REGULAR ARTICLE

Disparity in ⁹⁰Sr and ¹³⁷Cs uptake in Alpine plants: phylogenetic effect and Ca and K availability

Thomas Guillaume • Fabienne Chawla • Philipp Steinmann • Jean-Michel Gobat • Pascal Froidevaux

Received: 8 September 2011 / Accepted: 15 December 2011 / Published online: 4 February 2012 © Springer Science+Business Media B.V. 2012

Abstract

Background and aims Uptake of ⁹⁰Sr and ¹³⁷Cs in plants varies widely between soil types and between plant species. It is now recognized that the radionuclide uptake in plants is more influenced by site-specific and plant-specific parameters rather than the bulk radionuclide concentration in soil. We hypothesized that the stress which Alpine plants experience because of the short growing season may enhance the phylogenetic effect on the ¹³⁷Cs and ⁹⁰Sr transfer factors as well as the dependency of the uptake by plant to the concentrations of exchangeable Ca and K of soils.

Methods We carried out a field study on the ⁹⁰Sr and ¹³⁷Cs uptake by 11 species of Alpine plants growing

Electronic supplementary material The online version of this article (doi:10.1007/s11104-011-1110-6) contains supplementary material, which is available to authorized users.

T. Guillaume · F. Chawla · P. Froidevaux ()
Institute for Radiation Physics, University Hospital Center,
University of Lausanne,
Lausanne, Switzerland
e-mail: pascal.froidevaux@chuv.ch

T. Guillaume · J.-M. Gobat Institute of Biology, Laboratory Soil & Vegetation, University of Neuchâtel, Neuchâtel, Switzerland

P. Steinmann Federal Office of Public Health, Radiation Protection, Bern, Switzerland on 6 undisturbed and geochemically different soils in the Alpine valley of Piora, Switzerland.

Results Results show that a strong correlation exists between the log TF and the log of exchangeable Ca or K of the soils.

Conclusions Cs uptake by Phleum rhaeticum (Poales) and Alchemilla xanthochlora (Rosales) is more sensitive to the amount of exchangeable K in the soil than the corresponding uptake by other orders. Moreover, the ⁹⁰Sr results indicate a phylogenetic effect between Non-Eudicot and Eudicots: the order Poales (Phleum rhaeticum) concentrating much less ⁹⁰Sr than Eudicots do.

Keywords ⁹⁰Sr · ¹³⁷Cs · Plant · Phylogenetic effect · Uptake · Soil

Introduction

The radionuclides ¹³⁷Cs and ⁹⁰Sr have been widely dispersed in the environment as a consequence of the atmospheric nuclear bomb tests (NBT) of the 1950's and 1960's. Moreover, the accident of the Chernobyl nuclear power plant increased the ¹³⁷Cs soil inventory in most European countries. Because ⁹⁰Sr is easily transferred from soil to plant and along the food chain, it can still be determined above the detection limit in milk teeth of children and in human vertebrae today (Froidevaux et al. 2006; Froidevaux et al. 2010). A commonly used parameter to express the extent of the

transfer of radionuclides from soil to plants is the transfer factor (TF), which is the ratio of the mass activity concentration of the plant to that of the soil. One prerequisite for the use of the soil-to-plant transfer factor concept is the presence of a statistically significant relationship between the content of a given radionuclide in the soil and plant (Bunzl et al. 2000). However, TFs found in the literature are highly variable, even for the same plant species, which introduces considerable uncertainty in modeling (Frissel 1992; Staunton et al. 2003; Vandenhove and Van Hees 2007). It is now recognized that the radionuclide uptake in plants is more influenced by site-specific and plant-specific parameters rather than by the bulk radionuclide concentration in soil (Bunzl et al. 2000; Ciuffo et al. 2002). These specific parameters are: 1) the radionuclide bioavailability in the soil solution (Sanchez et al. 2002), 2) the capacity of plant species to absorb bioavailable radionuclides; 3) the availability of competing ions in the soil solution (Ehlken and Kirchner 2002), e. g. K as a chemical analogue to ¹³⁷Cs and Ca as an analogue to ⁹⁰Sr (Absalom et al. 2001; Camps et al. 2004; Delvaux et al. 2000; Roca-Jove and Vallejo-Calzada 2000; Sanchez et al. 2002; Smolders et al. 1997). For instance, Smolders et al. (1997) in a laboratory (pot trial) study described a negative correlation between the log- CR (plant to soil solution concentration ratio) of ¹³⁷Cs and the log of the K concentration in the soil solution in 30 different soils covering a wide range of textures. These authors concluded that 94% of the TF variability can be explained by the K concentration in the soil solution and by the ¹³⁷Cs distribution coefficient in soil, K_D. Furthermore, several soil parameters have been reported to play an important role in ⁹⁰Sr and ¹³⁷Cs transfer to plants: cation exchange capacity (CEC) of soil and associated pH, soil organic matter content (SOM), radiocesium interception parameter (RIP).In addition, heterogeneous distribution of radionuclide in soil affects the plant uptake (Bundt et al. 2000; Centofanti and Frossard 2006).

Broadley et al. (1999) proposed a method to assess taxonomic variation in plant uptake of cesium, with Cariophyllidae having the highest Cs concentration in shoot among superorders. Furthermore, Willey et al. (2005) used a database of 273 plant taxa to show that there exists a phylogenetic effect in the ¹³⁷Cs concentration in plants, with Caryophyllales and Poales presenting the highest and the lowest uptake, respectively.

In addition, Willey and Fawcett (2006) showed that plant species take up Sr differently and that the uptake is linked through plant phylogeny. Combining both the phylogenetic approach and the K concentration in the soil solution, Waegeneers et al. (2001) found that the genotypic effects in the phytoavailability of ¹³⁷Cs are increased at a low K content in the soil.

There exist few studies conducted in Alpine ecosystems, regardless of the fact that radionuclide contamination of the soil is persistent in this environment and that the plant uptake is higher than in lowlands (Bunzl et al. 2000; Ciuffo et al. 2003; Ciuffo et al. 2002; Pourcelot et al. 2003; Pourcelot et al. 2007). The scarcity of field studies may lead to a bias in the data found in the literature because equilibrium between the soil, as well as the rhizosphere, and the deposited radionuclide is time-dependant and is often not reached in laboratory experiments (Waegeneers et al. 2009). Additionally, ¹³⁷Cs and ⁹⁰Sr concentration in soil solution are generally not measurable due to their very low concentrations. While TF is a questionable parameter in soil to plant transfer, it is a readily available quantity that is often tabulated in studies dealing with soil to plant transfer of radionuclide. On the other hand, the effect of exchangeable Ca and K on TFs is also questionable, particularly for ¹³⁷Cs for which RIP seems to be a better parameter. Nevertheless, CEC is probably the simplest parameter that accompanies the soil classification in the general literature while RIP necessitates a complex determination that has been carried out only on a few soils samples (Sanchez et al. 2002). Thus there is an interest to link the exchangeable K and Ca in the soil to the soil to plant ¹³⁷Cs and ⁹⁰Sr TF. This relationship should involve various plant species with different uptake potential. This may help to classify plant species and soils according to their capability to transfer radionuclide to the food chain.

The aim of this study was to investigate the relationship between the ⁹⁰Sr and the ¹³⁷Cs TFs for different species of plants and the exchangeable Ca and K in the soils. In addition to the effect of competing ions, we hoped to show any possible phylogenetic effects on the TFs. We assumed that Alpine plants may show enhanced phylogenetic effects on bioaccumulation due to the stress created by the short growth period at an altitude of 2000 m a.s.l. Because a short growth season means a fast biomass increase rate, it results in a higher requirement in minerals. This might

influence the uptake of ¹³⁷Cs and ⁹⁰Sr. To reach these objectives we chose an Alpine area with different soil types. We collected plants from different taxa that were present on the same soil and similar plant species present on different types of soils.

Materials and methods

Sampling sites

The study was conducted in an Alpine valley in Switzerland (Val Piora, Ticino; ca 2000 m a.s.l.). This 23 km² valley is used in the summer for pasturing and is covered with snow from October to May. Six sites were selected: three of them, referred hereafter as sites 1, 4 and 6, are alpine pastures with increasing cattle pressure; site 2 is a fen, site 3 is a non-pastured wet meadow and site 5 is a resting place for cattle. The vegetation is described according to the Braun-Blanquet phytosociological classical approach and for each site, soils horizons have been described according to AFES (Association Française pour l'Etude du Sol; Baize and Girard 2009) and soils have been classified according to WRB (World Reference Base for soil resources, FAO 2006). A full description of each soil profile, along with ¹³⁷Cs and ⁹⁰Sr soil profiles and a full description of the overlaying vegetation are available in Supporting Information.

Sampling

Soils were sampled in August 2007, described and analyzed for CEC, pH and exchangeable K and Ca as displayed in the supplementary material (Table SM-1). Water content was estimated to be at least 50% of the soil capacity during the growing season. Soil 2 was permanently saturated. Plant samples were collected between July and August 2007 and again in July 2008, on the same surfaces. 500 to 2000 g of wet aerial material were carefully picked for each species. We collected 4 species (Achillea millefolium, Alchemilla xanthochlora, Phleum rhaeticum and Ranunculus acris), all present together on sites 1, 3 and 4. These species and R. alpinus collected on sites 4, 5 and 6 form the dataset for site-specific modeling. In addition, we collected other plant species on sites 1 to 6 as described in Table 1. The depth of the rooting layer of each species was estimated through field observation, in the soil profile. Plant samples were carefully washed several times with tap water to remove adhering soil particles; afterwards they were air-dried and crushed. Plant samples were ashed at 600°C for 48 h. Ashes were dissolved in 8 M HNO₃ in a pressurized microwave apparatus (MLS ultraCLAVE; Milestone Inc., Monroe, CT) and filtered before measurement. Ca, as well as stable Cs and Sr, were measured on an aliquot using the same techniques as used for the soil samples.

Radionuclide analysis

 137 Cs activity was measured on air-dried samples of soil and plants in a volume of 250 or 500 ml using γ -spectrometry as described in Saidou et al. (2008). The total concentration of K in the soil and plant sample was calculated from the activity of 40 K.

 90 Sr activity was determined indirectly from the measurement of its daughter product, 90 Y, using a slightly modified version of the method described in Froidevaux et al. (2002). The modification consists, for a soil sample, in introducing an additional purification step of 90 Y through an extraction of 210 Bi (as a potential β -emitter interference) on an anionic exchanger (AG1x8) in 9 M HCl media. The detection limit for 90 Sr analysis was 0.5 Bq per kg of dry mass for soil and 0.1 Bq per kg of dry mass for plant.

Calculation

The concentrations of elements in the soil horizons were reported to the volume of a soil layer of one centimeter thick for one square meter. This particular calculation allows for the comparison of different soils with different densities. Transfer factors were calculated for each horizon following Eq. (1):

$$TF = \frac{\left[A_{plant}\right] (Bq \ kg^{-1})}{(A_{soil})(Bq \ m^{-2} \ cm^{-1})} \tag{1}$$

Results

Soils

The main characteristics of each soil site are presented in Table SM-1 (Supplementary Material). The majority

Table 1 137Cs and 90Sr activities (Bq kg⁻¹ of dry mass) and K and Ca content (mg g⁻¹ of dry mass) of plants on different sites

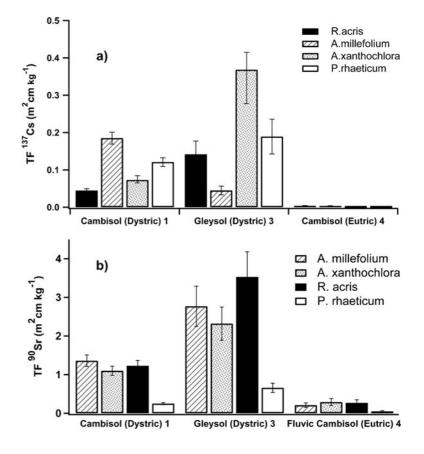
		site	abbreviation	Bq kg ⁻¹ dry mass				mg g ⁻¹ dry mass			
species	Class ^{a)}			¹³⁷ Cs	u95	⁹⁰ Sr	u95	K	u95	Ca	u95
Achillea millefolium	Е	1	1 am	182.5	6.9	92.0	1.6	20.2	2.1	22.5	0.4
Alchemila xanthochlora	E		1ax	71.9	5.3	74.5	1.2	12.5	3.5	19.3	0.3
m2 ^{b)}			1 m2	62.4	1.3	91.9	2.1	9.3	0.4	18.9	0.4
Phleum rhaeticum	NE		1pr	119.3	6.9	16.7	0.3	13.8	2.4	4.6	0.1
Ranunculus acris	E		1rac	44.1	3.3	83.1	1.2	11.7	1.5	20.2	0.3
Rhododendron ferrugineum, wood	E		1rfb	5.7	0.2	28.2	0.4	n.m	n.m	5.0	0.1
Rhododendron ferrugineum, leaves	E		1rff	11.5	0.7	51.5	1.0	5.5	0.3	13.1	0.3
Allium schoenoprasum	NE	2	2as	11.1	0.5	4.2	0.3	13.3	0.4	24.4	1.7
m2 ^{b)}			2 m2	61.3	1.2	2.6	0.2	12.9	0.4	22.1	2.0
Poaceae ^{c)}	NE		2poa	16.5	0.5	1.0	0.1	9.3	0.3	2.8	0.3
Trifolium badium	E		2tb	36.3	0.9	4.5	0.3	14.7	0.5	20.7	1.3
Achillea millefolium	E	3	3 am	25.5	2.1	62.6	1.5	26.1	1.7	15.2	0.4
Alchemia xanthochlora	E		3ax	209	6.5	52.4	0.7	12.3	1.5	17.2	0.2
Gentiana purpurea	E		3gp	129.1	3.1	24.7	0.6	7.7	0.7	7.9	0.2
Peucedanum ostruthium	E		3po	26.7	0.9	112.2	1.3	15.2	0.5	16.8	0.2
Phleum rhaeticum	NE		3pr	107.4	3.1	12.8	0.3	7.9	0.8	1.3	0.0
Phleum rhaeticum	NE		3bpr	149.1	6.2	9.7	0.3	16.3	2.0	2.3	0.1
Ranunculus acris	E		3rac	80.5	3.8	79.7	0.8	19.8	1.8	15.3	0.2
Veratrum album	NE		3va	47.2	1.2	184.4	2.4	17.2	0.5	18.8	0.2
Achillea millefolium	E	4	4 am	31.1	1.8	30.0	1.1	50.9	1.7	26.7	0.9
Alchemila xanthochlora	E		4ax	13.8	1.4	42.3	0.6	17.4	1.0	24.7	0.3
Geranium sylvaticum	E		4gs	9.3	1.6	35.6	1.0	15.2	1.4	25.3	0.7
Phleum rhaeticum	NE		4pr	9.4	1.2	6.0	0.2	14.0	0.9	1.7	0.1
Rrumex alpinus	E		4ra	19.3	0.7	17.4	1.1	31.9	0.7	7.4	0.5
Ranunculus acris	E		4rac	33.5	4.4	39.5	0.8	30.7	3.8	24.6	0.5
Alchemilla xanthochlora	E	5	5ax	5	0.8	47.5	0.7	20.6	0.9	8.7	0.1
Rumex alpinus	E		5ra	2.3	0.5	12.5	0.5	35.8	0.9	3.2	0.2
Alchemila xanthochlora	E	6	6ax	21.7	0.9	33.9	0.7	19.9	0.6	12.9	0.3
Rumex alpinus	Е		6ra	19.7	1.3	11.3	0.5	38.2	1.4	4.0	0.2

a. E: Eudicot; NE: Non-Eudicot

of the soils are classified as Cambisols. Nevertheless, they differ in their pH, the amount of exchangeable cations and the number of saturated exchangeable sites. Soil 1 has the lowest amount of exchangeable Ca and Mg of all the studied Cambisols, and is thus classified as Cambisol (Dystric). Soil 2 is a Calcic Histosol with a nearly basic pH caused by lateral input from upslope runoff rich in Ca. Soil 3 is a sandy acidic soil with the lowest amount of exchangeable cations of all the sites. It

is classified as a Gleysol (Dystric). Soil 4 and soil 5 have the highest amount of exchangeable K. They are classified as Fluvic Cambisol (Eutric) and Cambisol (Eutric), respectively. Despite a low amount of exchangeable K, site 6 is saturated with Ca in the whole profile and is thus also classified as a Cambisol (Eutric). The high amount of Ca in this site is due to the underlying dolomite. Figure SM-1 displays the CEC of the six soils as a function of depth.

b. One square meter is sampled, all species together

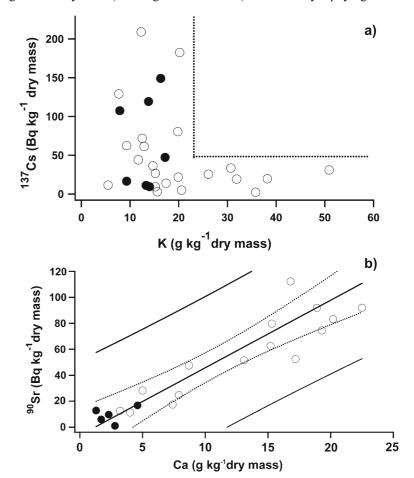

c. Mix of all Poaceae present on this site

Results of the surface deposition of 137Cs and ⁹⁰Sr for each soil are given in Table SM-2. On average, 137Cs inventory is about 5000 Bq m-2 except for soil 2 where depletion is observed due to runoff, and for soils 4 and 6, which are situated in a small depression, where Chernobyl-originating ¹³⁷Cs probably accumulated after snow melting (Pourcelot et al. 2003). On average, 90Sr inventory is 1200 Bg m⁻², apart from soil 2 which is depleted in surface, due to enhanced mobility (Chawla et al. 2010), and soil 4, enriched because of its situation in a small depression. The depth distribution of the ¹³⁷Cs activity is typical of alpine soil with accumulation in the top soil layers. Depth distribution of ⁹⁰Sr and ¹³⁷Cs in site 2 shows enhanced mobility for both radionuclides due to the organic-rich nature and strong runoff features of this soil (Chawla et al. 2010). In addition, the depth distribution of ⁹⁰Sr shows that inventories for soil 2, soil 3 and soil 6 are most likely underestimated because of the high mobility of 90 Sr in these soils (see 90 Sr profiles in Supplementary Material).

Fig. 1 TFs of 4 species collected on 3 different soil types: (a) 137 Cs; TFs are calculated with the radionuclide inventory of the first horizon. (b) 90 Sr; TFs are calculated with the radionuclide inventory of the second horizon. Uncertainty is given for k=1

Radioisotope activities in plants and TFs

Table 1 displays the ¹³⁷Cs and ⁹⁰Sr activity and K and Ca content measured in the different plants species. Plant activities as well as K content are highly variable among species and between the different sites. Two orders of magnitude were found for ¹³⁷Cs (2.3-209 Bq kg⁻¹) and ⁹⁰Sr (0.97–184 Bq kg⁻¹) between plant samples, with activities log-normal distributed. In the following, uptake is expressed as the TF calculated using the inventory of the first horizon for ¹³⁷Cs and of the second horizon for 90Sr, if not otherwise stated. This choice resulted from the depth distribution of ¹³⁷Cs and ⁹⁰Sr in the soils and the observed rooting zone of species that we selected as representative of the rooting (absorption) zone. The observed rooting zone typically includes the two first horizons, while the activity of ⁹⁰Sr is often at its maximum in the second horizon. Figure 1a shows the ¹³⁷Cs uptake by 4 species of Alpine plants that co-existed in three different types of soils. The results demonstrate that the uptake by plant species is dependent on the


underlying soil. All four species have a minimal uptake when growing on soil 4, despite a ¹³⁷Cs inventory, which is much higher in this soil than in the other soils. However, soil 4 has the highest exchangeable K content of all soils. Figure 1b displays the results of ⁹⁰Sr uptake in the same 4 plant species growing on each of the three soils. The results demonstrate that *A. millefolium, A. xanthochlora* and *R. acris* (Dicot) have similar uptake in a given soil and their maximum uptake is on the same soil (Gleysol Distric 3). On the other hand, *P. rhaeticum* (Monocot) has a distinctly lower uptake on all three soils.

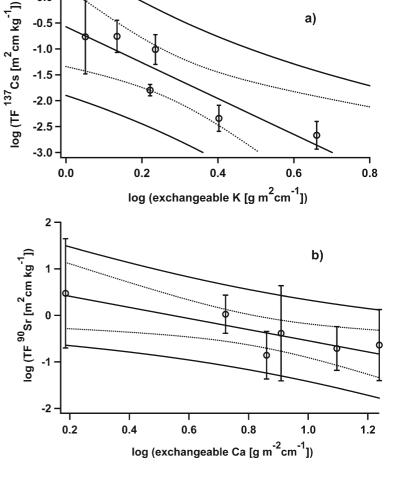
Plotting the activity of ¹³⁷Cs in the plant against the content of its chemical analogue potassium in the plant, a pattern appears as displayed in Figure 2 (a): either the plants have a low K content and may have a wide range of ¹³⁷Cs activity; or they have a high K content, in which case they have not taken up a large quantity of ¹³⁷Cs. Non-Eudicots have a low K content in every case but ¹³⁷Cs covers a large range of activity.

Fig. 2 ¹³⁷Cs activity in the plant as a function of the K content in the plant (a) and ⁹⁰Sr activity in the plant as a function of the Ca content in the plant. Dotted lines limit a region where no values are found (b). Black dots: Non-Eudicots. Open dots: Eudicot. Solid external lines represent 95% confidence interval of the regression data, dotted lines represent 95% confidence interval on the regression line

Results are very different for 90Sr and its chemical analogue calcium: there exists a strong correlation $(r=0.83; p-value < 2.10^{-6}, n=20)$ between the ⁹⁰Sr content and the Ca content of the plant grown on soil 1, 3 and 5 (Fig. 2b). These soils have a ratio of ⁹⁰Sr to exchangeable Ca in the rooting zone above 13 Bq gCa⁻¹. For soils with a ratio of ⁹⁰Sr to exchangeable Ca in the rooting zone below 6 Bq gCa⁻¹ (soil 2, 4 and 6), no statistical relationship was observed between the 90 Sr and Ca content of plant (r=0.25, n=9). This is because soil 2 receives Ca-rich runoff and soils 4 and 6 have very high CEC and exchangeable Ca content. Consequently, Ca is highly available in these soils, which results in a comparatively very low ⁹⁰Sr uptake. In addition, Figure 2b shows that non-Eudicots (Poales and Liliales) contain very little ⁹⁰Sr and Ca.

These results show that the soil to plant TFs ¹³⁷Cs and ⁹⁰Sr are strongly influenced by soil properties (exchangeable K and Ca) as well as by a phylogenetic

effect. For every site, we calculated a linear regression between the log-transformation of the average TFs (on all plant species) and the exchangeable K or Ca, respectively. A significant correlation exists between log TFs and log exchangeable K or Ca content. For ¹³⁷Cs and K, the Pearson coefficient was 0.91 (p-value< 0.012, n=26 plant samples collected on 6 different soils, Fig. 3a). The corresponding calculation for ⁹⁰Sr and Ca yielded a Pearson coefficient of 0.82 (p-value< 0.027, n=26; Fig. 3b).


xanthochlora, P. rhaeticum, R. acris, R. alpinus), we calculated the linear regression of the log-transformation of the TFs versus K or Ca for the three first horizons separately, using the radionuclide inventory of each horizon and the exchangeable amount of K or Ca of the corresponding horizon. This calculation was meant to show, for each species found on at least three different

In addition, for 5 plant species (A. millefolium, A. soils, a specific effect of the exchangeable K and Ca. Fig. 3 Regression on

¹³⁷Cs shows that for all species, apart from R. alpinus, the best fit is obtained using the data of the first horizon. This is in agreement with the observed rooting zone of P. rhaeticum and R. acris in the first horizon (0–5 cm) while R. alpinus has a deeper rooting zone. The calculation for 90Sr shows that the best fit is observed using data from the first horizon for A. millefolium, P. rhaeticum and R. acris and data from the second horizon for A. xanthochlora and R. alpinus (for specific rooting zone and ¹³⁷Cs and ⁹⁰Sr distribution in soils, see supplementary material, Figs. SI4 to SI9). However, the statistical significance of all the fits is weak because each selected species is found on only 3 to 5 different soils at most. Figure 4 displays a graphical representation of the best fit of the linear regression of the log-transformation of the TFs versus the exchangeable K or Ca. For ¹³⁷Cs uptake, the presence of two different slopes (Fig. 4a) for five different plant species can be interpreted as a

Results are presented in Table 2. The calculation for

log-transformed average TFs data of ¹³⁷Cs (a) or ⁹⁰Sr (b) as a function of logtransformed exchangeable K or Ca in 6 soils. Solid external lines represent 95% confidence interval of the regression data, dotted lines represent 95% confidence interval on the regression line

Table 2 Parameters of the log TF versus log exchangeable K or Ca linear regression using values of ¹³⁷Cs or ⁹⁰Sr deposition in horizon 1, horizon 2 and horizon 3

species	¹³⁷ Cs									
	horizon 1		horizon 2		horizon	3	parameter of regression			
	R^2	p-value	R^2	p-value	R^2	p-value	Slope a	Intercept b		
A. millefolium	0.47	0.34	0.42	0.36	0.99	0.05	-2.70 i	-0.59 ⁱ		
A.xanthochlora	0.76	0.03	0.45	0.13	0.10	0.31	-4.03 ⁱ	-0.34 ⁱ		
P.rhaeticum	0.98	0.07	0.93	0.12	0.80	0.21	-4.46 ⁱ	-0.01 ⁱ		
R.acris	0.96	0.09	0.94	0.11	0.11	0.47	-2.87 ⁱ	-0.56 ⁱ		
R.alpinus	0.57 ⁹⁰ Sr	0.31	-0.98	0.93	0.61	0.29	-1.84 ⁱ	-1.55 ⁱ		
	horizon 1		horizon 2		horizon 3		parameter of regression			
species	\mathbb{R}^2	p-value	\mathbb{R}^2	p-value	\mathbb{R}^2	p-value	Slope a	Intercept b		
A. millefolium	0.85	0.18	0.75	0.23	0.21	0.43	-0.81 i	0.26^{i}		
A.xanthochlora	0.47	0.12	0.91	0.01	0.75	0.04	-0.87 ⁱⁱ	0.57 ⁱⁱ		
P.rhaeticum	0.91	0.14	0.81	0.20	0.14	0.46	-0.83 ⁱ	-0.43 ⁱ		
R.acris	0.99	0.06	0.92	0.13	0.00	0.50	-0.85 ⁱ	0.35^{i}		
R.alpinus	0.69	0.74	0.74	0.24	0.72	0.25	-0.54 ⁱⁱ	-0.30 ⁱⁱ		

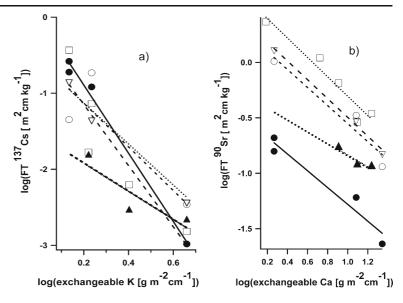
i: parameter of regression of horizon 1; ii: parameter of regression of horizon 2.

different response of the plants to the exchangeable K content depending on the species. A. millefolium, R. acris and R. alpinus accumulate more 137Cs at a high exchangeable K content but are less sensitive to the decrease in the exchangeable K content (slope in the range of -2.87 to -1.84), while A. xanthochlora and P. rhaeticum accumulate somewhat less 137Cs at a high K content but are more sensitive to its variation (slope in the range -4.03 to -4.46). Despite the low significance of the statistics, t-test reveals two different group of values (bilateral, heteroscedastic, p-value=0.019) that confirms that A. xanthochlora and P. rhaeticum behave differently than A. millefolium, R. acris and R. alpinus. Conversely, ⁹⁰Sr uptake by all the selected species gives the same response to any variation in the exchangeable Ca content of the soils (slope in the range -0.87 to -0.81).

From this observation it follows that plant activity can be calculated using the empirical relation described in Eq. (2) using the concentration of exchangeable K or Ca in the soil and the slope of the linear regression determined on the log-transformation of TFs (Eq. 2):

$$A_{plant} = A_{soil} \cdot C_{soil}^a \cdot 10^b \tag{2}$$

where A_{plant} is the activity of ^{137}Cs or ^{90}Sr in the plant (Bq kg⁻¹), A_{soil} is the inventory of ^{137}Cs or ^{90}Sr in the


soil (Bq m⁻² cm⁻¹), C_{soil} is the concentration of exchangeable K or Ca in the corresponding rooting zone of the soil (g m⁻² cm⁻¹) and a and b are parameters as given in Table 2. a is an empirical parameter that can be understood as the sensitivity of the plant species to the presence of competing K or Ca in the soil solution.

Discussion

The results of our study show that the relationship between the plant uptake of ¹³⁷Cs and ⁹⁰Sr and the concentration of exchangeable K or Ca in the soils, as previously reported by others (Delvaux et al. 2000; Sanchez et al. 2002; Smolders et al. 1997; Waegeneers et al. 2001), can also be worked out from our field data acquired at an undisturbed Alpine environment. This means that ¹³⁷Cs and ⁹⁰Sr uptake by plants is strongly dependent on the presence of available (exchangeable) chemical analogues in the soil. In particular, we found a significant linear correlation between the log-transformation of the TFs and the exchangeable K or Ca content of the soil. Apparently, simple soil properties such as exchangeable K and Ca can be used to predict a soil's ability to transfer ⁹⁰Sr or ¹³⁷Cs to plant

Fig. 4 Regression on log TFs data of ¹³⁷Cs (a) or ⁹⁰Sr (b) of 5 species as a function of log exchangeable K or Ca. Symbol: ○: A. millefolium; □: A. xanthochlora; •: P. rhaeticum; ▲: R. alpinus; ▼: R. acris. Calculations are made using ¹³⁷Cs inventory of the first horizon for all plants species and ⁹⁰Sr inventory of the first horizon for A. millefolium, P. rhaeticum and R. acris, and of the second horizon for A. xanthochlora and R. alpinus

when the radionuclides are at chemical equilibrium due to a long time period of presence in soil. This has been found in our study of the silty-sandy mineral, partly organic-rich, soils of the Val Piora. It possibly applies also to similar sites, even if there are limitations to the use of the exchangeable cations rather than the competitive cations concentration of the soil solution in the interpretation of TFs (Gil-Garcia et al. 2009). As a result, the link between the ⁹⁰Sr and ¹³⁷Cs uptake by plant and the exchangeable K and Ca of soil, a very basic characteristic of soil that can be found almost for every soil in the literature, seems established, at least for this specific alpine environment.

Furthermore, we found species-dependent differences for the selected plants with respect to the response of the ¹³⁷Cs uptake to the amount of exchangeable K in the soil. More specifically, we found that *A. mille-folium*, *R. acris* and *R. alpinus* are less sensitive to variations in the amount of exchangeable K in the soil than *A. xanthochlora* and *P. rhaeticum*. Since the "sensitive species" include an Dicot and a Monocot the observed phylogenetic effect seems to be a property of individual species rather than larger group of plants.

In contrast, we found that the ⁹⁰Sr uptake of all investigated Alpine species has a similar sensitivity to changes in the exchangeable Ca content of soils. There is no evidence for a phylogenetic effect with this respect. Consequently, the results of our study on ⁹⁰Sr uptake could be used to predict the ⁹⁰Sr uptake

over a wide range of soil exchangeable Ca content for plant for which only one measurement of 90Sr TF and one measurement of the corresponding exchangeable Ca content exist. While the above described Casensitivity of TFs for 90Sr does not depend on the species, the level of 90Sr accumulation does. There are genuine differences in TFs among species for one given site that are maintained across the different sites. We observed a strong difference in the ability of plant species to accumulate ⁹⁰Sr; V. album (Liliaceae), P. ostruthium (Apiaceae) and G. sylvaticum (Geraniaceae) in addition to A. xanthochlora (Rosaceae), A. millefolium (Asteraceae) and R. acris (Ranunculaceae) are species that accumulate large amounts of 90Sr. On the other hand, P. rhaeticum (Poaceae) has a very low uptake of ⁹⁰Sr in all types of soils studied here. This confirms results of others (Fuhrmann et al. 2002; Willey and Fawcett 2006) that demonstrate that plants in the Poales order do not accumulate 90Sr and Ca to a large extent.

White and Broadley (2000) reviewed the mechanisms of caesium uptake by plants. The general observations are that K⁺ permeable channels are also permeable to Cs⁺, with VIC (voltage-independent channel) channels explaining most (30%–90%) of the Cs⁺ influx under physiological conditions. Nevertheless, higher-affinity K⁺ channels also play a significant role in Cs influx, possibly at low external [K⁺]_{ext} concentration. While our study was not designed as a plant physiology study, our results conform to these observations. For instance, we observed high K

content together with low ¹³⁷Cs content for plants growing on soils with a CEC higher than 1000 cmol⁺ m² cm (soils 4,5 and 6). Thus non-selective channels (e.g. VIC channels) might be responsible to the high K uptake together with low ¹³⁷Cs uptake (competition), while at low external [K⁺]_{ext} concentration (low CEC) much higher ¹³⁷Cs influx has been measured.

Similarly, Ca enters plant cells through Ca²⁺-permeable channels (White and Broadley 2003). These authors state that there seems to be no competition between Ca²⁺, Ba²⁺ and Sr²⁺ in transport from xylem to the shoot. Moreover their accumulation in the shoot is often linearly correlated to their concentration in the rizosphere solution. Here also, our results on ⁹⁰Sr accumulation in the plants are in accordance with a non-selective influx of Ca or Sr (Fig. 2b). To the opposite to K⁺ uptake, higher Ca²⁺ uptake in plant is observed on soils with CEC lower than 500 cmol⁺ m² cm (soil 1 and 3). This higher Ca²⁺ uptake is accompanied by higher ⁹⁰Sr uptake.

Conclusions

We studied radionuclide uptake in undisturbed alpine soils. In these soils 90Sr has been deposited in the early sixties as a result of fallout of the NBT. 137Cs has been deposited during two events: the fallout of NBT and the fallout of the Chernobyl accident. Both events contribute to about 50% of the current ¹³⁷Cs activity in surface soils of the sampling sites (Chawla et al. 2010). The long-time presence of the radionuclides in the soil allowed for the establishment of a chemical equilibrium between ⁹⁰Sr and ¹³⁷Cs and soil components (e.g. clay minerals). Thus our experiment differs strongly from pot experiments that form basis for many literature data on radionuclide uptake by plants. Here we demonstrate that exchangeable K and Ca in soil can be used as a proxy for the determination of the extent of ¹³⁷Cs and ⁹⁰Sr transfer from soil to plant, at least for (organic-rich) silty-sandy soils and for plant species subjected to a short growing period. In addition we found that the dependency of ⁹⁰Sr TF in function of exchangeable Ca was similar for 5 different Alpine plant species. This result may be used to predict the 90Sr uptake by plant for which only one determination of TF and exchangeable Ca per type of soil are known.

Acknowledgments This work was made possible through a grant by the Swiss National Fund for scientific Research (grant

200021–115915) and the Swiss Federal Office of Public Health. We acknowledge the Alpine Biology Center of Val Piora for the infrastructures provided in the field.

References

- Absalom JP, Young SD, Crout NMJ, Sanchez A, Wright SM, Smolders E, Nisbet AF, Gillett AG (2001) Predicting the transfer of radiocaesium from organic soils to plants using soil characteristics. J Environ Radioact 52:31–43
- Baize D and Girard M 2009 Referentiel pédologique-2008. Association française pour l'étude du sol (AFES). Publish. Editions Quae. Versailles, France. ISBN 9782759201853.
- Bundt M, Albrecht A, Froidevaux P, Blaser P, Fluhler H (2000) Impact of preferential flow on radionuclide distribution in soil. Env Sci Technol 34:3895–3899
- Bunzl K, Albers BP, Schimmack W, Belli M, Ciuffo L, Menegon S (2000) Examination of a relationship between Cs-137 concentrations in soils and plants from alpine pastures. J Environ Radioact 48:145–158
- Broadley MR, Willey NJ, Mead A (1999) A method to asses taxonomic variation in shoot caesium concentration among flowering plants. Envon Pollut 106:341–349
- Camps M, Rigol A, Hillier S, Vidal M, Rauret G (2004) Quantitative assessment of the effects of agricultural practices designed to reduce (CS)-C-137 and Sr-90 soil-plant transfer in meadows. Sci Total Environ 332:23–38
- Centofanti T, Frossard E (2006) Uptake and translocation of Cs-134 by maize roots as affected by heterogeneous distribution of Cs-134. Plant Soil 284:293–303
- Chawla F, Steinmann P, Pfeifer HR, Froidevaux P (2010) Atmospheric deposition and migration of artificial radionuclides in Alpine soils (Val Piora, Switzerland) compared to the distribution of selected major and trace elements. Sci Total Environ 408:3292–3302
- Ciuffo L, Velasco H, Belli M, Sansone U (2003) Cs-137 soil-toplant transfer for individual species in a semi-natural grassland. Influence of potassium soil content. J Radiat Res 44:277–283
- Ciuffo L, Belli M, Pasquale A, Menegon S, Velasco HR (2002) Cs-137 and K-40 soil-to-plant relationship in a seminatural grassland of the Giulia Alps. Italy Sci Total Environ 295:69–80
- Delvaux B, Kruyts N, Cremers A (2000) Rhizospheric mobilization of radiocesium in soils. Env Sci Technol 34:1489– 1493
- Ehlken S, Kirchner G (2002) Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J Environ Radioact 58:97–112
- FAO 2006 World reference base for soil resources. Food and Agriculture Organization of the United Nations. FAO 00100 Rome, Italy. ISBN 0532-0488. ISSN
- Frissel M J 1992 An update of recommended soil-to-plant transfer factors of Sr-90, Cs-137 and transuranics. In: 8th Report of the IUR Working Group on Soil Plant Transfert. I.U.R. Banlan, Belgium. pp. 16-25.
- Froidevaux P, Bochud F, Haldimann M (2010) Retention half times in the skeleton of plutonium and Sr-90 from above-

ground nuclear tests: A retrospective study of the Swiss population. Chemosphere 80:519-524

- Froidevaux P, Geering JJ, Valley JF (2002) Strontium-90 determination in biological and environmental samples by direct milking of its daughter product, yttrium-90. J Radioanal Nucl Chem 254:23–27
- Froidevaux P, Geering JJ, Valley JF (2006) Sr-90 in deciduous teeth from 1950 to 2002: The Swiss experience. Sci Total Environ 367:596–605
- Fuhrmann M, Lasat MM, Ebbs SD, Kochian LV, Cornish J (2002) Uptake of cesium-137 and strontium-90 from contaminated soil by three plant species; application to phytoremediation. J Environ Qual 31:904–909
- Gil-Garcia C, Rigol A, Vidal M (2009) New best estimates for radionuclide solid-liquid distribution coefficients in soils, Part 1: radiostrontium and radiocaesium. J Environ Radioact 100:690–696
- Pourcelot L, Louvat D, Gauthier-Lafaye F, Stille P (2003) Formation of radioactivity enriched soils in mountain areas. J Environ Radioact 68:215–233
- Pourcelot L, Steinmann P, Froidevaux P (2007) Lower variability of radionuclide activities in upland dairy products compared to soils and vegetation: Implication for environmental survey. Chemosphere 66:1571–1579
- Roca-Jove MC, Vallejo-Calzada VR (2000) Predicting radiocaesium root uptake based on potassium uptake parameters. A mechanistic approach. Plant Soil 222:35–49
- Saidou BF, Laedermann JP, Njock MGK, Froidevaux P (2008) A comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys. Appl Radiat Isot 66:215–222

- Sanchez AL, Smolders E, Van den Brande K, Merckx R, Wright SM, Naylor C (2002) Predictions of in situ solid/liquid distribution of radiocaesium in soils. J Environ Radioact 63:35–47
- Smolders E, VandenBrande K, Merckx R (1997) Concentrations of Cs-137 and K in soil solution predict the plant availability of Cs-137 in soils. Env Sci Technol 31:3432–3438
- Staunton S, Hinsinger P, Guivarch A, Brechignac F (2003) Root uptake and translocation of radiocaesium from agricultural soils by various plant species. Plant Soil 254:443–455
- Vandenhove H, Van Hees M (2007) Predicting radium availability and uptake from soil properties. Chemosphere 69:664–674
- Waegeneers N, Camps M, Smolders E, Merckx R (2001) Genotypic effects in phytoavailability of radiocaesium are pronounced at low K intensities in soil. Plant Soil 235:11–20
- Waegeneers N, Sauras-Yera T, Thiry Y, Vallejo VR, Smolders E, Madoz-Escande C, Brechignac F (2009) Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types. J Environ Radioact 100:439–444
- White PJ, Broadley MR (2003) Calcium in Plants. Ann Bot-London 92:487–511
- White PJ, Broadley MR (2000) Mechanisms of caesium uptake by plants. New Phytol 147:241–256
- Willey N, Fawcett K (2006) A phylogenetic effect on strontium concentrations in angiosperms. Environ Exp Bot 57:258– 269
- Willey NJ, Tang SR, Watt NR (2005) Predicting inter-taxa differences in plant uptake of cesium-134/137. J Environ Qual 34:1478–1489

