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Abstract—The backpressure routing and scheduling, with
throughput-optimal operation guarantee, is a promising tech-
nique to improve throughput over wireless multi-hop networks.
Although the backpressure framework is conceptually viewed
as layered, the decisions of routing and scheduling are made
jointly, which imposes several challenges in practice. In this
work, we present Diff-Max, an approach that separates routing
and scheduling and has three strengths: (i) Diff-Max improves
throughput significantly, (ii) the separation of routing and
scheduling makes practical implementation easier by minimizing
cross-layer operations;i.e., routing is implemented in the network
layer and scheduling is implemented in the link layer, and (iii)
the separation of routing and scheduling leads to modularity;
i.e., routing and scheduling are independent modules in Diff-
Max and one can continue to operate even if the other does not.
Our approach is grounded in a network utility maximization
(NUM) formulation of the problem and its solution. Based on
the structure of Diff-Max, we propose two practical schemes:
Diff-subMax and wDiff-subMax. We demonstrate the benefits of
our schemes through simulation in ns-2, and we implement a
prototype on smartphones.

I. I NTRODUCTION

The backpressure routing and scheduling paradigm has
emerged from the pioneering work in [1], [2], which showed
that, in wireless networks where nodes route packets and make
scheduling decisions based on queue backlog differences, one
can stabilize queues for any feasible traffic. This seminal idea
has generated a lot of research interest. Most importantly;it
has been shown that backpressure can be combined with flow
control to provide utility-optimal operation guarantee [3].

The strengths of these techniques have recently increased
the interest on practical implementation of backpressure
framework over wireless networks, some of which are sum-
marized in Section VI. However, the practical implementation
of backpressure imposes several challenges mainly due to the
joint nature of the routing and scheduling algorithms, which
is the focus of this paper.

In classical backpressure, each node constructs per-flow
queues. Based on the per-flow queue backlog differences,
and by taking into account the state of the network, each
node makes routing and scheduling decisions. Although the
backpressure framework is conceptually viewed as layered,the
decisions of routing and scheduling are made jointly. To better
illustrate this key point, let us discuss the following example.

This work was supported by NSF grant CNS-0915988, ONR grant N00014-
12-1-0064, ARO Muri grant number W911NF-08-1-0238.

(a) Backpressure (b) Diff-Max

Fig. 1. Example topology consisting of three nodes;i, j, k, and two flows;1,
2. Note that this small topology is a zoomed part of a large multi-hop wireless
network. The source and destination nodes of flows1 and 2 are not shown
in this example,i.e., nodesi, j, k are intermediate nodes which route and
schedule flows1 and2. U1

i andU2

i are per-flow queue sizes andVi,j andVi,k

are per-link queue sizes. (a) Backpressure: Nodei determines queue backlog
differences at timet; Ds

i,j(t) = Us
i (t)−Us

j (t), D
s
i,k

(t) = Us
i (t)−Us

k
(t),

wheres ∈ {1, 2}. Based on these differences as well as the channel state of
the network,C(t), it makes joint routing and scheduling decisions. (b) Diff-
Max: Nodei makes routing decision based on the queue backlog differences
at timet; D̃s

i,j(t) = Us
i (t)−Us

j (t)−Vi,j (t), D̃s
i,k

(t) = Us
i (t)−Us

k
(t)−

Vi,k(t), wheres ∈ {1, 2}. Separately, nodei makes the scheduling decision
based onVi,j(t), Vi,k(t) andC(t).

Example 1: Let us consider Fig. 1(a) for backpressure
operation. At timet, node i makes routing and scheduling
decisions for flows1 and2 based on the per-flow queue sizes;
U1
i (t), U

2
i (t), as well as the queue sizes of the other nodes,

i.e., node j and k in this example, and using the channel
state of the networkC(t). In particular, the backpressure
determines the flow that should be transmitted over linki− j

by s∗ = argmax{D1
i,j(t), D

2
i,j(t)} such thats∗ ∈ {1, 2}.

The decision mechanism is the same for linki − k. Note
that this is joint routing (i.e., the next hop decision) and
scheduling (i.e., the flow selection for transmission). The
scheduling algorithm also determines the link activation policy.
In particular, the maximum backlog differences over each link
are calculated as;D∗

i,j(t) = Ds∗

i,j(t) andD∗
i,k(t) = Ds∗

i,k(t).
Based onD∗

i,j(t), D
∗
i,k(t) andC(t), the scheduling algorithm

determines the link that should be activated. Note that the de-
cisions of routing and scheduling (also named as max-weight
algorithm) are made jointly in the backpressure framework,
which imposes several challenges in practice. We elaborate
on them next. �

Routing algorithms are traditionally designed in the network
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layer, while the scheduling algorithms are implemented in
the link layer in current networks. However, the joint routing
and scheduling nature of backpressure imposes challenges for
practical implementation. To deal with these challenges, [4]
implements the backpressure at the link layer, [5] proposes
a system in the MAC layer. This approach is practically
difficult due to device memory limitations and strict limitations
imposed by device firmware and drivers not to change the link
layer functionalities. The second approach is to implement
backpressure in (or below) the network layer, [6], [7], [8].
This approach requires joint operation of the network and
link layers, so that the backpressure framework gracefully
work with the link layer. Therefore, the network and link
layers should work together synchronously, which may not
be practical for many off-the-shelf devices.

Existing networks are designed in layers, in which protocols
and algorithms are modular and operate independently at each
layer of the protocol stack.E.g., routing algorithms at the
network layer should work in a harmony with different types
of scheduling algorithms in the link layer. However, the joint
nature of the backpressure stresses joint operation and hurts
modularity, which is especially important in contemporary
wireless networks, which may vary from a few node networks
to ones with hundreds of nodes. It is natural to expect that
different types of networks, according to their size as well
as software and hardware limitations, may choose to employ
backpressure partially or fully.E.g., some networks may be
able to employ both routing and scheduling algorithms, while
others may only employ routing. Therefore, the algorithms of
backpressure,i.e., routing and scheduling should be modular.

In this paper, we are interested in a framework in which the
routing and scheduling are separated. We seek to find such
a scheme where routing is performed independently at the
network layer and scheduling decisions are performed at the
link layer. The key ingredients of our approach, which we call
Diff-Max1, are; (i) per-flow queues at the network layer and
making routing decision based on their differences, (ii) per-
link queues at the link layer and making scheduling decision
based on their size.

Example 1 - continued: Let us consider Fig. 1(b) for Diff-
Max operation. (i) Routing: at timet, nodei makes routing
decision for flows1 and 2 based on queue backlogs̃Ds

i,j(t)

and D̃s
i,k(t), where s ∈ {1, 2}. This decision is made at

the network layer and the routed packets are inserted in
the link layer queues. Note that in classical backpressure,
routed packets are scheduled jointly,i.e., when a packet is
routed, it should be transmitted if the corresponding linksare
activated. Hence, both algorithms should make decision jointly
in classical backpressure. However, in our scheme, a packet
may be routed at timet, and scheduled and transmitted at a
later timet+T whereT > 0. (ii) Scheduling: at the link layer,

1The rationale behind the name of our scheme,i.e., Diff-Max is as follows.
Diff means that the routing part is based on queuedifferences, andMax refers
to the fact that the scheduling part is based on themaximum of the (weighted)
link layer queues. Finally, the hyphen in Diff-Max is to mention the separated
nature of the routing and scheduling algorithms.

links are activated and packets are transmitted based on per-
link queue sizes;Vi,j , Vi,k, andC(t). The details of Diff-Max
are provided in Section III. �

Our approach is grounded in a network utility maximiza-
tion (NUM) framework [9]. The solution decomposes into
several parts with an intuitive interpretation, such as routing,
scheduling, and flow control. The structure of the NUM
solution provides insight into the design of our scheme,
Diff-Max. Thanks to separating routing and scheduling, Diff-
Max makes the practical implementation easier and minimizes
cross-layer operations. We also propose two practical schemes;
Diff-subMax and wDiff-subMax. The following are the key
contributions of this work:

• We propose a new system model and NUM framework
to separate routing and scheduling. Our solution to the
NUM problem, separates routing and scheduling such
that routing is implemented at the network layer, and
scheduling is at the link layer. Based on the structure
of the NUM solution, we propose Diff-Max.

• We extend Diff-Max to employ routing and scheduling
parts, but disable the link activation part of the scheduling
algorithm. We call the new framework Diff-subMax,
which reduces computational complexity and overhead
significantly, and provides high throughput improvements
in practice. Namely, Diff-subMax only needs information
from one-hop away neighbors to make its routing and
scheduling decisions.

• We propose a window-based routing mechanism, wDiff-
subMax, which implements routing, but disables the
scheduling. wDiff-subMax is designed for the scenarios,
in which the implementation of the scheduling algorithm
in the link layer is impossible (or not preferable) due to
device restrictions. wDiff-subMax makes routing decision
on the fly, and minimizes overhead.

• We evaluate our schemes in a multi-hop setting and con-
sider their interaction with transport, network, and link
layers. We perform numerical calculations confirming
that Diff-Max is as good as backpressure. We implement
our schemes in a simulator; ns-2 [10], and show that they
significantly improve throughput as compared to adaptive
routing schemes such as Ad hoc On-Demand Distance
Vector (AODV) [11]. Finally, we implemented a pro-
totype of wDiff-subMax on Galaxy Nexus smartphones
with Android 4.0 (Ice Cream Sandwich) [12].

The structure of the rest of the paper is as follows. Section II
gives an overview of the system model. Section III presents the
NUM formulation and solution. Section IV presents the design
and development of Diff-Max schemes and their interaction
with the protocol stack. Section V presents simulation results.
Section VI presents related work. Section VII concludes the
paper. II. SYSTEM OVERVIEW

We consider multi-hop wireless networks, in which packets
from a source traverse potentially multiple wireless hops
before being received by their receiver. In this setup, each
wireless node is able to perform routing, scheduling, and flow



Fig. 2. A wireless mesh network. The queues at the network andlink layers,
and the interaction among the queues, inside nodei are shown here in detail.
Us
i andUs′

i are the network layer queues for flowss and s′, andVi,j and
Vi,l are the per-link queues for links;i − j and i − l. Diff-Max algorithm
makes the routing decision in the network layer, and the scheduling decision
in the link layer.

control. In this section, we provide an overview of this setup
and highlight some of its key characteristics. Fig. 2 shows the
key parts of our system model in an example topology.

A. Notation and Setup

The wireless network consists ofN nodes andL edges,
whereN is the set of nodes andL is the set of edges in
the network. We consider in our formulation and analysis that
time is slotted, andt refers to the beginning of slott.

1) Sources and Flows: Let S be the set of unicast flows
between source-destination pairs in the network. Each flows ∈
S arrives from the application layer to the transport layer with
rateAs(t), ∀s ∈ S at time slott. The arrival rates are i.i.d. over
the slots and their expected values are;λs = E[As(t)], ∀s ∈ S,
and E[As(t)

2] are finite. Transport layer stores the arriving
packets in reservoirs (i.e., transport layer per-flow queues),
and controls the flow traffic. In particular, each sources is
associated with ratexs considering a utility functiongs(xs),
which we assume to be a strictly concave function ofxs. The
transport layer determinesxs(t) at time slot t according to
the utility functiongs. xs(t) packets are transmitted from the
transport layer reservoir to the network layer at slott.

2) Queue Structures: At node i ∈ N , there are network
and link layer queues. The network layer queues are per-flow
queues;i.e., Us

i is the queue at nodei ∈ N that only stores
packets from flows ∈ S. The link layer queues are per-link
queues;i.e., at each nodei ∈ N , a link layer queueVi,j is
constructed for each neighbor nodej ∈ N (Fig. 2).2

3) Flow Rates: Our model optimizes the flow rates among
different nodes as well as the flow rates in a node among
different layers; transport, network, and link layer.

The transport layer determinesxs(t) at time t, and passes
xs(t) packets to the network layer. These packets are inserted
in the network layer queue;Us

i (assuming that nodei is the

2Note that in some devices, there might be only one queue (per-node queue)
for data transmission instead of per-link queues in the linklayer. Developing
a model with per-node queues is challenging due to coupling among actions
and states, so it is an open problem.

source node of flows). The network layer may also receive
packets from the other nodes and insert them inUs

i . The link
transmission rate ishk,i(t) at timet. hk,i(t) is larger than (or
equal to) per-flow data rates over linkk− i. E.g., we can write
for Fig. 2 thathk,i(t) ≥ hs

k,i(t) + hs′

k,i(t) wherehs
k,i(t) is the

data rate of flows over link k − i. Note thaths
k,i(t) is the

actual data transmission rate of flows over link k − i, while
hk,i(t) is the available rate over linkk− i, at timet. At every
timeslot t, Us

i changes according to the following dynamics.

Us
i (t+ 1) = max[Us

i (t)−
∑

j∈N

f s
i,j(t), 0] +

∑

j∈N

hs
j,i(t)

+ xs(t)1[i=o(s)] (1)

where o(s) is the source node of flows and 1i=o(s) is an
indicator function, which is1 if i = o(s), and0, otherwise.

The data rate from the network layer to the link layer
queues isf s

i,j(t). In particular,f s
i,j(t) is the actual rate of the

packets, belonging to flows, from the network layer queue;
Us
i to the link layer queue;Vi,j at node i. Note that the

optimization of flow ratef s
i,j(t) is the routing decision, since

it basically determines how many packets from flows should
be forwarded (hence routed) to nodej. At every timeslott,
Vi,j changes according to the following queue dynamics.

Vi,j(t+ 1) = max[Vi,j(t)− hi,j(t), 0] +
∑

s∈S

f s
i,j(t) (2)

The link transmission rate fromi to nodej is hi,j(t). As
mentioned abovehi,j(t) upper bounds per-flow data rates;
i.e., hi,j(t) ≥

∑

s∈S hs
i,j(t). Note that the optimization of

link transmission ratehi,j(t) corresponds to the scheduling
decisions, since it determines which packets from which link
layer queues should be transmitted as well as whether a link
is activated.

B. Channel Model and Capacity Region

1) Channel Model: Consider one-hop transmission over
link l, where l = (i, j), such that(i, j) ∈ N and i 6= j.
At each slot t, C(t) is the channel state vector, where
C(t) = {C1(t), ..., Cl(t), ..., CL(t)}. Cl(t) is the state of the
link l at time t and takes values from the set{ON,OFF}
according to a probability distribution which is i.i.d. over time
slots. If Cl(t) = ON , packets are transmitted with rateRl.
Otherwise; (i.e., if Cl(t) = OFF ), no packets are transmitted.
ΓC(t) denote the set of the link transmission rates feasible

at time slot t and for channel stateC(t). In particular,
at every timeslott, the link transmission vectorh(t) =
{h1(t), ..., hl(t), ...hL(t)} should be constrained such that
h(t) ∈ ΓC(t).

2) Capacity Region: Let (λs) is the vector of arrival rates
∀s ∈ S. The network layer capacity regionΛ is defined as the
closure of all arrival vectors that can be stably transmitted in
the network, considering all possible routing and scheduling
policies [1], [2], [3]. Λ is fixed and depends only on channel
statistics characterized byΓC(t).



III. D IFF-MAX : FORMULATION AND DESIGN

A. Network Utility Maximization

In this section, we formulate and design the Diff-Max
framework. Our first step is the NUM formulation of the prob-
lem and its solution. This approach (i.e., NUM formulation
and its solution) sheds light into the structure of the Diff-
Max algorithms. Note that the NUM formulation optimizes
the average values of the parameters (i.e., flow rates) that are
defined in Section II. By abuse of notation, we use a variable,
e.g., φ as the average valueφ(t) in our NUM formulation, if
bothφ andφ(t) refers to the same parameter.

1) Formulation: Our objective is to maximize the total
utility function by optimally choosing the flow ratesxs,
∀s ∈ S, as well as the following variables at each node: the
amount of data traffic that should be routed to each neighbor
node;i.e., f s

i,j, the link transmission rates;i.e., hi,j .

max
x,f ,h,τ

∑

s∈S

gs(xs)

s.t.
∑

j∈N

f s
i,j −

∑

j∈N

hs
j,i =

{

xs, if i = o(s)

0, otherwise
, ∀i ∈ N , s ∈ S

∑

s∈S

f s
i,j ≤ hi,j , ∀(i, j) ∈ L

f s
i,j = hs

i,j , ∀s ∈ S, (i, j) ∈ L

h ∈ Γ̃. (3)

The first constraint is the flow conservation constraint at
the network layer: at every nodei and for each flows,
the sum of the total incoming traffic,i.e.,

∑

j∈N hs
j,i and

exogenous traffic,i.e., xs should be equal to the total outgoing
traffic from the network layer,i.e.,

∑

j∈N f s
i,j . The second

constraint is also the flow conservation constraint, but at the
link layer; the link transmission rate;i.e., hi,j should be
larger than the incoming traffic;i.e.,

∑

s∈S f s
i,j . Note that

this constraint is inequality, because the link transmission rate
can be larger than the actual data traffic. The third constraint
shows the relationship between the network and link layer per-
flow data rates. The last constraint shows that the vector of
link transmission rates,h = {h1, ..., hl, ...hL} should be the
element of the available link rates;Γ̃. Note thatΓ̃ is different
thanΓC(t) in the sense that̃Γ is characterized with the loss
probability over each link;pl, ∀l ∈ L, rather than the channel
state vector;C(t).

The first and second constraints are key to our work, because
they determine the incoming and outgoing flow relationships
at the network and link layers, respectively. Such an approach
separates routing from scheduling, and assigns the routingto
the network layer and scheduling to the link layer. Note that
if these constraints are combined in such a way that incoming
rate from a node and exogenous traffic should be smaller than
the outgoing traffic for each flow, we obtain the backpressure
solution [13], [14].

2) Solution: By relaxing the first two flow conservation
constraints in Eq. (3), we have:

L(x,f ,h,u,v) =
∑

s∈S

gs(xs) +
∑

i∈N

∑

s∈S

us
i

(

∑

j∈N

f s
i,j

−
∑

j∈N

hs
j,i − xs1[i=o(s)]

)

−
∑

(i,j)∈L

vi,j

(

∑

s∈S

f s
i,j − hi,j

)

,

(4)

whereus
i andvi,j are the Lagrange multipliers, which can be

interpreted as the representative of the network and link layer
queues,Us

i andVi,j , respectively.3 The Lagrange function can
be re-written as;

L(x,f ,h,u,v) =
∑

s∈S

(gs(xs)− us
o(s)xs) +

∑

i∈N

∑

s∈S

∑

j∈N

us
if

s
i,j

−
∑

i∈N

∑

s∈S

∑

j∈N

us
jh

s
i,j −

∑

(i,j)∈L

∑

s∈S

vi,jf
s
i,j +

∑

(i,j)∈L

vi,jhi,j

(5)

Eq. (5) can be decomposed into several intuitive problems such
as flow control, routing, and scheduling.

First, we solve the Lagrangian with respect toxs:

xs = (g′s)
−1

(

us
o(s)

)

, (6)

where(g′s)
−1 is the inverse function of the derivative ofgs.

This part of the solution is interpreted as the flow control.

Second, we solve the Lagrangian forf s
i,j and hs

i,j . The
following part of the solution is interpreted as the routing.

max
f

∑

i∈N

∑

s∈S

∑

j∈N

(us
if

s
i,j − us

jh
s
i,j)−

∑

(i,j)∈L

∑

s∈S

vi,jf
s
i,j

s.t. f s
i,j = hs

i,j , ∀i ∈ N , j ∈ N , s ∈ S (7)

The above problem is equivalent to;

max
f

∑

(i,j)∈L

∑

s∈S

f s
i,j(u

s
i − us

j − vi,j) (8)

Third, we solve the Lagrangian forhi,j . The following part
of the solution is interpreted as scheduling.

max
h

∑

(i,j)∈L

vi,jhi,j

s.t.h ∈ Γ̃. (9)

The decomposed parts of the Lagrangian,i.e., Eqs. (6),
(8), (9) as well as the Lagrange multipliers;us

i and vi,j can
be solved iteratively via a gradient descent algorithm. The
convergence properties of this iterative algorithm are provided
in [15]. Next, we propose Diff-Max based on the structure of
the decomposed solution.

3Note that us
i and vi,j are Lagrange multipliers. Although they are

interpreted as the representation of the queue sizes, they are not actual queue
sizes, but the functions of them. On the other hand,Us

i andVi,j are actual
queue sizes.



B. Diff-Max

Now, we provide stochastic control strategy including rout-
ing, scheduling, and flow control. The strategy,i.e., Diff-Max,
which mimics the NUM solution, combines separated routing
and scheduling together with the flow control strategy.

Diff-Max:

• Routing. Nodei observes the network layer queue back-
logs in all neighboring nodes at timet and determines;

f s
i,j(t) =

{

Fmax
i , if Us

i (t)− Us
j (t)− Vi,j(t) > 0

0, otherwise
(10)

whereFmax
i is constant larger than the maximum out-

going rate from nodei. According to Eq. (10),f s
i,j(t)

packets are removed fromUs
i (t) and inserted in the

link layer queueVi,j(t). This routing algorithm mimics
Eq. (8) and has the following interpretation. Packets
from flow s can be transmitted to the next hop node
j as long as the network layer queue in the next hop
(node j) is small, which means that nodej is able
to route the packets, and the link layer queue at the
current node (nodei) is small, which means that the
congestion over linki − j is relatively small. Note that
if the number of packets inUs

i (t) is limited, the packets
are transmitted to the link layer queues beginning from
the largestUs

i (t)− Us
j (t)− Vi,j(t).

The routing algorithm in Eq. (10) uses per-link queues
as well as per-flow queues, which is the main difference
of Eq. (10) as compared to backpressure routing. The
backpressure routing only uses per-flow queues, and does
not take into account the state of the link layer queues
(they do not exist due to formulation).

• Scheduling. At each time slott, link rate hi,j(t) is
determined by;

max
h

∑

(i,j)∈L

Vi,j(t)hi,j(t)

s.t.h(t) ∈ ΓC(t), ∀(i, j) ∈ L (11)

This scheduling algorithm mimics Eq. (9) and has the fol-
lowing interpretation. The linki−j with the largest queue
backlog Vi,j , by taking into account the channel state
vector;C(t), should be activated, and a packet(s) from
the corresponding queue (Vi,j) should be transmitted.
We note that this problem (scheduling or max-weight)
is known to be a hard problem, [9], [13]. Therefore, we
propose sub-optimal scheduling algorithms that interact
well with the routing algorithm in Eq. (10).
The scheduling algorithm in Eq. (11) differs from the
classical backpressure in the sense that it is completely
independent from the routing. In particular, Eq. (11)
makes the scheduling decision based on per-link queues;
Vi,j and the channel state;C(t), while the classical
backpressure uses maximum queue backlog differences
dictated by the routing algorithm. As it is seen the routing

Fig. 3. Diff-Max operations at end-points and intermediatenodes.

and scheduling are operating jointly in backpressure,
while in Diff-Max, these algorithms are separated.

• Flow Control. At every time slott, the flow/rate con-
troller at the transport layer of nodei determines the
current level of network layer queue backlogsUs

i (t)
and determines the amount of packets that should be
transported from the transport layer to the network layer
according to:

max
x

∑

s∈S|i=o(s)

[Mgs(xs(t)) − Us
i (t)xs(t)]

s.t.
∑

s∈S|i=o(s)

xs(t) ≤ Rmax
i (12)

where Rmax
i is a constant larger than the maximum

outgoing rate from nodei, andM is a constant parameter,
M > 0. The flow control part of our solution mimics
Eq. (6) as well as the flow control algorithm proposed in
[3].

The discussions on the analysis and performance bounds of
Diff-Max are provided in [15].

IV. SYSTEM IMPLEMENTATION

We propose practical implementations of Diff-Max (Fig. 3)
as well as Diff-subMax, which combines the routing algorithm
with a sub-optimal scheduling, and wDiff-subMax which
makes routing decision based on a window-based algorithm.

A. Diff-Max

1) Flow Control: The flow control algorithm, implemented
at the transport layer at the end nodes (see Fig. 3), determines
the rate of each flow. We implement our flow control algorithm
as an extension of UDP in our simulator ns-2 and in our
Android testbed.

The flow control algorithm, at the source nodei, divides
time into epochs (virtual slots) such ast1i , t

2
i , ..., t

k
i , ..., where

tki is the beginning of thekth epoch. Let us assume thattk+1
i =

tki + Ti whereTi is the epoch duration.
At time tki , the flow control algorithm determines the rate

according to Eq. (12). We considergs(xs(t)) = log(xs(t))
(note that any other concave utility function can be used). After
xs(t

k
i ) is determined, corresponding number of packets are

passed to the network layer, and inserted to the network layer
queueUs

i . Note that there might be some excessive packets
at the transport layer if some packets are not passed to the



network layer. These packets are stored in a reservoir at the
transport layer, and transmitted in later slots. At the receiver
node, the transport protocol receives packets from the lower
layers and passes them to the application.

2) Routing: The routing algorithm, implemented at the
network layer of each node (both the end and intermediate
nodes) (see Fig. 3), determines routing policy,i.e., the next
hop(s) that packets are forwarded.

The first part of our routing algorithm is the neighbor
discovery and queue size information exchange. Each node
i transmits a message containing the size of its network layer
queues;Us

i . These messages are in general piggy-backed
to data packets. The nodes in the network operates on the
promiscuous mode. Therefore, each node, let us say nodej,
overhears a packet from nodei even if nodei transmits the
packet to another node, let us say nodek. Node j reads the
queue size information from the data packet it receives or
overhears (thanks to operating on the promiscuous mode).
The queue size information is recorded for future routing
decisions. Note that when a node hears from another node
through direct or promiscuous mode, it classifies it as its
neighbor. The neighbor nodes of nodei forms a setNi. As
we mentioned, queue size information is piggy-backed to data
packets. However, if there is no data packet for transmission
for some time duration, the node creates a packet to carry
queue size messages and broadcast it.

The second part of our routing algorithm is the actual rout-
ing decision. Similar to the flow control algorithm, the routing
algorithm divides time into epochs; such ast

′1
i , t

′2
i , ..., t

′k
i , ...,

wheret
′k
i is the beginning of thekth epoch at nodei. Let us

assume thatt
′k+1
i = t

′k
i + T ′

i whereT ′
i is the epoch duration.

Note that we uset
′k
i andT ′

i instead oftki andTi, because these
two time epochs do not need to be the same nor synchronized.

At time t
′k
i , the routing algorithm at the network layer

checksUs
i (t

′k
i ) − Us

j (t
′k
i ) − Vi,j(t

′k
i ) for each flows. Note

that Us
j (t

′k
i ) is not the instantaneous value ofUs

j at time
t
′k
i , instead it is the latest value ofUs

j heard by nodei
before t

′k
i . Note also thatVi,j(t

′k
i ) is the per-link queue at

nodei, and this information should be passed to the network
layer for routing decision. According to Eq. (10),fi,j(t

′k
i ) is

determined, andfi,j(t
′k
i ) packets are removed fromUs

i and
inserted to the link layer queueVi,j at nodei. Note that the
link layer transmits packets fromVi,j only to nodej, hence
the routing decision is completed. The routing algorithm is
summarized in Algorithm 1. Note that Algorithm 1 considers
that there are enough packets inUs

i for transmission. If not,
the algorithm lists all the linksj ∈ Ni in decreasing order,
according to the weight;Us

i (t
′k
i )−Us

j (t
′k
i )− Vi,j(t

′k
i ). Then,

it begins to route packets beginning from the link that has the
largest weight.

3) Scheduling: The scheduling algorithm in Eq. (11) as-
sumes that time is slotted, and determines the links that
should be activated and the (number of) packets that should be
transmitted at each time slot. Although there are time-slotted
system implementations, and also recent work on backpres-

Algorithm 1 The routing algorithm at nodei for packets from
flow s at slot t

′k
i .

1: for ∀j ∈ Ni do
2: Read the network layer queue size information of neighbors:Us

j (t
′k
i )

3: Read the link layer queue size information:Vi,j(t
′k
i )

4: if Us
i (t

′k
i ) − Us

j (t
′k
i ) − Vi,j(t

′k
i ) > 0 then

5: fi,j(t
′k
i ) = Fmax

i

6: else
7: fi,j(t

′k
i ) = 0

8: Removefi,j(t
′k
i ) packets fromUs

i

9: Passfi,j(t
′k
i ) packets to the link layer and insert them toVi,j

sure implementation over time-slotted wireless networks [8],
IEEE 802.11 MAC, an asynchronous medium access protocol
without time slots, is the most widely used MAC protocol
in the current wireless networks. Therefore, we implement
our scheduling algorithm (Eq. (11)) on top 802.11 MAC (see
Fig. 3) with the following updates.

The scheduling algorithm constructs per-link queues at the
link layer. Node i knows its own link layer queues,Vi,j ,
and estimates the loss probability and link rates. Let us
consider thatp̄l and R̄l are the estimated values ofpl and
Rl, respectively.p̄l is calculated as one minus the ratio of
correctly transmitted packets over all transmitted packets in a
time window over linkl.4 R̄l is calculated as the average of the
recent (in a window of time) link rates over linkl. Vi,j , p̄i,j ,
andR̄i,j are piggy-backed to the data packets and exchanged
among nodes. Note that this information should be exchanged
among all nodes in the network since each node is required
to make its own decision based on global information. Also,
each node knows the general topology and interfering links.

The scheduling algorithm that we implemented mimics
Eq. (11). Each nodei knows per-link queues,i.e., Vl, es-
timated loss probabilities,i.e., p̄l, and link rates,i.e., R̄l,
for l ∈ L as well all maximal independent sets, which
consist of links that are not interfering. Let us assume that
there areQ maximal independent sets. For theqth maximal
independent set such thatq = 1, ..., Q, the policy vector is;
πq = {π1

q , ..., π
l
q, ..., π

L
q }, whereπl

q = 1 if link l is in the
qth maximal set, andπl

q = 0, otherwise. Our scheduling
algorithm selectsq∗th maximal independent set such that
q∗ = argmax∀q{

∑

l∈L Vl(1− p̄l)R̄lπ
l
q}. Nodei solvesq∗ as

one of the parameters;Vl, p̄l, R̄l change∀l ∈ L. If, according
to q∗, nodei decides that it should activate one of its links, then
it reduces the contention window size of 802.11 MAC so that
nodei can access the medium quickly and transmit a packet. If
nodei should not transmit, then the scheduling algorithm tells
802.11 MAC that there are no packets in the queues available
for transmission. Note that we update 802.11 MAC protocol so
that we can implement the scheduling algorithm in Diff-Max.
The scheduling algorithm is summarized in Algorithm 2.

Note that Algorithm 2 is a hard problem, because it reduces

4Note that we do not use instantaneous channel statesCl(t) in our
implementation, since it is not practical to get this information. Even if one
can estimateCl(t) using physical layer learning techniques,Cl(t) should be
estimated∀l ∈ L, which is not practical in current wireless networks.



Algorithm 2 Diff-Max scheduling algorithm at nodei.
1: if Vl, p̄l, or R̄l is updated such thatl ∈ L then
2: Determineq∗ such thatq∗ = argmax∀q{

∑
l∈L

Vl(1 − p̄l)R̄lπ
l
q}

3: if ∃(i, j) such thatπ(i,j)

q∗
= 1, ∀j ∈ Ni then

4: Reduce 802.11 MAC contention window size and access the medium
5: Transmit a packet fromVi,j according to FIFO rule
6: else
7: Tell 802.11 MAC that there are no packets in the queues available for

transmission

to maximum independent set problem, [9], [13]. Furthermore,
it introduces significant amount of overhead; each node needs
to know every other node’s queue sizes and link loss rates. Due
to the hardness of the problem and overhead, we implement
this algorithm for small topologies over ns-2 for the purpose
of comparing its performance with sub-optimal scheduling
algorithms, which we describe next.

B. Diff-subMax

Diff-subMax is a low complexity and low overhead coun-
terpart of Diff-Max. The flow control and the routing parts
of Diff-subMax is exactly the same as in Diff-Max. The only
different part is the scheduling algorithm, which uses 802.11
MAC protocol without any changes. When a transmission op-
portunity arises according to underlying 802.11 MAC at timet,
then the scheduling algorithm of nodei calculates weights for
all outgoing links to its neighbors. Let us consider linki−j at
time t. The weight isωi,j(t) = Vi,j(t)(1− p̄i,j)R̄i,j . Based on
the weights, the link is chosen as;l∗ = argmaxj∈Ni

ωi,j(t).
This decision means that a packet from the link layer queue
Vl∗ is chosen according to FIFO rule and transmitted. Note
that this scheduling algorithm only performs intra-scheduling,
i.e., it determines from which link layer queue, packets should
be transmitted, but it does not determine which node should
transmit, which is handled by 802.11 MAC.

Diff-subMax reduces the complexity of the algorithm and
overhead significantly. In particular, each nodei calculates and
compares weightsωi,j(t) for each neighbor node. Therefore,
the complexity is linear with the number of (neighbor) nodes.
The overhead is also significantly reduced; each node needs
to know the queue size of only its one-hop away neighbors.

C. wDiff-subMax

wDiff-subMax is an extension of Diff-subMax for the sce-
narios that link layer operations and data exchange (between
the network and link layers) are not possible due to wifi
firmware or driver restrictions or may not be preferable.
Therefore, wDiff-subMax does not employ any scheduling
mechanism, but the routing and flow control. The flow con-
trol algorithm is the same as in Diff-Max. Yet, the routing
algorithm is updated as explained in the next.

Eq. (10) requires per-flow queues as well as per-link queues
for routing decision. If per-link queues are not available
at the network layer, these parameters should be estimated.
wDiff-subMax, window-based routing algorithm, implements
Eq. (10) by estimating per-link queue sizes. In particular,the
routing algorithm sends a window of packets, and receive

acknowledgement (ACK) for each transmitted packet. The
ACK mechanism has three functions: (i) carries per-flow queue
size information, (ii) provides reliability,i.e., packets which
are not ACKed are re-transmitted, (iii) estimates per-linkqueue
sizes. The algorithm works as follows.

At time t
′k
i , the window size for linki − j is Wi,j(t

′k
i ),

the average round trip time of the packets isRTTi,j, and the
average round trip time of the packets in the last window is
RTTi,j(t

′k
i ). If Us

i (t
′k
i ) − Us

j (t
′k
i ) > 0 and RTTi,j(t

′k
i ) <

RTTi,j, then Wi,j(t
′k
i ) is increased by 1. IfUs

i (t
′k
i ) −

Us
j (t

′k
i ) > 0 and RTTi,j(t

′k
i ) > RTTi,j, then Wi,j(t

′k
i ) is

decreased by 1. If none of the packets in the last window is
ACKed, Wi,j(t

′k
i ) is halved. AfterWi,j(t

′k
i ) is determined,

fi,j(t
′k
i ) is set toWi,j(t

′k
i ) and fi,j(t

′k
i ) packets are passed

to the link layer. wDiff-subMax, similar to Diff-subMax,
reduces computational complexity and overhead significantly
as compared to Diff-Max.

V. PERFORMANCEEVALUATION

A. Numerical Simulations

We first simulate our scheme, Diff-Max as well as classical
backpressure in an idealized time slotted system in our in-
house simulator. The simulation results show that Diff-Max
performs as good as the classical backpressure. Next, we
discuss the simulation setup and results in detail.

We consider the triangle and diamond topologies shown in
Figs. 4(a) and 4(b). In the triangle topology, there are two flows
between sources;S1, S2 and receivers;R1, R2, respectively.
S1 is originated from nodeA and ends at nodeB, andS2 is
originated from nodeA and ends at nodeC. In the diamond
topology, there are two flows between sources;S1, S2 and
receivers;R1, R2, respectively.S1 is originated at nodeA
and ends at nodeB, andS2 is originated at nodeA and ends
at nodeD. In both topologies, all nodes are capable of relaying
packets to their neighbors. The simulation duration is10000
slots, and each simulation is repeated for 10 seeds. Each slot is
either onON or OFF state according to the loss probability,
which i.i.d. over slots and uniformly distributed at each slot.

Fig. 5 shows throughput vs. the loss probability for the
triangle topology. The loss is only over linkA−C. Fig. 5(a)
shows the total throughput of the two flows,i.e., from S1

to R1 and S2 to R2, while Fig. 5(b) and Fig. 5(c) present
individual throughput of flows fromS1 to R1 and S2 to
R2, respectively. As it is seen, both the total throughput and
individual throughput in Diff-Max scheme is equal to the ones
in the classical backpressure. This observation is confirmed
for different loss scenarios and for the diamond topology in
Figs. 6, 7, 8.

B. ns-2 Simulations

In this section, we simulate our schemes, Diff-Max, Diff-
subMax, wDiff-subMax as well as classical backpressure in
the ns-2 simulator [10]. The simulation results show that Diff-
Max, Diff-subMax and wDiff-subMax significantly improves
throughput as compared to the adaptive routing scheme; Ad



(a) Triangle topology (b) Diamond topology (c) Grid topology

Fig. 4. Topologies used in simulations. (a) Triangle topology. There are two flows between sources;S1, S2 and receivers;R1, R2, i.e., from nodeA to B
(S1 - R1) and from nodeA to C (S2 - R2). (b) Diamond topology. There are two flows between sources;S1, S2 and receivers;R1, R2, i.e., from node
A to B (S1 - R1) and from nodeA to D (S2 - R2). (c) Grid topology. 12 nodes are randomly placed over4× 3 grid. An example node distribution and
possible flows are illustrated in the figure.
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(b) Throughput of flow fromS1 to R1 vs. loss
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(c) Throughput of flow fromS2 to R2 vs. loss
probability

Fig. 5. Triangle topology shown in Fig. 4(a). The loss is overlink A− C. (a) Total throughput (sum of the throughput of flows fromS1 to R1 andS2 to
R2) vs. loss probability. (b) Throughput of flow fromS1 to R1 vs. loss probability. (c) Throughput of flow fromS2 to R2 vs. loss probability.
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(b) Throughput of flow fromS1 to R1 vs. loss
probability
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(c) Throughput of flow fromS2 to R2 vs. loss
probability

Fig. 6. Triangle topology shown in Fig. 4(a). The loss is overall links. (a) Total throughput (sum of the throughput of flows fromS1 to R1 andS2 to R2)
vs. loss probability. (b) Throughput of flow fromS1 to R1 vs. loss probability. (c) Throughput of flow fromS2 to R2 vs. loss probability.
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(b) Throughput of flow fromS1 to R1 vs. loss
probability
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(c) Throughput of flow fromS2 to R2 vs. loss
probability

Fig. 7. Diamond topology shown in Fig. 4(b). The loss is over link A−B. (a) Total throughput (sum of the throughput of flows fromS1 to R1 andS2 to
R2) vs. loss probability. (b) Throughput of flow fromS1 to R1 vs. loss probability. (c) Throughput of flow fromS2 to R2 vs. loss probability.

hoc On-Demand Distance Vector (AODV) [11]. Next, we
present the simulator setup and results in detail.

1) Setup: We considered two topologies: diamond topology
shown in Fig. 4(b); and a grid topology shown in Fig. 4(c). In
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(b) Throughput of flow fromS1 to R1 vs. loss
probability
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(c) Throughput of flow fromS2 to R2 vs. loss
probability

Fig. 8. Diamond topology shown in Fig. 4(b). The loss is over all links. (a) Total throughput (sum of the throughput of flowsfrom S1 to R1 andS2 to
R2) vs. loss probability. (b) Throughput of flow fromS1 to R1 vs. loss probability. (c) Throughput of flow fromS2 to R2 vs. loss probability.

the diamond topology, the nodes are placed over500m×500m
terrain. Two flows are transmitted from nodeA to nodesB
and D. In the grid topology,4 × 3 cells are placed over a
800m × 600m terrain.12 nodes are randomly placed to the
cells. In the grid topology, each node can communicate with
other nodes in its cells or with the ones in neighboring cells.
Four flows are generated randomly.

We consider CBR traffic. CBR flows start at random times
within the first5sec and are on until the end of the simulation
which is 100sec. The CBR flows generate packets with inter-
arrival times 0.01ms. IEEE 802.11b is used in the MAC
layer (with updates for Diff-Max implementation as explained
in Section IV). In terms of wireless channel, we simulated
a Rayleigh fading channel with average channel loss rates
0, 20, 30, 40, 50%.5 We have repeated each100sec simulation
for 10 seeds.

The channel capacity is1Mbps, the buffer size at each
node is set to1000 packets, packet sizes are set to1000B.
We compare our schemes; Diff-Max, Diff-subMax, and wDiff-
subMax with AODV, in terms transport-level throughput.

The Diff-Max parameters are set as follows. For the flow
control algorithm;Ti = 80ms, Rmax

i = 20 packets,M = 200.
For the routing algorithm;T

′

i = 10ms, Fmax
i = 4 packets.

2) Results: Fig. 9, presents simulation results in ns-2 simu-
lator over diamond and grid topologies for different loss rates.

Fig. 9(a) shows the results for the diamond topology. The
loss rate is over the link between nodesA andB. Diff-Max
performs better than the other schemes for the range of loss
rates. The reason is that Diff-Max activates links based on per-
link queue backlogs, loss rates, and link rates. On the other
hand, Diff-subMax, wDiff-subMax, and AODV uses classical
802.11 MAC, which provides fairness among the competing
nodes for the medium, which is not utility optimal. When
the loss rate over linkA − B increases, the total throughput
of all the schemes reduces as expected. As it can be seen,
the decrease of our schemes; Diff-Max, Diff-subMax, wDiff-
subMax is linear, while the decrease of AODV is quite sharp.
The reason is that when AODV experiences loss over a path,
it deletes the path and re-calculates new routes. Therefore,

5We consider the loss rates in the range up to50%, because recent studies
of IEEE 802.11b based wireless mesh networks [17], [18], have reported
packet loss rates as high as 50%.

AODV does not transmit over lossy links for some time period
and tries to find new routes, which reduces throughput.

Fig. 9(b) elaborates more on the above discussion. It shows
the throughput of two flowsA to B andA to D as well as
their total value when the loss rate is10% over linkA−B. As
it can be seen, the rate of flowA−B is very low in AODV as
compared to our schemes, because AODV considers the link
A−B is broken at some periods during the simulation, while
our schemes continue to transmit over this link.

Let us consider Fig. 9(a) again. Diff-subMax and wDiff-
subMax improve throughput significantly as compared to
AODV thanks to exploring routes to improve utility (hence
throughput). The improvement of our schemes over AODV
is up to22% in this topology. Also, Diff-subMax and wDiff-
subMax have similar throughput performance, which emphasis
the benefit of routing part and the effective link layer queue
estimation mechanism of wDiff-subMax.

Fig. 9(a) also shows that when loss rate is50%, the
throughput improvement of all schemes are similar, because
at 50% loss rate, linkA − B becomes very inefficient, and
all of the schemes transmit packets mostly from flowA to D

over pathA − C − D and have similar performance at high
loss rates.

Fig. 9(b) shows the results for the grid topology. The
throughput improvement of our schemes is higher than AODV
for all loss rates in the grid topology and higher as comparedto
the improvement in the diamond topology,e.g., the improve-
ment is up to33% in the grid topology. The reason is that
AODV is designed to find the shortest paths, but our schemes
are able to explore interference free paths even if they are not
the shortest paths, which is emphasized in larger topologies.

C. Android Prototype

We consider a scenario in which a group of smartphones
collaborate in the same geographical area. In our setting,
we use four Android 4.0 [12] based Galaxy Nexus phones,
and configure them to operate in ad-hoc mode over Wifi.
We implement our wDiff-subMax scheme (flow control and
routing) as an extension of UDP socket.

We first consider a scenario in which two phones (A andB)
are connected to each other. PhoneA transmits4MB audio
file to phoneB. The transmission time for wDiff-subMax was
16sec which is comparable with its TCP counterpart, which
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rate

Fig. 9. Total throughput vs. average loss rate for differentpolicies and in two different topologies. (a) Total throughput vs. average loss rate in diamond
topology. (b) Total and per-flow throughput for different policies when the average loss rate is set to10% in the diamond topology. (c) Total throughput vs.
average loss rate in grid topology.

was14sec. This example shows the efficiency of our algorithm
as an extension of UDP, which causes packet losses or too long
transmission times.

In the second scenario, we placed/separated phones to be
able to create a topology similar to the diamond topology
shown in Fig. 4(b). In this setup, phoneA transmits4MB

audio file to phoneD either using phoneB or C as a relay.
We first consider TCP connection over the pathA − B −D

and configure phoneB so that it drops relaying packets after
10sec transmission. As expected, TCP connection fails when
B stops relaying packets. On the other hand, wDiff-subMax
continues transmission even afterB stops, by relaying packets
using phoneC, and completes the transmission in40sec.

VI. RELATED WORK

Backpressure and follow-up work. This paper builds on
backpressure, a routing and scheduling framework over com-
munication networks [1], [2], which has generated a lot of
interest in the research community [16]; especially for wireless
and-hoc networks [19], [20], [21], [22], [23], [24]. Also, it
has been shown that backpressure can be combined with flow
control to provide utility-optimal operation guarantee [3], [23].
This paper follows the main idea of backpressure framework,
and revisit it considering the practical challenges that are
imposed by the current networks.

Backpressure implementation. The strengths of the back-
pressure framework have recently increased the interest on
practical implementation of backpressure over wireless net-
works. Multi-path TCP scheme is implemented over wireless
mesh networks [6], where TCP flows are transmitted over mul-
tiple pre-determined paths and packets are scheduled accord-
ing to backpressure scheduling algorithm. At the link layer,
[4], [5], [25], [26] propose, analyze, and evaluate link layer
backpressure-based implementations with queue prioritization
and congestion window size adjustment. The backpressure
framework is implemented over sensor networks [7] and
wireless multi-hop networks [8], which are also the most close
implementations to ours. Our main differences are that; (i)
we consider separation of routing and scheduling to make
practical implementation easier, (ii) we design and analyze a
new scheme; Diff-Max, (iii) we simulate and implement Diff-
Max over ns-2 and android phones.

Backpressure and Queues. According to backpressure
framework, each node constructs per-flow queues. There is
some work in the literature to stretch this necessity. For
example, [27], [28] propose using real per-link and virtual
per-flow queues. Such a method reduces the number of queues
required in each node, and reduces the delay. Although this
approach reduces the backpressure framework to make routing
decision using virtual queues and scheduling decision using
the real per-link queues by decoupling routing and scheduling,
it does not separate routing from scheduling. Therefore, this
approach requires strong synchronization between the network
and link layers, which is difficult to implement in practice as
explained in Section I.

VII. C ONCLUSION

In this paper, we proposed Diff-Max, a framework that sep-
arates routing and scheduling in backpressure-based wireless
networks. Diff-Max improves throughput significantly. Also,
the separation of routing and scheduling makes practical im-
plementation easier by minimizing cross-layer operationsand
it leads to modularity. Our design is grounded on a network
utility maximization (NUM) formulation of the problem and
its solution. Simulations in ns-2 demonstrate the performance
of Diff-Max as compared adaptive routing schemes, such as
AODV. The evaluations on an android testbed confirm the
efficiency and practicality of our approach.
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