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How have changes in communications technology affected the way that misinformation spreads
through a population and persists? Towhat extent do differences in the architecture of social net-
works affect the spread of misinformation, relative to the rates and rules by which individuals
transmit or eliminate different pieces of information (cultural traits)? Here, we use analytical
models and individual-based simulations to study how a ‘cultural load’ of misinformation can
be maintained in a population under a balance between social transmission and selective elimin-
ation of cultural traits with low intrinsic value. While considerable research has explored how
network architecture affects percolation processes, we find that the relative rates at which indi-
viduals transmit or eliminate traits can have much more profound impacts on the cultural load
than differences in network architecture. In particular, the cultural load is insensitive to corre-
lations between an individual’s network degree and rate of elimination when these quantities
vary among individuals. Taken together, these results suggest that changes in communications
technologymay have influenced cultural evolutionmore strongly through changes in the amount
of information flow, rather than the details of who is connected to whom.
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1. INTRODUCTION

While many animals appear to have rudimentary forms
of culture [1], humans seem to be the only species to have
created innovations that modify the way by which cul-
tural information is transmitted through a population.
Successive developments in communications technology,
from the hieroglyph to the Internet, have fundamentally
altered how humans communicate and transmit dif-
ferent pieces of information. These technologies have
probably affected the dynamics of information spread
through changes in both the rates of communication and
transmission and the architecture of the social networks
through which transmission occurs (who is connected to
whom). Human cultural networks have likely progressed
from approximately isolation-by-distance type architec-
tures in pre-historic times (figure 1a) to small-world
configurations with the establishment of long-distance
trading networks (figure 1b,c), to more complicated and
interconnected architectures with the emergence of
modern communication technology [5–7]. For example,
the architecture of linkages between documents on the
Internet has a highly heterogeneous scale-free degree

distribution, with many individual nodes having only a
few connections and few nodes having many connections
(figure 1d; [3]). Similarly, the connections between
individuals using various online social networks have
degree distributions similar to scale-free networks, but
with fewer highly connected nodes [8,9]. The diffusion
of information from television or radio broadcasters is
unidirectional and even more unevenly distributed,
with only a few organizations communicating with
audiences numbering in the millions. Along with these
changes in network architecture, rates of communica-
tion have also probably increased as new technologies
reduce the economic costs of communication across
long distances.

While such changes have probably facilitated the
spread of beneficial new technologies and ideas, they
have also likely enabled the increased transmission of
information with deleterious consequences (e.g. on bio-
logical fitness, welfare, economic utility or accuracy of
belief). As the persistence of such misinformation can
have negative consequences for various aspects of
human society, it is critical to understand how changes
in communications technology may have influenced its
spread and maintenance. How strong is the effect of a
given change in network architecture, relative to*Author for correspondence (yeaman@zoology.ubc.ca).
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a change in the rate of social communication or the way
that individuals process information? Answering these
questions is important for understanding human evol-
utionary history and for predicting the consequences of
contemporary shifts in the use of communication technol-
ogy. For example, a total shutdown of Internet andmobile
telephone communications (e.g. similar to January 2011
in Egypt [10]) is likely to result in a drastic change in
the way that cultural information could spread through
a national population. How might such changes in the
availability of communications technology affect the
flow and maintenance of misinformation?

While understanding the effects of transmission is
critical to answering this question, there are a range of
factors that can result in a reduction in the frequency
of a deleterious trait in a population. For example, indi-
viduals may forget about a trait and therefore no longer
carry it or transmit it to others in the population. Dele-
terious traits may also be effectively ‘eliminated’ from
the population if individuals evaluate these traits, recog-
nize their deleterious value and choose not to use or
retransmit them. Regardless of the functional details of
any such mechanisms, they can be grouped together in
terms of their net effects reducing the frequency of the
trait in the population. The maintenance of deleterious

traits may therefore be effectively modelled as a product
of the tension between the net effects of all factors
involved in transmission and elimination of traits, as is
commonwith epidemic models of disease spread [11–13].

Considerable research has explored how the architec-
ture of social networks affects diffusion processes for
simple contagions like rumours or diseases [2,11,12,
14–17]. When applied to the spread of socially trans-
mitted information, network models have often been
modified to scale the probability of transmission by the
frequency of social interactions or other complex learning
rules [18–22]. In most cases, these studies have focused
on deriving ‘epidemic thresholds’ and other metrics
describing the conditions under which such contagions
are likely to spread. Generally speaking, these models
have found that networks with high variance in con-
nectivity among individuals (e.g. scale-free) reduce the
rates of transmission required to realize an epidemic
[7,23], whereas networks with high degrees of clustering
(e.g. small-world) can have the opposite effect [23].While
these network models are all built around the tension
between rates of transmission and rates of elimination,
they have not typically represented the value of trans-
mitted information as both a factor affecting the
dynamics of diffusion and a dynamical endpoint of
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Figure 1. (a–c) Social networks architectures yielded by theWatts & Strogatz [2] small-world algorithmwith varying proportions of
long-distance connections (pw) and by the Barabási & Albert [3] scale-free algorithm (d). All four networks have N ¼ 40 nodes and
an average degree of k ¼ 4 links per individual. Networks were drawn using the SocNetV program [4]. (Online version in colour.)
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interest (i.e. what is the average value of deleterious traits
maintained in the population at equilibrium?). Some
recent works have examined how network architecture
affects the consensus value of transmitted information
[24]; but in this case, the concept of misinformation is
defined as the deviation from social consensus, rather
than as a quality that is specific for value of the traits
involved. The maintenance of maladaptive culture has
been studied in the context of models of social and indi-
vidual learning [25,26], but these studies have typically
not incorporated the effect of network architecture.

Here, we use a combination of analytical theory
and individual-based simulations to compare how the
spread and maintenance of deleterious traits are affected
by different network architectures (e.g. scale-free, small-
world, one-to-many communication) versus variations in
the rates that individuals transmit or eliminate these
traits. While we use an approach similar to models of
epidemic spread [11,23], the processes we represent can
be interpreted in a manner similar to models of social
versus individual learning [27–31]: traits are innovated
(individual learning), transmitted among individuals
(social learning) and eliminated from use and retransmis-
sion (a form of adaptive individual learning, if the
elimination process is interpreted as occurring as a pro-
duct of an individual evaluating and recognizing a
trait’s negative value). We assume that the spread of a
given cultural trait is affected by two coefficients (each
varying from 0 to 1): its transmissibility (c), determining
the probability of spread during social contact and its
intrinsic value (v), which represents its deleterious
effect (e.g. on biological fitness, welfare, economic utility
or accuracy of belief; neutral traits have v ¼ 1) and also
determines the probability that the trait is eliminated.
In classical population genetics, ‘genetic load’ represents
the effect of a given deleterious mutation on the mean fit-
ness of a population, calculated as a function of its effect
on individual fitness and its frequency in the population
[32–35]. Here, we use a similar approach to represent
the effect of a given deleterious cultural trait on the ‘mis-
information’ in a population, defining the ‘cultural load’
that the trait contributes as a function of its intrinsic
value and its frequency. We then study how variations
in c, v and in the rates of social communication and elim-
ination affect the frequency of the trait in the population
and the cultural load that results. In particular, we seek
to quantify the effect of variations in network architec-
ture on cultural load relative to changes in the average
rates of social communication, as both of these aspects
of human interaction have been greatly affected by
changes in communications technology.

2. MODEL

We begin by describing the derivation of the analytical
models thatwe use to predict the cultural loadmaintained
at equilibrium in an unstructured population. We then
describe the design of the individual-based simulations
that we use to study the effect of network architecture
on cultural load. Finally, we present and compare the
results yielded by these different approaches, referring
back to the appropriate equations for reference.

2.1. Analytical model

For the analytical approach, we assume a population of
infinite size where individuals interact at random (i.e. a
panmictic social network). Individuals can gain a given
trait by either innovation (individual learning; at rate
m) or by transmission during social interaction (social
learning), which is attempted between two randomly
selected individuals at rate b. During a given social
interaction, the trait can be passed from the ‘sender’
to the ‘receiver’ with a probability equal to its transmis-
sibility (c; hereafter, we use ‘rate of communication’
to refer to b, and ‘rate of transmission’ to refer to bc).
Individuals can perform the elimination process at
rate l, with the probability that a given trait is actually
discarded during an elimination event specified by
its discard coefficient (r ; hereafter, we use ‘rate of
elimination’ to refer to l, and the ‘realized rate of
elimination’ to refer to lr). Traits that have been elimi-
nated may be regained through social transmission
or innovation, such that this model closely follows
the susceptible–infected–susceptible (SIS) model of
epidemiology [11,16], and previous models of cultural
evolution [36,37].

Following these assumptions, the rate of change in
the frequency (r) of a focal trait in the population is
therefore:

dr
dt

¼ ð1# rÞðmþ bcrÞ # rlr: ð2:1Þ

The first term in this expression represents the
increase in frequency of the trait as individuals that
do not have it either innovate (at rate m) or socially
learn it (at rate bcr), whereas the second term rep-
resents the decrease in frequency as individuals that
have the trait eliminate it (at rate lr). While a compo-
site term could be used to represent the joint effect of
the rate of communication (b) and the transmissibility
of a trait (c), we keep these terms separate to illustrate
how load varies for traits with different transmissibil-
ities under different values of b, as the accumulation
of multiple traits is of explicit interest in cultural evol-
ution (likewise for l and r). As we are most interested
in interpreting this model in terms of the effect of
individuals making choices to ‘retain’ or ‘discard’ a
given trait according to its value (as opposed to other
factors that might affect the rate of elimination, such as
memory), we assume for the remainder of this paper
that traits with lower intrinsic value (v) have a higher
probability of being discarded during the elimination pro-
cess (r), such that r ¼ (12 v). The following derivation
could instead incorporate some more complex function
relating intrinsic value (which affects the load) to the
probability of a trait being discarded (which affects
the equilibrium frequency), or incorporate memory into
the calculation of r. As we assume that the probability
of the trait being discarded is proportional to its value,
the effect of the elimination process is somewhat similar
to ‘guided variation’ or ‘adaptive filtering’ of cultural
traits [25,28], but applied to individual traits instead of
at the level of the population.

If we assume that the rate of innovation is vanish-
ingly low, setting m ¼ 0, then this yields two stable
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equilibria: one where nobody carries the trait,
r̂ ¼ 0, when bc , l(1 2 v), and one where the
trait segregates at intermediate frequency, r̂ ¼ 1#
ðlð1# vÞ=bcÞ, when bc . l(12 v). When the focal
trait is introduced into a small fraction of the
population, it will therefore either go extinct or
approach the intermediate frequency equilibrium
when the transmission rate, bc, exceeds the realized
elimination rate, l(1 2 v). As all traits considered
here are deleterious, the value of not having a trait
is assumed to be equal to 1, such that the cultural
load (L) can be defined following the usual definition
for genetic load based on the mean fitness of the
population (L ¼ 1# !W ; [32–35]), but substituting
mean value (!v ¼ rð1# vÞ þ ð1# rÞ) for mean fitness

(!w). This gives

L ¼ 1# ðr̂v þ ð1# r̂ÞÞ ¼ r̂ð1# vÞ; ð2:2Þ

such that

L ¼ ð1# vÞðbc # lð1# vÞÞ
bc

: ð2:3Þ

The cultural load varies between 0 and 1 and provides
a measure of the deleterious effect of the focal trait at
the level of the population, which is proportional
to both its frequency and intrinsic value (such that
L ¼ 0 when the trait is not present in the population).
Following the same derivation, the expression for load
under recurrent innovation (m. 0) is given by:

L ¼
ð1# vÞðbc # lð1# vÞ # mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbc # lð1# vÞ # mÞ2 þ 4bcm

q
Þ

2bc
: ð2:4Þ

A range of analytical approximations has been developed
to illustrate how different networks affect the equilibrium
frequency for the SIS model and other related epidemic
models [2,6,16], but these often rely upon assumptions
that make it difficult to compare results among models.
Below, we use individual-based simulations to compare
the effect of different network architectures (e.g. scale-
free, small-world) on equilibrium trait frequency and
cultural load. For continuity, we carry on with our
descriptions of two other analytical models of one-to-
many transmission, before comparing results among
simulations and these various analytical models.

One-to-many transmission occurs whenever one indi-
vidual (or one coordinated group of individuals) is able
to communicate with all other individuals in a popu-
lation, as might occur with a teacher, leader or mass
media source such as a radio or television broadcaster
[38]. If individuals in the population communicate nor-
mally among themselves at rate b(12 t) and receive
information unidirectionally from a single central node
at rate bt (with t scaling from zero to one), then we
can modify the approach from equation (2.1) to represent
the change in trait frequency in both the members of the
general population (rg) and the central node (rl):

drg
dt

¼ ðl # rgÞbcððl # tÞrg þ trlÞ # rglgðl # vÞ

and
drl
dt

¼ ðl # rlÞbcrg # rlllðl # vÞ:

9
>>=

>>;

ð2:5Þ

This modified model assumes that the central
node only learns from individuals in the general
population, and allows for different rates of the elimin-
ation process in the central node (ll) and the general
population (lg).

These equations can be solved for different
equilibrium trait frequencies, depending upon the
assumptions about the rates of the elimination process.
Most simply, when the central node acts as a regular
member of the population such that ll ¼ lg ¼ l, it
can be shown by performing a standard linear stability
analysis that there is an equilibrium with frequencies
r̂l ¼ r̂g ¼ 0 which is unstable when r̂c . lð1# vÞ.
The cultural dynamics may then converge to an
equilibrium given by the frequencies r̂l ¼ r̂g ¼ 1#
ðlðl # vÞ=ðbcÞÞ, which does not differ from the expec-
tation in a panmictic population. This shows that
there is no effect of this type of network architecture
on mean cultural load at equilibrium, without some
concomitant change in updating rules (although this
architecture may increase the similarity among individ-
uals in the population, relative to panmixia).

If we instead assume that the central node is a per-
sistent source of misinformation that always possesses
and never eliminates the focal trait (ll ¼ 0), then
r̂l ¼ 1, resulting in more load being maintained in the
population. In this case, rg ¼ 0 is unstable and the
dynamics converge to

r̂g ¼
bcð1# 2tÞ # lð1# vÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbc # lð1# vÞÞ2 þ 4tbclð1# vÞ

q

2bcð1# tÞ
; ð2:6Þ

with the load being determined by the trait in the
general population and given by

L ¼ rgð1# vÞ: ð2:7Þ

By contrast, if we assume that the central node
has essentially limitless capacity for eliminating deleter-
ious traits (ll ! 1), then drl/dt can never be positive
and the equilibrium frequency at the central node is
r̂l ¼ 0. The equilibrium r̂g ¼ 0 is then unstable when
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bcð1# tÞ # lgð1# vÞ . 0: If r̂ . 0 the equilibrium
r̂l ¼ r̂g ¼ 0 can be unstable even when the realized
elimination rate lgð1# vÞ does not exceed the trans-
mission rate bc, and the cultural dynamics may then
settle in the equilibrium

r̂g ¼
bcð1# tÞ # lð1# vÞ

bcð1# tÞ
; ð2:8Þ

where l ¼ lg, resulting in less load being maintained
in the population.

We now discuss the design of the individual-based
simulations that we use to compare the effects of differ-
ent network architectures and updating rules on
cultural load at equilibrium, before comparing the
results yielded by these approaches.

2.2. Individual-based simulations

We implemented individual-based simulations in R the
Comprehensive R Archive Network (CRAN) and C
with updating rules similar to those used in the above
analytical model, but with explicit social interaction net-
works (source code available upon request from the
corresponding author). We assume that the population
is of constant size N, with each individual occupying a
single node on a static social network describing the
potential connections along which traits can be trans-
mitted. Individuals have up to n independently
updated traits that are either present or absent, with
asynchronous updating following a sequence of trans-
mission, elimination and innovation events at each
time step. A social communication event occurs every
1/b time steps, whereby one link is randomly selected
from the social network and one of the nodes is randomly
assigned as the sender and the other the receiver (net-
works are undirected). The sender then attempts to
transmit to the receiver each trait that they possess,
with p[transmit] ¼ c for each trait. An elimination
event occurs every 1/l timesteps, whereby one individual
is randomly selected from the population to potentially
discard their traits, with p[discard]¼ 12 v for each
trait. Finally, every timestep, individuals may gain
each trait by innovation with probability m. We use
only very low rates of innovation in the presentation of
our results (m ¼ 1023), to facilitate comparisons between
the analytical predictions and individual-based simu-
lations (this low level of m has a negligible effect on the
results).

Depending on the simulation, the architecture of the
network defining social communication and trans-
mission was determined by one of several algorithms.
All networks were created at initialization and did not
change thereafter, with N ¼1000 nodes and 2000 bi-
directional edges, such that mean network degree,
!k ¼ 4 (with the exception of the panmictic case, where
all possible connections among nodes are included).
Scale-free networks were created following the preferen-
tial attachment algorithm of Barabási & Albert [3]
with two initial nodes and two edges added for each
new node (m0 ¼m ¼ 2) until reaching 1000 nodes,
with two final iterations of the algorithm added at the
end to preferentially attach the initial m0 nodes. Small-
world networks were created following the model of

Watts & Strogatz [2], such that all individuals were
arranged on a circular one-dimensional lattice, with
each node connected to its two nearest neighbours (so
that again, !k ¼ 4). Small-world connectivity was then
added by rewiring a proportion, pw, of the nodes by
randomly choosing one end of a randomly chosen link
and reconnecting it to a new node without duplicating
an existing link or rewiring more than one link per
node (but without controlling for multiple links being
rewired to the same node).

There are many potential reasons that rates of elim-
ination could vary among individuals, for example, if
some individuals devote more time to determining the
value of the cultural traits they carry and choosing
whether to continue to use them and retransmit
them. In order to examine the effect of variation
among individuals in the rate at which they were
picked to perform the elimination process, we set the
elimination rate per timestep of individual j as:

hj ¼ l
kgjPN
j kg

j

 !

; ð2:9Þ

where the term in parentheses is a modified probit
choice function [39], kj is the network degree of individ-
ual j (the number of links between individual j and all
other individuals) and g allows us to tune the extent
to which an individual is more or less likely to be
chosen for updating as a function of network degree dis-
parities. By this function, when g. 0, the most highly
connected individuals perform the elimination process
most often, whereas the opposite occurs when g , 0,
and when g ¼ 0, individuals are picked at random
from the network for updating. Varying g could affect
the cultural load at equilibrium through changes in
two aspects of the elimination process: the variance in
elimination rate (h) among individuals, and the corre-
lation between this rate and the network degree of
individuals (k). To test the importance of these two
effects of g, we also ran simulations setting individual
rates as above using equation (2.9), but then randomly
shuffling the values of h yielded by given values of
g and kj. This random shuffling maintains the variance
in h owing to specific values of g and kj, but breaks the
correlation between h and k (referred to as ‘shuffled h’).
We also ran simulations by reverse-ordering the values
of h yielded by a given value of g and kj, such that
when g. 0, the most highly connected individual had
the lowest value of h (and vice versa). This reverse-
ordering also maintains the variance in h owing to g
and kj, but reverses the correlation between h and k
(referred to as ‘reverse-ordered h’). We use this generic
function and the ‘reverse-ordered’ versus ‘shuffled’ vari-
ations to illustrate the general importance of variation
in h and of correlation between h and k, as we are not
attempting to represent any specific cognitive or behav-
ioural processes that define the individual rates of
elimination; more complex functions could be used for
more specific applications.

In all cases, simulations were run for at least 106 time
steps, with the mean frequency of each cultural trait
recorded at 1000 time-step intervals during the final
105 time steps of each simulation (by which point
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there was no consistent change in this frequency).
As above, the load contributed by each cultural trait
was calculated as a function of its frequency and intrin-
sic value: L ¼ r(12 v). For all simulations, N ¼ 1000
and n ¼ 1000, with the value (v) and transmissibility
(c) coefficients drawn from a uniform distribution
with values between 0 and 1. We ran 1000 replicate
runs per parameter set, yielding data for the equili-
brium trait frequency of 106 independently diffusing
cultural traits for each parameter set.

3. RESULTS

3.1. Mean transmission rate versus network
architecture

Generally speaking, the cultural load contributed by
different traits at equilibrium was much more strongly
affected by changes in the rates of the communication
and elimination processes than by differences in
network architecture. The results for the panmictic net-
work under equal rates of communication and
elimination (l ¼ b ¼ 1) provide a baseline for compari-
son to illustrate these findings (equations (2.3) and
(2.4)). In this baseline case (figure 2a), there is effec-
tively very little load contributed by any traits with
c , 12 v, as they are rapidly eliminated from the popu-
lation following introduction by innovation (we refer to
the shape of the surface represented by these contour
plots as the ‘load profile’). Even a threefold increase

in the rate of communication causes a substantial
increase in the proportion of parameter space that
maintains cultural load at equilibrium, shifting the
load profile so that traits with much lower transmissibil-
ities are maintained in the population (figure 2b). By
contrast, a threefold decrease in communication results
in very little load being maintained across most of the
parameter space, with the maximum load occurring
for traits with relatively high value (figure 2c). While
different network architectures also caused shifts in
the amount of load maintained at equilibrium for differ-
ent values of c and v (figure 2d– f ), these shifts were
much less pronounced than observed for the relatively
small fold-changes in b (or equally, l). Small-world net-
works reduced the cultural load (figure 2d,e), resulting
in a profile similar to that found under reduced rates of
communication (figure 2c). By contrast, scale-free net-
works increased the load, shifting the load profile so
that traits with lower transmissibilities were maintai-
ned at non-zero frequencies and contributed to load
(figure 2f ). As the networks modelled in figure 2 rep-
resent extremes on a continuum of plausible human
social network architectures, but b and l can plausibly
take on values much more extreme than those used
here, the load profile has the potential to vary much
more strongly with changes in the rate of communi-
cation or elimination than with changes in network
architecture.

For a population with many traits, the average load
will be determined by the distribution of c and v
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Figure 2. Cultural load at equilibrium contributed by a trait as a function of its intrinsic value, v, and transmissibility,
c, under different rates of communication (b) and different network architectures. Lines represent contours of equal load, as
indicated by both the numerals plotted over the contour lines and the shading between contours. (a–c) Numerical results
for the panmictic network under different rates of transmission using equation (2.4). (d– f ) Simulation results for different
network architectures with the same rates of communication (b ¼ 1). (a– f ) m ¼ 1023, l ¼ 1, g ¼ 0; for simulations, N ¼
1000. We note that simulations under a panmictic model yielded results that were virtually indistinguishable from the analytical
results shown in (a–c).
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coefficients of the cultural traits that arise in the popu-
lation; if newly innovated traits are more commonly of
high value or low transmissibility, then the average
load will be lower. Here, we have assumed a uniform dis-
tribution of both c and v for simplicity; taking an
unweighted average over all values of load shown in
figure 2, the average load at equilibrium would be
(for figure 2a– f ): !La ¼ 0:059; !Lb ¼ 0:231; !Lc ¼ 0:008;
!Ld ¼ 0:025; !Le ¼ 0:032; !Lf ¼ 0:079. Under this assump-
tion of a uniform distribution of both c and v, a
panmictic network with a rate of communication of
b ! 1.18 would generate an average amount of load
approximately equal to that found on the scale-free
networks in figure 2f, whereas b ! 0.64 would generate
an average load approximately equal to that found on
the small-world networks in figure 2d.

3.2. Variation among individuals in the rate of
elimination

Network models often explore how variation among
individuals in rates of communication can affect the
likelihood of epidemic spread [23,40,41], but these
models rarely examine the effect of variation among
individuals in the rate of recovery, perhaps because
for biological infections this is relatively constant
among individuals. But for cultural traits, it seems
likely that there might be considerable variation
among individuals in the rate they perform the elimin-
ation process and discard deleterious traits. If cultural
traits are being eliminated from use and retransmission
by individuals being able to determine their value and
making choices, then variation among individuals
in how much effort in time or energy they spend in
making choices would yield considerable differences
in h. If we hold the mean rate of elimination constant
(l ¼ b ¼ 1) but vary the rates at which individuals
perform the elimination process (h; by setting g = 0),
then we see some surprising effects on the cultural
load at equilibrium. When we set g. 0, elimination is
more often performed by the most highly connected
individuals (highest k), whereas for g, 0, elimination is
more often performed by the least-connected individuals.
In either case, the cultural load is substantially increa-
sed over the case where all individuals eliminate at equal
rates (figure 3 versus figure 2f ), with !Lg¼#3 ¼ 0:177 and
!Lg¼#3 ¼ 0:444, whereas !Lg¼#3 ¼ 0:079. Generally speak-
ing, like the variance in h among individuals (figure 3c;
thick grey dashed line), the average load always increa-
ses with jgj, but this increase occurs more rapidly with
g. 0 (figure 3c).

Perhaps more surprisingly, results were almost identi-
cal when we either shuffled or reverse-ordered h among
individuals, breaking the correlation between an individ-
ual’s network degree (k) and their rate of elimination (h;
‘shuffled h’; figure 3, dashed lines) or reversing the sign
of the correlation (‘reverse-ordered h’; figure 3, dotted
lines). The lack of a substantial effect owing to shuffling
or reverse-ordering h shows that the increase in load
under g= 0 is almost entirely owing to the variation in
the rate of elimination among individuals induced by g,
rather than from any additional interaction with the
architecture of the network. While it might be expected

that if the most highly connected individuals were also
performing the elimination process most often, load
might be reduced relative to a case where minimally con-
nected or randomly chosen individuals were performing
the elimination process most often (as highly connected
individuals would be less likely to carry and therefore
transmit the deleterious traits, overall rates of trans-
mission of such traits might be reduced), these results
show that this is not the case. While more load is
maintained under g ¼ x than under g ¼ 2x, as shown
in figure 3c, these results show that this difference is
a result of the higher variance in h yielded under
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Figure 3. Cultural load at equilibrium under different levels
of variation among individuals in the rate they perform the elim-
ination process on a scale-free network. (a) Individuals that are
the most highly connected perform elimination the least often
(g ¼ 23; solid lines), whereas (b) shows the results for the oppo-
site case (g ¼ 3; solid lines), while (c) shows the variance in h
(thick grey dashed line) and the average load (!L) as a function
of g. In all cases, when the individual rates of elimination (h)
set by g are shuffled (dashed lines; blue online) or reverse-
ordered (dotted lines; red online) among individuals, there is
vanishingly little change in results (lines are slightly offset for
visibility). (a–c) N ¼ 1000, m ¼ 1023, b ¼ 1, l ¼ 1; shading
and contours plotted with the same intervals and palette as in
figure 2. (Online version in colour.)
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positive values of g, rather than a result of the most- or
least-connected individuals eliminating most often.

We suggest that the reason that load is higher under
increased variance in h is that this variation reduces the
efficiency of the elimination process. The efficiency of
the elimination process can be defined as the net rate
that elimination events result in the discarding of a
trait, E ¼ r

PN
j pjhj=N , where hj represents the rate

of the elimination process for individual j, and pj rep-
resents the probability that individual j carries the
trait. In the simplest case, when there is no variance
in h and the network is panmictic, each individual
will carry the trait with probability pj¼ r and will be
picked to eliminate the trait with probability
h ¼ l=N (equation (2.9)), yielding E ¼ rlr. When
there is variation in h, individuals with high h often
do not carry the trait and therefore tend to have low
values of p (and vice versa). Analysis of simulation
data shows that individual contributions to total effi-
ciency ( pjhj) tend to be very low for individuals with
low h (as might be expected), but contributions to effi-
ciency made by individuals with high h do not balance
these, because their elimination events are often per-
formed when they do not carry the trait. This reduces
the average efficiency of the elimination process at the
level of the population. For example, for a trait with
c ¼ 0.75 and v ¼ 0.75 spreading through a scale-free
network with l ¼ b ¼ 1 (as per figure 3), when g ¼ 0,
the average efficiency of elimination observed in the
simulations was E ¼ 0.148, whereas when g ¼ 3, E ¼
0.025. Basically, because individuals that perform the
elimination process most often will typically not carry
the trait, their elimination events are often ‘wasted’ in
terms of their effects on the trait frequency at the
level of the population, and do not balance the
decreases in elimination efficiency owing to individuals
that rarely perform the elimination process. Relative
to the effect of this decrease in the efficiency of elimin-
ation, we found only vanishingly small effects of
correlation between individual rates of elimination and
network connectivity.

3.3. One-to-many communication

To this point, all networks we have discussed have
allowed the bidirectional flow of information through
links connecting individual nodes. As some modern
communications technology allows only the uni-
directional flow of information, from one individual
(central node) to many (e.g. television, radio), it is
important to study the effect of this more extreme
type of network on cultural load. As shown analytically
in equation (2.5), the trait frequency and the load at
equilibrium are independent of the rate of one-to-
many communication (t) if the individual occupying
the central node performs the elimination process at
the same rate as the rest of the population (ll ¼ lg).
If instead, the individual occupying the central node
acts as a persistent source of misinformation (rl ¼ 1)
and never performs the elimination process (ll ¼ 0),
then the equilibrium frequency and load at equilibrium
are increased considerably. The equilibrium frequency
and load contributed by traits with high v is only

slightly affected by t when the central node is a persist-
ent source of misinformation (figure 4), as most
individuals carry the trait. On the other hand, when
the central node performs the elimination process at a
higher rate than the rest of the population (ll ! 1)
and is therefore never a source of misinformation
(r̂l ¼ 0), there is a pronounced decrease in equilibrium
trait frequency and cultural load with increasing t
(equations (2.7) and (2.8); figure 4, dashed lines). In
this case, when individual communication is more
strongly oriented to the central node (high t), the pro-
portion of communication events with others in the
general population is decreased (low 12 t), reducing
the equilibrium frequency and the load. These results
show that in contrast to the other network architectures
examined here (scale-free, small-world), one-to-many
communication has no effect on the cultural load at
equilibrium if learning rules in the central node are
not altered. But if these learning rules are altered,
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Figure 4. Effect of one-to-many communication on the cul-
tural load at equilibrium (a) and the equilibrium trait
frequency (b) when the central node is either a persistent
source of misinformation (ll ¼ 0; r̂l ¼ 1; equation (2.6)
and (2.7); solid lines) or is never a source of misinformation
ðll ! 1; r̂l ¼ 0; equation (2.7) and (2.8); dotted lines).
(a,b) m ¼ 0, b ¼ 1, lg ¼ 1; in (a) t ¼ 0.1, with shading and
contours showing the load when t ¼ 0, plotted with the
same intervals and palette as in figure 2; (b) c ¼ 0.9.
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changing the trait frequency at the central node, then
one-to-many communication can have very strong
effects on the trait frequency and cultural load at equi-
librium. Therefore, this provides another example of
how variation among individuals in the rate of elimin-
ation can affect the cultural load.

4. DISCUSSION

Cultural traits with deleterious consequences can be
maintained in a population when the processes of com-
munication and transmission cause them to spread
faster than they are eliminated. Such traits that are
maintained in a population at an equilibrium frequency
thus constitute a ‘cultural load’ of misinformation,
which represents the average intrinsic value (e.g.
effect on fitness, welfare or accuracy of belief ) of dele-
terious cultural traits present in a population in the
same way that the ‘genetic load’ represents the fitness
cost of the segregation of deleterious mutations [32–
35]. As the load contributed by a given trait depends
on both its transmissibility (c) and intrinsic value (v),
the average load in a population will depend strongly
upon the actual distribution of c and v of all traits aris-
ing in the population. Here, we have shown that the
cultural load for traits with different c and v (the
load profile) is very strongly affected by variations in
the mean rates of the communication versus elimin-
ation processes (figure 2) and by variation among
individuals in the rates they perform the elimination
process (figure 3). While we also found that network
architecture affected the load profile, with more load
under scale-free architectures and less load under
small-world architectures (figure 2), the effect of such
variations was much more limited than the effect
of changes in the processes of communication and
elimination. Interestingly, the rate of one-to-many com-
munication had no effect on load unless there were also
changes in the rate of elimination at the central node;
when the central node never discarded deleterious
traits, considerable load could be generated under this
architecture (figure 4).

The network models that we have studied may span
the extremes of the spectrum of architectures that have
likely existed over human history; most human com-
munication networks are thought to fall somewhere
between the minimally interconnected small-world net-
works and the highly heterogeneous scale-free networks
[5–9]. We found that an increase in the rate of com-
munication of only approximately 18 per cent could
result in a load profile and !L similar to that of a
scale-free network, whereas a decrease of approximately
36 per cent could yield a load profile similar to the
small-world network with pw ¼ 0.001. Much larger
changes in rates of communication have probably
occurred through successive innovations in com-
munications technology, with the economic costs
of communication across long distances decreasing con-
siderably as technologies relying on the physical
transportation of information (e.g. traditional mail)
have been replaced by those that use digital communi-
cation (e.g. email). As such, our results suggest that

innovations in communications technology have prob-
ably affected cultural load more strongly through
changes in the rates of communication than through
changes in the architecture of the network (who com-
municates with whom). Thus, while considerable
research has focused on how different network architec-
tures affect the dynamics of spreading processes
[23,40,41], when applied to problems of cultural
evolution, understanding how various aspects of
human ecology affect the rates of transmission versus
elimination is probably much more important.

Surprisingly, under our modelling assumptions, we
found that there was no detectable effect of any corre-
lation between an individual’s network connectivity
(their individual rate of communication) and their indi-
vidual rate of elimination (h) on the cultural load at
equilibrium (§3.2). While it might be intuitively
expected that the cultural load would be reduced
when the most highly connected individuals perform
the elimination process most often because more com-
munication events would involve individuals that were
likely to have purged their deleterious traits, this was
not observed (figure 3). However, the load at equili-
brium was strongly affected by any increases in the
variance in individual rates of elimination (h),
suggesting that any genetic or social factors increasing
this variance will always increase the load. As increases
in social complexity may often be accompanied by indi-
vidual specialization for certain tasks or professions
[42], any such changes in social structure might have
been accompanied by some abdication of the ‘labour’
of evaluating the value of information less relevant to
one’s specialty. As this practice would increase the var-
iance in h, our results show that it would also increase
cultural load in the absence of other changes in learning
rules. Therefore, it would be interesting to study the
effect of more complex learning rules on the cultural
load, such as preferentially learning a trait from
individuals with high h for that particular trait (i.e.
non-specialists learning preferentially from specialists).
In any case, the general effect of varying individual
elimination rates in SIS-type models does not seem to
have been considered in previous studies of epidemic
spreading on networks [23,40,41].

One important assumption implicit in our approach is
that there is no evolution and that variation among indi-
viduals in their network connectivity and their rates of
elimination are fixed, rather than coevolving with cul-
ture. To the extent that intrinsic value represents an
effect on biological fitness, variation among individuals
in the number of deleterious traits they carry will
induce natural selection on any factor that affects their
own personal cultural load (through changes in the
transmission or elimination processes). Such factors
could include genetically based traits (according to
Gavrilets & Vose [43]), culturally evolved behavioural
strategies at the individual level [44] or culturally evolved
characteristics of groups that compete with each other
for territory or resources (e.g. division of labour or
social organization; [28,45,46]). Two other important
assumptions of our approach are that all traits have
the same intrinsic value for all individuals, and that
the rate of discarding of a trait (r) is independent of
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the values of r for all other traits carried by an individual
and that this rate is directly proportional to the trait’s
value (r ¼ 12 v). In practice, these assumptions will
likely hold only for a small fraction of cultural traits. It
would be very interesting to study how the spread of
traits that are beneficial for a minority of individuals
but deleterious for a majority would be affected by differ-
ent network architectures. Our model of one-to-many
communication without elimination at the central node
gives some indication of the possible magnitude of this
effect (figure 4a, solid lines), and also suggests that
different results might be found with directed networks.
Further models that relax these assumptions and
increase the realism of how traits are transmitted/dis-
carded are necessary to expand our understanding of
how misinformation spreads and persists in populations.
In particular, as we have shown that considerable cul-
tural load can be maintained at equilibrium, it will be
interesting to study how different strategies might
evolve that minimize load, both at the individual and
at the group level.

We would like to thank J. Wakano, K. Aoki, S. Dridi,
E. Fumagalli and anonymous reviewers for helpful
discussion and comments on the manuscript. This work was
supported by the Swiss NSF (PP00P3-123344).
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