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Paracrine communication between different parts of the renal tubule is increasingly recognized as 

playing an important role in renal function. Previous studies have shown that changes in dietary 

acid-base load could reverse the direction of apical alpha-ketoglutarate (αKG) transport in the 

proximal tubule and Henle’s loop from reabsorption (acid load) to secretion (base load). Here we 

show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG 

receptor Oxgr1 expressed in the type B and non-A-non-B intercalated cells of the connecting 

tubule (CNT) and the cortical collecting duct (CCD). αKG (1mM) added to the tubular lumen 

strongly stimulated Cl--dependent HCO3
- secretion and electroneutral transepithelial NaCl 

reabsorption in microperfused CCD of wild-type mice but not oxgr1-/- mice. Analysis of alkali-

loaded mice revealed a significantly reduced ability of oxgr1-/- mice to maintain acid-base 

balance. Collectively, these results demonstrated that Oxgr1 is involved in the adaptive regulation 

of HCO3
- secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and 

established αKG as a paracrine mediator involved in the functional coordination of the proximal 

and the distal parts of the renal tubule.     
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INTRODUCTION 

Alpha-ketoglutarate (αKG) is an intermediate of the citric acid cycle (TCA), an important 

anaplerotic substrate and a co-factor in a variety of enzymatic reactions. In addition to its direct 

effects on metabolic pathways, αKG was identified as a natural ligand to a G protein-coupled 

receptor (GPCR), namely GPR99 or 2-oxoglutarate receptor 1 (Oxgr1) (1). Oxgr1 belongs to a 

cluster of so-called “metabolic” GPCRs, which also includes receptors for succinate (GPR91), 

lactate (GPR81), 3-hydroxy-octanate (GPR109B), nucleotides (P2Y), fatty acids (FFAR), lipids 

(P2RY, CysLT, Oxer1, etc.), phospholipids (PAF), protease-activated receptors (PAR) and 

several orphan receptors (2). He et al, have shown that Oxgr1 is a Gq-coupled GPCR that is 

predominantly expressed in distal tubules in the kidney (1). However, the functional role of 

Oxgr1 has not been studied.     

Previous studies in rats demonstrated that renal handling of αKG changes significantly in 

response to changes in acid-base status. αKG is freely filtered in the glomerulus and, under 

normal conditions, actively reabsorbed in the proximal tubule and Henle’s loop. Acid load further 

stimulates αKG reabsorption, thus resulting in drop in urinary output of αKG. Under base 

loading conditions, the blood concentration of αKG rises and net αKG reabsorption in the 

proximal tubule and Henle’s loop is converted to net αKG secretion in the same nephron 

segments (3-5). This results in a significant increase in the urinary excretion of αKG. It has been 

proposed that excretion of αKG and other organic anions (e.g. citrate) in the urine represents the 

loss of “potential HCO3
-“ which provides the advantage of minimizing bicarbonaturia under 

alkali load (6). The latter is important because it allows the excretion of base at a lower urinary 

pH, thereby diminishing the risk of nephrolithiasis due to the formation of calcium-phosphate 

precipitates (αKG: pKa1(1.9), pKa2(4.4); bicarbonate: pKa1(6.1); HPO4
2-: pKa2(6.7-6.8) in the 
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urine (5, 7). Collectively, these results demonstrated that acid-base status is a major factor 

determining blood levels of αKG and the rate of αKG excretion into urine. Importantly, Ferrier et 

al. have shown that there is no net transport of αKG beyond the beginning of the distal tubule 

accessible to micropuncture (3). This indicated that variations in the urinary αKG concentration 

are directly proportional to the variations in the luminal levels of αKG in the CNT/CCD, where 

Oxgr1 is expressed (see below). Taken together, these data led us to hypothesize that Oxgr1 

could be involved in the apical and/or basolateral sensing of acid-base status through the sensing 

of αKG concentrations in the tubular fluid and/or in the blood. 

Testing this hypothesis revealed that luminal Oxgr1 regulates Cl--dependent HCO3
- 

secretion and electroneutral transepithelial NaCl reabsorption in the type B and non-A-non-B 

intercalated cells of the CNT/CCD. We show that this regulation is functionally important since 

mice devoid of Oxgr1 exhibit a reduced capacity to maintain acid-base equilibrium under base 

load conditions. We hypothesize that Oxgr1-mediated NaCl reabsorption in the type B and non-

A-non-B intercalated cells is required to compensate for the increased or decreased activity of 

sodium-hydrogen exchanger 3 (NHE3) in the proximal tubule and Henle’s loop under acid or 

base loading conditions, respectively. Collectively, our results show for the first time that the 

kidney possesses a paracrine mechanism involved in the control of acid-base balance. In this 

mechanism, αKG acts as a paracrine mediator between the proximal and the distal parts of the 

renal tubule. 
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RESULTS 

To identify renal cell types expressing Oxgr1 we used mice whose oxgr1 gene was 

deleted and replaced with a reporter gene encoding beta-galactosidase (LacZ). X-gal staining on 

kidney sections demonstrated patchy expression of Oxgr1 in cortical tubules (Supplementary 

Figures 1A and 1B).  Co-staining with a panel of cell-type specific markers revealed that Oxgr1 

co-localizes at the cellular level with pendrin, a Cl-/HCO3
- exchanger that is exclusively 

expressed at the apical membrane of the type B and non-A-non-B intercalated cells of the 

connecting tubule (CNT) and the cortical collecting duct (CCD) (Figure 1A-1F). This specific 

cellular localization was validated by the absence of co-staining with parvalbumin (a marker of 

the early distal convoluted tubule, Supplementary Figures 1C-1E), the sodium chloride co-

transporter (NCC) (a marker of the early and late distal convoluted tubule, Supplementary 

Figures 1F-1H), the beta subunit of the amiloride-sensitive sodium channel (ENaC) (a marker of 

the late distal convoluted tubule and the principal cells of the CNT and the CCD, Supplementary 

Figures 1I-1N), aquaporin-2 (a marker of principal cells of the CNT and the CCD, 

Supplementary Figures 1O-1T) and anion exchanger 1 (AE1) (a marker of type A intercalated 

cells of the CNT and the CCD, Supplementary Figures 1U-1Z). The type B and non-A-non-B 

intercalated cells in the CNT and the CCD are involved in the control of systemic acid-base 

homeostasis, extracellular fluid volume and blood pressure (reviewed in (8-10)). Pendrin 

participates in these functions by controlling HCO3
- secretion, electroneutral Na+-Cl- reabsorption 

(upon functional coupling with Na+-driven Cl-/HCO3
- exchanger NDCBE (Slc4a8) (11), and by 

regulating Na+ reabsorption in the adjacent principal cells (12). 

To examine whether αKG is capable of regulating apical Cl-/HCO3
- exchange activity we 

determined the activity of pendrin in intercalated cells of isolated CCDs by measuring the rate of 

intracellular acidification induced by the addition of luminal Cl- (forward activity) or 
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alkalinization following Cl- removal (reverse activity). As shown in Figure 2A, addition of 1 mM 

αKG to the luminal perfusion solution increased the rate of Cl-/HCO3
- exchange in intercalated 

cells of CCDs from oxgr1+/+ but not oxgr1-/- mice, although the exchanger displayed a similar 

baseline activity in the two mouse strains. A representative trace depicting the effect of 1mM 

αKG on intracellular pH in intercalated cells of CCD is shown in Supplementary Figure 2. 

Western blot analysis demonstrated that pendrin protein abundance was not different between 

oxgr1+/+ and oxgr1-/- mice (Supplementary Figures 3A and 3D). 

Next, we evaluated whether stimulation of luminal Cl-/HCO3
- exchange was associated 

with increased electroneutral NaCl reabsorption. Using in vitro microperfusion of CCDs from 

oxgr1+/+ mice, we found that addition of 1 mM αKG to the tubular lumen induced an equimolar 

reabsorption of Na+ and Cl- whereas basolateral αKG had no effect (Figure 2B). αKG-induced 

reabsorption of NaCl was markedly reduced by hydrochlorothiazide, an inhibitor of the 

electroneutral component of sodium reabsorption in the CCD. Interestingly, CCDs from oxgr1-/- 

mice displayed baseline Na+ but not Cl- transport which was abolished by the ENaC inhibitor 

amiloride. Luminal addition of αKG did not increase electroneutral NaCl reabsorption in CCD 

from oxgr1-/- mice but abolished ENaC-mediated Na+ reabsorption (Figure 2B). Western blot 

analysis revealed an increase in abundance of αENaC (oxgr1+/+ : 100 ± 7 (SEM, n=6) vs. oxgr1-/- 

: 136 ± 5 (SEM, n=6), arbitrary units, p=0.003, Supplementary Figures 3B and 3D) but not in 

abundance of βENaC subunit (Supplementary Figures 3C and 3D). 

Altogether, these results demonstrate that activation of luminal Oxgr1 by αKG stimulates 

pendrin activity and electroneutral reabsorption of NaCl by type B and non-A-non-B intercalated 

cells.  They also suggest that ENaC activity is increased in the knockout mice and that luminal 

αKG may inhibit ENaC independently of Oxgr1.  
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Next, we assessed whether challenges of acid-base or NaCl homeostasis cause changes in 

the luminal levels of αKG in the CNT/CCD or in the systemic circulation in mice. Wild-type 

C57BL/6 mice housed in metabolic cages were challenged with an oral acid, alkali or NaCl load 

(0.3 M NH4Cl, 0.28 M NaHCO3 or 0.28 M NaCl in drinking water, respectively) for 1, 3, 5 or 7 

days. αKG levels were measured in 24-hour urine samples or in serum samples collected at the 

end of the experiment. As shown in Figure 3A and Supplementary Figure 4A, the acid load 

induced a striking decrease in urinary [αKG]/[creatinine] ratios and urinary αKG concentrations, 

respectively, whereas base load resulted in an opposite pattern with a significant increase in 

urinary αKG levels. The changes in urinary αKG levels were parallel to changes in urinary pH 

(supplementary Figure 4B). At the same time, addition of NaCl to drinking water did not produce 

any effect on urinary αKG levels (Figure 3A and Supplementary Figure 4A). Importantly, none 

of the dietary supplements had a significant effect on plasma αKG concentration even though 

there was a tendency for increased αKG concentration in mice loaded with NaHCO3 (Figure 3B). 

To test whether base load can produce more rapid (<24 hours) effects on urinary αKG levels and 

to assess the threshold dose of base capable to increase αKG concentrations in urine, mice were 

gavaged with 400 µl solution containing various concentrations of NaHCO3. Spot urine was 

collected 3 hours after gavage. As control groups, mice gavaged with 400 µl of either water or 

0.56 M NaCl were used. As shown in Figure 3C, water or 0.56 M NaCl-gavaged mice excreted 

similar amounts of αKG in the urine. Base load induced a significant increase in both urinary pH 

and αKG/creatinine ratios when compared with water or NaCl controls (Figure 3C). Importantly, 

these changes reached statistical significance already at low doses of NaHCO3 (22.4 µmol 

NaHCO3 for αKG/creatinine ratio and 44.8 µmol NaHCO3 for urinary pH). Collectively, these 
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results demonstrated that the challenge of mice with acid/base but not NaCl load can produce 

rapid and significant effects on urinary αKG levels. 

To test whether deficiency of Oxgr1 could affect acid-base equilibrium, we analyzed urine 

and blood samples of wild-type and oxgr1-/- mice. As shown in Table 1, oxgr1-/- mice fed 

standard diet had a small but statistically significant decrease in urine pH and a statistically 

significant increase in urinary titratable acid and αKG levels. These results suggested that the 

acid-base equilibrium might be disturbed in oxgr1-/- mice. However, blood chemistry parameters 

were not different between wild-type and oxgr1-/- mice (Table 1). Thus, we tested the role of 

Oxgr1 in the condition of experimentally induced alkalosis. As shown in Table 1, both wild-type 

and oxgr1-/- mice given a NaHCO3-rich diet for 3 days (see Methods) developed a metabolic 

alkalosis with plasma HCO3
- levels raised above 30 mM. However, the increase in plasma HCO3

- 

levels was significantly higher in oxgr1-/- mice. Tubular handling of bicarbonate under alkali 

load was examined in a separate experiment by assessing its fractional excretion (FEHCO3). 

As shown in Table 1, the FEHCO3 was more than two fold lower in oxgr1-/- mice compared to 

wild-type mice, thus suggesting an inappropriate renal/tubular response in oxgr1-/- mice to 

the alkali load. Collectively, these results indicated that renal mechanisms responsible for 

maintaining acid-base equilibrium upon alkali load are impaired in oxgr1-/- mice. The fact that 

plasma Cl- concentration was significantly lower in oxgr1-/- mice (Table 1) suggested that a 

decrease in the HCO3
-/Cl- exchange activity via pendrin is involved in this impairment.  

 

DISCUSSION 

Paracrine signaling plays an important role in renal function. For instance, the tubuloglomerular 

feedback response which is mediated by a multitude of paracrine molecules (ATP, adenosine, 
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prostaglandin E2 and nitric oxide), is critically involved in the regulation of glomerular filtration 

rate (GFR) (reviewed in (13)). In the present study we show for the first time that maintaining 

systemic acid-base balance requires paracrine communication between the proximal and the 

distal parts of the renal tubule. We demonstrate that αKG acts in a paracrine manner on type B 

and non-A-non-B intercalated cells of the CNT/CCD stimulating HCO3
- secretion and NaCl 

reabsorption. These effects are induced by apical but not basolateral application of αKG and are 

mediated by Oxgr1, a GPCR that is specifically expressed in type B and non-A-non-B 

intercalated cells. Importantly, our estimations suggest that luminal levels of αKG in the 

CNT/CCD vary within the range of αKG concentrations that have been shown to activate Oxgr1 

in vitro (EC50 ∼70 µM (1)). Indeed, considering that under our experimental condition urine is 

concentrated approximately 10-20 times between the lumen of the CNT/CCD and the final urine, 

one can estimate the range of αKG concentration at the site of Oxgr1 expression as several 

hundreds nanomolar under acid load, as one hundred to several hundreds micromolar under 

standard diet and as one to several millimolar under base load (e.g. the concentration of αKG in 

the final urine of mice given 0.3 M NH4Cl in drinking water for 2 days is: 3.53 ± 2.10 µM (n=6, 

SD), the concentration of αKG in the final urine of mice given tap water is 2.03 ± 0.67  mM 

(n=6, SD) and the concentration of αKG in the final urine of mice given 0.28 M NaHCO3 in 

drinking water for 2 days is 36.43 ± 8.16 mM (n=6, SD), see Supplementary Figure 4A). Another 

piece of evidence supporting the functional relevance of this paracrine signaling is the finding 

that significant changes in urinary levels of αKG occur rapidly (less than 3 hours) in response to 

acid/base stress and that these changes can be induced by low, physiologically relevant doses of 

acid or base (e.g. the dose of 22.4 µmol NaHCO3, which produced a significant effect on the 

urinary αKG levels in gavage experiments is significantly lower than the amount of HCO3
- 
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produced by the metabolism of 1 g of the 24% protein-containing standard diet used in this 

study). This suggests that the activation level of this paracrine mechanism can be modulated by 

the diurnal variations in the dietary acid-base load and/or by the variations in body’s metabolic 

production of acid and base.  

 We propose that αKG/Oxgr1 paracrine signaling is involved in maintenance of acid-base 

balance at least in two ways. Firstly, this paracrine mechanism controls pendrin activity thereby 

exerting a direct effect on the acid-base balance. The rapid onset of pendrin activation by 

αKG/Oxgr1 (within 20 min) suggests that this regulation is transcriptionally independent. 

Together with the results showing rapid changes in urinary αKG levels under acute acid-base 

stress, these observations support the hypothesis that the αKG-Oxgr1-pendrin axis is involved in 

the dynamic fine-tuning of bicarbonate secretion by type B and non-A-non-B intercalated cells.  

Secondly, we hypothesize that αKG/Oxgr1signaling may be involved in the compensatory 

response to the acid-base stress-induced changes in NaCl reabsorption through the sodium-

hydrogen exchanger 3 (NHE3) in the proximal tubule and Henle’s loop. Indeed, it was 

demonstrated that acute acid or base loading induces an increase or decrease in the NHE3 

activity, respectively (reviewed in (14). Because NHE3 is functionally coupled to a Cl-/ anion 

exchange, these changes result not only in the increased or decreased bicarbonate reabsorption 

but also in the increased or decreased net NaCl reabsorption in the proximal tubule, respectively. 

Thus, by decreasing or increasing NaCl reabsorption in the type B and non-A-non-B intercalated 

cells under acid or base loading, respectively, the αKG/Oxgr1 signaling participates in 

maintaining NaCl homeostasis and, indirectly, in acid-base balance. This model is depicted in the 

Supplementary Figure 5. To what extent this paracrine mechanism operates 

similarly/differentially between type B and type non-A/non-B intercalated cells or between CNT 
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and CCD (which contain different ratios of these cell types) remains to be established in future 

studies. The idea that the αKG/Oxgr1 pathway is involved in sodium balance is supported by the 

fact that oxgr1-/- mice exhibit an increased functional activity of ENaC correlating with the 

increased protein abundance of αENaC subunit. The mechanism of these adaptive changes 

remains unknown, but our data indicate that they occur without changes in plasma aldosterone 

levels.  

Besides its Oxgr1-mediated stimulatory action on NaCl reabsorption in intercalated cells, 

αKG also inhibits amiloride-sensitive Na+ reabsorption in principal cells independently of Oxgr1 

activation. This metabolic effect of αKG may be related to increased ATP production and 

inhibition of amiloride-sensitive epithelial sodium channel (ENaC) via autocrine activation of 

P2Y2 receptors (15). Receptor-dependent and -independent effects of αKG on intercalated and 

principal cells both converge to compensate alkalosis-induced decrease in proximal tubule 

reabsorption of NaCl by favouring NaCl reabsorption over Na+/K+ exchange along the 

CNT/CCD.  

Our finding that αKG serves as a paracrine mediator in regulating acid-base balance adds 

to the accumulating evidence for the regulatory homeostatic role of organic anions excreted in 

urine. It has been long recognized that citrate, the major intermediate of TCA cycle in the urine, 

has a dual role in maintaining acid-base balance and in the chelation of calcium ions, thereby 

preventing calcium stone formation (reviewed in (16)). Peti-Peterdi and colleagues have recently 

demonstrated the role of luminal succinate in GPR91-mediated regulation of renin secretion (17, 

18). Today, citrate supplementation is widely used in the prevention of nephrolithiasis and 

GPR91 is recognized as a potential target in treatment of diabetic nephropathy. Our results and 

the fact that Oxgr1 expression is almost exclusively restricted to the kidney suggest that Oxgr1 
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could represent an interesting therapeutic opportunity for treatment of acid-base disorders, or in 

the treatment of tubular disorders associated with kidney stones formation. The second tissue that 

exhibits a high level of Oxgr1 expression is the testis and epididymis (19). Whether Oxgr1 is 

involved in the homeostasis of epididymal fluid and male fertility needs to be addressed by future 

investigation.    

 

  

Experimental Procedures 

Animals A colony of oxgr1-/- mice (C57BL/6J background) was established from breeding 

pairs of oxgr1+/- heterozygous developed by Velocigene and obtained from the Knock-Out Mouse 

Project (KOMP) repository. Male mice weighing 25-30 g and 8 weeks of age were used in all 

experiments. The animals were maintained on the standard laboratory chow diet (KLIBA 

NAFAG diet 3800). The NaHCO3-rich and standard jelly diets were prepared as follows: 6 ml of 

0.7 M NaHCO3 or 6 ml of water were mixed with 0.2 ml agar-agar solution and briefly boiled. 

The resulting solution was cooled down to 40°C and mixed with 5g of the standard lab chow in 

the form of powder. The final mixture was stored at 4°C for a maximum of 3 days.  The mice 

received 11 g of the jelly food per day. All experiments with animals were performed in 

accordance with the Swiss guidelines for animal care. 

Antibodies The antibodies against NCC, aquaporin-2, αENaC, βENaC, AE1 and pendrin have 

been used as previously described (20, 21). Anti-parvalbumin antibody was from Swant 

(Switzerland). Anti-beta-galactosidase antibody was from Abcam. Anti-actin antibody was from 

Sigma. We have tested several commercially available anti-Oxgr1 antibodies (2-oxoglutarate 

receptor 1 antibody 18-461-10700 from GenWay, anti-Oxgr1 antibody ab67351 from Abcam and 

anti-Oxgr1 antibody LS-A1865 from LifespanBiosciences), however, none of them have shown 
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specific results. Immunohistochemistry and X-gal staining protocols are available in the 

Supplementary Methods. 

Metabolic cages Mice were housed in individual metabolic cages (Tecniplast, Italy). Urine 

collection was performed after a 3-day adaptation period. Urine osmolality, pH and ionic 

composition were analyzed as previously described (22).  

Blood sample analysis In experiments with alkali load, blood pH and blood gases were 

analyzed in blood samples collected from the retro-orbital sinus under isoflurane anesthesia. In 

mice fed a normal diet, blood was collected through a catheter implanted into the left carotid 

artery 4 hours before blood collection.  

αKG measurement  Urine and plasma αKG was measured using an Alpha-Ketoglutarate 

Assay Kit from BioVision. 

Ion flux in isolated CCD. CCDs from WT and oxgr1-/- mice were microdissected from 

corticomedullary rays and microperfused under symmetrical conditions. The bath and perfusate 

contained (in mM): 118 NaCl, 23 NaHCO3, 1.2 MgSO4, 2 K2HPO4, 2 calcium lactate, 1 Na-

citrate, 5.5 glucose, 12 creatinine, pH 7.4 (bath continuously gassed with 95% O2/5% CO2) at 

37°C. Measurements were conducted during the first 90 minutes of perfusion. 

Hydrochlorothiazide and amiloride were added to the perfusate at a final concentration of 10-4 M 

and 10-5 M, respectively. Collections from 4 periods of 15 minutes were performed in which 30–

35 nl of fluid was collected. The collection volume was determined under water-saturated 

mineral oil with calibrated volumetric pipettes. Concentrations of Na+ and creatinine were 

determined by HPLC using 26 nl of collected fluid. Concentration of Cl- was measured by 

microcoulometry on 2-3 nl of collected fluid. For each collection, the ion flux of sodium (JX) was 

calculated per unit length of tubule: JX = [([X]p x Vp) - ([X]c x Vc)] / (L x t) where [X]p and [X]c 

are the concentrations of X in the perfusate and collection respectively, Vp and Vc are the 
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perfusion and collection rates respectively, L is the tubule length and t is the collection time. Vp 

was calculated as: Vp = Vc x [creat]c / [creat]p where [creat]c and [creat]p are the concentrations of 

creatinine in the collection and perfusate, respectively. For each tubule, ion fluxes were calculated 

as the mean of the four collection periods. 

Apical Cl-/HCO3
- exchange activity in CCD intercalated cells. The activity of pendrin was 

determined by measuring the rate of intracellular alkalinization in type B and non-A-non-B 

intercalated cells following removal of luminal chloride as previously described (see 

Supplementary Methods for cell type identification). Our setup allowed a smooth and complete 

exchange of the luminal fluid within 3-4 s. Briefly, CCDs were dissected and microperfused in 

vitro as described above. Intracellular pH was assessed with imaging-based, dual excitation-

wavelength fluorescence microscopy using 2',7'-Bis- (2-Carboxyethyl)-5- (And-6)- 

carboxyfluorescein (BCECF, Molecular probes). Intracellular dye was excited alternatively at 

440 and 500 nm every 2 seconds with a light-emitting diode (Optoled, Cairn Research, 

Faversham, UK). Emitted light was collected through a dichroïc mirror, passed through a 530 nm 

filter and focused onto a EM-CCD camera (iXon, Andor Technology, Belfast, Ireland) connected 

to a computer. The measured light intensities were digitized with 14-bit precision (16384 grey 

level scale) for further analysis. For each tubule, 3-4 intercalated cells were analyzed and the 

mean grey level was measured with the Andor IQ software (Andor Technology, Belfast, Ireland). 

Background fluorescence was subtracted from fluorescence intensity to obtain intensity of 

intracellular fluorescence. Intracellular dye was calibrated at the end of each experiment using the 

high [K+]-nigericin technique. CCDs were initially perfused with a Cl--containing solution (in 

mM: 119 NMDG-Cl, 23 NMDG-HCO3, 2 K2HPO4, 1.5 CaCl2, 1.2 MgSO4, 10 HEPES, and 5.5 

D-glucose) and then switched to a Cl--free solution (in mM: 119 NMDG-gluconate, 23 NMDG-
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HCO3, 2 K2HPO4, 7.5 Ca-gluconate, 1.2 MgSO4, 10 HEPES, and 5.5 D-glucose). All solutions 

were adjusted to pH 7.40 and continuously bubbled with 95% O2/5% CO2. 

Statistics.  Data are presented as mean ± SEM or, as mean ± SD, as indicated in the 

corresponding figure legends. The tests used include the 2-tailed, unpaired t-test and the one-way 

ANOVA. All P values are indicated in the figure legends. A P value less than 0.05 was 

considered significant. 

Study approval Animal studies were approved by the Veterinary Service of the Canton de 

Vaud, Switzerland. 
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Figure 1. Oxgr1 is expressed in type-B and non-A-non-B intercalated cells of the connecting 

tubule (CNT) and the cortical collecting duct (CCD). A. Immunostaining (green) with anti-β-

galactosidase antibody shows that Oxgr1 is expressed in a subset of cells in the renal cortex.  B. 

Immunolocalization of pendrin (red) in the apical membrane of type-B and non-A-non-B 

intercalated cells.  C. Co-immunostaining with anti-β-galactosidase and anti-pendrin antibodies 

demonstrates that Oxgr1 and pendrin are expressed in the same cells.  D, E and F are high 

magnification images for A, B and C, respectively. Nuclei (DNA) are stained with DAPI (blue, C 

and F). Scale bars: 50µm. 

 

Figure 2.  Activation of Oxgr1 stimulates pendrin and induces NaCl reabsorption in CCD. A. 

Apical Cl-/HCO3
- exchange activity was measured in intercalated cells from CCDs isolated from 

wild type (WT) and oxgr1-/- mice in the absence or the presence of 1 mM αKG in the luminal 

fluid. The exchanger activity was determined either in the forward (Cl- addition induces 

intracellular acidification) or reverse direction (Cl- removal induces intracellular alcalinization). 

Values are means ± SEM from 3 CCDs, the exchange activity being measured on at least 3 cells 

per CCD. Statistical significance as compared to controls (absence of αKG) by Student’s t test B. 

Na+ and Cl- reabsorption fluxes (JNa+ and JCl- respectively) measured in in vitro microperfused 

CCDs from wild type (WT) and oxgr1-/- mice were determined in the absence or presence of 1 

mM αKG in the luminal (L) or peritubular solution (B). Some CCDs were pre-treated with 100 

µM hydrochlorothiazide (HCTZ) or 10 µM amiloride (Am). Note that in absence of αKG, CCDs 

fron WT mice displayed no NaCl transport whereas those from oxgr1-/- mice showed amiloride-

sensitive Na+ reabsorption which was inhibited upon addition of αKG. Values are means ± SEM 
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from 4-6 CCDs. Statistical significance as compared to controls (absence of αKG) by variance 

analysis (ANOVA).  

 

Figure 3. Effects of a dietary load of acid, base or NaCl on urinary and plasma levels of αKG. A. 

Analysis of [αKG]/[creatinine] ratios in urines collected from wild-type mice housed individually 

in metabolic cages. The 24-hour urine was collected from four groups of mice (6 mice/group): a 

control group receiving tap-water (green) and groups supplemented with acid (0.3 M NH4Cl, 

blue), base (0.28 M NaHCO3, red) or salt (0.28 M NaCl, purple) in drinking water. Values are 

means  ± SEM. ***, significantly different (P<0.005) compared to 0.28 M NaCl group; ###, 

significantly different (P<0.005) compared to H2O group; Student’s t-test. B. Analysis of 

plasma αKG concentrations in wild-type mice loaded for 7 days with acid (0.3 M NH4Cl, blue), 

base (0.28 M NaHCO3, red) or salt (0.28 M NaCl, purple) in drinking water. Mice in control 

group received tap-water (green) Values are means  ± SD (n=6-9), ns - not significant; Student’s 

t-test.  C. Analysis of urinary [αKG]/[creatinine] ratios (red bars) and urinary pH (grey bars) in 

spot urines of wild-type mice gavaged with 400 µl of tap-water, 400 µl of 0.56 M NaCl, or 400 µl 

of NaHCO3 at different concentrations (0.0056 M, 0.056 M, 0.112 M, 0.224 M and 0.448 M). 

The urine was collected 3 hours after gavage. Values are means  ± SEM. ***, significantly 

different (P<0.005) compared to water group; ###, significantly different (P<0.005) compared to 

0.56 M NaCl group; ##, significantly different (P<0.01) compared to 0.56 M NaCl group. 

Statistical significance as compared to controls by variance analysis (ANOVA). 
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Figure 3. Tokonami et al. 
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Table	
  1.	
  Blood	
  and	
  urine	
  chemistry	
  in	
  wild-­‐type	
  and	
  oxgr1-­‐/-­‐	
  mice	
  
	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
  Standard	
  Diet	
  
	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
  Blood/plasma	
  
	
   	
  

wild-­‐type	
  
	
  
oxgr1-­‐/-­‐	
  

	
  
p	
  

Na+	
  (mM)	
  
	
   	
  

151.8	
  ±	
  3.1	
  (7)	
   146.1	
  ±	
  1.6	
  (7)	
   NS	
  
K+	
  (mM)	
  

	
   	
  
4.6	
  ±	
  0.2	
  (7)	
  

	
  
4.6	
  ±	
  0.1	
  (7)	
  

	
  
NS	
  

Cl-­‐	
  (mM)	
  
	
   	
  

118.7	
  ±	
  2.0	
  (10)	
   116.9	
  ±	
  2.4	
  (10)	
   NS	
  
HCO3

-­‐	
  (mM)	
  
	
   	
  

22.6	
  ±	
  0.4	
  (10)	
   22.8	
  ±	
  0.5	
  (10)	
   NS	
  
pCO2	
  (mmHg)	
  

	
   	
  
45.0	
  ±	
  4.2	
  (10)	
   38.6	
  ±	
  1.4	
  (10)	
   NS	
  

pO2	
  (mmHg)	
  
	
   	
  

128.0	
  ±	
  10	
  (10)	
   127.5	
  ±	
  7.0	
  (10)	
   NS	
  
pH	
  

	
   	
  
7.35	
  ±	
  0.02	
  (10)	
   7.39	
  ±	
  0.02	
  (10)	
   NS	
  

Osmolality	
  (mOsm)	
  
	
  
325.6	
  ±	
  4.6	
  (5)	
   324.3	
  ±	
  1.2	
  (7)	
   NS	
  

aldosterone	
  (pg/ml)	
  
	
  
337.5	
  ±	
  36.9	
  (11)	
   380.5	
  ±	
  26.1.2	
  (10)	
   NS	
  

	
   	
   	
   	
   	
   	
   	
   	
  Urine	
  
	
   	
   	
   	
   	
   	
   	
  Na+/creatinine	
  (mmol/mmol)	
   11.9	
  ±	
  0.4	
  (32)	
   12.0	
  ±	
  0.5	
  (33)	
   NS	
  

K+/creatinine	
  (mmol/mmol)	
  
	
  
52.7	
  ±	
  1.5	
  (32)	
   57.4	
  ±	
  2.5	
  (33)	
   NS	
  

Cl-­‐/creatinine	
  (mmol/mmol)	
   20.1	
  ±	
  1.1	
  (23)	
   22.7	
  ±	
  1.4	
  (25)	
   NS	
  
TA/creatinine	
  (mmol/mmol)	
   6.1	
  ±	
  0.4	
  (23)	
   8.0	
  ±	
  0.6	
  (25)	
   0.008	
  
NH4

+/creatinine	
  
(mmol/mmol)	
   11.8	
  ±	
  1.1	
  (23)	
   12.6	
  ±	
  1.4	
  (25)	
   NS	
  
αKG/creatinine	
  (mmol/mmol) 0.11	
  ±	
  0.01	
  (23)	
   0.14	
  ±	
  0.01	
  (25)	
   0.03	
  
pH	
  

	
   	
  
6.24	
  ±	
  0.02	
  (32)	
   6.10	
  ±	
  0.02	
  (33)	
   0.00001	
  

Volume	
  (ml/24	
  h)	
  
	
  
1.36	
  ±	
  0.07	
  (32)	
   1.41	
  ±	
  0.07	
  (33)	
   NS	
  

	
   	
   	
   	
   	
   	
   	
   	
  Base-­‐rich	
  diet	
  (3	
  days)	
  
	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
  Blood/plasma	
  
	
   	
   	
   	
   	
   	
   	
  Na+	
  (mM)	
  
	
   	
  

147.9	
  ±	
  0.6	
  (10)	
   147.9	
  ±	
  1.0	
  (10)	
   NS	
  
Cl-­‐	
  (mM)	
  

	
   	
  
113.7	
  ±	
  0.7	
  (10)	
   112.0	
  ±	
  1.0	
  (10)	
   0.0004	
  

HCO3
-­‐	
  (mM)	
  

	
   	
  
30.6	
  ±	
  1.5	
  (10)	
   33.4	
  ±	
  2.89	
  (10)	
   0.01	
  

pH	
  
	
   	
  

7.38	
  ±	
  0.06	
  (10)	
   7.39	
  ±	
  0.04	
  (10)	
   NS	
  

	
   	
   	
   	
   	
   	
   	
   	
  Urine	
  
	
   	
   	
   	
   	
   	
   	
  Na+/creatinine	
  (mmol/mmol)	
   57.1	
  ±	
  3.6	
  (6)	
   53.2	
  ±	
  9.3	
  (6)	
   NS	
  

K+/creatinine	
  (mmol/mmol)	
  
	
  
14.0	
  ±	
  1.1	
  (6)	
   13.3	
  ±	
  3.0	
  (6)	
   NS	
  

Cl-­‐/creatinine	
  (mmol/mmol)	
   9.9	
  ±	
  0.5	
  (6)	
  
	
  
9.2	
  ±	
  2.1	
  (6)	
  

	
  
NS	
  

pH	
  
	
   	
  

9.00	
  ±	
  0.11	
  (6)	
   8.95	
  ±	
  0.17	
  (6)	
   NS	
  
Volume	
  (ml/24	
  h)	
  

	
  
4.84	
  ±	
  0.40	
  (6)	
   5.23	
  ±	
  1.47	
  (6)	
   NS	
  

	
   	
   	
   	
   	
   	
   	
   	
  FEHCO3(%)	
  
	
   	
  

3.5	
  ±	
  1.4	
  (5)	
   1.5	
  ±	
  0.5	
  (5)	
   0.017	
  

	
   	
   	
   	
   	
   	
   	
   	
  Values are means  ± SD. Student's t-test. 
	
   	
   	
   	
  All urine and blood samples were collected from independent mice. 
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Supplementary Figure 1 (A-H). Oxgr1 expression in the kidney.   A. Low magnification image of 
X-gal (Oxgr1) staining on frozen kidney section. This image demonstrates that Oxgr1 expression is limited to 
the renal cortex. B. High magnification image of (A) - demonstrates patchy distribution of Oxgr1-positive cells 
along the cortical nephron. C and F.  Immunostaining with an antibody against β-galactosidase (green) 
confirms the patchy expression of Oxgr1 in the renal cortex. D and G.  Immunostainig of two specific markers 
for the initial part of the distal convoluted tubule (DCT1), parvalbumin and the sodium-chloride cotransporter 
(NCC), respectively. E and H. Co-immunostaining of Oxgr1 with parvalbumin or NCC, respectively, demon-
strates that Oxgr1 is not expressed in the DCT1. Scale bars: 50 μm. 
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Supplementary Figure 1 (I-T). Oxgr1 expression in the kidney.  I and O.  Immunostaining with an 
antibody against β-galactosidase (green) in the renal cortex. This staining reveals patchy distribution of Oxgr1 
in the cortical segments of the collecting system. J and P.  Immunostaining of two specific markers for princi-
pal cells in the CNT and the CCD, beta subunit of the epithelial sodium channel (βENaC, red) and the 
aquaporin-2 water channel (AQP2, red), respectively. K and Q. Co-immunostaining of Oxgr1 with βENaC or 
AQP2, respectively, demonstrates that Oxgr1 is expressed in the same tubular segments, but not in principal 
cells. L, M, N, R, S and T are high magnification images of I, J, K, R, S and T, respectively. Scale bars: 50 μm.
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Supplementary Figure 1 (U-Z).   Oxgr1 expression in the kidney. U and X. Oxgr1 (X-gal) stain-
ing (blue) in the renal cortex. V. Immunostaining of anion exchanger 1 ( AE1, red) in the basolateral 
membrane of type-A intercalated cells. W. Co-staining of Oxgr1 and AE1 shows that Oxgr1 is expressed 
in the same tubular segments, but not in type-A intercalated cells. Y. Immunostaining of pendrin (red) in 
the apical membrane of type-B and non-A-non-B intercalated cells. Z. Co-staining of Oxgr1 with pendrin 
confirms that Oxgr1 is expressed in type-B and non-A-non-B intercalated cells. The 
Oxgr1(Xgal)/pendrin(Ab) co-staining also demonstrates that X-gal staining does not interfere with immu-
nohistochemistry. Scale bars: 50 μm



	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
Supplementary Figure 2.    Representative traces of the changes in pHi elicited by 
luminal Cl- removal and then re-addition, in the presence of extracellular HCO3

- (25mM, 
pH 7.40) and in Na+-free solutions. The traces have been recorded on 2 distinct tubules 
from Oxgr1+/+ mice, in the absence (black trace) and in the presence (red trace) of 1 mM 
alpha-keto-glutarate in the lumen. 
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Supplementary Figure 3. Pendrin (A), αENaC (B) and βENaC (C) protein abundance in kidneys 
of wild-type and oxgr1-/- mice. Western blots were performed as described in Supplementary 
Methods. Acting was used as the loading control. (D) Densitometric quantitaion of Wester blot 
data presented in panels A, B and C. Values are means ± SEM. *** - significantly different com-
pared to wild-type mice. Student’s t-test.
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Supplementary Figure 4. Effects of a dietary load of acid, base or NaCl on (A) urinary 
concentration of αKG, and (B) urine pH. These parameters were tested in urines collected from 
wild-type mice housed individually in metabolic cages. The 24-hour urine was collected from four 
groups of mice (6 mice/group): a control group receiving tap-water (green) and groups 
supplemented with acid (0.3 M NH4Cl, blue), alkali (0.28 M NaHCO3, red) or salt (0.28 M NaCl, 
purple) in drinking water. Values are means  ± SEM. *, significantly different (*, P<0.05; **, 
P<0.01; ***, P<0.005) compared to 0.28 M NaCl group; #, significantly different (###, P<0.005) 
compared to H2O group; §, significantly different (§, P<0.05; §§§, P<0.005) compared to H2O 
group; Student’s t-test. 
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Supplementary Methods. 
 

Identification of type B and non-A-non-B intercalated cells for pHi measurement. 

 Intercalated cells were identified by apical labeling with fluorescent peanut 

lectin (PNA, Vector Labs). Apical PNA labeling does not allow for discrimination 

between the different subtypes of intercalated cells. The type A cells were excluded 

from analysis on the basis of their bigger size and the lack of luminal Cl--dependent 

change in intracellular pH. According to these criteria, approximately 55-65% of 

intercalated cells were classified as type A. Because BCECF was loaded from the 

peritubular fluid, the principal cells also displayed a significant fluorescence at the end 

of the BCECF exposure. They were excluded from the analysis on the basis of (i) the 

absence of PNA labeling and (ii) the lack of luminal Cl--dependent change in 

intracellular pH.  Use of fluorescein-coupled PNA allowed using the same set of filters 

for identification of cell types and pH measurements. However, PNA fluorescence did 

not interfere with BCECF fluorescence because it is restricted to the apical membrane 

and not the cytosol, and a much higher intensity of the excitation light was required to 

see the PNA fluorescence than the pH-sensitive BCECF fluorescence. Thus, after the 

cells labeled with PNA were identified, the illumination intensity was decreased and 

set to the BCECF requirements. 

X-gal staining and Immunohistochemistry. Mice were anesthetized with ketamine/ 

xylazine and kidneys were perfused from the renal artery with 20 ml of 2% 

paraformaldehyde/PBS, then transferred to 30% sucrose/PBS and embedded to O.C.T. 

compound (Tissue-Tek). X-gal staining and immunostaining were performed on 8 µm-

thick cryostat sections. For the X-gal staining, sections were incubated in the staining 

solution containing 5mM K3Fe(CN)6, 5mM K4Fe(CN)6, 2mM MgCl2, 0.05% Tween-



20 in PBS followed by overnight incubation in the same staining solution to which the 

X-gal was added (1mg/ml, Invitrogen) (RT). Sections were washed with PBS, 

dehydrated and mounted in Roti-histokitt (Roth). For the immunostaining, sections 

were blocked with 10% normal donkey serum (Millipore), 0.05% Tween-20 in PBS, 

then incubated with primary antibody diluted in the blocking solution. After washing 

steps, sections were incubated with the secondary antibody: anti-rabbit alexa555 

conjugated IgG or anti-chicken alexa488 conjugated IgG (Invitrogen) for 2 hours 

followed by the incubation with DAPI for nucleus staining. Immunostained sections 

were mounted in ProLong Gold antifade reagent (Invitrogen). For the double staining 

of X-gal and AE1, first, sections were stained with X-gal as described above. Then, the 

antigen-retrieval treatment was performed for AE1. Sections were microwaved for 15 

minutes in the solution containing 10mM Na-citrate and 1mM EDTA and were cooled 

down at the room temperature. After washing steps, immunostaining was performed as 

described above. For double staining of X-gal and pendrin, the immunostaining 

(pendrin) was performed without antigen-retrieval. Images of X-gal staining, double 

immunofluorescence staining, and double staining of X-gal and immunofluorescence 

were obtained by stereomicroscope MZ16FA (Leica), confocal microscope SP5 

(Leica) and Axovision (Zeiss) respectively. All images were processed with Adobe 

Photoshop (Adobe).  

Western blotting Whole decapsulated kidneys (6 mice per genotype) were 

homogenized with a polytron in 3 ml RIPA buffer containing 50mM Tris-HCl (pH 

7.2), 150mM NaCl, 0.1% SDS, 0.5% Na-deoxycholate, 1% NP40, 1mM PMSF and 

protease inhibitors. Protein extracts were sonicated and centrifuged for 5 minute at 

1500rpm. The supernatant was recovered and the protein concentration was measured 

with Pierce BCA protein assay reagent (Thermo), then the concentration was adjusted 



to 8mg/ml with RIPA buffer.  Samples were mixed with Laemmli sample buffer (BIO-

RAD) supplemented with 2-mercaptoethanol (SIGMA), and were heated for 15 

minutes at 56 degrees C. 40µg of protein samples were migrated in the Mini-

PROTEAN TGX gels, 4-20% (BIO-RAD), then transferred to the nitrocellulose 

membrane in the transfer buffer containing 20% Methanol. Membranes were stained 

with Ponseau S and then washed in TBS containing 0.2% NP40. Then, membranes 

were incubated with 5% skim milk in 0.2% NP40/TBS for 1 hour at the room 

temperature for the blocking, followed by the incubation with primary antibodies in the 

blocking solution, overnight (cold room). Membranes were washed and blocked as 

above, and incubated with anti-rabbit horseradish peroxidase conjugated IgG in 5% 

skim milk in 0.2% NP40/TBS for 1 hour at the room temperature. After the washing 

steps, SuperSignal west dura extended duration substrate (Thermo) was used and 

signals were visualized on Kodak Biomax XAR film (Kodak). Bands were digitalized 

by Epson Expression 1680 (EPSON) and were quantified with Quantity One 1-D 

Analysis software (BIO-RAD). 




