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Abstract

Aim—Understanding the stability of realized niches is crucial for predicting the responses of

species to climate change. One approach is to evaluate the niche differences of populations of the

same species that occupy regions that are geographically disconnected. Here, we assess niche

conservatism along thermal gradients for 26 plant species with a disjunct distribution between the

Alps and the Arctic.

Location—European Alps and Norwegian Finnmark.

Methods—We collected a comprehensive dataset of 26 arctic-alpine plant occurrences in two

regions. We assessed niche conservatism through a multispecies comparison and analysed species

rankings at cold and warm thermal limits along two distinct gradients corresponding to (1) air

temperatures at 2 m above ground level and (2) elevation distances to the tree line (TLD) for the

two regions. We assessed whether observed relationships were close to those predicted under

thermal limit conservatism.

Results—We found a weak similarity in species ranking at the warm thermal limits. The range

of warm thermal limits for the 26 species was much larger in the Alps than in Finnmark. We found

a stronger similarity in species ranking and correspondence at the cold thermal limit along the

gradients of 2-m temperature and TLD. Yet along the 2-m temperature gradient the cold thermal

limits of species in the Alps were lower on average than those in Finnmark.
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Main conclusion—We found low conservatism of the warm thermal limits but a stronger

conservatism of the cold thermal limits. We suggest that biotic interactions at the warm thermal

limit are likely to modulate species responses more strongly than at the cold limit. The differing

biotic context between the two regions is probably responsible for the observed differences in

realized niches.

Keywords

Air–soil temperature; biotic interactions; disjunct distribution; distance to tree line; European
Alps; niche conservatism; Norwegian Finnmark; realized niche; species distribution models

INTRODUCTION

Understanding the stability of a species’ environmental niche – both fundamental (i.e.

physiological) and realized (i.e. constrained by biotic interactions and dispersal) – is crucial

for predicting a species’ response to climate change (Pearman et al., 2008; Lavergne et al.,

2010; Salamin et al., 2010; Wiens et al., 2010; Bellard et al., 2012). It was notably

suggested that the fundamental niches of some species might evolve rapidly and this may

attenuate the current effects of global change on ecosystems (Hoffmann & Willi, 2008;

Hoffmann & Sgrò, 2011). Assessing the differences between populations of a species that

occupy geographically disjunct regions or of populations of species that have recently

colonized a new geographically separate region (e.g. invasive species) are thus promising

ways of providing insight into the possible shifts of species niches (Wiens & Graham, 2005;

Pearman et al., 2008; Alexander & Edwards, 2010).

Both abiotic and biotic factors shape the ability of a species to occupy certain environmental

conditions (Soberón, 2007). While these factors may change across regions and drive shifts

in both fundamental (Hoffmann & Sgrò, 2011) and realized (Schweiger et al., 2008) niches,

only the realized niche is easily quantifiable, which limits ecological interpretation.

Nonetheless, biotic drivers are thought to have differential effects across environmental

gradients (Callaway et al., 2002; Le Roux & McGeoch, 2010). According to the asymmetric

abiotic stress limitation hypothesis (AASL), in general, fluctuations of the realized niche due

to changing biotic interactions are expected at the warm, more productive end of

environmental gradients (Normand et al., 2009; Defossez et al., 2011; Meier et al., 2011).

At the cold end, species distributions are primarily limited by physiological tolerance of

environmental conditions that are less favourable to growth and reproduction (Pigott &

Huntley, 1978; Normand et al., 2009; Meier et al., 2011). Investigating the realized niche of

species that spans a wide range of environmental gradients, from warmer, productive

conditions to colder, less productive ones, may provide insight into the prevalence of shifts

in both fundamental and realized niches.

Climatic temporal variations affect the ranges of species and promote the differentiation of

their realized niches among disjunct ranges (Hewitt, 2000; Davis & Shaw, 2001;

Zimmermann et al., 2009). During the last ice age, ice caps and glaciers covered most of

northern Europe and its alpine areas, while most of central Europe comprised cold biomes

(Frenzel et al., 1992). With the end of these glaciations, cold-adapted species followed the
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retreat of the ice toward either higher latitudes or higher elevations, contributing to the

current disjunct distribution of those species found both in the Alps and in the Arctic (whose

members are referred to as arctic-alpine species; Schönswetter et al., 2005; Espíndola et al.,

2012). The separation of species may have caused unequal distributions of the species

genetic diversity (Desprès et al., 2002) and genetic isolation (Espíndola et al., 2012). In

addition, cryptic refugia in the north may have contributed to the genetic difference in arctic

and alpine species (Parducci et al., 2012). This potentially provides the genetic basis for a

shift of the fundamental niche (Ackerly, 2003).

Isolated populations without means to exchange genetic material may cause changes to the

local fundamental niche and the emergence of ecotypes through adaptations to local

environmental conditions (Comes & Kadereit, 1998; Ackerly, 2003; Wiens, 2004;

Broennimann et al., 2007; Jay et al., 2012; Manel et al., 2012). Differences existing in

abiotic factors may differentially modulate the responses of species across environmental

gradients in the two regions. For instance, Billings (1973) suggested that the long separation

between the arctic and alpine regions may have created distinct ecotypes. Individuals from

alpine populations experience higher light saturation for photosynthesis, undergo maximum

photosynthesis rates at higher temperatures and contain a lower chlorophyll content than

their Arctic counterparts (Mooney & Johnson, 1965; Billings and Mooney, 1968; Billings,

1973).

Geographically distant populations may also be part of regionally distinct species pools,

such that biotic interactions may influence realized niches differently (Gallien et al., 2010;

Pellissier et al., 2010). Plant species richness in the Alps is higher than in the Arctic (Lenoir

et al., 2010), potentially causing distinct competition regimes, which may result in different

realized niches. Human pressure also differs: in the Alps, a long history of land use has

reshaped the structures of lower alpine grasslands (Gehrig-Fasel et al., 2007), while human

impact has been lower in the Arctic. Therefore, one could expect to observe different

realized niches for the same species between the Alps and the Arctic, but this has yet to be

tested. Hence, a comparison of the Alps and Arctic regions represents a useful case study for

considering niche conservatism along the thermal gradient.

For this research, we investigated whether single plant species occupy similar realized

niches across the thermal gradients between the Arctic and the Alps. We first collected a

comprehensive data set that comprised occurrences of 26 arctic-alpine plant species in the

European Alps and in northern Norway. Across the two regions, we compared the rankings

of the species when considering their colder and warmer thermal limits according to summer

temperature and their distances in elevation from the tree limit. The tree line was shown to

be physiologically controlled and conserved world-wide (Körner & Paulsen, 2004; but see

Harsch et al., 2009), it therefore constitutes a sound biogeographic reference for the

comparison and ranking of non-tree species along thermal gradients (Randin et al., in press).
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MATERIALS AND METHODS

Study areas

The two study areas are the European Alps and Norway’s northernmost counties (Troms and

Finnmark, referred to as Finnmark; Fig. 1). These Norwegian counties form the northern

frontier of the European continent and are bordered by the Barents Sea to the north and by

birch forests and continuous taiga to the south. The western part of the region is

characterized topographically by steep hills with peaks of approximately 800–1800 m a.s.l.

that are often surrounded by glaciers, deep valleys, narrow fjords or open sea. In the eastern

part of Finnmark, the mountain ranges gradually decrease in elevation towards the Barents

Sea to plateaus of 300–500 m a.s.l., with the existence of abrupt cliffs interspersed with

moderately sloped hills. The Alps represent the most distinct mountain range in central

Europe, stretching from Austria and Slovenia in the east to France in the west. Rising up to

4800 m a.s.l., the Alps comprise cold climatic environments comparable to those of the

Arctic, with short growing seasons and long snow cover during the winter. The present

study focuses on the areas where the average temperature of the warmest month is less than

11 °C, corresponding to the regions of the subalpine belt and the subarctic tundra.

Species data

We selected 34 taxa that are relatively frequent both in the Alps and in Finnmark and that

can also be identified in the field with limited risk of confusion. We sought a data set that

was as close as possible to an equal-stratified sampling design (Hirzel & Guisan, 2002).

Therefore, we stratified our study areas according to WorldClim’s climate grids (Hijmans et

al., 2005) at a resolution of 30 arcsec (c. 1 km × 1 km). Three descriptors, representing

summer (June–August) temperatures, humidity (June–August) and winter (December–

February) precipitation were selected. Summer temperature represents the energy available

during the growing season and winter precipitation represents the cover of snow. Each

descriptor was divided into three equal classes. By combining these three layers with three

classes each, we generated 24 realized climate combinations (strata) in the Alps and 25 in

Finnmark, out of the 27 (= 3 × 3 × 3) possible classes. Species occurrences were collected

for each stratum by using (1) existing observations and (2) a complementary sampling,

which filled gaps in the existing data that originated from a non-stratified sampling.

For the previously existing data, we collected exhaustive vegetation inventories for both

regions that contained at least one of the selected species. We randomly selected survey

points in each climate class from the vegetation data to constitute these classes (with a

maximum of 100 survey points). As the acquired data did not cover the entire available

environment in the study areas, where the number of historical observation points was

insufficient we set up a complementary sampling in Finnmark and in the Alps to achieve

equal samples per climate class. To conduct this sampling, we randomly selected 750 m ×

750 m plots (hereafter referred to as 750-m plots) in climatic strata with missing data. Each

randomly selected plot was subsampled by randomly selecting four 100 m × 100 m subplots

(hereafter, 100-m subplots) that were separated from one another by at least 200 m. Within

each 100-m subplot, we visited nine subplots of 2 m × 2 m (hereafter, 2-m subplots) and

inventoried the species along a planned route. We first set a 2-m subplot at the centre of a

Pellissier et al. Page 4

. Author manuscript; available in PMC 2014 April 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



100-m subplot and recorded all of the target species present. We then moved 25 m to the

north-east to sample the second 2-m subplot, moved another 25 m further to the north-east to

sample the third 2-m subplot, and then returned to the central point. We performed similar

sampling procedures for the other three directions (i.e. north-west, south-east and south-

west). Additionally, we recorded whether the target species were present in the routes

between the 2-m subplots. This nested design, with three plot levels of 750, 100 and 2 m,

was chosen over a standard random sampling because accessibility to Finnmark’s northern

regions is limited and this procedure has proven to be the most cost efficient (Pellissier et

al., 2010).

Environmental data

We calculated the average summer temperature (hereafter referred to as the 2-m

temperature) as the mean of the recorded temperatures for June, July and August. We

considered average summer temperature only because: (1) it is physiologically more

meaningful to alpine species than other temperature variables (Körner, 2003); (2) the

altitude of the global tree line is also best explained by the average temperature of the

summer growing season (Körner & Paulsen, 2004; Gehrig-Fasel et al., 2008); and (3) other

climatic variables that could have been derived from WorldClim, such as degree-days

measured with the approach of Zimmermann & Kienast (1999), show anyway a high

correlation to June–August average temperature (R2 = 0.9 in the Alps and R2 = 0.7 in

Finnmark) and therefore were not expected to prove more informative than the summer

average for our analyses.

We obtained the temperature layer from WorldClim (Hijman et al., 2005), which is based on

2-m air measurements from meteorological stations. To obtain more precise climatic

information at the sites, we downscaled WorldClim data from a 30-arcsec resolution to a

100-m resolution using a digital elevation model (for details see Engler et al., 2011). While

the temperature layer gives fairly robust results with this downscaling approach, the method

is less reliable when applied to the precipitation layer (Gyalistras, 2003; Daly et al., 2008;

Randin et al., in press). Consequently, we only analysed thermal niches in the present study.

All other thermal variables from WorldClim or derived variables show a high correlation

with the June–August average and we therefore did not consider them in the analyses.

We also estimated thermal differences in relation to the calculated distance to the potential

local tree line (TLD), as tree lines are good biogeographic reference points for comparing

and ranking non-tree species (Randin et al., in press). For the two regions, we extracted data

at a resolution of 100 m per pixel of forest-occupied areas of the land-cover layers of

CORINE, for Europe, and GEOSTAT, for Switzerland. With this information, we calculated

the elevations of the forest-occupied areas. After delineating a square window of 5 km × 5

km, we calculated the potential tree line of each 100-m pixel by computing the maximum of

forest elevation within each window, following the procedure defined by Paulsen & Körner

(2001) and Gehrig-Fasel et al. (2007). For each 100-m pixel, we subtracted the elevations of

the pixel from the elevations of potential tree lines to obtain the distances in elevation to the

potential tree line, one of the most relevant temperature proxies in cold environments.
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Rankings of species across thermal gradients

We compared the warm and cold thermal limit values for the averaged 2-m temperature and

calculated TLD in the Alps and in Finnmark. To investigate whether the rankings of species

across temperature gradients are similar between the two regions, we considered the cold

and warm thermal limits to be the 20th and 80th percentiles of the 2-m temperature and TLD

gradients for both study regions. We preferred using the 20th and 80th percentiles rather

than the absolute minima and maxima because they are less sensitive to outliers. We

extracted the 2-m temperature and TLD at the locations where the species were recorded and

calculated the 20th and 80th percentiles of the distribution of those values. Our analysis is

thus based on presence only. We then tested for rank conservatism using Kendall’s rank

correlation of the 20th and 80th percentile values in the Alps and Finnmark. The formal null

hypothesis for the conservatism of thermal limits in species is that the slope representing the

relationship of two regions is equal to one while the intercept is zero. However, an

alternative hypothesis can also be that, due to microclimatic differences between the two

regions, the thermal niche limits are related but with a slope different from 1 and a non-zero

intercept. We tested these alternative hypotheses using the slope.test function of the smatr R

package using the standard major axis method, with and without the intercept fixed to the

origin (Warton et al., 2006).

RESULTS

Species sampling

In total, we obtained 6320 plots in the Alps and 2819 in Finnmark. Of the 34 species

sampled, only 26 occurred with sufficient frequency in both regions to support further

analyses (number of occurrences > 20; Table 1).

Warm thermal limit

The most interesting finding of this study is that the range of warm thermal limits

demonstrated by the 26 species was much larger in the Alps than in Finnmark both when

measured with 2-m temperature (4 °C in the Alps and 1 °C in Finnmark; Fig. 2) and with the

TLD (350 m in the Alps and 180 m in Finnmark; Fig. 3). As a consequence, the

relationships between the ranks of the warm thermal limits of the species in the two regions

were weak (2-m temperature, R2 = 0.23,; Kendall tau = 0.3, P = 0.04; TLD, R2 = 0.31,

Kendall tau = 0.38, P = 0.005). The estimated slopes of those relationships differed from

one with zero-forced intercept (TLD, slope = 2.16, confidence interval = 1.47–3.16) and

with non-zero estimated intercept (2-m temperature, slope = 4.04, confidence interval =

2.81–5.79; TLD, slope = 1.84, confidence interval = 1.31–1.84), except along the 2-m

gradient with zero-forced intercept (slope = 0.96, confidence interval = 0.9–1.02). This

occurred because the points were equally distributed across both sides of (but not along) the

1 : 1 line (Fig. 2).

Cold thermal limit

We found a better correspondence of species limit in the Alps and Finnmark toward cold

temperatures. We found a positive relationship between the ranks of cold thermal limits of
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the 26 species in the two regions measured with 2-m temperature (R2 = 0.41, Kendall tau =

0.5, P = 0.0005). Yet, the slope of this relationship was unequal to one, being systematically

biased, whether tested with zero-forced intercept (slope = 0.76, confidence interval = 0.71–

0.82) or with non-zero estimated intercept (slope = 2.25, confidence interval = 1.64–3.07).

The species with the coldest thermal limits tolerated colder 2-m temperatures in the Alps

than in Finnmark, while species located in warmer conditions in the Alps and in Finnmark

exhibited more equivalent cold thermal limits (Fig. 2). Except for one species (Antennaria

dioica), along the TLD gradient the points were closer to the 1 : 1 relationship (Fig. 3).

When excluding this outlying species, the correlation was high (R2 = 0.51, Kendall tau =

0.48, P = 0.0007; when not excluded R2 = 0.28, Kendall tau = 0.38, P = 0.005). The

estimated slopes with zero-forced intercept (slope = 0.98, confidence interval = 0.88–1.08)

were similar to one, and the lower bound of the confidence interval was close to one with

non-estimated intercept (slope = 1.65, confidence interval = 1.15–2.39; Fig. 3).

DISCUSSION

At the warm thermal limits, the less climatically severe and more productive ends of the

gradients for species, we found a low conservatism of species limit rankings, with lower

variation in thermal limits in Finnmark compared with the Alps. In contrast, we found

higher correspondences in species rankings at the cold thermal limits across the two regions

(especially along the TLD gradients). Our results thus conform with expectations raised by

the asymmetric abiotic stress limitation hypothesis and indicate that the realized niches of

species are more conserved in severe and physiologically limiting conditions, where the

impacts of biotic interactions (such as competition) are weaker, than in the most productive

parts of the same gradients. Under these latter conditions, the biotic interactions both within

the same trophic level (Choler et al., 2001) and between trophic levels are influential

(Defossez et al., 2011).

Warm thermal limits are different across arctic and alpine populations

We found little similarity between the Alps and Finnmark in the realized niches at the warm

thermal limits. While species limits were distributed across the environmental gradients

examined in the Alps and extended far below the potential tree line, the warm thermal limit

of all species in Finnmark was narrower and was situated in closer proximity to the potential

tree line than in the Alps (Fig. 3). Thus, temperature appears to be structuring species

sequences at the warm thermal limit across environmental gradients in the Alps, but the

same degree of structuring was not reached in Finnmark. In the latter, Müller (1952)

suggested intense competitive effects from dwarf shrubs in the lower Arctic. Similarly,

Pellissier et al. (2010) documented a large competitive effect of a dominant dwarf shrub in

subarctic tundra. In comparison, because the land-use history of the Alps has been more

intense, the heath vegetation is severely reduced or almost absent in the transitional zone

(ecotone) between the subalpine and alpine vegetation belts (Gobet et al., 2003). Human

settlers have, since the Neolithic, freed low alpine grassland from shrubs and small trees

(lowering the tree line as far as 300 m downslope), which created less gradual vegetation

transitions than those found in Finnmark (Tinner & Theurillat, 2003). Many alpine species

probably took the opportunity to extend their distribution in microniches in the subalpine
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belt after clearing. Furthermore, domesticated reindeer have been present for centuries in

Finnmark (Muga, 1986), but only recently at high densities (Bråthen et al., 2007). As a

consequence, alpine plants with a low tolerance for competition may have been able to

colonize habitats towards much lower elevations than the potential tree line in the Alps,

while the ecotone heath vegetation in Finnmark has probably limited the distribution of

alpine plant species at their warm thermal limits. While this effect is mostly apparent at a

local scale, it has been demonstrated that such effects can also have range-shaping

influences, thus affecting the geographic distribution of species up to a large spatial extent

(Meier et al., 2012).

Realized niche conservatism at the cold thermal limit

Arctic and alpine plant populations occupy more similar rank positions in cold compared

with warm thermal limits of their range, especially along TLD gradients where the

distribution is relatively close to the 1 : 1 line. This is in accordance with the asymmetric

abiotic stress limitation hypothesis, which states that the cold temperature end of a gradient

should be less affected by biotic interactions (Callaway et al., 2002) because it tends to be

closer to the fundamental niche and its physiological limits (Normand et al., 2009). Our

results corroborate those of Wiens & Graham (2005), who also documented strong niche

similarities for northern latitudes in invasive species between native and invaded ranges.

Here we used the different distances in elevation from the tree line as a proxy for thermal

difference. A clearer relationship may have been found if the units for these differences in

elevation were transformed from metres to thermal units (K) using a local lapse rate (Randin

et al., in press). However, the lack of regional meteorological stations at high elevation in

northern Norway does not allow for the calculation of accurate local lapse rates in Finnmark.

Discrepancies in the niche at the more physiological cold limit may also arise from genetic

differentiation of arctic and alpine populations, but finer quantification of the niche using for

instance growing chambers is required to assess this hypothesis (Parducci et al., 2012).

Discrepancies between analyses of distances to tree line and 2-m temperature

Our findings indicate a stronger similarity among realized niches at the cold than at the

warm thermal limit in the Alps and in Finnmark when considering distances in elevation

from tree lines. Alpine populations seem to persist generally in colder temperatures than

arctic populations, as inferred from interpolated 2-m air temperatures. However, this

observation may be an artefact originating from considering air temperatures rather than soil

temperatures during niche comparison. This bias may specifically occur when studying low-

stature plants that are aerodynamically decoupled from atmospheric conditions, particularly

in topographically complex terrains (Scherrer & Körner, 2011) and in regions with

differential angles of solar radiation (Austin & Van Niel, 2011). In this case, solar radiation

is more vertical in the Alps than in Finnmark. Vertical radiation is perpendicular to a larger

proportion of the terrain, which provides a higher flux of heat to the soil surface and to low-

stature plants. Radiation heat is unaccounted for in the 2-m air temperature interpolations,

which may bias the level of tolerance for populations in the colder temperatures of the Alps

than in the colder temperatures of Finnmark. We also showed that the bias increased for

species with the coldest thermal limits. This finding suggests that soil temperature may be a

more relevant variable for the distribution of high alpine species than for species located
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closer to the tree line. It could have serious implications for species distribution models that

are calibrated across the entire ranges of species, as distal predictors (sensu Austin, 2002)

lack the direct causal relationship to the ecophysiology of species that would be ideal for

comparing distinct regions. For these reasons, the development of proximal temperature

predictors that could fit mechanistic models (Austin & Van Niel, 2011) is necessary to

improve our capacity to transfer models across regions (Randin et al., 2006).

CONCLUSIONS

Our study provides evidence that the disjunct populations of arctic-alpine plant species

retained more similar niche thermal limits at their cold than at their warm end of thermal

tolerance. No clear similarity was observed at their warm thermal limits, where competition

probably plays a dominant role in limiting the spatial and environmental opportunities of

distinct species populations. This difference in the conservatism of warm thermal limits

stresses the importance of including biotic interactions when modelling species distributions,

as a way to improve their transferability (Wisz et al., 2013). Adding biotic interactions to

models of species distribution may also shed light on realized niche differences observed for

some invasive species between their native and adventive ranges (Petitpierre et al., 2012).

Still, niche differences were also observed at the cold limit. To unequivocally establish their

cause, genetic comparison of arctic and alpine populations should also be performed. As a

cautionary note, the differences in temperatures observed between regions might result from

the use of 2-m air temperatures that are decoupled from the surface temperatures that plant

species actually experience (Scherrer & Körner, 2011). Using more proximal surface

temperatures would strengthen future research on climatic niche dynamics, particularly in

regions with complex topography, and would particularly allow us to assess more precisely

whether genetic differences across regions may be associated with distinct tolerances to

environmental conditions.
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Figure 1.
(a) Maps of the two regions of Europe examined in the present study. The dark colour indicates the area sampled, corresponding

to the beginning of the subalpine belt of the Alps (b) and to the tundra of northern Norway’s Finnmark (c), where the average

temperature of the warmest month in both locations is less than 11 °C.
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Figure 2.
Relationship between (a) the warm (80th percentile) and (b) cold (20th percentile) thermal limits of species in the Alps and

Finnmark for summer temperature. The straight line indicates the expected 1 : 1 relationship, which has a slope of one and

passes through the origin. Abbreviations refer to Table 1.
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Figure 3.
Relationship between (a) the warm (20th percentile) and (b) cold (80th percentile) thermal limits of species in the Alps and

Finnmark as measured from the elevation difference to the potential tree line (TLD, unit in metres). The straight line indicates

the expected 1 : 1 relationship, which has a slope of one and passes through the origin. Abbreviations refer to Table 1.
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Table 1

List of the arctic-alpine species sampled in the Alps (A) and in Finnmark (F), including the total number of

occurrences (Pres.) obtained in each region. Nomenclature from Aeschimann et al. (2004).

Abbrev. Species Family Growth form Pres. (A) Pres. (F)

ALALP Alchemilla alpina Rosaceae Forb 95 178

ANDIO Antennaria dioica Asteraceae Forb 278 81

ARALP Arabis alpina Brassicaceae Forb 144 25

ARCAL Arctostaphylos alpina Ericaceae Dwarf shrub 25 223

DEFLE Avenella flexuosa Poaceae Graminoid 356 862

CALAC Carex lachenalii Cyperaceae Graminoid 10 132

CHAAL Chamorchis alpina Orchidaceae Forb 19 3

CRCRI Cryptogramma crispa Cryptogrammaceae Spore plant 61 57

LYALP Diphasiastrum alpinum Lycopodiaceae Spore plant 52 141

DROCT Dryas octopetala Rosaceae Dwarf shrub 228 133

EMHER Empetrum hermaphroditum Empetraceae Dwarf shrub 119 1089

GENIV Gentiana nivalis Gentianaceae Forb 83 8

GNSUP Gnaphalium supinum Asteraceae Forb 308 194

JUTRI Juncus trifidus Jucaceae Graminoid 241 673

LOPRO Loiseleuria procumbens Ericaceae Dwarf shrub 176 404

NASTR Nardus stricta Poaceae Graminoid 621 386

OXDIG Oxyria digyna Polygonaceae Forb 115 118

POALP Poa alpina Poaceae Graminoid 780 77

POVIV Polygonum viviparum Polygonaceae Forb 777 428

POCRA Potentilla crantzii Rosaceae Forb 231 30

RAGLA Ranunculus glacialis Renonculaceae Forb 179 22

SEROS Rhodiola rosea Rosaceae Forb 8 69

SALIN Sagina saginoides Caryophilaceae Forb 67 8

SAHER Salix herbacea Salicaceae Dwarf shrub 364 721

SARET Salix reticulata Salicaceae Dwarf shrub 161 62

SAUAL Saussurea alpina Asteraceae Forb 9 155

SAOPP Saxifraga oppositifolia Saxifragaceae Forb 206 41

SIPRO Sibbaldia procumbens Rosaceae Forb 244 167

SIACA Silene acaulis Caryophilaceae Forb 256 125

THAAL Thalictrum alpinum Renonculaceae Forb 14 174

VAGAU Vaccinium gaultherioides Ericaceae Dwarf shrub 337 156

VEALP Veronica alpina Scrophulariaceae Forb 317 104

VERFR Veronica fruticans Scrophulariaceae Forb 129 6

VIBIF Viola biflora Violaceae Forb 235 303
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