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Abstract

To be useful teammates to human partners, robots must be
able to follow spoken instructions given in natural language.
However, determining the correct sequence of actions in re-
sponse to a set of spoken instructions is a complex decision-
making problem. There is a “semantic gap” between the
high-level symbolic models of the world that people use, and
the low-level models of geometry, state dynamics, and per-
ceptions that robots use. In this paper, we show how this
gap can be bridged by inferring the best sequence of actions
from a linguistic description and environmental features. This
work improves upon previous work in three ways. First, by
using a conditional random field (CRF), we learn the rela-
tive weight of environmental and linguistic features, enabling
the system to learn the meanings of words and reducing the
modeling effort in learning how to follow commands. Sec-
ond, a number of long-range features are added, which help
the system to use additional structure in the problem. Fi-
nally, given a natural language command, we inferboth the
referred path and landmark directly, thereby requiring the al-
gorithm to pick a landmark by which it should navigate. The
CRF is demonstrated to have 15% error on a held-out dataset,
when compared with 39% error for a Markov random field
(MRF). Finally, by analyzing the additional annotations nec-
essary for this work, we find that natural language route di-
rections map sequentially onto the corresponding path and
landmarks 99.6% of the time. In addition, the size of the re-
ferred landmark varies from0m2 to 1964m2 and the length
of the referred path varies from0m to 40.83m.

1 Introduction
In order to achieve higher levels of autonomy, robots need
the ability to interact naturally with humans in unstructured
environments. One of the most intuitive and flexible inter-
action modalities is to command robots using natural lan-
guage. To follow natural language directions such as “Go
down the hallway, take a right, and go into a lounge with
some couches,” a robot must convert the symbolic natural
language instructions to low level actions and observations
that correspond to the desired motion through the environ-
ment. Associated with this language grounding problem is
an inherent lack of complete information; the robot may
only know about a few objects or landmarks in the envi-
ronment, making it necessary to match unknown parts of the
language to landmarks that the robot can already detect. In
addition it must ground a variety of words such as, “right,”
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“left,” “through,” and “past” in motions and paths through
the environment.

In previous work Kollar et al. (2010) formulated the prob-
lem of understanding route directions as an MRF, parsing the
language it into its component parts and inferring the path
that corresponded to the language. Spatial relations, suchas
“past” or “through”, were modeled using naive Bayes: learn-
ing the probability of a spatial relation such as “past” given a
set of features. Each unknown component landmark, such as
“monitors” or “refrigerator”, was probabilistically grounded
using Flickr co-occurrences that relate the language in the
command to observed objects in the environment.

The technical contribution of this work is four-fold. First,
we formulate the problem of understanding natural language
commands as a conditional random field (CRF), which en-
ables the system to learn the mapping from novel words onto
the referred path through the environment and the referred
landmarks. Secondly, the CRF, unlike the MRF, is able
to learn the relative weights of long-range word-dependent
features. Third, the CRF reduces the amount of modeling
effort necessary when compared with the MRF in Kollar
et al. (2010), not requiring the creation of a new training
dataset each time a new word, such as a spatial relation, is
added. Finally, we formulate the CRF so that both the re-
ferred landmarks and referred partial paths are inferred, in-
stead of marginalizing over the set of landmarks as in Kollar
et al. (2010). For example, with a command such as “go past
the bathroom”, the robot will infer a polygon that describes
“bathroom”, and a path that corresponds to “past”. The CRF
is demonstrated to have 15% error on a held-out dataset,
when compared with 39% error for a Markov random field
(MRF). Finally, by analyzing the additional annotations nec-
essary for this work, we find that natural language route di-
rections map sequentially onto the corresponding path and
landmarks 99.6% of the time. In addition, the size of the re-
ferred landmark varies from0m2 to 1964m2 and the length
of the referred path varies from0m to 40.83m.

2 Approach
To address the challenge of understanding natural language
commands, there are two key insights. The first is to de-
compose a natural language command into a sequence of
spatial description clauses (SDCs), which corresponds to a
component sequence of actions that the robot should fol-
low (Kollar et al., 2010). Each spatial description clause
(SDC) consists of a figure, verb, spatial relation and land-
mark. For example, the command “Go down the hallway,”
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(a) v:starting sr:in l:this
hall

(b) v:turn left (c) v:walk sr:through
l:this metal door

(d) v:walk sr:straight
down l:the hall

(e) v:turn right sr:into
l:the hall in front of the
elevators

Figure 1: An example from our corpus: spatial description clauses in each subfigure are paired with a path and landmark. The
start location of the partial path is shown in green, the end location is shown in red and the corresponding landmark is a green
polygon when it exists.

consists of a single SDC: the figure is implicitly “(you)”, the
verb is “go,” the spatial relation is “down”, and the landmark
is “the hallway”. Longer commands consist of a sequence
of SDCs, which apply to different parts of the path that the
robot should follow.

The second key insight is to model the problem of infer-
ring a path from natural language commands as a cost func-
tion which, when optimized, yields the desired behavior of
the robot. In order to do this, we break down the language
into SDCs and a path through the environment into partial
paths, each of which refers to a particular landmark. Thus,
the natural language, given as text input, is automaticallyde-
composed into a sequence ofn SDCs sdci. A pathr, repre-
sented as a sequence of robot poses in global coordinates is
broken down into a corresponding sequence of (potentially
overlapping) partial pathsri and corresponding landmarks
li.

Thus, our training dataset has training examples that con-
sist of a sequence of partial pathsri, landmarksli and SDCs
sdci, as seen in Figure 1. The partial pathri corresponds to
a sequence of poses between the green robot pose and the
red robot pose, the landmarkli corresponds to a polygon,
and sdci corresponds to the text in the description.φi, the
output variable, is Boolean and determines if theith partial
path and landmark corresponds toith SDC. When the text
corresponds to the partial path and landmark (as in each el-
ement of Figure 1(a-e)), thenφi = True. When the partial
path and landmark does not correspond to the language, then
φi = False.Θ are the parameters of the model. Thus, the
goal of inference is to minimize the cost functionC:

argmin
r1...rn,l1...ln

C(r1 . . . rn, l1 . . . ln|sdc1 . . . sdcn; Θ)

where C(r1 . . . rn, l1 . . . ln|sdc1 . . . sdcn; Θ) ,

− log(p(φ1 . . . φn|r1 . . . rn, l1 . . . ln, sdc1 . . . sdcn; Θ))

A full example of a sequence of partial paths along with
the corresponding landmarks is shown in Figure 1. The goal
of learning is then to estimate the model parametersΘ from
a training dataset of sequences of SDCs, partial paths, and
landmarks. The goal of inference is to take as input a se-
quence of SDCs and pick the best sequence of partial paths
and landmarks in the environment that maximizes the prob-
ability that the two correspond.

3 Corpus
For the purpose of understanding what people might want
to tell their robots, we have used a corpus collected as part

Figure 2: An overview of the system architecture.

of Kollar et al. (2010). In it, Kollar et al. (2010) performed
an extensive study on how people give route directions, col-
lecting a corpus of natural language route directions through
an office environment in two adjoining buildings at MIT.
They asked fifteen subjects to write directions between 10
different starting and ending locations, for a total of 150
directions in each environment. Subjects were solicited by
placing fliers around MIT and were selected for inclusion in
the study if they were between the ages of 18 and 30 years
old, were proficient in English, and were unfamiliar with the
test environment. The pool was made up of 47% female
and 53% male subjects from the MIT community, primar-
ily students or administrators. When collecting directions,
subjects were first given a tour of the building to familiarize
themselves with the environment. Then subjects were asked
to write down directions from one location in the space to
another, as if they were directing another person. Subjects
were allowed to wander around the floor as they wrote the
directions and were not told that this data was for a robotics
research experiment.

In this work, we extended the dataset by annotating each
command with the corresponding path stated in the natural
language command. In addition, we annotated each natural
language command with a sequence of SDCs and the corre-
sponding partial paths and landmarks that were referenced
in each SDC, as shown in Figure 1. This gives us a dataset
from which we can both learn how to follow natural lan-
guage commands and also to understand geometrically the
types of landmarks and paths that people use in route direc-
tions. The results of this effort are discussed in Section 5.In
addition to annotating the correct SDCs, partial paths, and
landmarks for the 150 directions, paths that donot corre-
spond to the SDCs stated in the command were annotated as
well, resulting in a dataset of 300 commands. Half of this
dataset corresponds to good paths and landmarks and half
of it corresponds to bad paths and landmarks for a given se-
quence of SDCs. Statistics about the partial paths can be
seen in Table 2 and Figure 5.



(a) windows (b) door (c) copier (d) hallway (e) atrium (f) couches

Figure 3: Examples of candidate landmarks.

4 System
The input to our system is a semantic map of the environ-
ment (e.g., a gridmap with the locations of detected objects)
along with a natural language command. The output of our
system is a cost, which, when optimized, returns the se-
quence of partial paths and landmarks that correspond to
a natural language command. In order to achieve this, we
extract a set of candidate destinations from a map of the
environment and plan a path from the current location of
the robot to each final destination. Extracting destinations
from the map is performed by first creating a rapidly explor-
ing randomized graph (RRG) (Karaman and Frazzoli, 2010),
and then clustering this graph using a graph-based clustering
technique (Ng, Jordan, and Weiss, 2001). Since extracting
landmarks is an open research problem, we currently op-
timize over a set of annotated landmarks, as in Figure 3.
Finally, given a natural language command, we have previ-
ously shown the ability to automatically extract a sequence
of SDCs from a natural language command (Kollar et al.,
2010).

Given a sequence of SDCs from a natural language com-
mand, a sequence of landmarks from the candidate set, and
a path to one of the destinations in the candidate set, we
then extract a set of features from each element in the se-
quence, resulting in a sequence of features. The goal is then
to learn when these features correspond to a good sequence
of SDCs, partial paths and landmarks, and output the cor-
responding probability. An overview of the system can be
seen in Figure 2. The rest of this section will focus on the
conditional random field, how the features are extracted and
how we can compute the optimal sequence of partial paths
and landmarks.

Conditional Random Field
We formulate the problem of understanding natural lan-
guage commands as inference in a linear-chain condi-
tional random field (CRF) (Lafferty, McCallum, and Pereira,
2001). We use CRFs because they do not suffer from the
label-bias problem, allow for long-range features, and di-
rectly learn the probability of the output class instead of ex-
pending modeling effort on the probability of particular fea-
tures which may (or may not) help with discriminating be-
tween examples (Sutton and McCallum, 2007). Combined,
this usually leads to better performance at learning the quan-
tity of interest Ng and Jordan (2001).

Thus, using the annotated corpus from the previous sec-
tion, the goal is to learn when a sequence of SDCs corre-
sponds to a sequence of partial paths and landmarks. Again,
φi is a Boolean correspondence variable to determine if the
ith partial path and landmark correspond toith SDC,ri is

Figure 4: Candidate destinations. Destinations (triangles)
are proposed by using spectral clustering on the graph of the
RRG.

the ith partial path,li is the ith landmark and sdci is the
ith spatial description clause. The corpus from the previ-
ous section is used for training, which has examples of paths
that correspond to the language (φi = True) and examples
of paths that do not correspond to the language (φi = False).
Assuming that we have a set ofK featuressk which depend
only on theith SDC, path, and landmark andJ featurestj ,
which depend on pairs of SDCs, paths, and landmarks in the
sequence, then we would like to learn the following distri-
bution:

p(φ1 . . . φN |r1 . . . rN , l1 . . . lN , sdc1 . . . sdcN ) =

1

Z
exp





∑

i,j

λjtj(φi−1, φi, ri−1, ri, li, li−1, sdci−1sdci)





× exp





∑

i,k

µksk(φi, ri, li, sdci, i)





The set of featuressk for this work is of three types, and
extends the feature set presented in other Kollar et al. (2010).
Feature types include those that depend only on the path,
those that depend only on the landmark, and those that de-



Wordp(sdci) Pathq1(ri) Landmarkq2(li, sdci) Landmark-Pathq3(ri, li) Pairs of Paths:q4(ri−1, li−1, ri, li)

word1 path length detected object == wordi distance ofri to li distance betweenri−1, ri

word2 orient. change detected object seen with wordi li in front of ri start/end overlap ofri−1, ri

. . . maximum Flickr co-occurrence li in behind ofri start/end
wordN between objects and wordi li in right of ri start/end

maximum Flickr co-occurrence li in left of ri start/end
between objecti and words area of landmark

perimeter of landmark
no landmark

Table 1: The set of features used when learning the CRF.

pend on the landmark and the path. The partial path features
tj are new in this work and include features that are unable
to be captured by an MRF. Thus referring to Table 1, the set
of features used in the CRF is:

• p(sdci)×q1(ri) - the Cartesian product of words and path
features

• q2(li, sdci) - Context features

• p(sdci) × q3(ri, li) - the Cartesian product of words and
landmark-path features

• p(sdci) × q4(ri−1, li−1, ri, li) - the Cartesian product of
words and “pairs of paths” features.

All of the features which are continuous are discretized
into a finite set. In order to learn the parametersλj and
µk that maximize the likelihood of the training dataset, we
compute the gradient, as described in Sutton and McCallum
(2007), and use L-BFGS to optimize the parameters of the
model via gradient descent.

Path Optimization
Thus far, we have learned a function that will take as in-
put a sequence of extracted spatial description clauses, par-
tial paths, and landmarks and output the probability that the
language corresponds to this path and landmark. Given a
map of a novel environment, candidate destinations are ex-
tracted. For each candidate destination, a path is planned
and for each SDC, a landmark is picked. However, since
each SDC corresponds to a partial path, the full pathr must
be partitioned. For thejth SDC, this requires an alignment
variablea

j
1

anda
j
2
, which indexes into the pathr at starting

locationa
j
1

and ending locationaj
2

to divide it into a partial
pathr

a
j
1
,a

j
2

. For example,r0,T = r would correspond to the
full path andr0,0 = ∅ would correspond to the empty set.
Thus, the goal of the optimization is to perform the follow-
ing minimization of the cost function:

argmin
r,l1...,a1

1
a1

2
...

C(ra1

1
,a1

2

, . . . raN
1

,aN
2

, l1 . . . lN , sdc1 . . . sdcN )

In order to solve this optimization efficiently, dynamic
programming can be used. However, because feature ex-
traction currently dominates the computational expenditure
we only consider the uniform alignment (e.g. dividing the
path uniformly) and maximum probability landmark.

5 Experimental Insights
To evaluate the feasibility of our system and to understand
the structure of route directions further, we have performed

(a) shortest path (b) longest path

(c) smallest landmark (d) biggest landmark

Figure 5: Specific SDCs and their corresponding partial
paths for the maximum and minimum landmark sizes and
longest and shortest path length. In (a) the correspond-
ing SDC wasturn towards the large cement-colored double
doors, in (b) wasfollow the hall, in (c) waswalk towards the
M&M doll and in (d) wasenter building 36. The solid line
corresponds to the landmark and the dotted line corresponds
to the path of the robot.

an analysis of the corpus of partial paths and landmarks. Ini-
tially we hypothesized that route directions would occasion-
ally have reordered language relative to the path that was
being referred to, that there would be a relatively contigu-
ous sequence of partial paths associated with the language
(sequence of SDCs) and that people would refer to a wide
range of corresponding paths and landmarks, which would
additionally vary greatly in size.

In Table 2 we can see a summary of the results for these
hypotheses. In particular, we can see that in general most



Partial Path Statistics

Number of route directions 150
Number of SDCs 1460
Overlap 92.3%
Strictly overlap 38.5%
Contained 5%
Reordered 0.4%

Table 2: Statistics about partial paths from the corpus.
Strictly overlap means that two partial paths share more than
a common endpoint and reordered means that although two
SDCs were sequential in the language, they were not se-
quential relative to the ground-truth path.

of the partial paths are contained in or overlap with other
partial paths. This is indicative of the fact that directions
tend to be sequential and redundant: people describe mul-
tiple landmarks of interest that overlap with one another in
order to not get lost. However, people infrequently reordered
SDCs relative to the ground-truth path, indicating that peo-
ple speak about a path sequentially. By annotating the land-
marks and partial paths, we are able to see the wide variety
of landmarks and spatial relations that people use in natural
language route directions. In this work, we found that the
landmarks that people use in route directions ranged from
1964m2 to 0m2, with an average size of42.94m2, which
indicates that the size of landmarks can vary widely. In ad-
dition, the length of a partial path varies from0m to40.83m,
with a mean of5.53m, which is also quite large. Some ex-
amples of this variation can be seen in Figure 5.

We have evaluated the CRF on a balanced test dataset con-
sisting of 29 positive examples of directions, paths and land-
marks and 30 negative examples of directions, paths, and
landmarks from a floor of the Stata center at MIT. In Fig-
ure 6, we show the test error (the number of examples whose
output class do not corresponded to the correct class) for this
held-out dataset. For the given set of test examples, we are
able to robustly learn when the language corresponds to the
partial paths and landmarks, even when we have just a few
training examples. For 120 training examples, the CRF has
an error of 15% on the held-out dataset, while the MRF has
39% error on the same dataset.

In addition, we are able to introspect the features that are
deemed most important to the learning (e.g. the features
with highest weight) out of the set of 174,000 features. If we
look at the top 30 features when the SDCs correspond to the
paths and landmarks, then we would hope to see the CRF
learning features that intuitively correspond to good paths.
This can be seen in the following:

• left left st - when the word “left” is used, then the land-
mark is physically to the left of the robot at the start loca-
tion.

• through ratioFigureToAxes 0.9 1.0 - when “through” is
said the robot goes through the landmark polygon.

• orient no landmark - when “orient” is said, there is typ-
ically no landmark.

• left orient st end sp 77 84 - when “left” is said the par-
tial path orientation should change between 77 and 84 de-
grees.

• to distFigureEndToGround 0.0 0.1 - when “to” is used
the path most likely ends in the landmark.

20 40 60 80 100 120
number of training examples
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Stata 8

MRF
CRF

Figure 6: Error on a test dataset consisting of 59 positive and
negative examples.

• room rel chair - when the word “room” is said, a chair
is likely visible.
If instead we look at SDCs that do not correspond to the

paths and landmarks (e.g. are bad paths), and look at the
top 30 features, then we would hope to see features that do
not intuitively correspond to good paths. Some examples of
these include:
• left right st - when the word “left” is used, then the land-

mark is to the right of the partial path.
• room lmark area 0 10 - when the word “room” is used,

then the landmark area tends to be small (e.g. less than
2.5m2... most rooms were approximately100m2).

• orient int path sp 14 15 - when the word “orient” is
used, then the partial path should be very long (usually
the partial path is very small when people say “orient”
and only the orientation of the robot changes).

• left orient st end sp -92 -84 - When the word “left” is
used, then you should turn -90 (e.g. turn right).

6 Related Work
Many authors have proposed formalisms similar to spatial
description clauses for enabling systems to reason about the
semantics of natural language directions. For example, Bug-
mann et al. (2004) identified a set of 15 primitive procedures
associated with clauses in a corpus of spoken natural lan-
guage directions. Levit and Roy (2007) designednaviga-
tional informational unitsthat break down instructions into
components. MacMahon, Stankiewicz, and Kuipers (2006)
represented a clause in a set of directions as a compound ac-
tion consisting of a simple action (move, turn, verify, and
declare-goal), plus a set of pre- and post-conditions.

Others have created language understanding systems that
follow natural language commands, but without using a
corpus-based evaluation to enable untrained users to inter-
act with the system (e.g., Dzifcak et al. (2009); Skubic et al.
(2004)). Bauer et al. (2009) built a robot that can find its way
through an urban environment by interacting with pedestri-
ans using a touch screen and gesture recognition system.

In previous work, we have built direction understand-
ing systems (Wei et al., 2009; Kollar et al., 2010). This
work is able to learn the meaning of words from exam-
ple paths and directly estimates the landmarks, as well as



adding a number of features. Matuszek, Fox, and Koscher
(2010) and Shimizu and Haas (2009) use statistical meth-
ods to understand directions. We use a richer set of fea-
tures for our conditional model and estimate both the cor-
responding partial paths and landmarks directly from real-
world directions. Also related is Vogel and Jurafsky (2010),
who use reinforcement learning to follow directions in pic-
torial maps (MapTask). Cantrell et al. (2010) attempt to han-
dle the challenges of dialog (such as disfluencies). Finally,
there is a large set of psychological studies on understanding
the structure of route directions (Fontaine and Denis, 1999;
Vanetti and Allen, 1988; Tversky and Lee, 1998; Bugmann
et al., 2004). In this work, we believe we have expanded
on this body of work by analyzing the geometry of the the
referred landmark and partial paths.

7 Conclusions and Future Work
Challenges for future work include more general forms of
commands, which are more difficult because there are com-
plex verbs and a wide variety of events that must be recog-
nized. Two example commands include:
• “Wait by the staircase next to 391, and bring her to my

room when she comes in.”
• “Please go to the question mark and wait for her. When

she gets here, bring her back here.”
There are also challenges that we hope to address in the

route direction domain. These include handling the multi-
scale nature of some commands, such asfrom the entrance
of stata closest to the question mark all the way to the other
end...., fine-grained commands that are not amenable to the
current set of candidate destinations, and commands that re-
quire significant amounts of backtracking.

The contribution of this work is to formulate understand-
ing natural language directions as a CRF that enables the
system to infer both the referred landmark and the referred
partial path for each SDC in the natural language. We ad-
ditionally introduce new features into the learning and show
an analysis of the route direction corpus that indicates route
directions are sequential and referred landmarks and partial
paths vary greatly in size and length.
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