification pspec ∈ T and any
two chromosomes X1 and X2 such that X1, X2 ∈ Γpspec , then
we have that Crossoverp(X1, X2) ∈ Γpspec .

VI. SIMULATIONS

The algorithm described in this paper was implemented
in the C++ programming language. This section is devoted
to a simulation study evaluating the effectiveness of the
algorithms in small-, medium-, and large-scale examples. All
the simulations were run on a laptop computer equipped with
a 2.66 GHz processor and 4 GB RAM running the Linux
operating system.

First, we consider a simple scenario where 2 UAVs are
required to engage 5 targets. Each target has to be first
classified and then serviced, and all the targets can be serviced
independently, i.e., in parallel. This problem instance can be
described within the process algebra framework described
in this paper using 20 atomic objectives. Let oi,c,u be the
atomic objective that indicates classification (subscript c is
used for classification and s is used for servicing) of the
target i ∈ {1, 2, 3, 4, 5} by UAV u ∈ {1, 2}. The generic
objective of servicing target i can be written as oi = (oi,c,1 +
oi,c,2) · (oi,s,1 + oi,s,2). Then the mission specification is
pspec = o1 ‖ o2 ‖ o3 ‖ o4 ‖ o5. In all the examples presented
in this section, we use J2 (see Equation 1) as our cost metric.

This example scenario is small enough that our C++ im-
plementation of the tree search algorithm given in Ref. [7]
terminates in about a minute with the optimal solution, which
has cost 1.4 in this case. To evaluate the genetic algorithm
presented in this paper, we have done a Monte Carlo sim-
ulation study. We have considered three different parameter
sets (see Table I) and for each of the parameter sets we have
run the algorithm 100 times. The random parameters in this
study were those associated with the implementation of the
GA. The average cost vs. the average running time is plotted
in Figure 5 for all the three parameter sets. Notice that for
all the parameter sets, in average, the genetic algorithm gets
very close to the optimal solution (of 1.4) very quickly. In

fact, in most runs the algorithm achieves the optimal solution
in a few seconds. In Figure 6, the percentage of trials, for
which the solution is the optimal and within 1%, 5%, 10%,
and 15% of the optimum is plotted for all the three parameter
sets. Notice that in less than a second in almost all the trials
the algorithm finds a solution that is within 15% percent of
the optimum, no matter what parameter set is used. Notice
that, for parameter set 3, within the first two seconds, in all
trials the solution is within 10% of the optimum, in 98% of
the trials the solution is within 5% of the optimum, and at the
end of 10 seconds of computation time in 80% of the trials the
solution is within 1% of the optimum, and in 60% of the trials
the solution is the optimum solution itself. Notice also that in
this example with 20 atomic objectives parameter set 3, i.e.,
bigger population, seems to converge to the optimum solution
more quickly. However, this gap between different parameter
sets seems to diminish in larger-scale examples.

To evaluate the genetic algorithm in medium-scale exam-
ples, we consider the same scenario, this time with 3 identical
UAVs, which induces an example with 30 atomic objectives.
This scenario is large enough that our implementation of the
three search algorithm runs out of memory before termination.
The performance of the genetic algorithm is shown in Figure 7
for all three different parameter sets and the closeness of the
solutions to the best solution found in any trial is shown in
Figure 8 for the third parameter set only. In an even larger-
scale example, we consider 4 identical UAVs in the same
scenario, which can be modeled by 40 atomic objectives.
The results are shown in Figures 9 and 10. Notice that all
the parameter sets perform similarly in these medium-scale
scenarios. Comparing Figures 7 and 9, clearly, the cost of the
solution returned by the algorithm decreases with increasing
number of UAVs employed in the mission, since the cost
function is the time that the mission is completed.

Next we fix the number of UAVs to 3 and increase the num-
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Fig. 5. Monte-Carlo simulation results for a small-scale scenario involving 5
targets and 2 UAVs. Cost of the best chromosome in a generation is averaged
over trials and plotted against average running time for all the three parameter
sets.

Parameter Set Ktotal Kelite Kmutate

1 10 2 2
2 100 20 20
3 1000 200 200

TABLE I
PARAMETER SETS.
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Fig. 6. Monte-Carlo simulation results for a small-scale scenario involving 5 targets and 2 UAVs. The percentage of trials that achieve the optimal solution,
as well as those that are within 1%, 5%, 10%, and 15% of the optimal are plotted against the average running time of the algorithm, for parameter sets 1, 2,
and 3 in Figures (a), (b), and (c), respectively.
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Fig. 7. Monte-Carlo simulation results for a medium-scale scenario involving
5 targets and 3 UAVs. Cost of the best chromosome in a generation is averaged
over trials and plotted against average running time for all the three parameter
sets in the simulation example with 5 targets and 3 UAVs. The figure is in
semi-logarithmic scale.
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Fig. 8. Monte-Carlo simulation results for a medium-scale scenario involving
5 targets and 3 UAVs. The percentage of trials that achieve the best solution
found in all the trials as well as those that are within 10% and 15% of the
best solution are plotted against the average running time of the algorithm for
parameter set 3 (the other two parameter sets produce similar solutions for
this problem instance).

ber of targets to consider large-scale examples. More precisely,
we consider 10, 20, and 30, which correspond to scenarios
with 60, 120, and 180 atomic objectives, respectively. In each
scenario, we consider targets that are placed on a 10 × 10
square region, and all the UAVs are initially at the corner of
this square. For each of the scenarios, we ran the algorithm
100 times using parameter set 2 for the first scenario with 10
targets and parameter set 3 for the last two scenarios with
20 and 30 targets. The average costs of the solutions are
shown in Figure 11. Even in large-scale scenarios, continued
convergence can be observed. The tree search algorithm does
not terminate before running out of memory in any one of
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Fig. 9. Monte-Carlo simulation results for a medium-scale scenario involving
5 targets and 4 UAVs. Cost of the best chromosome in a generation is averaged
over trials and plotted against average running time for all the three parameter
sets in the simulation example with 5 targets and 4 UAVs. The figure is in
semi-logarithmic scale.
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Fig. 10. Monte-Carlo simulation results for a medium-scale scenario
involving 5 targets and 4 UAVs. The percentage of trials that achieve the
best solution found in all the trials as well as those that are within 10% and
15% of the best solution are plotted against the average running time of the
algorithm for parameter set 3 (the other two parameter sets produce similar
solutions for this problem instance).

these scenarios.

VII. CONCLUSIONS

A genetic algorithm for planning based on process algebra
was presented in this paper. The applicability of the approach
was demonstrated on an example complex mission planning
problem involving cooperative UAVs. It was shown that pro-
cess algebra can be used to formally define the evolutionary
operators of crossover and mutation. The viability of the ap-
proach was investigated in Monte-Carlo simulations of small-,
medium-, and large-scale problems. It was shown that, for a
small sized problem, on the average the algorithm converges
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Fig. 11. Monte-Carlo simulation results for a large-scale scenario involving
10, 20, and 30 targets and 3 UAVs are shown in Figures (a), (b), and (c),
respectively. Costs of the best chromosomes in a generation are averaged over
trials and plotted against average running time. Figures are in semi-logarithmic
scale.

to the optimal solution in a few seconds. On larger-scale
scenarios, in which optimal algorithms such as the tree search
can not be used, the GA was shown to quickly produce a
good solution and improve it to better solutions within the
first minute.

Although the paper mostly concentrates on a vehicle routing
setting, the algorithms presented in this paper can be applied
to a variety of combinatorial optimization problems, where
the combinatorial complexity in the problem can be described
naturally using the process algebra framework. Future work
includes identification of such problems and the application of
this framework in a broader domain. In fact, the effectiveness
of stochastic search combined with computationally efficient
process algebra specifications may prove to be useful in many
optimization problems in engineering.

This paper concentrated only on missions which come to
an end after the specification is successfully fulfilled. Spec-

ification and planning of contingent persistent missions, i.e.,
missions which have to continue forever while considering
adversarial actions, such as surveillance, is interesting on its
own right. Another direction for future work includes a formal
study of such problems to design effective algorithms that can
also take contingencies into account.

ACKNOWLEDGMENTS

This research was partially supported by the Michi-
gan/AFRL Collaborative Center on Control Sciences, AFOSR
grant no. FA 8650-07-2-3744; and by AFOSR, Air Force
Material Command, grant no. FA8655-09-1-3066.

REFERENCES

[1] Alighanbari, M., Kuwata, Y., and How, J., “Coordination and Control
of Multiple UAVs with Timing Contraints and Loitering,” American
Control Conference, 2003.

[2] Schumacher, C., Chandler, P., Pachter, M., and Patcher, L., “Optimiza-
tion of air vehicles operations using mixed-integer linear programming,”
Journal of the Operational Research Society, Vol. 58, 2007, pp. 516–
527.

[3] Rasmussen, S. and Shima, T., “Tree search algorithm for assigning
cooperating UAVs to multiple tasks,” International Journal of Robust
and Nonlinear Control, Vol. 18, 2008, pp. 135–153.

[4] Shima, T. and Rasmussen, S., editors, Cooperative Decision and
Control: Challenges and Practical Approaches, SIAM Control series,
Philadelphia PA, 2008.

[5] Waibel, M., Keller, L., and Floreano, D., “Genetic Team Composition
and Level of Selection in the Evolution of Cooperation,” IEEE Transac-
tions on Evolutionary Computation, Vol. 13, No. 3, 2009, pp. 648–660.

[6] Karaman, S. and Frazzoli, E., “Vehicle Routing with Linear Temporal
Logic Specifications: Applications to Multi-UAV Mission Planning,”
AIAA Guidance, Navigation, and Control Conference, 2008.

[7] Karaman, S., Rasmussen, S., Kingston, D., and Frazzoli, E., “Specifi-
cation and Planning of UAV Missions: A Process Algebra Approach,”
American Control Conference, 2009.

[8] Karaman, S. and Frazzoli, E., “Optimal Vehicle Routing with Metric
Temporal Logic Specifications,” IEEE Conference on Decision and
Control, 2008.

[9] Cormen, T., Leiserson, C., Rivest, R., and Stein, C., Introduction to
Algorithms, MIT Press, Cambridge, MA, 2001.
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APPENDIX A
PROOF OF PROPOSITION V.1

Let X = (o1, o2, . . . , on) be any chromosome. Since X
is a chromosome, it is also a trace of pspec. Let, σi =
(o1, o2, . . . , oi) defined for all i = 1, 2, . . . , n, and let pi be
such that X σi−→ pi. Let also Si = Next(pi). Notice that
the probability that Rand(Si) returns (oi, pi) is 1/|Si|, which
is nonzero. Hence, the probability that X is generated by
RandomGenerate procedure is 1/(|S1| |S2| · · · |Sn|), which
is also nonzero.

APPENDIX B
PROOF OF PROPOSITION V.2

First, let us note the following lemma, which shows that the
RandomRearrange procedure returns a process that is trace
equivalent to the input process, establishing the correctness of
the RandomRearrange procedure.

Lemma B.1 Let p be a process algebra term and let p′ =
RandomRearrange(p). Then, the behavior of p and p′ are
exactly the same, i.e., Γp′ = Γp.

Proof: Let us show this lemma by induction on the depth
of the parse tree of p. The base case, when the depth of
the parse tree is one, is trivial, since RandomRearrange(p)
is always equal to p itself.

Assume that the claim holds for all terms with a parse tree
of depth n. Let p be a term with a parse tree of depth n+ 1.
Since n + 1 > 1, the process p must take one of the three
forms: p1 + p2, p1 · p2, or p1 ‖ p2, where the parse tree of p
is rooted by a node labeled with the alternative, sequential,
or parallel composition operator, respectively; and this root
node, in each case, has p1 and p2 as its left and right children,
respectively. Let p′i = RandomRearrange(pi) for i = 1, 2;
by the induction hypothesis, we have that Γp′i = Γpi . Let us
consider the three cases outlined above, and show for each of
them that Γp′ = Γp is also satisfied.

If the root node of the parse tree of p is an alternative
composition operator, then we have that Γp = Γp1 ∪ Γp2 .
Notice that in this case, we have that Γp′ = Γp′1 ∪Γp′2 whether
or not the RandomRearrange procedure exchanges the left and
right children of the root node of the parse tree. Hence, the
hypothesis holds for this case.

If the root node of the parse tree is a sequential composition
operator, then we have that Γp = {σ1|σ2 : σ1 ∈ Γp1 , σ2 ∈

Γp2}. Note that the RandomRearrange operator does not
exchange the children of the root node. Thus, we have that
Γp′ = {σ1|σ2 : σ1 ∈ Γp′1 , σ2 ∈ Γp′2}, which is equal to Γp
since we have that Γp′i = Γpi by the induction hypothesis.
Hence, we establish the hypothesis for this case as well.

Finally, if the root node of the parse tree is a par-
allel composition operator, then we have that Γp =
∪σ1∈Γp1

,σ2∈Γ2
C(σ1, σ2), where C(σ1, σ2) is the set of concur-

rent compositions of σ1 and σ2 defined so that σ ∈ C(σ1, σ2)
whenever the order preserving projections [σ]S1

and [σ]S2

equal to σ1 and σ2, respectively, where Si is the set of
all atomic objectives that appear in σi for i = 1, 2. No-
tice that if RandomRearrange does not exchange the left
and right children of the root of the parse tree, we have
that Γp′ = ∪σ1∈Γp′1

,σ2∈Γp′2
C(σ1, σ2). If, on the contrary,

the children of the root node are exchanged, then we have
Γp′ = ∪σ1∈Γp′1

,σ2∈Γp′2
C(σ2, σ1). In the former case, we have

that Γp′ = Γp, since we have Γp′i = Γpi for i = 1, 2 by the
induction hypothesis. In the latter case, however, the situation
is identical to the former case since C(σ1, σ2) = C(σ2, σ1).
Hence, in either case, the hypothesis is satisfied.

Let us prove the proposition by induction on the depth
of the parse tree. For the base case when the depth is one,
the hypothesis trivially holds, since such a process p is of
the form p = o, where o ∈ O. Hence, X1 = X2 = (o),
since there is only one valid chromosome. Notice that in this
case Crossoverp(X1, X2) also returns (o), which is a valid
chromosome. Assume that the hypothesis holds whenever the
parse tree of p has depth n. To show that it holds for parse
trees of depth n+1, let us consider three cases: p is of the form
p1+p2, p1·p2, or p1 ‖ p2, i.e., the root of the parse tree encodes
an alternative, sequential, or parallel composition operator.

In the first case when p = p1 + p2, notice that each parent
chromosome is either a trace of p1 or one of p2. In the case
when both parents are traces of the same process, say p1, and
orand ∈ ChildrenAO(p′1) (Lines 3-8 of Algorithm 5 are not
executed), then the resulting child chromosome is merely the
outcome of X = Crossoverp′1(X1, X2). However, since p1

has depth n, X is a valid chromosome in this case by the
induction hypothesis and by the fact that Γp1 = Γp′1 . If, on
the other hand, orand /∈ ChildrenAO(p′1), then we have that
ocut ∈ ChildrenAO(p′2). In this case, ocut returned by the
CutAtomicObjective procedure is the atomic proposition
encoded by the rightmost leaf node in the parse tree of p′2.
Hence, we have S1 = O and S2 = ∅, which yields X = X1.
Thus, X is a valid chromosome in this case also. The case
when both parents are traces of p2 is symmetric. In the case
when X1 is a trace of p1 and X2 is a trace of p2, notice
that ocut is the atomic proposition encoded by the rightmost
leaf node of parse tree of p′2. Hence, we have that S1 = O,
S2 = ∅ and that X = X1, which is a valid chromosome.
Finally, the case when X1 is a trace p2 and X2 is a trace of
p1 is symmetric.

For the case when p = p1 · p2, both parents X1

and X2 are of the form X1 = σ1,1|σ1,2 and X2 =
σ2,1|σ2,2, where σ1,1, σ2,1 ∈ Γp1 and σ1,2, σ2,2 ∈ Γ2. If
orand ∈ ChildrenAO(p′1), then we have that X = σ1|σ2,
where σ2 = X2 (thus σ2 is a trace of p2) and σ1 =
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Crossoverp1(σ1,1, σ2,1), which returns a valid chromosome,
i.e., a trace of p′1, which is also a trace of p1 by Lemma B.1.
Hence, σ1|σ is a trace of p1 · p2. The case when orand ∈

ChildrenAO(p2) is symmetric.
The case when p = p1 ‖ p2 is very similar to the previous

case and is omitted here.


