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Abstract 

The Altaids, one of the largest and long-lived accretionary orogens in the world, developed 

from ca. 600 Ma to 250 Ma by the multiple accretions of terranes of different origin, chiefly 

microcontinents and island arcs. Considerable geological information supported by geochemical, 

radiometric and isotopic data suggest that modern geodynamic processes such as 

seamounts/plateau accretion, ridge-trench interaction, the formation of supra-subduction ridges 

and back-arc basins, arc-arc collisions and oroclinal bending were responsible for the evolution 

of the Altaid archipelagos. Because of the paucity of palaeomagnetic and radiogenic data it is 

still not possible to present a definitive palaeo-reconstruction of the Altaids. Nevertheless, 

considering the voluminous literature appearing today on the Altaids, it is timely and appropriate 

to present a review of current understanding of the many inherent tectonic problems, some of 

which are controversial. 
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The Altaids began its development in Vendian (610-570 Ma)-Early Palaeozoic oceans 

between three approaching cratons, Siberia, Gondwana and Tarim-North China, where it 

continually evolved during the Middle-Late Palaeozoic. The peri-Siberian part of the orogen 

formed around the microcontinents of Tuva-Mongolia and Altai-Mongolia through the multiple 

accretion of exotic Izu-Bonin-type island arcs (e.g. Uimen-Lebed, Lake-Khamsara), and oceanic 

islands/seamounts/plateaus (e.g. Kurai, Dzhida, Bayanhongor), and by the formation of back-arc 

basins (i.e. Altai-Sayan, Barguzin). These multiple accretion-collision events led to the formation 

of major peri-Siberian sutures by the end of the Early Palaeozoic (e.g. Bayanhongor, Dariv-

Agardagh, Borus, Kurtushiba, Dzhida, Olkhon). The Mongol-Okhotsk Ocean opened within this 

new accreted continent in the Early-Middle Palaeozoic.  

The Kazakhstan Continent formed mostly by the Early Silurian in Eastern Gondwana by the 

accretion-collision of several ribbon-microcontinents (e.g. Chatkal-Karatau, Chu-Yili, Aktau-

Junggar) and island arc-type terranes (e.g. Boshchekul-Chingiz, Baidaulet-Akbastau). Most 

Kazakhstan microcontinents originated in Gondwana from which they were detached through 

two probable stages of stretching in the Vendian and Amgaian (Middle Cambrian). Kazakhstan 

was finally created by formation of the Kumdykol, Kyrgyz-Terskey, Dzhalair-Naiman sutures in 

the Arenigian (Lower Ordovician), and by formation of the Maikain-Kyzyltas, Yili-Erementau 

sutures in the Hirnantian-Rhuddanian (Lower Silurian). The completed Kazakhstanian Continent 

moved westward toward Siberia and Tarim-North China in the Middle-Late Palaeozoic. 

The Tarim-North China craton(s) was likely located to the north of Eastern Gondwana during 

the Vendian-Early Paleozoic. The tectonic evolution of the northern margin of Tarim-North 

China in the Early-Middle Palaeozoic mostly took place by island arc accretion (i.e. Tulinkai 

island arc), active margin accretion (i.e. Bainaimiao arc and Ondor Sum wedge) and by the 

opening of back-arc basins, which led to separation of the Central Tianshan-Hanshan 

Microcontinent.  
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From the mid-Paleozoic, Siberia, Tarim-North China and Kazakhstania began to mutually 

interact. The new plate tectonic arrangements led to the oroclinal bending and large-scale 

rotation of Kazakhstania during the Carboniferous, and to the main terminal sutures of the 

Altaids (i.e. South Tianshan, Turkestan, Uralian, Chara, Junggar-Balkash and Solonker) by the 

Permo-Triassic. Following the completion of the Altaids, only the Mongol-Okhotsk remained 

opened until the Jurassic-Cretaceous. 

During our synthesis we discuss alternative plate tectonic hypotheses, and we propose new 

models, which may provide potential perspectives for future investigations. 
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1. Introduction  

Accretionary orogens are currently of considerable interest, because they provide the best 

available evidence of the structural, metamorphic and magmatic events and processes that take 

place during subduction, exhumation and accretion (Cawood et al., 2009, Schulmann and 

Paterson, 2011). On our planet extant accretionary orogens are best displayed along the western 

Pacific, where on-going processes are taking place in Alaska (Sisson et al., 2003), the 
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Philippines and Indonesia (Hall, 2002, 2009), and Japan (Isozaki et al., 2010). Importantly, the 

accretionary processes in Japan can be tracked back to their beginning at about 500 Ma (Isozaki 

et al., 2010).  

The Altaids in Central Asia (Sengör et al., 1993; Sengör and Natal’in, 1996) is the largest 

accretionary orogen worldwide, which evolved from about 600 Ma to 250 Ma (Sengör et al., 

1993), and thus overlaps in time with the accretionary orogen of the Japanese Islands. The 

Altaids have been variably termed the “Ural-Amurian”, “Ural-Mongolian” or “Central Asian” 

orogenic belts, and its re-definition, and at times casual use, have caused some confusion, as well 

explained by Sengör and Natal’in (2007). Note that the Central Asian Orogenic Belt (CAOB) has 

an age range from 1 Ga to 250 Ma (Windley et al., 2007), because it includes the Neoproterozoic 

Uralides and Baikalides, which in the original definition of Sengör et al. (1993) were situated on 

the north-western and northern sides of the Altaids, respectively. In this paper we follow the 

original definition of Sengör et al. (1993). 

Several palaeotectonic/palaeogeographic models have been presented for different regions 

and time-periods of the Altaids. Some of the most important English-language overviews are: 

Zonenshain et al. (1990), Mossakovsky et al. (1994), Gusev and Khain (1996), Sengör and 

Natal’in (1996), Filippova et al. (2001), Badarch et al (2002), Keraskova et al. (2003), Khain et 

al. (2003), Yakubchuk (2004), Cocks and Torsvik (2007), Dobrestov and Buslov (2007), and 

Xiao et al. (2010a) from which two main models emerge to account for the evolution of the 

Altaids: (1) tectonic duplication and amalgamation of one to three major arcs of common origin: 

(2) multiple amalgamation of many microcontinents and island arcs of different origins. From 

our re-evaluation we suggest that current data lead to a model that involves several major ribbon-

terranes of different origin that were accreted at different times. Sengör and Natal’in (1996) 

presented the first detailed, systematic description of each “puzzle piece”, correlationed them 
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across the whole Altaids, and integrated them into a palaeotectonic model for the Palaeozoic. 

Our synthesis and tectonic interpretations are based on a similar methodology. 

In spite of considerable research in the last half-century, there is still much uncertainty about 

the relative roles of accretionary versus collisional tectonics within the overall development of 

the Altaids, and inevitably there are considerable disputes about many key tectonic processes and 

events such as the time of formation/exhumation of eclogites and collision in the western 

Tianshan, the Kazakhstan Superterrane and orocline, the history of the Mongol-Okhotsk Ocean, 

the putative Tarim plume, and the timing of terminal collision along the main ca. 5500-long 

suture zone.  

The purpose of this paper is to provide an overview of current knowledge of the main 

components, timing and evolution of the Altaids in order to outline the principal differences of 

interpretation, as a means of better understanding the accretionary evolution of this major 

orogen. We use the time-scale of Gradstein et al. (2004): e.g. Neoproterozoic, 1000-542 Ma; 

Cryogenian 850-630 Ma; Ediacaran 630-542 Ma), and the commonly used Vendian at 610-542 

Ma.  

2. The Altaids: components and terms 

The Altaids of Central Asia (Sengör et al., 1993) extend from the Ural mountains (Puchkov, 

1997) eastwards (present coordinates) to the Pacific coast (Wilde et al., 2010), and from near the 

border of the Siberia craton (Vernikovsky et al., 2004) southwards to the main Altaid suture that 

extends from the Pacific margin (Wilde et al., 2010), westwards via the Solonker Suture north of 

Beijing (Xiao et al., 2003), through Beishan (Xiao et al., 2010b), to the southern Tianshan in 

western China (Xiao et al., 2008), and farther westwards in Kyrgyzstan (Biske and Seltmann, 

2010) and Uzbekistan where it finally joins the Uralian Suture (Alexeiev et al., 2009).  
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Sengör et al. (1993) defined 26 first-order Altaid units and attributed them to independent 

orogens such as the Altai-Sayan, Mongol-Okhotsk, Kazakhstania, Tianshan and Uralian. We 

generally follow a similar approach, but define more regions (Fig. 1). Our re-evaluation suggests 

the following key regions: (1) Northern Kazakhstan, (2) Altai-Sayan, (3) Baikal, (4) Siberian 

Altai, (5) Chinese Altai, (6) Northern Mongolia, (7) Southern Kazakhstan, (8) Junggar, (9) 

Southern Mongolia, (10) Kyrgyz Tianshan, (11) Chinese Tianshan, (12) Beishan, (13) Inner 

Mongolia (Fig. 1) divided into 107 zones (see Figs. 2 and 9).  

The terminology used in palaeotectonic/palaeogeographic models to define continental 

fragments in orogenic belts (e.g. tectonic units, microcontinents, terranes, blocks) have often led 

to misinterpretations and confusion. For example, although Sengör and Dewey (1990) pointed 

out the general unsuitability of the term “terrane”, it was later used by Badarch et al. (2002) and 

Cocks and Torsvik (2007) in an Altaid context. To avoid confusion with existing terminology, 

we use the non-genetic term “zone”, as on tectonic maps by Sengör and Natal’in (1996) and 

Naumova et al. (2006) for the Altaids, by Badarch et al. (2002) for Mongolia, and by Windley et 

al. (2007) for Kazakhstan. Zones contain rocks with distinctive geology and tectonic features, 

and they are delimited by tectonic boundaries such as suture zones or major faults. We also use 

the term “terrane” for a collection of “zones”, which have common affinities that enable short or 

long mutual correlations (see Figs. 2 and 9). 

3. Vendian to Devonian accretionary growth of the peri-Siberian Continent 

The Pre-Silurian growth of the peri-Siberian Continent was complex and different issues 

related to the number, nature, origin, interactions and evolution of terranes involved in its 

formation are far from resolved. However, some interesting situations reside. Of the different 

microcontinents (ss. 3.3) some were considered to have a Gondwanan origin (Zonenshain et al., 

1990; Mossakovsky et al., 1994; Ruzhentsev and Mossakovskiy, 1996; Kheraskova et al., 2003; 
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Buslov et al., 2004a; Kheraskova et al., 2010), and others a Siberian origin (Sengör and Natal'in, 

1996; Yakubchuk, 2004; Kuzmichev et al., 2005). Island arcs formed in the Siberian Altai, SW 

Mongolia, and Transbaikalia (Buslov et al., 2002; Dijkstra et al., 2006; Gordienko et al., 2007; 

Ota et al., 2007; Kovach et al., 2011; Yarmolyuk et al., 2011), and some back-arcs in Siberia 

(e.g. Belichenko et al., 2006; Zorin et al., 2009) (ss. 3.2). Several island arcs of Vendian-

Cambrian age are only preserved as relicts in subduction-accretion complexes. Only two major, 

well-studied island arcs are presented in detail in this synthesis (ss. 3.4), and lesser-known small 

relics in their subduction-accretion complexes (ss. 3.5). Some, still poorly known, but large arcs 

are considered in their subduction-accretion zones (Borus-Kurtushiba and Dzhida-Bayangol 

zones); future investigations may lead to their definition as new terranes (Fig. 2). 

3.1. The Neoproterozoic Siberian margin 

It is generally accepted that the Siberian Craton was a part of Rodinia and detached from 

Northern Laurentia at ca. 780-750Ma (Cocks and Torsvik, 2007). The Rodinian rifting was 

localized on the western Siberian margin at Yenisei, Birusa and Sharizhalgay (Fig. 2), and it 

extended eastwards to the north of Lake Baikal as far as the Patom area - Fig. 2 (Smethurst et al., 

1998; Vernikovsky et al., 2003; Vernikovsky et al., 2004; Gladkochub et al., 2006, 2007; 

Metelkin et al., 2007; Sovetov et al., 2007; Stanevich et al., 2007; Li et al., 2008; Vernikovsky et 

al., 2009). 

The Siberian margin underwent multiple accretion in the Cryogenian (850-630 Ma) 

(Vernikovsky et al., 2003, 2004, 2009), following which it became a passive margin at ca. 

600Ma when it was obducted by ca. 700-630 Ma island arcs (i.e. Yenisei, Kan, Baikal-Muya; 

Vernikovsky et al., 2003, 2004; Turkina et al., 2007). Subsequently, the southern and western 

margins of the Siberian craton were fringed by an active margin and occupied by a peripheral 
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foreland basin until ca. 540 Ma (Khomentovskii and Postnikov, 2001; Vernikovsky et al., 2004; 

Sovetov et al., 2007). 

The conclusion of Sovetov et al. (2007) that this active margin underwent collision at ca. 550 

Ma was based on their interpretation of the closure of remnant marginal basins (i.e. interruption 

of marine deposition) and establishment of a wide orogen (i.e. molasse deposits). This 

compressional event was closely followed by important extension: Early Cambrian (ca. 542-510 

Ma) rift sediments were deposited in a collapsed orogen (Sovetov et al., 2007). This evidence 

may also reflect the collapse of a Cordillera when lower plate buoyancy changes and leads to 

back-arc stretching (Stampfli and Borel, 2002). According to Zorin et al. (2009) Siberia was 

surrounded by back-arc basins in the Vendian-Cambrian.  

3.2. Siberian back-arc basins 

3.2.1. Barguzin 

In the Baikal area, the controversial nature and origin of the Ikat-Barguzin/Baikal-Muya zones 

(Fig. 2) have been interpreted by various palaeotectonic models, either as a displaced or exotic 

microcontinent and/or as an island arc accreted to Siberia in the Neoproterozoic or Palaeozoic 

(Khomentovskii and Postnikov, 2001; Khain et al., 2003; Vernikovsky et al., 2004; Fedorovsky 

et al., 2005; Belichenko et al., 2006; Dobretsov and Buslov, 2007; Makrygina et al., 2007; Rytsk 

et al., 2007; Gladkochub et al., 2008; Zorin et al., 2009; Rytsk et al., 2011). Although their 

precise timing remains unclear, there were probably two main accretionary/collisional events: (1) 

in the Vendian the obduction of an island arc (i.e. Baikal-Muya) onto the Siberian passive 

margin and (2) a later collision between the Barguzin “block” and Siberia.  

Although the nature of the Barguzin block is subject to controversy (Belichenko et al., 2006) 

the partial formation of the Ikat-Barguzin Zone by back-arc processes seems today most likely, 
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given the data available (Khomentovskii and Postnikov, 2001; Belichenko et al., 2006; 

Makrygina et al., 2007; Zorin et al., 2009). From detailed geochemical data Makrygina et al. 

(2007) identified a continental arc-back arc within the Barguzin and Hamar-Davaa zones (at 

Talanchan, Olkhon and Slyudyanka, Fig. 3). This is consistent with the presence of a Cambrian 

Siberian back-arc basin in the Altai-Sayan area (ss. 3.2.2) and supported by ca. 500 Ma 

metamorphism identified along the craton margin (Olkhon, Slyudyanka, Derba; Gladkochub et 

al., 2008 and references therein) as well as by coeval folding in a high deformation zone (Rytsk 

et al., 2011), which likely marks the suture of a closed peri-Siberian back-arc basin (Fig. 5). 

Rytsk et al. (2011) presented an interesting discussion on alternative versions of 

palaeogeodynamic reconstructions for the Baikal-Muya Belt during the Neoproterozoic. 

3.2.2. Altai-Sayan 

Vendian to Middle Cambrian ophiolites, back-arc basins and island arcs were identified in the 

Kizir-Kazir area (Altai-Sayan back-arc basin, Telesk and North Sayan zones on Fig. 2) 

(Naumova et al. 2006). The Altai-Sayan back-arc basin opened in the Late Cambrian. Sovetov et 

al. (2007) underlined that the Siberian active margin was affected by extension (i.e. collapsed 

orogen, and rift sediments) in the Cambrian (ca. 443-410 Ma). This is consistent with coeval 

post-collisional intrusions and metamorphism in the accreted Kan island arc (ss. 3.1), which 

likely reflect exhumation. However, that metamorphism did not affect the Derba passive margin 

located in front of the accreted island arc (Turkina et al., 2007), which implies that the passive 

margin was probably not Neoproterozoic as previously thought (Naumova et al., 2006) but 

certainly Cambrian, having formed by the opening of the Altai-Sayan back-arc basin. A volcanic 

island arc source reported in the Derba metasediments (Dimitrivea et al. 2006 in Turkina et al. 

2007) likely reflects the weathering of the accreted arc.  
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Although precise geochronological and geochemical studies are still lacking, it is most likely 

that the maximum age of back-arc sediments was 520 to 500 Ma (Naumova et al. 2006), when a 

metamorphic-magmatic event affected the Derba passive margin sediments at ca. 500 Ma 

(Turkina et al., 2007) and syn/post-collisional granitoids intruded the Siberian margin, the back-

arc sediments and the arc assemblages (i.e. Tannuola Belt, Naumova et al., 2006) in the Middle 

Cambrian-Early Ordovician (ca. 520-470 Ma) (Figs. 4).  

3.3. Microcontinents 

3.3.1. Mongolian and Siberian microcontinents: one or several terranes? 

Within the Mongolian and Siberian Altaids Precambrian microcontinents have been identified 

at Hamar-Davaa, Tuva-Mongolia, Baidrag-Dzabkhan, Khangai (Tarvagatai), Idermeg and 

Argunsky (Badarch et al., 2002; Kovalenko et al., 2004; Naumova et al., 2006; Kozakov et al., 

2007b; Kröner et al., 2007; Windley et al., 2007; Yarmolyuk et al., 2008; Demoux et al., 2009a, 

2009c; Kozakov et al., 2011; Rojas-Agramonte et al., 2011) (Fig. 2). Several authors have 

proposed that the Tuva-Mongolian (Tuva-Mongolian and Hamar-Davaa zones) and Central 

Mongolian microcontinents (Baidrag-Dzabkhan, Khangai, Idermeg, Argunsky zones) formed a 

single terrane (Sengör and Natal'in, 1996; Khain et al., 2003; Yakubchuk, 2004; Kuzmichev et 

al., 2005; Windley et al., 2007). This correlation is especially well constrained by the Vendian 

Dariv-Agardagh ophiolitic belt that fringes the western side of the Baidrag-Dzabkhan and Tuva-

Mongolian microcontinents (Pfänder et al., 2004; Dijkstra et al., 2006) (ss. 3.4.1). The Tuva-

Mongolian Microcontinent has been considered either as exotic (i.e. Gondwana, Zonenshain et 

al., 1990; Mossakovsky et al., 1994; Ruzhentsev and Mossakovskiy, 1996; Dobretsov et al., 

2003; Dobretsov and Buslov, 2007, Levashova et al. 2011)) or originated from Siberia (Sengör 

and Natal'in, 1996; Kuzmichev et al., 2001, 2005; Khain et al., 2002; Yakubchuk, 2004); the 

second interpretation is more consistent with recent palaeomagnetic data, according to which the 

southeastern margin of Siberia was located in the equatorial zone (Cocks and Torsvik, 2007). 
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This palaeo-geographic position is supported by carbonate sediments (Letnikova and Geletii, 

2005) and palaeomagnetic data (Kravchinsky et al., 2001), which indicate that the Tuva-

Mongolian Microcontinent was located in the peri-Siberian tropics in the Late Vendian-

Cambrian. And a Siberian origin is supported by affinities of tonalites and island arcs in the 

Siberian margin and Tuva-Mongolia (Kuzmichev et al., 2001), who suggested that an elongate 

chain of Precambrian massifs including Tuva-Mongolia had separated from Siberia in the late 

Neoproterozoic. 

In the Tuva-Mongolian basement a Neoproterozoic tectono-magmatic event can be correlated 

with one in the Baikal-Muya Belt on the Siberian margin (Kuzmichev et al., 2001, 2005; Khain 

et al., 2002, 2003; Zorin et al., 2009). The Baikalian Orogeny has been interpreted as a result of 

accretion of a Neoproterozoic (ca. 825-700Ma) island arc (Shishkhid/Baikal-Muya) to an older 

Gargan/Barguzin Microcontinent between 650-560 Ma (Gusev and Khain, 1996; Khomentovskii 

and Postnikov, 2001; Kuzmichev et al., 2001, 2005). Similar isotopic ages are found in the 

Baidrag-Dzabkhan (Yarmolyuk et al., 2008) and Idermeg (Kröner et al., 2007) microcontinents, 

which may also have undergone the Baikalian Orogeny. The correlation of Tuva-Mongolia with 

Barguzin/Baikal-Muya is also supported by the occurrence of a similar Vendian-Cambrian 

sedimentary cover overlying the two basements (Huvsgol-Bokson basin and Upper Angaran 

Basin; Mossakovsky et al., 1994; Badarch et al., 2002; Kuzmichev et al., 2005; Letnikova and 

Geletii, 2005; Naumova et al., 2006; Ruzhentsev and Nekrasov, 2009; Zorin et al., 2009) (Fig. 2-

3).  

The above information suggests that Central Mongolia, Tuva-Mongolia and Barguzin formed 

one single ribbon-microcontinent in the Vendian-Cambrian that was attached or located close to 

Siberia. Considering that the Altai-Sayan and Ikat-Barguzin zones may correspond to a Siberian 

back-arc basin opened after the Late Vendian (ca. 600 Ma) accretion of the potentially single 

Yenisei/Kan/Baikal-Muya/Shishkhid island arc (ss. 3.1-3.2), the Mongolian microcontinents, 
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surrounded by Vendian-Cambrian oceans, was probably not detached from this part of the 

Siberian margin, but was derived from the West Stanovoy area by back-arc opening; this is 

compatible in a larger tectoic context as proposed by Kuzmichev et al. (2001). The existence 

around it of major, long-lived oceans (Dariv-Agardagh, Bayanhongor, and Dzhida-Bayangol, 

3.4.1, 3.5.1-2) implies that it was isolated during Vendian and Cambrian time. It could also have 

been a continental promontory of the Siberian Craton, formed, for example, as a result of 

Rodinian break-up, which then moved westwards along the Southern Siberian margin during the 

Cambrian. Therefore, the Tuva-Mongolian and Central-Mongolian microcontinents may have 

evolved together as an independent ribbon-terrane (Fig. 5a). 

The location between the Baidrag-Dzabkhan and Khangai microcontinents of the 

Bayanhongor Ocean from the Vendian through Early Ordovician (3.5.1) suggests the existence 

of another terrane: the Khangai-Argunsky Ribbon-Microcontinent. Although poorly 

documented, the Herlen Zone is considered here as the westward equivalent of the Bayanhongor 

Suture Zone because Vendian-Early Cambrian ophiolites occur there (Badarch et al., 2002). 

However, as discussed in section 3.5.1, the Bayanhongor oceanic fragments may also have 

originated in the Dzhida-Bayangol Ocean and thus, the Baidrag-Dzabkhan and Khangai 

Precambrian rocks may have formed parts of the same microcontinent (Fig. 5a).  

3.3.2. The Altai-Mongolian Microcontinent: a possible extension in Inner Mongolia 

The Altai-Mongolian Microcontinent is located to the southwest of the Vendian-Cambrian arc 

systems (Gorny-Altai, Lake) that were accreted to Siberia or Peri-Siberian terranes by the Late 

Cambrian (Fig. 2 and ss. 3.4). During the Cambrian, the Siberian accretionary wedge prograded 

northwards in the Charysh-Terekta and Hovd zones and remained in the area at least till the 

Early-Middle Ordovician (e.g. Buslov et al., 2002; Xiao et al., 2004a). This implies that the 

Altai-Mongolian Microcontinent was exotic and was accreted to Siberia after the Early 
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Ordovician. The Gondwanan origin of this microcontinent is generally accepted by the scientific 

community (Zonenshain et al., 1990; Mossakovsky et al., 1994; Ruzhentsev and Mossakovskiy, 

1996; Dobretsov et al., 2003; Buslov et al., 2004a, b; Dobretsov and Buslov, 2007; Glorie et al., 

2011; Yang et al., 2011), but its exact location remains enigmatic. A Tarim-North China origin 

was also speculated on by Wilhem (2010) based on kinematic and spatial constraints required by 

plate tectonics principles.  

The presence of Precambrian detrital zircons in metasedimentary rocks and of xenocrystic 

zircons in granitoids suggests to Glorie et al. (2011) and Jiang et al. (2011) that the Altai-

Mongolian Microcontinent had a Precambrian basement. However, Cai et al. (2011) reported 

that the so-called Precambrian basement rocks in the Chinese Altai have zircon U-Pb ages in the 

range 528 to 488 Ma, similar to that of the main low-grade marine quartzo-feldspathic turbidites 

interpreted as an active margin; Buslov et al. (2001) had interpreted these as a passive margin 

shelf. Unconformable unmetamorphosed marine sediments and andesitic volcanics, interpreted 

as a continental fore-arc basin, have a Late Ordovician age (Windley et al., 2002). However, this 

interpretation was recently challenged because of the occurrence of ca. 540-450 Ma detrital 

zircons of arc origin within the metasediments (the Habahe flysch), which were reinterpreted as a 

Middle Palaeozoic subduction-accretion complex (Long et al., 2010; Sun et al., 2008). Thus, the 

existence of a passive margin fringing the Altai-Mongolian Microcontinent during the Early 

Palaeozoic is not certain, but an active margin setting is evident according to ca. 540-440 detrital 

zircons, ca. 500 rhyodacite (Windley et al., 2002), ca. 460-430 Ma arc granitoids (e.g. Wang, T. 

et al., 2006; Briggs et al., 2007) as well as ca. 450-440 Ma rhyolite and ca. 410 Ma dacite-

rhyolite suites (Wang, Y. et al. 2011). From Hf isotopic compositions of zircons in the granites 

and of detrital zircons in the sediments, Cai et al. (2011) calculated that as much as 84% of the 

Chinese Altai is probably made up of juvenile Palaeozoic materials, and accordingly there is 

little Precambrian basement. 
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This Cambrian-Ordovician arc-related magmatism was generally attributed to the southern 

active margin of the Altai-Mongolian Microcontinent (Windley et al., 2002; Wang, T et al., 

2006; Long et al., 2010; Sun et al., 2008; Xiao et al., 2009b). However, the Altai-Mongolian 

Microcontinent is narrow (ca. 200km) and this arc magmatism could be also partly related to the 

northern margin. Glorie et al. (2011) recently underlined the occurrence of Middle-Late 

Ordovician (ca. 470-450 Ma) arc magmatism on the northern margin of the Altai-Mongolian 

Microcontinent in the Siberian Altai. The existence of a southern active margin since the Middle 

Ordovician is well constrained by intrusions in the Altai-Mongolian and Kalba-Narym zones and 

associated coeval accretionary wedge (i.e. Chara Zone, see below), but the pre-Middle 

Ordovician detrital zircons could also have been transported from a probable northward active 

margin towards a potential southern passive margin (Fig. 3).  

It is probable that the well-documented, extensive Ordovician-Silurian southern active margin 

of the Altai-Mongolian Microcontinent extended as a plate boundary along strike. Relics from 

coeval continental arc and accretionary wedges occur farther north in the Kazakhstan and 

southeastward in the Southern and Inner Mongolia (Fig. 2). The Late Palaeozoic Chara strike-

slip zone extends from Kazakhstan to the Chinese Altai (Buslov et al., 2004b). Although mainly 

composed of Late Palaeozoic rocks, the Chara Zone contains relics of Ordovician-Silurian 

subduction-accretion complexes mainly represented by ophiolitic mélanges with Ordovician 

oceanic crust and ca. 450-430 Ma HP complexes ( tholeiite basalt, OIB and E-MORB protoliths) 

(Buslov et al., 2004a, b; Safonova et al., 2004; Volkova and Sklyarov, 2007; Xiao et al., 2009b).  

In southern Mongolia, tholeiitic pillow basalt (MORB) of supposed Ordovician age, tuff, 

chert and clastics occur in the Bidz area (Badarch et al. 2002) and Precambrian continental crust 

was identified in the East Tseel Zone (ca. 1.5 Ga; Helo et al., 2006). The Precambrian basement 

seems to extend eastwards into the South Gobi and West Mandalovoo zones (Helo et al., 2006; 

Kröner et al., 2010). A thick intensively deformed assemblage of clastics, chert, tuff, shallow-
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marine limestone, and ultramafic and gabbroic bodies was metamorphosed to amphibolite facies 

at ca. 450-430 Ma (Naumova et al. 2006), and Silurian (ca. 435-425 Ma) arc-related volcanic 

rocks also occur in the West Mandalovoo Zone) (Helo et al. 2006). To the east, the presence of 

Precambrian basement and Ordovician-Silurian greenschist-facies sediments in the 

Gurvansayhan-Zoolen Zone (Badarch et al., 2002; Helo et al., 2006; Kröner et al., 2007) 

supports the extension of the Chinese Altai continental active margin as far as southern 

Mongolia (Fig. 6).  

Ordovician-Silurian continental are assemblages are also present in Inner Mongolia 

(Nuhetdavaa-Enshoo and Baolidao zones on Fig. 2). It is well accepted that the Nuhetdavaa-

Enshoo Zone corresponds to the Early-Late Palaeozoic active margin of Siberia (Wang, Q. and 

Liu, 1986; Hsü et al., 1991a; Yue et al., 2001; Badarch et al., 2002; Xiao et al., 2003; Miao et al., 

2007b). In this area, the Precambrian continental basement was covered by Cambrian to Early 

Ordovician passive margin limestones, cherts and turbidites. A Middle Ordovician-Silurian 

sedimentary-volcanic arc assemblage succeeded the passive margin sediments and indicates a 

major change in the geodynamic evolution of the continental margin (Yue et al. 2001; Xiao et al. 

2003). To the South, the Baolidao Microcontinent was interpreted as a terrane detached from the 

Mongolian active margin (Nuhetdavaa-Enshoo Zone) in the Late Palaeozoic (Miao et al., 2007b) 

and thus can be considered as the Early-Middle Palaeozoic southern margin of the Nuhetdavaa-

Enshoo Microcontinent (Fig. 2). In this area, an Ordovician accretionary wedge is characterized 

by the Xilinhot and Sunidzuoqi metamorphic complexes, which were interpreted as the relics of 

a forearc basin (Shi et al., 2003; Chen et al., 2009) and/or accretionary wedge (Xiao et al., 2003; 

Miao et al., 2007b; Jian et al., 2008) associated with a continental arc (Li et al., 2011). The Xilin 

Hot metasediments (i.e. turbidite protoliths) yield ages ranging from Archean to Carboniferous 

(2900-2200 Ma, 1800-1500 Ma, 950-780 Ma and 536-302 Ma; Shi et al. 2003, Chen et al. 2009). 

The Sunidzuoqi complex was intruded by the ca. 490-310 Baolidao magmatic suite, which yield 

similar inherited zircon ages (Chen et al., 2000, 2009; Jian et al., 2008). However, the Early 
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Ordovician Baolidao arc magmatism (ca. 490-470 Ma; Chen et al., 2000; Jian et al., 2008) and 

Cambrian detrital zircons (Shi et al. 2003, Chen et al. 2009) contradict the existence of a passive 

margin at this time. For this reason, some authors proposed that the northern continental active 

margin started already in the Early Cambrian (Chen et al., 2009) or Late Cambrian (Miao et al., 

2007b). However, Jian et al. (2008) underlined the island arc characteristics (i.e. near-trench 

intrusions in forearc sediments, and juvenile arc crust) of the Late Cambrian-Early Ordovician 

arc assemblage (Sunidzuoqi-Xilinhot). Thus, the Cambrian-Early Ordovician arc-related rocks 

are thus most probably remnants of an island arc accreted to a passive margin of the Nuhetdavaa-

Enshoo Microcontinent. This event may have caused the onset of subduction (Cloetingh et al., 

1984; Stern, 2004). The existence of an active margin of Middle Ordovician-Silurian age was 

well established in the Baolidao and Nuhetdavaa-Enshoo zones (Hsü et al., 1991a; Xiao et al., 

2003; Miao et al., 2007b; Jian et al., 2008; Chen et al., 2009) (Fig. 6).  

As proposed by some authors (Badarch et al., 2002 and references therein), the occurrence of 

Precambrian basement, arc-related magmatism and subduction-accretion complexes in 

Kazakhstan, Mongolia and Inner Mongolia strongly suggests the existence of a single active 

margin during Late Ordovician and Silurian time (Fig. 2-6). These spatial correlations are also 

supported by the continuation of accretion processes throughout the Middle Palaeozoic (ss. 3.6). 

This would imply that the Altai-Mongolian Microcontinent may have accreted to Siberia before 

the Late Ordovician (ss. 3.5.4). The pre-Middle Ordovician tectonic history of the margin is less 

clear, and the published models developed for the Chinese Altai and Inner Mongolia seem to 

contradict each other: Cambrian active margin versus Cambrian passive margin. However, as 

discussed above, the Cambrian-Early Ordovician arc-related rocks of the Chinese-Altai could 

also be attributed to a potential northern active margin, and thus a passive margin stage may have 

existed on its southern margin during the Cambrian to Early-Middle Ordovician (Fig. 3). The 

latter interpretation is consistent with the coeval onset of an active margin in Inner Mongolia. 

This leads to the hypothesis that the Altai-Mongolian Microcontinent could have been a ribbon-
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terrane that extended as far as northeastern China; its accretion to Siberia may have caused the 

onset of an active margin on its southern side. However, the poor Early Palaeozoic data available 

from western Mongolia and northeastern China prevent the testing of such a model. The 

recognition of Vendian-Cambrian subduction-accretion complexes (i.e. potential extension of the 

Lake Zone) between the Idermeg/Argunsky and Nuhetdavaa-Enshoo microcontinents would 

imply the exotic origin of the latter and thus its probable correlation with the Altai-Mongolian 

Microcontinent (Fig. 5b). At the present state of knowledge, the Nuhetdavaa-Enshoo Zone could 

also correspond to the southern extension of the Idermeg Microcontinent considered as part of 

the Siberian Tuva-Mongolian terrane (ss. 3.3.1). In this hypothesis, the Sunidzuoqi-Xilinhot 

island arc could be the eventual extension of the Cambrian-Early Ordovician Altai-Mongolian 

southward subduction zone.  

3.4.  Island arcs 

3.4.1. The Dariv-Agardagh ophiolitic belt and the Lake-Khamsara arc 

The external boundary of the Tuva-Mongolian Ribbon-Terrane is well defined by the Dariv-

Agardagh ophiolitic belt. The ophiolites are located on the western margin of the Baidrag-

Dzabkhan and Tuva-Mongolia microcontinents (Badarch et al., 2002) (Fig. 2). The correlation of 

the Khantaishir, Dariv and Agardagh ophiolites is strongly supported by their similar 

geochemistry (IAT, BABB and bonninites, Pfänder et al., 2002, 2004; Khain et al., 2003; 

Matsumoto and Tomurtogoo, 2003; Dijkstra et al., 2006), formation ages (ca. 570 Ma; U-Pb 

zircon; Pfänder et al., 1998; Kozakov et al., 2002; Khain et al., 2003) and structural position (i.e. 

thrusted onto a microcontinent passive margin; Kozakov et al., 2002; Pfänder et al., 2004; 

Dijkstra et al., 2006; Kröner et al., 2010; Stipska et al., 2010). Geochemical data suggest that the 

Dariv-Agardagh ophiolitic rocks formed in a proto-intra oceanic arc associated with forearc and 

back-arc basins (Pfänder et al., 2004; Dijkstra et al., 2006). Stipska et al. (2010) recently 

demonstrated from detailed geochronological and metamorphic studies that the Baidrag-
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Dzabkhan passive margin was obducted in the Early Cambrian, earlier than previously thought 

(ca. 520-490 Ma, Pfänder et al., 2004; Dijkstra et al., 2006) (Fig. 3). This Early Cambrian age is 

well consistent with the ca. 540 Ma metamorphic event defined in the Tuva-Mongolian Massif 

(Moren, Fig. 2-5b, Salnikova et al., 2001).  

The ophiolitic belt is juxtaposed to the Lakes-Khamsara Zone (West and East Lake, Hovd, 

Tannuola and Khamsara zones, Fig. 2), which consists of Vendian-Cambrian ophiolitic 

mélanges, island arc, back-arc, fore-arc and accretionary rocks (Kovalenko et al., 1996a, 1996b; 

Badarch et al., 2002; Kozakov et al., 2002; Naumova et al., 2006). It is generally well accepted 

that the Lake Zone extends northward into the Tannuola-Khamsara Zone (Mossakovsky et al., 

1994; Ruzhentsev and Mossakovskiy, 1996; Sengör and Natal'in, 1996; Badarch et al., 2002; 

Naumova et al., 2006; Dobretsov and Buslov, 2007; Windley et al., 2007). Recent detailed 

geochemistry and geochronology of magmatic rocks and associated siliceous-terrigenous 

sediments support the previous hypothesis and confirm that the Lake Zone formed in the 

Vendian-Cambrian in an intra-oceanic arc environment (Kovach et al., 2011; Yarmolyuk et al., 

2011). Kröner et al. (2010) underlined the existence of a Proterozoic basement in the Lake Zone 

and demonstrated with zircon dates its affinity with the northern Baidrag-Dzabkhan 

Microcontinent. They also proposed that the Khantaishir accretionary complex most probably 

originated in an ocean located to the south of the Lake Zone (Fig. 5a), and they identified a Late 

Cambrian thermal event, which is well consistent with a coeval tectono-magmatic event 

identified in the Tuva-Mongolian massif (Salnikova et al., 2001), the Dariv Range (Dijkstra et 

al., 2006) and the Baga Bogd Massif (i.e. West Gobi-Altai Zone; Demoux et al., 2009c). 

Although this event was previously attributed to the accretion of the arc, it was most likely 

related to isostatic and thermal relaxation in a post-collisional context (Kröner et al., 2010) (Fig. 

3). 
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To the west of the Lake Zone, the Hovd and Ulgey Zones (Fig. 2), consisting mainly of 

Middle Cambrian-Ordovician limestones, clastic, volcaniclastic and sedimentary rocks 

metamorphosed in the greenschist facies was interpreted as a northern accretionary wedge 

associated with the Lake arc (Badarch et al., 2002) which was likely emplaced after the 

obduction of the ophiolite (i.e. subduction reversal) (Fig. 3). Nevertheless, as suggested by 

Kröner et al. (2010), the interpretation of the Hovd Zone as an accretionary wedge may be 

challenged, because no Late Cambrian-Early Ordovician arc-related rocks have been recognized 

in southern Mongolia. The continental margin may also have remained passive following the 

obduction; the Hovd volcaniclastics could have been derived from the erosion of this new high-

standing arc.  

3.4.2. The Uimen-Lebed arc and its Gorny-Altai accretionary wedge 

In the Siberian Altai, Vendian to Late Cambrian island arc assemblages and associated 

accretionary complexes occur in the Uimen-Lebed, Gorny-Altai and Charysh-Terekta zones 

(Fig. 2, Dobretsov et al., 2004a; Ota et al., 2007). The evolution of the Uimen-Lebed island arc 

and its related Gorny-Altai accretionary wedge was well studied in the Salair, Katum and Kurai 

areas with detailed field, metamorphic, geochemical and geochronological data (Buslov et al., 

2000, 2002; Ota et al., 2002; Dobretsov et al., 2004a, b; Safonova et al., 2004, 2008, 2011; Ota et 

al., 2007; Utsunomiya et al., 2009; Glorie et al., 2011; Safonova, 2008). These authors 

emphasized the occurrence of oceanic islands and the westward progradation of the arc system 

(Fig. 4). The Uimen-Lebed arc (Uimen-Lebed Zone) was generally interpreted as a Vendian-

Cambrian island arc similar to the Izu-Bonin-Mariana arc system located close to the Siberian 

margin (Buslov et al., 2002; Dobretsov et al., 2004b; Ota et al., 2007; Glorie et al., 2011). The 

coeval existence of the Altai-Sayan back-arc basin (ss. 3.2.2 and Fig. 4) implies that at least two 

arcs existed in the area during the Vendian-Cambrian time (Fig. 5). The peri-Siberian plate 

tectonic framework was most likely complex during the Vendian and Cambrian; it probably 
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looked like the Cenozoic SE Asian plate tectonic archipelago - see the reconstructions of Hall 

(2002). 

3.5. Subduction-accretion zones 

3.5.1. The Bayanhongor Zone: relics of at least two oceans 

The Bayanhongor Zone is located between the Baidrag-Dzabkhan and Khangai (Tarvagatai) 

microcontinents (Badarch et al., 2002) (Fig. 2). It consists of various tectonic units that trend 

NW-SE and dip southwest and consist from south to north of a Neoproterozoic mélange, an 

Early Ordovician terrigenous volcano-clastic sequence, a sedimentary-dominated mélange, an 

ophiolitic mélange and a sedimentary-dominated mélange with seamount relics and schists (see 

details in Buchan et al., 2001 and Osozawa et al., 2008). The age of oceanic crust, which was 

dated as ca. 570 Ma (Sm-Nd; Kepezhinskas et al., 1991) and ca. 660 Ma (U-Pb; Kovach et al., 

2005), led to some confusion (Windley et al., 2007), but a ca. 660-640 Ma age (U-Pb) was 

recently corroborated by Jian et al. (2010a). The age range and the oceanic plateau affinity of 

some ophiolitic rocks (Kovach et al., 2005) may imply that the Bayanhongor Ocean was wide 

(Windley et al., 2007).  

The Baidrag-Dzabkhan Microcontinent and the Bayanhongor Ophiolite mélanges were 

affected by a Vendian-Early Cambrian (ca. 580-520 Ma) tectono-magmatic event (Buchan et al., 

2002; Kozakov et al., 2006, 2008; Demoux et al., 2009a; Jian et al., 2010a; Kröner et al. 2011). 

This long tectono-magmatic event likely reflects more than one accretionary event. Jian et al. 

(2010a) proposed that an island arc and seamounts were successively accreted within the 

Bayanhongor Zone during Vendian-Early Cambrian time. Two distinct major 

accretionary/collisional events emerge from the palaeotectonic models of the authors: (1) the 

accretion of the Bayanhongor Ophiolite and (2) the collision between the Baidrag-Dzabkhan and 

Khangai microcontinents (Buchan et al., 2002; Kovalenko et al., 2005; Osozawa et al., 2008; 
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Demoux et al., 2009a). From the presence of Middle Cambrian-Early Ordovician flysch, Early 

Ordovician structures, Early-Middle Ordovician syn/post-collisional granitoids, and Late 

Ordovician greenschist metamorphism, it is generally accepted that the Bayanhongor Ocean 

finally disappeared during the Ordovician (Voznesenskaya, 1996; Buchan et al., 2001, 2002; 

Kovalenko et al., 2005; Osozawa et al., 2008) (Fig. 3).  

The presence of post-Ordovician rocks and deformation indicates later tectonic activity in the 

Bayanhongor Zone (Dergunov, 2001). Devonian thrust stacking was attrributed by Osozawa et 

al. (2008) to the collision of Kazakhstan with the peri-Siberian margin (ss. 6.3). The occurrence 

of fossiliferous Carboniferous shallow-marine limestones and the seamount-bearing 

sedimentary-dominated mélange strongly suggests the extension of the Mongol-Okhotsk Ocean 

in the Bayanhongor area. The undated mélange shows a strong affinity with rocks in the 

Devonian-Carboniferous Khangai-Khentey basin, well accepted as the Mongol-Okhotsk Ocean 

(Parfenov et al., 1999; Zorin, 1999; Kelty et al., 2008; Kurihara et al., 2009; Ruzhentsev and 

Nekrasov, 2009). Jian et al. (2010a) recently documented the occurrence in the Bayanhongor 

area of Permo-Triassic ophiolitic gabbros and lavas (ca. 298-210 Ma) that also contain 

Precambrian zircon xenocrysts. This means that there are two ophiolites in the Bayanhongor 

Zone of 660-640 Ma and 298-210 Ma age. The first formed during the evolution of the Altaids, 

and the second most likely formed in a narrow rift (thus explaining the presence of Precambrian 

zircons) ocean at the western end of the Mongol-Okhotsk Ocean, which has long been regarded 

as a triangular-shaped ocean that closed progressively eastwards in a scissor-like fashion (Zhao 

et al., 1990; Zonenshain et al., 1990; Tomurtogoo et al., 2004). Bayanhongor is situated on the 

western end of the Mongol-Okhotsk Suture outlined by Zorin (1999). Closure by subduction of 

the Mongol-Okhotsk Ocean would accordingly explain the presence of the 220-200 Ma calc-

alkaline Khentei batholith (Kovalenko et al., 2004), and farther east of the accreted Onon island 

arc (ss. 3.5.5). Obduction by thrusting, probably at the end-Triassic, placed the second ophiolite 

against the first ophiolite that had already been emplaced by thrusting in the Neoproterozoic, 
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thus making this the longest and widest ophiolite zone in Central Asia. However, at present the 

boundaries and extent of the first and second ophiolites are still unknown (more mapping is 

required), and none of the first or second generation of thrusts has been dated. 

The close affinities between the Dzhida-Bayangol and Bayanhongor zones (i.e. age and nature 

of oceanic materials, timing of accretion) strongly suggest their origin in a single ocean that 

finally closed in the Early Ordovician (Fig. 3 and ss. 3.5.2). Such a hypothesis would imply, as 

proposed by Kovalenko et al. (2005), the imbrication and duplication of the Khangai and 

Baidrag-Dzabkhan microcontinents. However the existence of strike-slip deformation within the 

Bayanhongor Zone was rejected by Osozawa et al. (2008). Alternatively, the Baidrag passive 

margin may have extended as far as the Tarvagatai Precambrian basement, and the northerly 

obducted Bayanhongor Ophiolite originated in the Dzhida-Bayangol Ocean (Fig. 5a,b).  

3.5.2. The Dzhida-Bayangol Zone: multiple accretionary events within a Vendian-

Cambrian ocean  

In the middle of the Sibero-Mongolian orocline, outlined by the above-described 

microcontinents (Tuva-Mongolian, Khangai, Baidrag-Dzabkhan, Argunsky and Idermeg) and by 

Siberia is the Dzhida-Bayangol Zone (Dzhida, Eravna and Bayangol Zones on Fig. 2, Naumova 

et al., 2006). This zone is mainly characterized by Vendian-Cambrian arcs and subduction-

accretion complexes ( Badarch et al., 2002; Naumova et al., 2006; Gordienko et al., 2007; 

Windley et al., 2007; Zorin et al., 2009). Geochemichal and isotopic studies on Phanerozoic 

granitoids in west-central Mongolia suggest the massive production of juvenile crust with limited 

influence of old microcontinents (Jahn et al., 2004). The Dzhida-Bayangol Zone was studied in 

detail in the Dzhida and Bayangol regions where there are subduction-accretion complexes 

including island arc rocks (i.e. boninites and basalts of supposed Vendian age, Early-Middle 

Cambrian rhyolites and andesites, ca. 506-505 Ma plagiogranite-diorite complexes and related 
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mélanges), oceanic islands (i.e. ophiolitic mélanges with oceanic crust and Early Cambrian 

limestones), mélanges, flysch, and metamorphic-magmatic complexes (Badarch et al., 2002; 

Gordienko and Filimonov, 2005; Gordienko et al., 2007; Safonova, 2009) (Fig. 3). As proposed 

by Zorin et al. (2009), the Cambrian Dzhida island arc likely extends eastwards into the Eravna 

Zone where there are also Vendian-Cambrian island arc volcano-sedimentary assemblages 

(Naumova et al., 2006). In the southern part of the Barguzin Zone, a dismembered ophiolite 

represented by metamorphosed gabbro, diorite, plagiogranite and ultrabasic rocks has a Sm-Nd 

age of ca. 545+/-13 Ma (Belichenko et al., 2006). A metamorphosed volcano-sedimentary 

complex containing Vendian ophiolites (i.e. N-MORB, E-MORB and OIB with ca. 580 Ma Sm-

Nd model ages) was reported in the Onon Zone (Naumova et al., 2006); these rocks occur in the 

eastern extension of the Vendian-Cambrian accretionary complexes. The above information 

implies that a major ocean existed between Siberia and the Tuva-Mongolian Terrane in the 

Vendian and Cambrian and that numerous accretionary events probably affected its margins; we 

call this the Dzhida-Bayangol Ocean (Fig. 5a,b).  

Although the Dzhida-Bayangol Zone is poorly documented, the available data below support 

the closure of this ocean by the Early Ordovician. An Ordovician collisional event documented 

by flysch deposits intruded by ca. 490-470 Ma collisional granitic rocks and by regional 

metamorphism occurs in the Dzhida area (Gordienko et al., 2007). These ages are consistent with 

the period of Ordovician regional metamorphism identified in the Baikal area (Gordienko et al., 

2007 and references therein), and with Late Cambrian-Early Ordovician flysch deposits in the 

northern Khentey Zone (Haraa locality, Badarch et al., 2002; Naumova et al., 2006; Kelty et al., 

2008). The Haraa flysch sediments contain zircons with ages ranging from ca. 2.6-2.4, 1.95-1.8, 

9.0-8.0 Ga to 605-504 Ma, which likely come from the Mongolian microcontinents (Kelty et al., 

2008). Forearc basalts, andesites and dacites interlayered with volcanic-derived sandstones, 

siltstones and shales in the Haraa area (Badarch et al., 2002) contain detrital zircons with ages 
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ranging from 483 to 2568 Ma (Kröner et al., 2007); these ages imply that the arc activity ended 

by the Early Ordovician (Fig. 3).  

The end of arc activity in the Haraa area is consistent with the time of Early Ordovician 

collision identified in the Dzhida, Baikal and Bayanhongor regions and with the general absence 

of Middle-Late Ordovician deposits in Central Mongolia and Transbaikalia (Naumova et al., 

2006) (Fig. 3). However, Kröner et al. (2007) reported brief arc magmatic activity between 460 

and 435 Ma in the Haraa and Herlen areas; this contradicts the Early Ordovician closure of the 

Dzhida-Bayangol Ocean, but the Late Ordovician-Silurian arc activity could be related to the 

northward subduction of the Palaeo-Asian Ocean (i.e. peri-Siberian margin, ss. 3.6 and Fig. 6). 

The pre-Silurian accretion of the Mongolian microcontinents and other Vendian-Cambrian island 

arcs to Siberia (i.e. “Tuva-Mongolian Orogeny”, Fig. 3) is strongly supported by the existence of 

a peri-Siberian margin located south of the Main Mongolian Lineament (Badarch et al., 2002; 

Windley et al., 2007). 

3.5.3. The Borus-Kurtushiba Zone: an arc-arc collisional zone? 

The Borus-Kurtushiba Zone corresponds to the West Sayan Zone, which is delimited to the 

south and north by the Kurtushiba and Borus ophiolitic and HP metamorphic belts, respectively 

(Fig. 2, Naumova et al., 2006). It mainly consists of Vendian-Cambrian ophiolites and volcano-

sedimentary accretionary rocks, thick Cambrian-Ordovician sands and shales interpreted as 

flysch deposits, and of Silurian shallow-water terrigenous carbonate shelf sediments (Naumova 

et al., 2006). HP and ophiolitic rocks are associated with the volcano-sedimentary accretionary 

rocks in both belts (Dobretsov and Buslov, 2004; Naumova et al., 2006 and references therein). 

The different geochemistry of ophiolites (MORB and OIB) and of HP ages (at Kurtushiba: 600-

520 Ma, Dobretsov and Sklyarov, 1989 in Volkova and Sklyarov, 2007; and at Borus: 540-440 

Ma; Dobretsov and Buslov, 2004) suggest different accretionary events.  
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The formation time of the Borus-Kurtushiba “Suture Zone” is suggested by Cambrian-

Ordovician flysch and Ordovician shallow-water molasse deposits occurring in West Sayan and 

Tannuola/Khamsara (the Khemchik-Sistigkhem Basin on Fig. 2, Naumova et al. 2006). The 

younger age of the flysch is not precisely known, but the dated younger arc activity suggests 

ocean closure was in the Middle Cambrian. The particular structure of the Borus-Kurtushiba 

Zone (i.e. accretionary and flysch rocks surrounded by HP-ophiolitic belts and shallow marine 

cover) could possibly be attributed to facing “soft” arc-arc collisions (Hall, 1999; Hall and 

Smyth, 2008). Similar structures in the Blue Mountains were attributed to facing arc-arc 

collisions (Dorsey and LaMaskin, 2007). The Borus and Kurtushiba belts may be accretionary 

wedges associated with the Sayan and Khamsara arcs, respectively. However, the Western Sayan 

regional geology is still poorly known and detailed fieldwork together with geochronology and 

geochemistry are required to test this hypothesis (Fig. 5b).  

3.5.4. The Charysh-Terekta Zone: the accretion of the Altai-Mongolian Microcontinent 

The Charysh-Terekta dextral strike-slip zone (Fig. 2) was interpreted as a Late Devonian-

Early Carboniferous suture resulting from the oblique collision between the Altai-Mongolian 

Terrane and Siberia (Buslov et al, 2000, 2004a, b; Safonova et al., 2004; Dobretsov and Buslov, 

2007). The strike-slip zone is marked by mélange-greenschist facies shear zones containing 

fragments of the following: a Cambrian-Ordovician Gorny-Altai arc system (i.e. Middle-Late 

Cambrian Anui-Chuya forearc sediments, Early-Middle Ordovician forearc sediments with 

pelagic fauna and Cambrian-Early Ordovician clasts of magmatic arc origin), an ocean (i.e. 

ophiolitic mélanges with Late Tremadocian-Early Arenigian cherts), an Early Palaeozoic 

accreted terrane (the Uimon HP metamorphosed volcano-sedimentary complex with E-MORB, 

N-MORB and OIB, ca. 490-480 Ma blueschists; Volkova and Sklyarov, 2007), an Ordovician-

Silurian marginal basin (Ordovician clastics with benthic and pelagic fauna and an Early-Middle 

Ordovician volcanogenic component, a Late Ordovician through Devonian carbonate platform, 
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Yolkin et al., 1994), a Devonian arc and related basin (an Early-Middle Devonian sedimentary-

volcanic arc assemblage, an Early Devonian limestone with crinoids and corals), and finally, 

clastic fragments of the Altai-Mongolian Terrane (see details in Buslov et al., 2004b) (Fig. 4).  

In the Gorny-Altai the arc activity ended by the Early-Middle Ordovician; a deep to shallow-

marine basin progressively developed from the east (Uimen-Lebed) in the Tremadocian to the 

west (Charysh-Terekta) in the Arenigian and it lasted until the Early Devonian (Yolkin et al. 

1994). The presence of ca. 490-480 Ma blueschists in the Uimon ophiolitic complex is consistent 

with a Tremadocian deformation phase (metamorphism, magmatism and folding) identified in 

the Gorny-Altai and Uimen-Lebed areas (Buslov et al., 2002; Dobretsov et al., 2004b; Glorie et 

al., 2011). This accretion-collision event is also supported by Early-Middle Ordovician flysch 

sediments, which replaced Late Cambrian forearc-type deposits in the Gorny-Altai area (Yolkin 

et al., 1994) (Fig. 4).  

The Early Ordovician accretion of the Uimon Terrane (island arc system?) within the Gorny-

Altai accretionary wedge likely caused the end of arc magmatism and the westward progradation 

of subduction in the Chara Zone (i.e. Late Ordovician-Silurian northward accretionary wedge, ss. 

3.3.2). This implies that a coeval arc was located in the Kalba-Narym and/or Rudny Altai zones 

where no Early Palaeozoic rocks crop out. The Ordovician-Devonian deep-shallow marine 

sediments were not deposited on a passive margin, as sometimes proposed, but most probably in 

a back-arc according to Yolkin et al. (1994). The lack of a magmatic component may be 

explained by the existence of a deep basin to the west that trapped the sedimentology input. The 

poorly documented metamorphosed sedimentary-volcanogenic rocks associated with an 

Ordovician-Silurian (?) oceanic basement in the Rudny-Altai Zone (Buslov et al., 2004a, b) 

could possibly be the relic of a back-arc basin (Fig. 4). 
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The time of oblique accretion of the Altai-Mongolian Microcontinent to Siberia was well 

constrained in the Siberian Altai as Late Devonian (Charysh-Terekta Shear Zone, Buslov et al., 

2000, 2004a, b). Glorie et al. (2011) recently reported that voluminous granitoids predated 

(Middle-Late Devonian) the large-scale strike-slip displacements. Buslov et al. (2000, 2004b) 

proposed that the Altai-Mongolian Microcontinent was part of the palaeo-Kazakhstan continent, 

which was still isolated in the Palaeo-Asian Ocean during the Middle Palaeozoic, and which 

started to collide with Siberia in the Middle-Late Devonian. Nevertheless, the probable existence 

of a Middle-Late Ordovician through Carboniferous peri-Siberian active margin led to the 

hypothesis that the Altai-Mongolian Terrane may have already been accreted to Siberia before, 

and thus became the new Siberian active margin after the Late Ordovician (ss. 3.3.2, Fig. 6). 

This potential Middle Ordovician accretion-collision event is consistent with the nearly coeval 

accretion of the Uimon Terrane in the Siberian Altai (Fig. 5b). For these reasons, we suggest that 

the Altai-Mongolian Microcontinent was already accreted southwards in the Mongolian part of 

Siberia in the Late Ordovician and, as proposed by Buslov et al. (2000), it later moved along the 

Siberian margin in the Late Devonian (ss. 6.3). This last assumption prevents the attribution of 

the Altai-Mongolian Microcontinent to the Kazakhstan Terrane that was located at this time in 

eastern Gondwana (ss. 4.2), but no available data seem to contradict such a distinct origin and 

evolution of both terranes. This potential model (Fig. 5b) seems problematic because a 

microcontinent-continent collision should have widely affected the Siberian margin and no such 

major tectonic event has been documented. Nevertheless, Lamb and Badarch (2000) suspected a 

Middle-Late Ordovician compressional event from the occurrence of Ordovician angular 

unconformities and of variable degrees of deformation and metamorphism at different localities 

in southern Mongolia (i.e. unconformable shallow-marine deposits). These observations were 

recently corroborated by the detailed lithostratigraphic studies of Kröner et al. (2010). These 

unconformities may be explained by soft collision between the Altai-Mongolian Terrane and 

Siberia. 
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We have seen in section 3.3.2 that the Altai-Mongolian Terrane possibly extended to Inner 

Mongolia. In southwestern Mongolia, the attribution of a Precambrian basement to the Altai-

Mongolian Terrane is unclear. As suggested by Kröner et al. (2010), the South Gobi Precambrian 

basement may also be a part of the Baidrag-Dzabkhan Microcontinent. As shown by the 

significant thinning of tectonic units (see map of Naumova et al., 2006) and by detailed 

metamorphic and structural studies (Kozakov et al, 2007a, Lehmann et al., 2010), southwestern 

Mongolia underwent intense strike-slip deformation in the Middle Palaeozoic (ss. 6.3). This 

makes spatial correlations difficult and suggests that the units were extensively stretched. From 

palaeomagnetic data Buslov et al. (2000) argued that the Altai-Mongolian Microcontinent 

migrated after the Emsian over a distance of more than 2000km along the Siberian margin. Such 

a distance seems to be consistent with the potential extension of the Altai-Mongolian 

Microcontinent and the Nuhetdavaa-Enshoo Microcontinent as one independent terrane, which 

underwent Ordovician accretion in Mongolia (Fig. 5b). Southwestern Mongolian Precambrian 

rocks may be fragments of this terrane (ss. 3.3.2) 

3.5.5. The Onon Zone of the Mongol-Okhotsk Ocean: a Vendian or Silurian opening 

time? 

The Mesozoic Onon Suture Zone (or Aga Zone) occupies a central position within the Altaids 

(Naumova et al., 2006, Fig. 2). It is generally accepted as the main suture of the Mongol-

Okhotsk Ocean (e.g. Sengör and Natal'in, 1996; Zorin, 1999; Windley et al., 2007). The Mongol-

Okhotsk Orogenic Belt was formed through the Jurassic-Cretaceous following a diachronous 

oceanic closure from Mongolia to the Russian Pacific margin (Gusev and Khain, 1996; Zorin, 

1999; Kravchinsky et al., 2002; Yakubchuk, 2004, 2008; Cogné et al., 2005; Tomurtogoo et al., 

2005; Ruzhentsev and Nekrasov, 2009). The opening time of the Mongol-Okhotsk Ocean has 

been variably interpreted in the last decades;Vendian (Gordienko, 1994; Gusev and Khain, 1996; 

Sengör and Natal'in, 1996; Tomurtogoo et al., 2005), Silurian (Zorin, 1999; Badarch et al., 2002; 
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Kröner et al., 2007; Windley et al., 2007; Ruzhentsev and Nekrasov, 2009; Bussien et al., 2011), 

or Permian (Zonenshain et al., 1990). Although the most recent geological data preclude a 

Permian opening, both Vendian and Silurian times are acceptable by the scientific community. 

In Mongolia and Transbaikalia relics of the Mongol-Okhotsk Ocean are represented by the 

Onon Suture Zone and the Khangai-Khentey basin (Fig. 2) (Zorin, 1999; Ruzhentsev and 

Nekrasov, 2009). The Khangai-Khentey basin was generally interpreted as a Devonian-

Carboniferous accretionary wedge of the northern Siberian (Parfenov et al., 1999; Zorin, 1999; 

Kurihara et al., 2009; Bussien et al., 2011) or southern Mongolian margins (Kelty et al., 2008). It 

consists mainly of thick turbidites with OIB and associated Pridolian to Frasnian cherts (Kelty et 

al., 2008; Kurihara et al., 2009). The Onon Suture Zone mainly consists of polymict mélanges 

containing Visean-Tournaisian island arc rocks (quartz diorite, granite, basalt, dolerite, dacite, 

tuffs and clastics), Visean-Serpukhovian back-arc sediments, Late Ordovician-Early Silurian (ca. 

450-430 Ma) ophiolitic rocks (layered gabbro, gabbrodiorite, plagiogranite and dolerite dykes 

with a MORB chemical affinity), Late Silurian-Early Devonian oceanic crust, Early 

Carboniferous ophiolites (ca. 325 Ma; Tomurtogoo et al., 2005) and other Devonian-Triassic 

marine clastics (see details in Ruzhentsev and Nekrasov, 2009).  

The various interpretations of the time of opening of the Mongol-Okhotsk Ocean mainly 

come from the spatial correlations between the different oceanic relics. A Vendian opening time 

was commonly proposed because of the occurrence in the Dzhida-Bayangol and Bayanhongor 

zones of Vendian-Cambrian oceanic relics attributed to the Mongol-Okhotsk Ocean (Gusev and 

Khain, 1996; Sengör and Natal’in, 1996; Tomurtogoo et al., 2005). Although the simplicity of 

this model (i.e. a single ocean from the Vendian through the Jurassic) is attractive, the oceanic 

relics may also have formed within different oceanic domains. We have seen above that the 

Bayanhongor and Dzhida-Bayangol oceans without doubt existed in the Vendian, and that the 

“Tuva-Mongolian Orogeny” most probably formed by the Early-Middle Ordovician (ss. 3.5.1-2 
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and Fig. 3). Although many investigations are still required in the Dzhida-Bayangol area, present 

knowledge favours a Silurian time of opening for the Mongol-Okhotsk Ocean. The Onon Suture 

Zone and Khangai-Khentey Basin are exclusively composed of Silurian through Mesozoic 

oceanic materials (Ruzhentsev and Nekrasov, 2009), which are consistent with the occurrence of 

Late Ordovician-Early Silurian (ca. 450-430 Ma) extensional magmatism (Ruzhentsev and 

Nekrasov, 2009) that most likely reflects the first rifting of the Mongol-Okhotsk Ocean. This is 

also supported by the general lack of Ordovician deposits in Transbaikalia and northern 

Mongolia (Naumova et al., 2006) and the return of shallow to deep marine sediments during the 

Silurian (i.e. passive margin and slope sediments unconformably overlie older basement in the 

Argunsky area and Vendian-Cambrian rocks in the Khentey area, respectively (Badarch et al., 

2002; Ruzhentsev and Nekrasov, 2009) (Fig. 3).  

A Late Ordovician-Silurian opening is most likely from a plate tectonic point of view. The 

presence of a Silurian-Carboniferous peri-Siberian active margin (Fig. 6) implies that the 

southern Mongolian margin of the Mongol-Okhotsk Ocean remained attached to Siberia. This 

also supported by the occurrence of Silurian Tuvaella fauna within clastics in the Argunsky area 

(Badarch et al., 2002) and is consistent with palaeomagnetic data (Kravchinsky et al., 2002). 

Sengör and Natal'in (1996) proposed an interesting palaeotectonic model that took account of the 

above considerations, according to which the extension of the Siberian active margin in 

Mongolia was located on the external side of the Vendian-Jurassic Khangai-Khentey Ocean 

(Mongol-Okhotsk Ocean). However, the existence of such a long-lived ca. 500 Ma ocean, 

subducting under Siberia and Mongolia for most of its life span, is hardly viable in terms of 

modern plate tectonics. Although no geological data clearly contradict the opening of the 

Mongol-Okhotsk during the Vendian, the model of a Silurian scissor-like opening (Zhao et al., 

1990; Zonenshain et al., 1990; Badarch et al. 2002; Tomurtogoo et al., 2004) seems most likley 

in the light of current available data (Fig. 14-15-16-17 and 18).  
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3.6. The Devonian to Carboniferous peri-Siberian active margin  

The pre-Late Ordovician Siberian accretion of the Barguzin and Altai-Sayan back-arcs (ss. 

3.2), the Tuva-Mongolian and Altai-Mongolian microcontinents (ss. 3.3), and the Lake-

Khamsara and Uimen-Lebed island arcs (ss. 3.4), and of numerous other relicts within the 

Bayanhongor, Dzhida-Bayangol and Charysh-Terekta suture zones (ss. 3.5) is strongly supported 

by the remnants of Devonian-Carboniferous continental arcs, subduction-accretion complexes as 

well as back-arc basins located all along the Siberian margin (Siberian Altai, Chinese Altai, 

western Mongolia, southern Mongolia and Inner Mongolia, Figs. 6-9). 

In the Siberian Altai a Late Carboniferous-Early Permian mélange (Silurian-Carboniferous 

oceanic crust and fragments of Early Palaeozoic mélanges) and Late Devonian-Early 

Carboniferous sedimentary-volcanic rocks (Upper Devonian basalts and cherts, Early 

Carboniferous island arc rocks associated with siliceous sediments with radiolaria, Visean-

Namurian olistostromes containing Middle Devonian-Early Carboniferous oceanic crust 

probably originated from oceanic islands/seamounts as well as Namurian turbidites and tuffs) are 

associated with Early Palaeozoic mélanges within the Chara Zone (Buslov et al., 2004a, 2004b; 

Safonova et al., 2004, 2012). Subduction-accretion complexes containing pelagic and slope 

deposits and oceanic crustal fragments ranging in age from Ordovician to Visean are also 

reported in the Chinese Altai (Keksanto, Qiaoxiahala and Qinghe ophiolitic mélanges, Xiao et 

al., 2009b and references therein). Arc-type volcano-sedimentary rocks and numerous ca. 440-

360Ma arc-related granitoids in the Chinese Altai were attributed to the Late Ordovician-

Carboniferous active margin of the Altai-Mongolian Microcontinent (Windley et al., 2002; 

Wang,T. et al., 2006; Briggs et al., 2007; Yuan et al., 2007; Sun et al., 2008; Chai et al., 2009; 

Cai et al., 2011) (Fig. 6). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 34 

In section 3.5.4 we suggested that the Ordovician-Silurian Siberian arc was most probably 

located in the Rudny-Altai and/or Kalba-Narym Zones of the Siberian Altai and that a shallow to 

deep basin existed in the back-arc region (Gorny-Altai, Charysh-Terekta and Rudny-Altai 

Zones) during the Silurian and Early Devonian (Fig. 4). The basin was likely closed in the 

Emsian when deep trench clastics were deposited on metamorphosed rocks in the Rudny-Altai 

(Buslov et al., 2004a) and an arc assemblage was developed on the Gorny-Altai and Charysh-

Terekta carbonate platform (Yolkin et al., 1994). The active margin was again affected by 

extension as indicated by Middle-Late Devonian extension-related magmatism and Late 

Devonian-Early Carboniferous back-arc rocks (Yolkin et al., 1994; Naumova et al., 2006); the 

arc was displaced westwards in the Rudny-Altai Zone and associated fore-arc sediments were 

deposited in the Kalba-Narym Zone (Yolkin et al., 1994) (Figs. 6-13).  

Cai et al. (2011) summarized data from the Chinese Altai that are indicative of a typical 

subduction-accretion orogen largely of Silurian-Devonian age, such as thrusted turbidites with 

marine flysch rhythms (Habahe Group), Devonian pillow basalts, andesites, dacites, pyroclastic 

rocks, boninites and adakites generated in a subduction-related setting (Xu et al., 2003; Niu et 

al., 2006), and 440-360 Ma (the main period of arc activity) calc-alkaline granitic rocks with 

positive εHf(t) zircons suggesting juvenile mantle origin (Wang, T. et al., 2006). In the Chinese 

Altai, a Devonian back-arc basin is documented by the ca. 370 Ma BABB Kuerti Ophiolite (Xu 

et al., 2003; Zhang, H. et al., 2003), and possibly by Middle Devonian turbidites in the Kalba-

Narym Zone, and by thick metamorphosed Middle Devonian to Early Carboniferous cherty 

clastics in the Altai-Mongolian Zone (see Fig. 9, Windley et al. 2002). The opening time of this 

back-arc basin is indicated by ca. 415-400 Ma extensional continental active margin magmatism 

in the Kalba-Narym and Altai-Mongolian zones (Wang, T. et al., 2006; Yuan et al., 2007). Also 

the ages of granitoids in the Chinese Altai (Windley et al., 2002; Wang, T. et al., 2006; Briggs et 

al., 2007; Yuan et al., 2007; Sun et al., 2008; Wang, W. et al., 2009) support the opening of a 

back-arc basin in the Early-Middle Devonian. The intrusions stopped between ca. 400 and 375 
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Ma in the Altai-Mongolian Zone and continued until 380 Ma in the Kalba-Narym Zone; this 

most likely reflects the displacement of the Kalba-Narym arc with respect to the new Altai-

Mongolian passive margin (Fig. 6-13).  

In Mongolia, the Tseel Devonian arc assemblage attributed to a transitional arc-back-arc 

setting may represent the extension of the Kuerti back-arc basin in Western Mongolia (Helo et 

al., 2006; Demoux et al., 2009b). Ordovician through Early Carboniferous subduction-

accretionary complexes occur in the Bidz and Zoolen Zones (southern part of the Gurvansayhan-

Zoolen Zone, Badarch et al., 2002; Helo et al., 2006). The associated Silurian through 

Mississippian continental arc documented by magmatism and volcano-sedimentary rocks is 

located farther north in the northern part of the Gurvansayhan-Zoolen zones and in the West and 

Central Mandalovoo zones (Lamb and Badarch, 2000, 2001; Badarch et al., 2002). The arc 

assemblages were interpreted as a Japan-type magmatic arc according to zircon ages, 

metamorphic petrology and geochemical data (Kozakov et al., 2002, 2007a; Helo et al., 2006; 

Demoux et al., 2009b; Kröner et al., 2010). Continental Devonian through Early Carboniferous 

shallow to deeper water volcano-sedimentary back-arc rocks are in the West and Central 

Mandalovoo and the West and Central Gobi-Altai Zones (Lamb and Badarch, 2000, 2001; 

Badarch et al., 2002; Blight et al., 2008). In Southern Mongolia, back-arc extension started in the 

earliest Devonian (Lamb and Badarch, 2000). Recently, Kröner et al. (2010) showed that a first 

phase of continental stretching affected the Gobi-Altai and Mandalovoo Zones in the Late 

Silurian, giving rise to a carbonate platform (Fig. 6-13).  

In Inner Mongolia, an Ordovician through Carboniferous Siberian continental arc margin 

(Fig. 9) is mainly documented by ca. 490-310 Ma Baolidao arc magmatism (Chen et al., 2000; 

Jian et al., 2008; Chen et al., 2009), by ca. 536-302 Ma detrital zircons within the Xilinhot 

accretionary wedge or/and forearc metamorphosed complex (Shi et al., 2003; Chen et al., 2009), 

by the Early Carboniferous Jiaoqier Ophiolite (Miao et al., 2007b) and other ophiolites along the 
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Jiaoqier-Xilinhot Fault (Wang, Q. and Liu, 1986; Xiao et al., 2003), and by the Sunidzuoqi 

subduction-accretion complex (Jian et al. 2008). The Devonian Mongolian back-arc basin likely 

extended into the Nuhetdavaa-Enshoo area where there is a thick and complete shallow-marine, 

arc-related sedimentary series (Yue et al., 2001; Badarch et al., 2002) (Fig. 6-9). The occurrence 

of uppermost Silurian turbidites (Yue et al., 2001) is also consistent with coeval continental 

stretching recognized in Mongolia. Although the back-arc basin was probably not ‘oceanised’ in 

Mongolia, the nature of the basin is less clear in China because of variable ages attributed to the 

Hegenshan ophiolites (Devonian and/or Permian; Hsü et al., 1991a; Robinson et al., 1999; Xiao 

et al., 2003; Miao et al., 2007a; or Carboniferous and Cretaceous; Jian et al., in press). Two 

back-arc basins probably existed in Inner Mongolia: (1) a Devonian oceanic/continental basin 

and (2) a Permian oceanic basin (Miao et al., 2007a) (Fig. 13). 

4. Early Palaeozoic formation of the Kazakhstan Continent 

The time of formation of the Kazakhstan continent in the Palaeozoic has been widely 

discussed (Zonenshain et al., 1990; Mossakovsky et al., 1994; Sengör and Natal'in, 1996; 

Kheraskova et al., 2003; Yakubchuk, 2004; Degtyarev and Ryazantsev, 2007; Kröner et al., 

2008; Windley et al., 2007; Abrajevitch et al., 2008; Burtman, 2008; Levashova et al., 2009; 

Alexeiev et al., 2010; Biske and Seltmann, 2010; Alexeiev, 2011), and from this discussion two 

main ideas emerge: (1) The Kazakhstan continent was created by Middle-Late Palaeozoic thrust 

duplication and bending of one to three island arcs that originated in the Baltica and Siberia 

continents (Sengör and Natal'in, 1996; Yakubchuk, 2004), and (2) the Kazakhstan continent was 

formed by the successive amalgamations of island arcs and microcontinents that originated in 

eastern Gondwana by the Silurian, and the derivative continent was then bent into an orocline in 

the Late Palaeozoic (Windley et al., 2007; Abrajevitch et al., 2008; Alexeiev et al., 2010; Biske 

and Seltmann, 2010). As pointed out by the latter authors, substantial geochemical, 

geochronological, palaeomagnetic and geological data, published since Sengör and Natal'in 
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(1996), have corroborated pre-Silurian, multiple amalgamation (ss. 4.1) in eastern Gondwana (ss. 

4.2). 

4.1. Major stages of formation and potential correlations 

The mains issues that inhibit the construction of a well-constrained palaeotectonic model for 

continental growth of Kazakhstan in the Early-Middle Palaeozoic mainly reside in the definition 

and potential spatial correlations of sutures and terranes (Alexeiev et al., 2010) (Fig. 2). 

Although more fieldwork and geochronologic/geochemical studies are still necessary in order to 

better constrain the pre-Silurian amalgamation of Kazakhstan, some important considerations 

arise from the available data. The continental growth of Kazakhstan was aided by four major 

tectonic events in: (1) the Terreneuvian (ca. 540-530Ma), (2) the Amgan (ca. 520-510 Ma), the 

Arenigian (ca. 480-470 Ma) and the Hirnantian-Rhuddanian (ca. 450-440 Ma) (Fig. 7).  

The Terreneuvian event has been recognized mainly in northern Kazakhstan in the Kokchetav 

Massif (the Kumdykol Suture, Degtyarev and Ryazantsev, 2007; Windley et al., 2007; Alexeiev, 

2011), which created a diamond/coesite-bearing UHP tectono-metamorphic mélange in a 

Cambrian-Early Ordovician accretionary complex (Dobretsov et al., 2005b). Maruyama and 

Parkinson (2000) presented new data and an impressive overview of the geology, petrology and 

tectonic framework of the UHP belt. The metamorphic rocks that have continental and oceanic 

protoliths yielded a ca. 540-530 Ma UHP metamorphic peak and a ca. 530-520 Ma exhumation 

trajectory (Dobretsov and Buslov, 2004 and references therein). The Early Cambrian 

metamorphism resulted from the northward subduction of a microcontinental (the West Teniz 

Zone on Fig. 2) passive margin under a Vendian-Cambrian island arc (Dobretsov et al., 2005a; 

Degtyarev and Ryazantsev, 2007). Following the obduction, subduction started under the 

microcontinent (Dobretsov et al., 2005a, 2005b). No coeval UHP metamorphic complex has 

been identified in Kazakhstan. However, Vendian-Early Cambrian oceanic and ophiolitic rocks 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 38 

occur in the Erementau Mountains (seamounts, Yakubchuk, 1990), in Central Chingiz (Early 

Cambrian ophiolites, Yakubchuk and Degtyarev, 1994), in the Aktyuz Massif (ca. 530 Ma 

metagabbro, Kröner et al. 2012), in the Kyrgyz and Terskey Ranges (Early Cambrian 

IAT/MORB, Lomize et al., 1997), and in western Junggar (Tangbale, ca. 540-520 plagiogranites 

with E-MORB signature and gabbro, Buckman and Aitchison, 2004; Jian et al., 2005); all these 

relict oceanic rocks may be derived from the Kumdykol Ocean (Fig. 7). 

The Amgan event is characterized by a stratigraphic unconformity, which crops out in the 

East Teniz (Urumbai), Selety-Erementau (Selety), West and East Boshchekul-Chingiz Zones 

(Boshchekul and Chingiz Ranges) (Fig. 2). At the Amgan unconformity arc-related rocks are 

unconformably overlain by shallow to deep marine terrigenous-carbonate sediments (Degtyarev 

and Ryazantsev, 2007). Cambrian oceanic rocks and deep-marine sediments are generally 

associated Amgan unconformity (Alexeiev et al., 2010; Degtyarev and Ryazantsev, 2007; 

Kröner et al., 2012). Amgan to Arenigian deep-marine sediments occur in the Central Chingiz, 

Selety, Urumbai and Dzhalair-Naiman Zones (Yakubchuk, 1990; Yakubchuk and Degtyarev, 

1994; Degtyarev and Ryazantsev, 2007; Tolmacheva et al., 2008; Alexeiev et al., 2009), and 

Middle-Late Cambrian cherty terrigenous sediments are in the Kendyktas Massif (Issyk-Kul 

Zone) (Degtyarev and Ryazantsev, 2007). In the Dzhalair-Naiman Suture Zone there are strongly 

deformed sandstones, which conformably overlie red jasper cherts and basaltic pillow lavas 

underlain by gabbro cut by diabase dykes with lenses of plagiogranite dated at ca. 512 Ma 

(Kröner et al., 2008). A similar ca. 516 Ma, SHRIMP U-Pb zircon age of basalts in the southern 

Tian Shan in China (Xiate locality on Fig. 2, Qian et al., 2009) suggests the eastward extension 

of the suture. Also, there are ca. 520 Ma (TIMS U-Pb) plagiogranites in a sheeted dyke complex 

in an ophiolite in the Dzhalair-Naiman Zone (Andassai and Dulankara massifs, Ryazantsev et al., 

2009), and Cambrian-Early Ordovician ophiolitic rocks in the Kyrgyz-Terskey Ranges (pillow 

basalts associated with Cambrian-Earliest Ordovician cherts in an ophiolitic mélanges, Lomize et 

al., 1997) and in the Arkalyk Suture Zone (mélange with Late Cambrian-Lower Ordovician 
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cherts and basalts, Yakubchuk and Degtyarev, 1994). Therefore, the Urumbai, Dzhalair-Naiman, 

Kyrgyz-Terskey and Arkalyk sutures (Windley et al., 2007 and Fig. 2) may contain the relics of 

a single ocean (Fig. 7). In Central Chingiz, the Amgan-through-Arenigian deep-marine 

sediments are associated with a coeval arc assemblage, interpreted to have formed in a back-arc 

(Yakubchuk and Degtyarev, 1994; Tolmacheva et al., 2008). The correlation of the Boshchekul 

and Chingiz Ranges is strongly supported by detailed stratigraphy, which shows Early Cambrian 

through Latest Ordovician arc assemblages (Yakubchuk, 1990; Yakubchuk and Degtyarev, 

1994; Degtyarev and Ryazantsev, 2007; Windley et al., 2007). Early Cambrian (ca. 508 Ma 

granodiorites, ca. 534 Ma metadacites) and Early Ordovician (ca. 480 Ma metadacites, 

granodiorites and granitoids) arc rocks were reported in the Chu-Yili (Kröner et al., 2008; Gao et 

al., 2009; Alexeiev et al., 2010) and Issyk-Kul (a Cambrian to Arenigian arc assemblage, Lomize 

et al., 1997) microcontinents. Thus evidence suggests that a Cambrian through Early Ordovician 

arc was associated with a back-arc basin (Fig. 7).  

The Arenigian event is locally characterized by a cessation of arc activity, stratigraphic 

unconformities, olistostromes, flysch deposits, HP metamorphism, folding, and granitic 

intrusions, which together clearly reflect a significant accretion-collision event (Dobretsov et al., 

2005a; Degtyarev and Ryazantsev, 2007; Kröner et al., 2007, 2012; Alexeiev et al., 2010; Biske 

and Seltmann, 2010; Alexeiev, 2011). Most of the Kazakhstan sutures formed in the Arenigian, 

implying that they evolved from the closure of a single ocean. The Arenigian event was 

recognized or suspected in the Kumdykol Suture Zone (Arenigian olistostrome and thrusting, 

Dobretsov et al., 2005a, b), in the Kyrgyz-Terskey Suture Zone (Arenigian ophiolitic mélanges 

and olistostromes, Lomize et al., 1997, and Arenigian maximum protolith rock age, thrusting and 

granitic intrusions, Bazhenov et al., 2003; Alexyutin et al., 2005), in the Dzhalair-Naiman Suture 

Zone (ca. 490 Ma maximum age of detrital zircons within deformed turbidites, Kröner et al., 

2008; ca. 470 Ma metamorphism, Kröner et al., 2012; Arenigian fresh overlap assemblages, 

Alexeiev et al., 2010; and ca. 470 syn-collisional adakitic diorite, Qian et al., 2009), and in the 
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Urumbai Suture Zone (Middle Cambrian to Arenigian cherty-terrigenous sediments thrusted 

with coeval volcaniclastics, Degtyarev and Ryazantsev, 2007). The formation time of the 

Arkalyk Suture Zone is uncertain, but it may be attributed to the Arenigian because of the Early 

Ordovician maximum age of cherts and basalts, and the occurrence of Amgan limestone lenses 

within flysch sediments (Yakubchuk and Degtyarev, 1994; Degtyarev and Ryazantsev, 2007). 

This timing is supported by Arenigian deformation, granitic intrusions and fresh overlap 

sediments, identified in the Chingiz Range (Yakubchuk, 1990; Yakubchuk and Degtyarev, 1994; 

Collins et al., 2003; Tolmacheva et al., 2008) (Fig. 7).  

The Arenigian accretion/collision event seems to have systematically affected the Amgan-

Arenigian marine sediments. Following this event, the arc activity continued and lasted till the 

Latest Ordovician-Early Silurian. Middle-Late Ordovician arc-related rocks occur in the 

Stepnyak Massif (Kröner et al., 2008; Degtyarev et al., 2008), Kyrgyz Range (Konopelko et al., 

2008), and in the Chingiz and Boshchekul Ranges (Yakubchuk, 1990; Yakubchuk and 

Degtyarev, 1994). The Erementau Zone, which extends from northern Kazakhstan (eastern 

Selety Zone) to western Balkash (Yili-Erementau Zone) is well accepted as the accretionary 

wedge of the Middle-Late Ordovician continental arc (Yakubchuk, 1990; Windley et al., 2007; 

Alexeiev et al., 2010). The Arenigian event was also recorded in the accretionary wedge, but it 

does not mark the end of the accretion (ophiolitic mélanges are unconformably overlain by 

Middle-Late Ordovician flysch and olistostromes interpreted as forearc deposits, Alexyutin et al., 

2005 and references therein) (Fig. 7). 

The Hirnantian-Rhuddanian event has been interpreted as the principal formation time of the 

Kazakhstan Continent caused by collision between the Aktau-Junggar and Arenigian-formed 

terranes following closure of the Erementau-Yili Ocean (Yakubchuk, 1990; Filippova et al., 

2001; Bykadorov et al., 2003; Kröner et al., 2008; Windley et al., 2007; Alexeiev et al., 2010; 

Kheraskova et al., 2010; Alexeiev, 2011). This collisional event is recognized in the Stepnyak 
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area (folds intruded by ca. 450-440 Ma granitic rocks, Kröner et al., 2008), in the Kendyktas 

Range (folds intruded by ca. 466-438 Ma granitic rocks, Alexyutin et al., 2005), in the Kyrgyz 

and Terskey Ranges (folds and granitoids, Lomize et al., 1997), in the Aktau-Junggar 

Microcontinent (ca. 450-440 Ma granitoids, Degtyarev et al., 2006), in the Central Chingiz and 

Boshchekul Ranges (end of arc activity, red bed overlap and granitic intrusions, Collins et al., 

2003), in the Baidaulet and Akbastau Ranges (end of arc magmatism,Yakubchuk, 1990) and 

possibly in the Chinese Borohoro Range (basal conglomerate, Gao et al., 1998) and western 

Junggar (Late Ordovician magmatic rocks unconformably overlain by Lower Silurian slope 

deposits, Buckman and Aitchison, 2004). The formation time of the Maikain-Kyzyltas Suture is 

well constrained as Latest Ordovician-Early Silurian, and the suture likely contains relics of a 

main ocean (Arenigian island arc, Yakubchuk, 1990) (Fig. 7). The Erementau-Yili accretionary 

wedge, which also shows cessation of sedimentation at this time (Alexeiev et al., 2010) (Fig. 7), 

probably borders the same ocean.  

Present-day knowledge suggests that at least four major tectonic events contributed to the 

Early Palaeozoic continental growth of Kazakhstan. Degtyarev and Ryazantsev (2007) proposed 

that the Amgan unconformity is related to the Terreneuvian island arc obduction. Although we 

do not contest this model here, we propose an alternative according to which the Amgan and 

Terreneuvian events were different. As suggested byYakubchuk and Degtyarev (1994) and 

Tolmacheva et al. (2008), the Amgan unconformity may also reflect the opening of a back-arc 

basin. The recognition of these different events throughout Kazakhstan leads to some potential 

correlations (Fig. 7). Although the Tar-Muromtsev Zone is poorly known (Sengör and Natal'in, 

1996), we assume it was equivalent to the Boschekul-Chingiz arc of Windley et al. (2007). 

Considering the close affinities between the Chu-Yili and Issyk-Kul microcontinents (and 

assuming the absence of extensive nappes), the possibility that they belonged to a single terrane 

would imply major tectonic duplication (Fig. 2). This may be explained either by complex 
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oblique collision or by later oroclinal bending. Important strike-slip faults were probably 

associated with the oroclinal bending process (Sengör and Natal'in, 1996; Johnston, 2004). 

4.2. The probable Gondwanan origin of the Kazakhstan microcontinents  

Two different Vendian origins have been proposed for the Kazakhstan continental fragments. 

(1) Baltica-Siberia (Sengör and Natal'in, 1996; Yakubchuk, 2004) and (2) East Gondwana 

(Mossakovsky et al., 1994; Kheraskova et al., 2003; Windley et al., 2007; Biske and Seltmann, 

2010). The location of the Kazakhstan fragments in the equatorial zone of eastern Gondwana is 

currently strongly favoured by their marked lithostratigraphic affinities (Kheraskova et al., 2003; 

Degtyarev and Ryazantsev, 2007; Windley et al., 2007; Biske and Seltmann, 2010), by 

palaeomagnetic data (Bazhenov et al., 2003; Collins et al., 2003; Alexyutin et al., 2005, 

Levashova et al., 2011), by coeval orogenic events (see below), and by the East Gondwanan 

affinity of Early Palaeozoic Kazakhstan faunas (Popov et al., 2009). 

In the Vendian and Early Palaeozoic East Gondwana (in the equatorial zone) was probably 

partly formed by South China (Yangtze craton), and the Lesser Himalaya and Iran (Burrett et al., 

1990; Nie, 1991; Van der Voo, 1993; Cocks and Torsvik, 2002; Jiang et al., 2003; Torsvik and 

Cocks, 2009; Stampfli et al., 2011) (Fig. 14). The lithostratigraphic affinities of Vendian-Late 

Ordovician passive margin sediments (Vendian rift sediments associated with glacial deposits 

followed by shallow-marine terrigenous carbonates with phosphorites) between Lesser 

Himalaya, South China (Jiang et al., 2003) and the Ishim-Naryn Zone of Kazakhstan (Degtyarev 

and Ryazantsev, 2007) suggest that the western Kazakhstan microcontinents (Chatkal-Karatau, 

Tourgai, Naryn, West Chu Sarysu and West Teniz in Fig. 2, Windley et al., 2007) were included 

in East Gondwana (Fig. 8). This is supported by the Latest Ordovician final amalgamation age of 

the Kazakhstan microcontinents (Kröner et al., 2008; Windley et al., 2007; Alexeiev, 2011) and 
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by a coeval orogenic event that affected South China (Chen et al., 1997; Su et al., 2009; Charvet 

et al., 2010).  

As indicated by the palaeotectonic models of Kazakhstan by Degtyarev and Ryazantsev 

(2007) and of South China by Charvet et al. (2010), the Vendian-Ordovician rocks in South 

China-Ishim-Naryn were probably not deposited on a “passive margin”, but on the margin of a 

deep marginal continental basin. Other Kazakhstan microcontinents (Issyk-Kul and Chu-Yili) 

were also situated in the equatorial zone of East Gondwana according to palaeobiogeographic 

and palaeomagnetic data (Bazhenov et al., 2003; Alexyutin et al., 2005; Popov et al., 2009), and 

they may have formed on the conjugate margins of Gondwana (Degtyarev and Ryazantsev, 

2007). This model is also compatible with latest Ordovician deformation that affected the 

external parts of Kazakhstan (Stepnyak, Kröner et al., 2008; and Kyrgyz-Terskey, Lomize et al., 

1997): the collision of the Aktau-Junggar Microcontinent with the internal margin of Kazakhstan 

likely caused the inversion of the South China-Ishim-Naryn basin in the Latest Ordovician. The 

origin of the Aktau-Junggar Microcontinent and its potentially associated Baidaulet-Abkbastau 

arc (Fig. 7), separated from the rest of Kazakhstan by the main Yili-Maikain-Kyzyltas Ocean 

(Early Cambrian OIB, Middle-Late Ordovician island arc relics; Yakubchuk, 1990), remains 

enigmatic. Based on these considerations and on the hypothesis outlined in sections 4.1 and 4.2, 

we propose (see Figure 8) a tentative and preliminary palaeotectonic configuration for the Early 

Palaeozoic continental growth of Kazakhstan. Numerous pluridisiplinary studies are required in 

Kazakhstan in order to reach a viable understanding of its apparently complex Early Palaeozoic 

tectonic evolution. 
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5. The northern Tarim-North China margin during the Early and Middle 

Palaeozoic 

From their relevant palaeotectonic-palaeogeographic models the North China and Tarim 

blocks were considered either as a single continent (Mossakovsky et al., 1994; Heubeck, 2001; 

Metcalfe, 2006; Yakubchuk, 2008) or two different continents (Zonenshain et al., 1990; Cocks 

and Torsvik, 2002; Fortey and Cocks, 2003; Torsvik and Cocks, 2004). Palaeozoic 

palaeobiogeographic, palaeomagnetic and palaeoclimatic data from both blocks all indicate low 

palaeolatitudes (Burrett et al., 1990; Nie, 1991; Zhao et al., 1993, 1996; Chen et al., 1999; Huang 

et al., 1999, 2000; Yang et al., 2002; Fortey and Cocks, 2003), and thus they do not contest a 

common evolution. The attribution of the North China and Tarim cratons to a single continent 

during the Paleozoic requires, not a similar, but a correlative tectonic evolution of their different 

margins. The Palaeozoic tectonic environments recognized in the Kunlun, Qilian and Qinling 

show strong affinities, which lead to a coherent plate tectonic evolution (Bian et al., 2001; 

Stampfli et al., 2011, and our observations). The tectonic evolution of the northern Tarim margin 

was subject to hot debate in the last decades (ss. 6.2). Although different issues still need to be 

resolved, the present state of knowledge indicates marked affinities between the Tarim and North 

China margins (ss. 6.1), which in turn suggests a common palaeotectonic setting (ss. 6.3.).  

5.1. The North China margin: the onset of an Ordovician active margin  

It is well accepted that the North China margin was passive in the Cambrian-Early Ordovician 

and became active in the Middle-Late Ordovician (Wang, Q. and Liu, 1986; Hsü et al., 1991a; 

Yue et al., 2001; Xiao et al., 2003; Miao et al., 2007b). In Inner Mongolia, the Bainaimiao and 

Ondor Sum zones contain a Middle Ordovician to Middle Silurian continental arc and an 

associated accretionary wedge on the margin of the North China Craton (Wang; Q. and Liu, 

1986; Shao, 1989; Hsü et al., 1991a; Yue et al., 2001; Xiao et al., 2003) (Fig. 2). The south-
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directed subduction-accretion complex contains Early Ordovician (ca. 490-470 Ma) MORB and 

IAT ophiolitic rocks (the Tulinkai Ophiolite at Ondor Sum, Xiao et al., 2003; Miao et al., 2007b; 

Jian et al., 2008). According to geochemical data (SSZ and boninitic trondhjemite), the Tulinkai 

Ophiolite is a relic of the basement of an Ordovician intra-oceanic island arc (Jian et al. 2008). In 

the Late Ordovician a metamorphic-magmatic event affected the Ondor Sum complex (ca. 450 

Ma blueschist matrix, ca. 451-436 amphibolitic sole of the Tulinkai Ophiolite and ca. 460-450 

Ma addakite, de Jong et al., 2006; Miao et al., 2007b; Jian et al., 2008) and arc-related rocks in 

the Bater area (ca. 450-440 Ma adakite and ca. 450 Ma diorite, Jian et al. 2008). The adakitic 

magmatism and amphibolite sole strongly imply ridge subduction at ca. 450 Ma (Jian et al. 

2008). Another tectonic event affected the northern China margin in the Late Silurian. The 

Ordovician-Silurian Bainaimiao arc and Ondor Sum accretionary complex are unconformably 

overlain by shallow marine clastics (Wang, Q. and Liu, 1986; Shao, 1989; Hsü et al., 1991a; Yue 

et al., 2001; Xiao et al., 2003), and the Bater arc was intruded by ca. 419-415 Ma low-K 

tonalities (Jian et al. 2008). These events caused the end of arc activity in the Bainaimiao and 

Ondor Sum Zones (Fig. 10). However, Devonian-Permian arc-related intrusions in the northern 

margin of the North China Craton (Inner Mongolia Paleo-Uplift, Zhang, S. H. et al., 2006, 

2007a, 2007b, 2009a, 2009b) and ca. 400-360 Ma magmatic zircons in Upper Carboniferous-

Permian clastics (at Daqinshan; Cope et al., 2005) indicate that subduction was only temporarily 

interrupted.  

According to Hsü et al. (1991a) and Yue et al., (2001), the Late Silurian event may have 

resulted from the collision between the Sunid (or Xilinhot) Microcontinent (i.e. Baolidao Zone) 

and North China. However, the Permian-age Solonker Suture Zone, well accepted as the main 

suture between North China and Siberia (Wang, Q. and Liu, 1986; Sengör and Natal'in, 1996; 

Xiao et al., 2003; Li, 2006; Miao et al., 2007a, 2007b), and this challenges such a palaeotectonic 

model (Fig. 2). The Sunid Microcontinent was most likely detached from the Siberian margin by 

back-arc opening in the Late Palaeozoic (Miao et al., 2007a). Jian et al. (2008) proposed that the 
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Tulinkai island arc was accreted to a microcontinent located in the Bater area in the Late Silurian 

(Precambrian xenocrysts in ca. 419-415 Ma tonalities). Nevertheless, the existence of a 

microcontinent in the area is uncertain, and according to most interpretations the Bater 

Precambrian rocks more likely belong to the North China Craton. The island arc may have been 

already accreted to North China in the Middle-Late Ordovician (ca. 460 Ma) prior to the 

subduction of the ridge at ca. 450 Ma. The ridge-subduction and arc-accretion processes were 

most probably mutually related (supra-subduction ridge associated with the ca. 480-460 Tulinkai 

island arc). This palaeotectonic model, consistent with the important 

geochemichal/geochronological data presented by Jian et al. (2008), explains why the passive 

margin was transformed into an active margin (Fig. 12D). Subduction inception in a passive 

margin setting is unlikely (there are no modern analogues); the most likely process for such a 

transition is the accretion/collision of a terrane obducted onto the passive margin followed by 

subduction reversal (Cloetingh et al., 1984; Stern, 2004). Xiao et al. (2003) already proposed 

such a scenario for the onset of an active margin in Inner Mongolia. The end of the Sino-Korean 

platform development in the Middle-Late Ordovician (Meng et al., 1997; Meng and Ge, 2003) 

also supports the onset of an active margin at this time. Based on the above considerations, 

neither the Tulinkai arc nor the Sunid Microcontinent can be related to Late Silurian collision; 

the wider plate tectonic context suggests the involvement of the Kazakhstan Continent (Fig. 11, 

ss. 6.2.1). 

5.2. The Tarim margin: two passive margin stages?  

The tectonic evolution of the northern margin of Tarim during the Palaeozoic is subject to hot 

debate (Wang, Q. et al., 2010). The Tarim margin has commonly been considered to be a 

continuous passive margin from the Sinian through the Late Palaeozoic that was fringed by the 

South Tianshan Ocean (Windley et al., 1990; Gao et al., 1998; Chen et al., 1999; Carroll et al., 

2001; Xiao et al., 2004b, 2009a). However, other authors have proposed that the Tarim margin 
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was temporarily active during the Ordovician before Silurian back-arc opening of the South 

Tianshan Ocean and detachment of the Central Tianshan Microcontinent (Shu et al., 2002, 2004; 

Charvet et al., 2007; Wang, B. et al., 2008; Lin et al., 2009). This key controversy about the 

Altaid evolution mainly arises from the spatial correlations of the sutures in the Chinese 

Tianshan (ss. 5.2.1), Beishan (ss. 5.2.2), and Kyrgyz Tianshan (ss. 5.2.4) (see; ss. 5.2.3-5.2.5). 

The widely investigated Chinese Tianshan is a good point of departure for discussing the 

potential extension of the sutures.  

5.2.1. The Chinese Tianshan 

 The back-arc model for the Chinese Tianshan is well constrained by stratigraphic, structural, 

palaeontologic, metamorphic, magmatic, geochemical and geochronological data as well as by 

kinematic constraints (Shu et al., 1999; Laurent-Charvet et al., 2002, 2003; Shu et al., 2002, 

2004; Charvet et al., 2007, 2011; Wang, B. et al., 2008; Lin et al., 2009). These authors defined 

the Central Tianshan Microcontinent according to the position of the South Tianshan Suture, 

which extends along the Tarim margin, and to that of the Central Tianshan Suture that is located 

in the Nalati and North Tianshan Faults (Fig. 9). The South Tianshan Suture separates the Tarim 

Craton and the Central Tianshan Microcontinent (Yili or Yili-Central Tianshan; Windley et al., 

1990; Gao et al., 1998; Chen et al., 1999; Carroll et al., 2001; Zhou et al., 2001; Shu et al., 2002; 

Xiao et al., 2004b, 2011; Charvet et al., 2007, 2011; Wang, B. et al., 2008; Gao et al., 2009; Lin 

et al., 2009). The suture is defined in the western to eastern Tianshan by numerous ophiolitic 

mélanges that contain HP blueschists, Ordovician-Silurian limestones, Silurian to Lower-Middle 

Devonian cherts, and Middle Silurian to Late Devonian oceanic crust (ca. 425-380 isotopic ages) 

in a Late Devonian to Early Carboniferous matrix (the Heiyinshan, Kule, Yushugou, 

Tonghuashan-Liuhuangshan and Kawabulak ophiolites or ophiolitic mélanges; Chen et al., 1999; 

Shu et al., 2002; Xiao et al., 2004b, 2008; Charvet et al., 2007). The Central Tianshan Suture was 

not always recognized to separate the Central Tianshan and Yili zones (Fig. 9); for example, the 
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two zones were considered as a single microcontinent (Gao et al., 1998; Chen et al., 1999; Zhou 

et al., 2001). However, it is commonly accepted today that the Nalati Fault is a suture between 

the Yili and Central Tianshan microcontinents, because of their different Early-Middle 

Palaeozoic geology (Wang, B. et al., 2008; Gao et al., 2009; Qian et al., 2009). The Central 

Tianshan Suture is especially well documented along the North Tianshan Fault by the Gangou-

Mishigou ophiolitic mélange that contains Ordovician through Silurian (ca. 470-420 Ma) oceanic 

relics (Charvet et al., 2007). The Aqqiikkudug-Weiya Fault was interpreted as its eastward 

extension, because of similar Ordovician ophiolitic mélanges with HP relics in the Central 

Tianshan and Xingxingxia microcontinents (Shu et al., 2002; Xiao et al., 2004b; Charvet et al., 

2007). The Central Tianshan Microcontinent (Central Tianshan and Xingxingxia zones, Fig. 9) is 

characterized by a Precambrian basement and a Middle Ordovician-Devonian arc (Gao et al., 

1998; Chen et al., 1999; Shu et al., 2002; Xiao et al., 2004b, 2011; Charvet et al., 2007). The 

opening of the South Tianshan Ocean as a back-arc basin in the Early Silurian is consistent with 

the occurrence of post-Ordovician-Early Carboniferous oceanic relics within the well-

documented South Tianshan Suture Zone, and of an Ordovician-Silurian continental arc in the 

Central Tianshan Microcontinent, and with the existence of an older Central Tianshan Ocean to 

the north (Fig. 10). Other ideas, such as Silurian syn-rift deposition, south-dipping subduction of 

the Central Tianshan Ocean, and the closure time of oceans were also proposed within the back-

arc model. Confirmation of this model has to be found in its relevance to other key regions in a 

larger plate tectonic context (Beishan, Kyrgyz Tianshan, Tarim). 

5.2.2. Beishan 

In Beishan the Hanshan Microcontinent, which is located between the Hongshishan and 

Xiaohuangshan suture zones (Fig. 9), is characterized by Precambrian basement, a Cambrian to 

Early Ordovician passive margin and a Middle Ordovician to Late Silurian arc (Hsü et al., 

1991b; Zuo et al., 1991; Yue et al., 2001; Xiao et al., 2010b). The northern boundary of the 
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Hanshan Microcontinent is not clear, but Zuo et al. (1991) defined its continental margin based 

on Ordovician turbidites located to the north of the Middle Ordovician-Silurian Yuanbaoshan 

continental arc (active margin of the Hanshan Microcontinent). The Hongshishan ophiolitic 

mélange has a Carboniferous age, but the time of formation of oceanic crust needs to be better 

constrained (Xiao et al., 2010b). There are Ordovician and Silurian clastics, chert, quartzite and 

pillow basalts metamorphosed in the greenschist facies in the Hashaat area (Badarch et al., 

2002). The location of the Tsagaan Uul Precambrian Terrane to the south also supports the 

extension of the Hanshan Microcontinent in southern Mongolia. The geology of this 

microcontinent and the occurrence of Ordovician oceanic relics to the north strongly suggest the 

eastward extension of the Central Tianshan Microcontinent and of the Central Tianshan Ocean 

through Beishan as far as southern Mongolia (Fig. 9-10). 

Based on these considerations, the Xiaohuangshan Zone located between the Hanshan 

Microcontinent and Tarim craton (Dunhuang) most probably represents the westward extension 

of the South Tianshan Suture. The Xiaohuangshan Zone is bound by two belts of ophiolites 

(Hongliuhe-Xichangjing and Xingxingxia-Shibanjing, Xiao et al., 2010b). Various ophiolitic 

mélanges, Middle-Late Ordovician-Silurian arc assemblages, Precambrian rocks, and a 

Cambrian-Ordovician passive margin are found in the Xiaohuangshan Zone (Zuo et al., 1991; 

Xiao et al., 2010b). Except for a ca. 426 Ma gabbro in the Hongliuhe ophiolitic mélange, 

Ordovician cherts occur in a complete ophiolite (Xichangjing), and Ordovician-Silurian 

turbidites are associated with the ophiolitic rocks in the Hongliuhe-Xichangjing belt (Hsü et al., 

1991b; Zuo et al., 1991; Yue et al., 2001; Xiao et al., 2010b). There are Ordovician-Silurian 

fossils in highly deformed ophiolitic mélanges in the Xingxingxia-Shibanjing belt (Xiao et al., 

2010b). As previously proposed, the Silurian oceanic crust in westernmost Hongliuhe is most 

probably a relict of the South Tianshan Ocean (Charvet et al., 2007; Xiao et al., 2008, 2010b) 

(Fig. 10). The correlation of the Hongliuhe ophiolitic mélange with the Ordovician Xichangjing 

oceanic relics, as well as the presence of the Ordovician Xingxingxia-Shibanjing ophiolitic belt 
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(Xiao et al., 2010b) that probably originated in one or two main oceans located to the south of 

the Hanshan Microcontinent (Hsü et al., 1991b; Zuo et al., 1991; Yue et al., 2001; Xiao et al., 

2010b) challenge the Tianshan back-arc model in Beishan.  

5.2.3. Problematic correlations between Beishan and its neighbouring regions  

Although the Xiaohuangshan oceanic remnants were generally considered to be derived from 

the main Early Palaeozoic Ocean that separated the Hanshan and Tarim continental blocks, the 

opening of a Silurian back-arc ocean is suspected from other relevant geological data. A Sinian 

to Lower Ordovician passive margin in the Dunhuang, Xiaohuangshan and Hanshan zones (Zuo 

et al., 1991; Yue et al., 2001; Xiao et al., 2010b) is most probably a remnant of a single passive 

margin, which would imply a Tarim origin for the Hanshan Microcontinent. In the northern 

Dunhuang Zone (south of Hongliuhe), a Silurian olistostrome containing relics of a passive 

margin (Sinian red chert-bearing marble, Lower Cambrian black chert and sandstone, and 

Middle Cambrian limestone) was interpreted by Charvet et al. (2007) to have formed in  an early 

rift of the South Tianshan Ocean. In the same region, Zuo et al. (1991) described a Silurian slope 

deposit, which unconformably covers a Cambrian basement, and suggested it formed in the early 

syn-rift of the Hongliuhe back-arc ocean. The only well-dated oceanic crust is Silurian in age. 

Finally, as discussed above, the closed affinities between the Central Tianshan and Hanshan 

microcontinents strongly support their common origin and evolution, and the application of the 

back-arc model in Beishan (Fig. 10).  

The different tectonic units in Beishan may have been generated in two (Zuo et al., 1991; Yue 

et al., 2001) or multiple accretionary-collisional processes (Xiao et al., 2010b). In their review of 

Beishan geology the last authors presented an innovative palaeotectonic model for the whole 

Palaeozoic according to which another microcontinent (Shuangyinshan-Huaniushan) existed 

between the Hanshan and Dunhuang continental blocks, and is characterized by Precambrian to 
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Ordovician shelf carbonates and clastics as well as by slope deposits on which an Ordovician to 

Early Silurian arc developed (Xiao et al., 2010b). The Shuangyinshan-Huaniushan 

Microcontinent was defined by a Carboniferous-Permian ophiolitic mélange (i.e. Liuyuan) 

located on its southern side (Mao et al., 2012a). Because of the occurrence of ca. 460 Ma 

eclogites (Qu et al., 2011) and ca. 450-420Ma adakites and Nb-enriched basalts (Mao et al., 

2011b), the Liuyuan mélange was interpreted as a relic of the Cambrian-Permian Paleo-Asian 

Ocean (Xiao et al., 2010b). Nevertheless, a possible common palaeogeographic origin and 

tectonic evolution for the Shuangyinshan-Huaniushan and Dunhuang (part of the Tarim block) 

continental blocks is suspected because of their close affinities with Inner Mongolian geology (a 

Cambrian-Ordovician passive margin followed by an Ordovician-Early Silurian active margin). 

This correlative hypothesis is supported by the geochemical similarities of the magmatic rocks 

(MORB, IAT, adakites) contained within the Liuyuan mélange (Mao et al., 2012a, 2012b) and 

the Ondor Sum mélange (Jian et al., 2008), as well as the Late Silurian unconformity in the 

Shuangyinshan-Huaniushan arc (Xiao et al., 2010b) and the Ondor Sum complex (Xiao et al., 

2003). Thus the Dunhuang block may be the equivalent of the North China block, and the 

Shuangyinshan-Huaniushan arc of the continental Bainaimiao arc (Fig. 10). This would imply 

that the Early Palaeozoic Inner Mongolian scenario (ss. 5.1, Fig. 12D) could also be viable for 

the Beishan, and that the Ordovician ophiolites may have originated from an island arc obducted 

onto the Dunhuang-Shuangyinshan-Huaniushan passive margin. The Carboniferous-Permian 

rocks contained in the Liuyuan mélange (Mao et al., 2012a) may also contain the record of one 

or more later distinct events (e.g. continental rifting, collision, back-arc opening, and subduction-

accretion (see discussion in Guo et al., 2012).  

Detailed structural, stratigraphic, geochemical/geochronological studies are still required in 

Beishan in order to test and constrain the correlations between the different tectonic units. A 

common palaeogeographic origin for some units is suspected by their common affinities (see 

review of Xiao et al., 2010b). Nappe emplacement (klippen and window) and distinctive 
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weathering in the Chinese Tianshan (Charvet et al., 2007) and Kyrgyz Tianshan (Biske and 

Seltmann, 2010) may also explain some tectonic duplications in Beishan; and thus a simpler 

model than the one presented by Xiao et al. (2010b) may also be viable. According to available 

data the interpretation of the Xiaohuangshan Suture Zone as a relict of a single Silurian-

Devonian Ocean is unlikely because, according to their current location, the Ordovician oceanic 

remnants were interpreted as derived from an ocean located to the south of the Hanshan 

Microcontinent. Nevertheless, northward obduction of the Tarim margin (Dunhuang-

Shuangyinshan-Huaniushan-Hanshan) by an Ordovician island arc developed in a northern 

oceanic domain (Central Tianshan-Hashaat) remain possible and should be tested (Fig. 12D-C). 

Because of relevant close affinities with and between surrounding regions (Chinese Tianshan, 

Tarim and Inner Mongolia, Fig. 10) and of consistency within a larger plate tectonic framework 

(ss. 5.3), we consider that the second back-arc model is the more likely and applicable to 

Beishan, as illustrated in our plate tectonic reconstructions (see model on Fig. 11-12-13-14).  

5.2.4. The Kyrgyz Tianshan 

In the Kyrgyz Tianshan, the Turkestan Suture Zone is well accepted as the principal suture 

between the Tarim and Kazakhstan continents (Biske, 1995; Sengör and Natal'in, 1996; 

Burtman, 2006, 2008; Windley et al., 2007; Pickering et al., 2008; Biske and Seltmann, 2010). 

The suture zone is mainly represented by southward allochtons of oceanic origin in the 

Bukuntau-Kokshaal belt (Turkestan-Alay and Kokshaal Zones, Fig. 9). The uppermost units 

consist of Early Ordovician ophiolites (e.g. Sartale) associated with clastic breccias that underlie 

clastic and volcanic rocks metamorphosed in the greenschist facies with HP-UHP relics (Biske 

and Seltmann, 2010). Other oceanic remains in the upper allochtons, but not connected with the 

Ordovician ophiolites, consist of basalts of probable seamount origin associated with Upper 

Silurian-Devonian open-sea sediments (Pickering et al., 2008; Biske and Seltmann, 2010). The 

lower allochtons contain Silurian to Moscovian pelagic sediments, Silurian to Devonian shallow-
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marine carbonates and Middle-Devonian to Visean turbidites that are interpreted as the passive 

margin of the Tarim-Alay continent (Burtman, 2008; Biske and Seltmann, 2010). With detailed 

stratigraphic and structural data, the last authors described and correlated the continuity of the 

lower allochtons from Uzbekistan eastwards as far as the Chinese Tianshan. The opening of the 

Turkestan Ocean was dated as Sinian by rift and passive margin sediments (Biske and Shilov, 

1998; Carroll et al., 2001). 

5.2.5. Problematic correlations between the Chinese Tianshan and Kyrgyz Tianshan 

The correlations between the Chinese and Kyrgyz sutures are uncertain because of the 

westward thinning and/or disappearance of the Chinese Central Tianshan Microcontinent in the 

Far East Chinese Tianshan (e.g. Biske and Seltmann, 2010; Charvet et al., 2011) (Fig. 9). Some 

authors proposed that the Central Tianshan Microcontinent extends in the Naryn Zone (i.e. 

Middle Tianshan; Gao et al., 2009; Qian et al., 2009), but this correlation was negated by Biske 

and Seltmann (2010), because of their different geology; the Naryn Zone belongs to the 

Kazakhstan Domain (Windley et al., 2007; Biske and Seltmann, 2010) (Fig. 9). We should 

expect that the extension of the Central Tianshan-Hanshan active margin or equivalent arc 

should be in the Kyrgyz Tianshan. The major HP-LT belt that extends from the Western Chinese 

Tianshan (Changawuzi) through the Kyrgyz Tianshan (Atbashi and Alay) as far as Uzbekistan 

(Biske and Seltmann, 2010; Hegner et al., 2010; Gao et al., 2011) may represent the relics of this 

plate boundary. The belt is composed of blueschist-, eclogite- and greenschist-facies 

metasedimentary rocks and mafic metavolcanic rocks (with N-MORB, E-MORB, OIB and arc 

basalt affinities, Gao and Klemd 2003). Ordovician oceanic crust seems to be commonly 

associated with the HP rocks (Alekseev et al., 2007; Biske and Seltmann, 2010). The HP-LT belt 

is generally considered to belong to the Turkestan-South Tianshan Suture (Gao et al., 1998; 

Chen et al., 1999; Zhou et al., 2001; Biske and Seltmann, 2010; Gao et al., 2011). However, 

some authors have suggested that it has affinities with the Central Tianshan Suture Zone (e.g. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 54 

lithostratigraphy, structural data, age of oceanic crust, Charvet et al., 2007, 2010; Wang, B. et al., 

2008; Lin et al., 2009).  

The double Chinese affinities of the Turkestan Suture would imply that the Turkestan Suture 

Zone contains relics of both the South and Central Tianshan Oceans (Fig. 10). Although the 

Ordovician-Silurian arc was not recognized in Kyrgyz Tianshan, the opening of a South 

Tianshan back-arc type of ocean within the Tarim margin as far as Kyrgyzstan is possible; this 

arc may have disappeared by subduction processes. The Silurian opening of an ocean in the 

Kyrgyz Tianshan is supported by the Tarim stratigraphic record. A major Late Ordovician hiatus 

and Early Silurian unconformity occurs in the Tarim passive margin (Kalpin and Bachu Uplifts; 

Carroll et al., 2001). The Tarim basin was affected by rapid subsidence during the Early Silurian, 

which decreased from the Middle Silurian through the Devonian (Carroll et al., 2001). Such a 

subsidence trend is characteristic of an isostatic adjustment of the lithosphere, which undergoes 

mechanical stretching (i.e. tectonic unloading) and successive thermal subsidence (i.e. 

reequibration of the lithosphere-asthenosphere and sediment loading) (Heidlauf et al., 1986; 

Bott, 1992; Ziegler and Cloetingh, 2004). A period of rifting in the Silurian is supported by the 

occurrence of syn-rift deposits (coarse pebble conglomerates, breccias and felsic igneous rocks 

alternating with banded limestones) within the Tarim sediments of the Kokshaal Range (Biske 

and Shilov, 1998).  

Reconciling the available data with a consistent palaeotectonic model, we propose that the 

Tarim margin underwent two stages of passive margin subsidence: (1) in the Sinian-Middle 

Ordovician during opening of the Turkestan1-Central Tianshan Ocean; (2) in the Silurian-

Carboniferous associated with opening of the Turkestan 2-South Tianshan Ocean (Fig. 10, 12A-

B). 
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5.3. The northern margins of Tarim and North China: a correlative tectonic evolution  

During the Cambrian-Ordovician, the Tarim-North China continent was likely isolated and 

fringed by a passive margin on its northern side (Stampfli et al., 2011). Relics of these passive 

margin sediments occur in the Kyrgyz Tianshan, Tarim, Beishan and Inner Mongolia (Fig. 10). 

The passive margin changed to an active margin after the probable accretion of the Tulinkai 

island arc in the Middle Ordovician (Fig. 12D). This accretionary event was not recognized 

along the Tarim margin, but is suspected in the Beishan according to the close affinities between 

the Dunhuang and North China blocks, between the Shuangyinshan-Huaniushan and Bainaimiao 

continental arcs, as well as between the Ondor Sum and Liuyuan ophiolitic mélanges (Fig. 10). 

Thus, the Ordovician-Silurian active margin of North China most probably extended during the 

coeval southward subduction of the Early Palaeozoic Central Tianshan Ocean under the Central 

Tianshan-Hanshan Microcontinent, and probably it continued as far as Uzbekistan (Fig. 11). 

After the Silurian, the Tarim-North China active margin had a distinctive and coherent tectonic 

evolution: a back-arc basin most probably opened along the Tarim segment in the Early Silurian 

(Fig. 12A-B-C) when the Inner Mongolian segment was affected by collision/accretion at the 

end of the Early Silurian (Fig. 12D), which was likely related to the motion of the Kazakhstan 

Continent (Fig. 11, see details in ss. 6.2). Following the Silurian event, magmatic activity in the 

North Chinese margin was probably only temporarily interrupted and it resumed in the Devonian 

(Fig. 12D). The onset of the active margin and subsequent Silurian back-arc opening is recorded 

within the stratigraphic sequence of the Sino-Korean and Tarim platforms (i.e.a Late Ordovician 

hiatus and a Silurian unconformity, Carroll et al., 2001; Meng and Ge, 2003). The back-arc 

opening allowed marine incursions into the Tarim basin (Early Silurian marine clastics, Carroll 

et al., 2001), while the Sino-Korean platform apparently remained emergent during most of the 

Palaeozoic (a major hiatus, Meng and Ge, 2003). 
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6. Middle and Late Palaeozoic interactions between Kazakhstania, Siberia 

and Tarim-North China and an alternative plate tectonic model  

It is well accepted that the Kazakhstan superterrane was located between Tarim and Siberia 

during the Middle and Late Palaeozoic and that it was affected by oroclinal bending (Sengör and 

Natal'in, 1996; Filippova et al., 2001; Levashova et al., 2003; Yakubchuk, 2004; Abrajevitch et 

al., 2007, 2008; Levashova et al., 2007, 2009; Windley et al., 2007; Xiao et al., 2010a). The 

oroclinal bending of Kazakhstan is demonstrated by the oroclinal shape of tectonic units 

(Windley et al., 2007) and by palaeomagnetic data, which constrain the main rotations from the 

Late Devonian through the Carboniferous (Abrajevitch et al., 2007, 2008; Levashova et al., 

2009). The pre-Silurian amalgamation of the Kazakhstan microcontinents in East Gondwana (ss. 

4.1-2) implies that the Kazakhstan continent moved westward toward its present location within 

the global context constrained by palaeomagnetic data (i.e. Kazakhstania, Abrajevitch et al., 

2008; Baltica, Cocks and Torsvik, 2005; Siberia, Cocks and Torsvik, 2007; Tarim, Van der Voo, 

1993, Fig. 14). As previously proposed (Sengör and Natal'in, 1996; Abrajevitch et al., 2008; 

Xiao et al., 2010a), the oroclinal bending of Kazakhstan was evidently related to the relative 

motions of Baltica, Siberia and Tarim. We demonstrate below that the Middle-Late Palaeozoic 

motion and bending of the Kazakhstan Superterrane (ss. 6.1) is supported and refined by 

diachronous tectonic events identified along the Tarim-North China (6.2) and Siberian (ss. 6.3) 

margins. The progressive closure of the surrounding oceans finally led to the final amalgamation 

of Kazakhstania in the Permian (6.4).  

6.1. The Kazakhstan Continent and its potential extensions 

Following its amalgamation in the Latest Ordovician-Early Silurian, the Kazakhstan 

Continent was mostly emergent during the Silurian and Early Devonian, as demonstrated by 

continental deposits and subaerial lavas (Daukeev et al., 2002). Early Silurian to Middle 
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Devonian and Carboniferous arc assemblages were recognized on its western and southwestern 

margins in Kazakhstan, Uzbekistan, Kyrgyzstan and China (Sengör and Natal'in, 1996; Filippova 

et al., 2001; Daukeev et al., 2002; Bykadorov et al., 2003; Windley et al., 2007; Gao et al., 2009; 

Biske and Seltmann, 2010; Alexeiev, 2011). After the Middle-Late Devonian, the sea invaded 

the western part of Kazakhstan and a terrigenous-carbonate shelf started to develop in the 

Tourgai, Chatkal-Karatau and Naryn zones, and epi-continental shallow marine basins developed 

in the Teniz and Chu-Sarysu (Fig. 9). The marine sediments evolved into continental deposits 

within both basins in the Middle-Late Carboniferous, but the Tourgai, Chatkal-Karatau and 

Naryn zones remained a continental shelf until the Latest Carboniferous (Daukeev et al., 2002; 

Windley et al., 2007). The Givetian to Bashkirian marine sediments were interpreted as a passive 

margin (Windley et al., 2007; Biske and Seltmann, 2010; Alexeiev, 2011). This succession of 

tectonic environments suggests that the passive margin formed by back-arc opening. As partly 

shown in some palaeotectonic models (Filippova et al., 2001; Bykadorov et al., 2003), no 

oceanic crust seems to have formed in the back-arc basin; the related continental arc (the 

Valerianov and South Tianshan arcs in the Valerianov and Chatkal-Karatau zones on Fig. 9) 

most probably remained attached to the Kazakhstan continent. The Middle-Late Palaeozoic 

oroclinal bending and the westward motion of the continent require an external as well as an 

internal subduction zone. 

The Kazakhstan Superterrane was fringed by an internal active margin from the Late Silurian 

to the Late Carboniferous (Filippova et al., 2001; Bykadorov et al., 2003; Windley et al., 2007; 

Alexeiev, 2011). Arc assemblages are present all along the Kazakhstan orocline (the Chu-Yili, 

Aktau-Junggar, East Teniz, Baidaulet-Akbastau, Zhaman-Sarysu and North-Balkash zones, Fig. 

9). The importance of accretionary processes is demonstrated by the seaward progradation onto 

the Zhaman-Sarysu accretionary wedge (Windley et al., 2007). The Ordovician-Devonian 

Zhaman-Sarysu and Devonian-Carboniferous Junggar-Balkash subduction-accretion zones most 
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likely formed by the multiple accretion of terranes, but their nature and plate tectonic evolution 

still remain enigmatic (Fig. 9).  

The southern branch of the Kazakhstan continent most likely extends into the Turpan-Bogda 

and Atasbogd zones where there are Devonian-Carboniferous arc assemblages (Lamb and 

Badarch, 2000, 2001; Badarch et al., 2002; Xiao et al., 2004b, 2010b; Naumova et al., 2006; 

Charvet et al., 2007) (Fig. 9). The existence of a Precambrian continental basement under the 

Turpan Basin is subject to controversy  (Xiao et al., 2004b; Charvet et al., 2007) and has been 

only assumed in southern Mongolia (Kröner et al., 2010). Early Palaeozoic rocks are poorly 

known, but some relics of Ordovician-Silurian volcano-sedimentary arc assemblages occur on 

the southern edge of the Turpan Basin (the Dananhu arc) and in Beishan (the Queershan arc), 

which have been interpreted as island arc systems (Xiao et al., 2004b, 2010b). However, these 

arcs assemblages have also been attributed to the southern Central Tianshan (Xingxingxia Zone) 

or Hanshan microcontinents by e.g. Zuo et al. (1991), Shu et al. (2002) and Charvet et al. (2007). 

The enigmatic nature and age of Middle-Late Palaeozoic arc basement suggest, as pointed out by 

Xiao et al. (2004b), that the Turpan-Bogda Zone may have formed mainly, or maybe only, in the 

Devonian-Carboniferous by the accretion of island arcs. The Kazakhstan active margin (mainly 

East-Aktau-Junggar, Chu-Yili and Central Tianshan zones) may have extended in the Chinese 

Harlik-Dananhu island arc system of Xiao et al. (2004a), see the Turpan-Bogda Zone on Fig. 9.  

The Devonian and Carboniferous continental arc of the Kazakhstan northern branch is 

recognized in the East Baidaulet-Akbastau, North Balkash and East Boshchekul-Chingiz zones 

(Windley et al., 2007). The Zharma-Saur Zone, interpreted as a Devonian-Carboniferous arc 

(Windley et al., 2007), may be part of this arc system or another accreted island arc. The 

subduction zone likely extended in northeastern Junggar where there are coeval arc assemblages 

(Badarch et al., 2002; Xiao et al., 2004a, 2008, 2009b). This correlation is strongly supported by 

the northern main Chara-Erqis Suture Zone located to the north (Buslov et al., 2004a; Xiao et al., 
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2009b). The northeastern Junggar arcs (Junggar-Yamaquan and Dulate-Baytag zones in Fig. 9) 

may belong to a single intra-oceanic arc system (see Xiao et al., 2009b for details). The existence 

of Precambrian basement under the Junggar Basin is still not proven, but the juvenile nature of 

the basement is suggested by geochemical signatures (see discussion in Xiao et al., 2008). 

Interesting palaeotectonic models showing the continental growth of the Junggar region by 

multiple accretion of island arcs were presented by Xiao et al. (2008, 2009b). Although the 

connections between the different islands arcs within the Junggar-Balkash Ocean remain 

unresolved, an archipelago-type palaeotectonic environment is widely favoured today (see Xiao 

et al., 2010a and references therein). 

6.2. Insights from the Tarim-North China margin  

The westward motion of the Kazakhstan continent is recorded in the tectonic evolution of the 

Tarim-North China margin. The interactions between both continents likely started in the Late 

Silurian in Inner Mongolia (ss. 6.2.1), evolved during Devonian-Carboniferous time from 

Beishan (ss. 6.2.2) through the Tianshan (6.2.4-6.2.5) and ended by their final amalgamation in 

the Late Carboniferous in Uzbekistan (the Ural-Tianshan formation, Alexeiev et al., 2009). 

There are important current issues on the final time of formation and location of the sutures in 

Beishan (6.2.3) and Tianshan (ss. 6.2.6). 

6.2.1. Inner Mongolia 

We have seen in section 5.1 that a collisional/accretionary event temporarily interrupted the 

development of the Bainaimiao-Ondor Sum active margin in the Late Silurian-Early Devonian 

(Fig. 10-12D). Spatial and kinetic constraints from a global plate tectonic perspective suggest the 

proximity of Kazakhstan and North China during the Silurian (Fig. 13). We propose that the 

cessation of activity in the Ondor Sum accretionary wedge was caused by the oblique collision of 

Kazakhstan with North China (Fig. 11-12D). 
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6.2.2. Beishan 

A Late Silurian-Early Devonian accretionary-collisional event is recognized in the Beishan 

(Hsü et al., 1991b; Yue et al., 2001, Zuo, 1991; Xiao et al., 2010b). This Orogeny has generally 

been attributed to the final closure of the Xiaohuangshan Ocean located between the Hanshan 

Microcontinent and the Tarim Block (Hsü et al., 1991b; Zuo et al., 1991; Yue et al., 2001). 

According to Zuo et al. (1991), the Dunhuang margin and the Hanshan Microcontinent were 

deformed, emerged, intruded and surrounded by foreland basins in the Early Devonian (Fig. 9). 

However, Xiao et al. (2010b) recently interpreted this event as the collision between two 

composite arcs (the Shuangyinshan-Huaniushan and Mazongshan-Hanshan arcs) following the 

closure of the Hongliuhe-Xichangjing Ocean, and they proposed that the “Hanshan” composite 

terrane was only accreted to Tarim in the Permian (the Permo-Carboniferous Liuyuan mélange, 

Mao et al., 2012a). The northern Hongshishan Suture (Fig. 9) was considered to be the relict of a 

main ocean that existed during the whole Palaeozoic, because of the occurrence of Ordovician 

turbidites to the north of the Hanshan Microcontinent (Zuo et al., 1991) and because of the 

Lower Carboniferous Hongshishan ophiolitic mélanges (Yue et al., 2001; Xiao et al., 2010b) (ss. 

5.2.2-3, Fig. 10). Xiao et al. (2010b) proposed that the Hongshishan Suture formed in the 

Permian by the collision between the Heiyingshan-Hanshan and Queershan island arcs (the 

Hanshan and Atasbogd zones on Fig. 9). Conversely, Zuo et al. (1991) and Yue et al. (2001) 

argued that the Ordovician-Silurian Hanshan continental arc (their Yuanbaoshan arc) ended by 

the early Devonian, when it was overlapped by molasse sediments.  

6.2.3. Location and timing of the final suture in Beishan 

The highly conflicting observations and interpretations of many authors summarized above 

show that much still needs to be learnt in Beishan before an agreed viable model can be 
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constructed. Nevertheless, some considerations can be addressed, which aim to reconcile the 

available data within a consistent larger plate tectonic framework.  

No Devonian-Carboniferous oceanic crust or deep marine deposits have been identified to the 

south of the Hongshishan Suture; Devonian and Carboniferous rocks mainly consist of arc 

assemblages and related shallow marine sediments (Hsü et al., 1991b; Zuo et al., 1991; Yue et 

al., 2001; Xiao et al., 2010b). This arc may correspond to the Dunhuang-Hanshan active margin 

formed by Late Silurian-Early Devonian subduction of the Hongshishan Ocean and the 

Hongshishan ophiolitic mélanges the associated accretionary wedge (Fig. 12C). Coeval arc 

assemblages occur in the Atasbogd Zone located to the north of the Hongshishan Suture (Lamb 

and Badarch, 2000; Badarch et al., 2002; Naumova et al., 2006; Xiao et al., 2010b) (Fig. 9). This 

Zone is poorly documented (Lamb and Badarch, 2000; Badarch et al., 2002; Naumova et al., 

2006), but was most probably formed by three different accretion-collision events from the 

Devonian to the Permian: (1) in the Latest Silurian Hanshan (basal conglomerate, Zuo et al., 

1991; Yue et al., 2001); (2) in the Carboniferous (Early?) Hongshishan (emplacement of 

ophiolites, Xiao et al., 2010b); and (3) the Late Carboniferous Altan Uul event (southward 

ophiolite emplacement, Rippington et al., 2008). This demonstrates the northward continental 

growth of the Tarim margin in Beishan and southern Mongolia.  

Although, Xiao et al. (2010b) consider that an oceanic domain existed between the Dunhuang 

and Hanshan blocks during the whole Palaeozoic, we follow here the interpretation of Zuo et al. 

(1991) who argued in favour of a Beishan Orogeny and the disappearance of all oceans in 

Beishan by the Early Devonian. We assume that no ocean south of the Hanshan Microcontinent 

remainded until the Permian (see ss. 5.2.3-5.3, Fig. 12C). The oblique collision between the 

Kazakhstan continent and the Tarim margin in the Late Silurian (Fig. 11) may have caused the 

activity cessation of the Hanshan arc (i.e. unconformity), the closure of the Hongliuhe Ocean 

(i.e. ridge failure, ca. 420 Ma Hongliuhe Ophiolite) and the amalgamation of the Hanshan 
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Microcontinent to Tarim (i.e. Beishan Orogeny). Following the amalgamation, the 

Xiaohuangshan and Hanshan zones then became the site of a new Devonian continental arc 

system (i.e. arc and back-arc) formed by the southward subduction of the Hongshishan Ocean 

(Fig. 12C).  

6.2.4. The Chinese Tianshan 

In the eastern Chinese Tian Shan, there was pre-Visean accretion implying that the South 

Tianshan and Central Tianshan sutures can be recognized in the so-called Eo-Tianshan Range 

(Carroll et al., 1995; Charvet et al., 2007) (Fig. 9). Major deformation, characterized by 

northward emplacement of ophiolitic mélanges, folding and thrusting, predated unconformable 

Visean deposits. Some ophiolitic mélanges in the South Tianshan Suture Zone contain radiolaria 

as young as Tournaisian and thus the suture likely formed in the Tournaisian-Visean. The 

formation age of the Central Tianshan Suture is constrained as Middle Devonian according to the 

Devonian matrix in the Gangou-Mishigou ophiolitic mélange and to Middle Devonian intrusions 

(see details in Charvet et al., 2007). In the easternmost Chinese Tianshan (at Weiya), Latest 

Silurian-Early Devonian ductile deformation is recorded in ophiolitic mélanges in the Central 

Tianshan Suture (Shu et al., 1999, 2002, 2004). This is consistent with the coeval time of 

orogeny in Beishan.  

Various geological data imply that the South and Central Tianshan sutures formed before the 

Visean in eastern Tianshan; see details in Charvet et al. (2007), who proposed that the collision 

between the Yili (Kazakhstan, ss. 6.1) and Central Tianshan terranes (formation of the Central 

Tianshan Suture) in the Devonian caused the closure of the South Tianshan Ocean. This well-

documented palaeotectonic model is mainly followed here (Fig. 12B). The location and 

formation of sutures in the western Chinese Tianshan are less certain and thus have been subject 

to various interpretations; see discussion in section 6.2.6. 
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6.2.5. The Kyrgyz Tianshan 

In the Kyrgyz Tianshan, the final closure of the Turkestan Ocean that was responsible for the 

collision between the Tarim and Kazakhstan continents was in the Middle-Late Carboniferous 

according to detailed stratigraphic and structural data (Biske, 1995; Biske and Shilov, 1998; 

Burtman, 2006, 2008; Biske and Seltmann, 2010) (Fig. 12A). These authors described lower 

nappes composed of passive margin rocks from the Tarim and upper nappes of oceanic crust and 

accretionary prism rocks that originated in the Kazakhstan margin. The continental subduction of 

the Tarim passive margin (flysch transgression on the Tarim carbonate platform) and formation 

of the South Tianshan nappes are documented from Uzbekistan to the Chinese Tianshan 

(Turkestan-Alay and South Tianshan Zones on Fig. 9, Burtman, 2008; Biske and Seltmann, 

2010). This is consistent with ca. 320-300Ma eclogites from the Atbashi Ridge (Hegner et al., 

2010) and ca. 300-320 Ma post-collisional magmatism (Konopelko et al., 2007; Biske and 

Seltmann, 2010; Seltmann et al., 2011 and references therein). The Carboniferous age of the 

Turkestan Suture in Kyrgyzstan is a well-established time in the Altaids (Fig. 12A). 

6.2.6. Location and timing of final sutures in the Tianshan 

As previously pointed out by Wang, Q. et al. (2010) and discussed in section 5.2.5, the 

westward extension of the Central and South Tianshan sutures in the Kyrgyz Tianshan is subject 

to much controversy, which has led to different palaeotectonic models that aim to explain the 

formation of the Tianshan Mountains (Gao et al., 1998; Chen et al., 1999; Carroll et al., 2001; 

Zhou et al., 2001; Xiao et al., 2004b, 2009a, 2012; Charvet et al., 2007; Wang, B. et al., 2008; 

Gao et al., 2009; Lin et al., 2009; Biske and Seltmann, 2010). The main controversies related to 

the tectonic evolution of the Tianshan concern the subduction vergence of the South Tianshan 

Ocean and the final closure time of the ocean (see discussions in Xiao et al., 2009a; Wang, Q. et 

al., 2010; Han et al., 2011).  
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In the westernmost Chinese Tianshan, peak HP metamorphism took place at ca. 350-340 Ma, 

related to major Tournaisian-Visean subduction (Gao and Klemd, 2003). However, the Tianshan 

HP-LT rocks also contain several metamorphic ages (Early Devonian, Early Carboniferous, 

Middle-Late Carboniferous and Triassic ages), which have led to different suture times (Gao et 

al., 1995, 2011; Zhang, L. et al., 2002, 2003, 2005, 2007; Gao and Klemd, 2003; Lin and Enami, 

2006; Lin et al., 2009; Wang, Q. et al., 2010, Gao et al., 2011). Most authors do not agree on the 

origin or provenance of the HP rocks, which have been attributed to the Central (Wang, B. et al., 

2008; Lin et al., 2009) or South Chinese oceans (Gao et al., 1998; Chen et al., 1999; Zhou et al., 

2001; Gao and Klemd, 2003). As proposed by Lin et al. (2009), the rocks most likely record 

different stages in exhumation. The Central Tianshan Microcontinent, which separates both 

Chinese sutures, becomes thinner and disappears westwards (Biske and Seltmann, 2010). This 

may have enabled the HP rocks to record both collisional events. Moreover, the various 

metamorphic ages recognized along the belt may also reflect the diachronous oceanic closure 

along the Tarim margin (see below). Nevertheless, other geological information allows us to 

constrain the time of formation of sutures in the western Tianshan. Han et al. (2011) in their 

important review of western Tianshan geology, confirmed the Late Carboniferous collision 

between the Tarim and Kazakhstan-Yili terranes (Fig. 12A). 

The occurrence of a carbonate platform as young as the Kungurian associated with basaltic 

flows in the northern Tarim Basin (at Kunkelaqi; Chen and Shi, 2003) has led to a controversy 

about the final closure time of the ocean between Tarim and Kazakhstan (see discussions in Xiao 

et al., 2009a; Biske and Seltmann, 2010). Xiao et al. (2009a), who interpreted the Permian 

carbonate platform as a passive margin, suggested that another ocean should have existed to the 

south of the Turkestan-South Tianshan Ocean (the North Tarim Ocean). In a different way, 

Burtman (2008) interpreted post-Moscovian shallow marine deposits in the Kyrgyz Tianshan and 

northern Tarim as a syn-collisional basin (the Turkestan Sea), which followed the closure of the 

Turkestan Ocean (a soft collisional process). Xiao et al. (2009a) also interpreted Permian calk-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 65 

alkaline rocks in the Kuluketaq massif (the northern margin of Tarim) as a continental arc (see 

references and discussion in Xiao et al., 2009a). However, Pirajno et al. (2008) suggested there 

was a mantle plume in the Tarim region during the Permian. This interpretation was recently 

supported by detailed geochemical data from basaltic flows associated with continental clastics 

in the Kalpin area (Yu et al. 2011). Early Permian extension is also suggested by rapid 

subsidence the affected the Tarim Basin at this time (Carroll et al., 2001). A major Permian 

mantle plume does not really negate the coeval existence of an ocean to the north. However, 

further field and geochemical/geochronological investigations are required in the Kuluketaq area 

to corroborate the existence of another ocean. If it existed, this ocean may have extended into 

Beishan (Liuyuan, Xiao et al., 2010b) and Solonker (Balengshan, Xiao et al., 2009a), where 

there are Permian gabbros. Although well accepted in Inner Mongolia, the occurrence of a 

Permian ocean in northern Tarim and Beishan remains poorly constrained at the present time; 

this palaeotectonic model was recently strongly contested by Han et al. (2011). We have not 

included this ocean in our plate tectonic model in Fig. 17-18), but its potential existence is one of 

the most interesting issues of the Altaids. 

Most geoscientists working in the Tianshan consider that the South Tianshan Ocean was 

subducted northwards under Kazakhstan (Windley et al., 1990; Chen et al., 1999; Carroll et al., 

2001; Zhou et al., 2001; Xiao et al., 2004b; Biske and Seltmann, 2010). This idea is mainly 

based on the Tarim stratigraphy interpreted as a passive margin (Biske and Shilov, 1998; Carroll 

et al., 2001), However, according to structural observations, other authors have concluded that 

the South Tianshan nappes were emplaced northwards onto the Central Tianshan 

Microcontinent, interpreted as a result of southward subduction of the South Tianshan Ocean 

(Shu et al., 2002; Charvet et al., 2007; Wang, B. et al., 2008; Lin et al., 2009). Although we do 

not challenge these structural observations, this interpretation is contradicted by other structural 

and stratigraphic relations in the Kyrgyz Tianshan. In the Kokshaal Range, Biske and Shilov 

(1998) documented a Tarim passive margin and its northward continental subduction (flysch 
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transgression on a Kasimovian carbonate platform). To reconcile these observations, Charvet et 

al. (2011) proposed that the Tarim margin was active in China and passive in Kyrgyzstan, and 

that the southward Chinese subduction was linked to the northward Kazakhstan subduction by a 

transform-type plate boundary. However, Burtman (2008) reported the southward emplacement 

of oceanic allochtons onto the Tarim margin as far as the Chinese Tianshan. A simpler 

palaeotectonic model that shows the Tarim blocks and associated microcontinents (Alay 

Microcontinent, Burtman, 2008; Biske and Seltmann, 2010) fringed by a passive margin all 

along their northern side (i.e. from Beishan to Uzbekistan), seems today the most likely model 

that respects the available data and plate tectonic configurations (Fig. 11-12-14-15-16). The 

northward thrusting identified in the Chinese Tianshan may reflect back-thrusting as 

demonstrated in the Kyrgyz Tianshan (Burtman, 2008; Biske and Seltmann, 2010).  

The oblique collision between the Tarim and Yili-Central Tianshan microcontinents, as 

proposed by e.g. (Carroll et al., 2001, Chen et al., 1999; Zhou et al., 2001; Han et al., 2011), fits 

well within a larger plate tectonic framework (Fig. 12-14-15-16). The pre-Visean orogenic event 

is well constrained in the eastern Chinese Tianshan, implying closure of the Central Tianshan 

Ocean in the Devonian and of the South Tianshan Ocean in the Early Carboniferous (Chen et al., 

1999; Charvet et al., 2007). A Visean-Early Carboniferous unconformity is also recorded in the 

stratigraphic record of the Tarim Basin and Kokshaal Range (Carroll et al., 1995, 2001; Biske 

and Shilov, 1998), but in the Kyrgyz Tianshan and farther west, the South Tianshan Ocean 

remained open throughout the Carboniferous (a passive margin, Burtman, 2006; Biske and 

Seltmann, 2010). This demonstrates that the Visean eastern Tianshan orogenic event induced 

flexural loading as far as Kyrgyzstan and formed a flexural fore-bulge all along the Tarim 

margin (Carroll et al., 2001) (Fig. 12A-B). The extension of the Visean orogeny in western 

Tianshan is not clear, and is still more confusing in westernmost Chinese Tianshan, where Early 

or Late Carboniferous ages have been proposed (Gao et al., 1998, 2009; Chen et al., 1999; Zhou 

et al., 2001; Wang, B. et al., 2008). Nevertheless, Han et al. (2011) recently clarified many issues 
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in their review of western Chinese Tianshan geology, which strongly argues in favour of a Late 

Carboniferous age. They also corroborated the westward diachronous closure of the South 

Tianshan Ocean. It is important to note that the South Tianshan Suture Zone was later affected 

by dextral strike-slip faulting in the Permian, which locally modified the original post-collisional 

framework (Laurent-Charvet et al., 2003). The diachronous model for the Tianshan is consistent 

with Late Silurian–Early Devonian tectonism that affected the North China margin in Inner 

Mongolia and the coeval Beishan Orogeny (Fig. 12). Moreover, it is compatiable with a larger 

plate tectonic context of the Altaids, accounting for the westward motion of the Kazakhstan 

continent (Fig. 14-15-16-17). 

6.3. Insights from the peri-Siberian margin  

The interaction between the Kazakhstan and Siberian continents most likely started in the 

Late Devonian. This is supported by accretionary-collisional events, back-arc closures and 

strike-slip deformation documented along the peri-Siberian margin and more precisely in Inner 

Mongolia, western Mongolia, the Chinese Altai and Siberian Altai (ss. 6.3.1). The final 

amalgamation between the two continents took place in the Carboniferous-Early Permian in the 

Siberian and Chinese Altai (ss. 6.3.2). Figure 13 summarizes the major tectonic events that 

affected the Siberian margin. 

6.3.1. Middle-Late Devonian interactions 

We discussed in section 3.6 the fact that an oceanic back-arc basin existed during the Middle 

Devonian in the Chinese Altai (the Kuerti back-arc basin) and that it likely extended to western 

Mongolia (Tseel Zone). Following the opening of the back-arc basin in the beginning of the 

Middle Devonian, the Altai-Mongolian Microcontinent was fringed by a passive margin (clastics 

and cherts, Windley et al., 2002) (Fig. 6). Unconformable Carboniferous volcaniclastic 

metasediments mark the return of volcanic activity in the area at this time. Wang, T. et al. (2006) 
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emphasized the syn-collisional characteristics of ca. 375 Ma granitoids and attributed them to the 

closure of the Kuerti back-arc basin. This is consistent with the occurrence of ca. 370-360 Ma 

syn-tectonic granitoids (Kröner et al., 2007) and ca. 390-380 Ma high-grade metamorphism 

(Kozakov et al., 2007a) in the Tseel complex (Fig. 13). 

The Kuerti Ocean most probably extended northwards in the Siberian continental back-arc 

basin (Fig. 9), the existence of which is documented by Middle-Late seaward displacement of 

the arc (from the Charysh-Terekta to Rudny-Altai zones) and by back-arc rocks in the Rudny-

Altai (Yolkin et al., 1994) (Fig. 13). The closure time of this ocean is not clear, probably because 

of important strike-slip deformation that affected the back-arc region in the Late Devonian-Early 

Carboniferous (Charysh-Terektas Shear Zone). Coeval strike-slip deformation took place on the 

Kuznetz-Telesk Fault, which extends along the Uimen-Lebed Zone (Buslov et al., 2004b). 

Middle-Late Devonian syn-collisional granitoids in the Gorny-Altai predate strike-slip 

deformation and mark the beginning of oblique interaction between Siberia and the Altai-

Mongolian Microcontinent (Glorie et al., 2011).  

In southwestern Mongolia, Kröner et al. (2010) recently recorded a major Late Devonian-

Early Carboniferous tectonic event with zircon ages from flysch deposits, deep crustal growth of 

gneisses and granitic domes, and intramontane basins that unconformably overlie Early 

Palaeozoic rocks in the Lake and Gobi-Altai Zones (Fig. 9). This event was corroborated by 

Lehmann et al. (2010) who demonstrated from structural observations the syn-convergent 

emplacement of an arc system during E-W shortening in the Gobi-Altai Zone, as well as E-W 

folding and Silurian ophiolite emplacement in the Trans-Altai Zone (the Mongolian part of the 

Dulate-Baytag Zone in Fig. 9). The Late Devonian age of arc assemblages in the Lake, Gobi-

Altai, Mandalovoo and Trans-Altai Zones implies the amalgamation of these different zones by 

this time (Lehmann et al., 2010). This tectonic event was considered to reflect the accretion of an 

island arc (their Trans-Altai Zone) to the Siberian margin (in the Lake, West Gobi and West 
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Mandalovoo Zones) (Kröner et al., 2010; Lehmann et al., 2010). This intra-oceanic arc was 

likely accreted in the Gurvansayhan-Zoolen accretionary wedge in which there are intra-oceanic 

relics (Lamb and Badarch, 2001; Helo et al., 2006) (Fig. 13). 

The above information, added to the ca. 380 Ma HP blueschists and unconformity in the 

Sunidzuoqi subduction-accretion complex in Inner Mongolia (Xu et al., 2001), demonstrate that 

the peri-Siberian margin was affected by a major accretionary-collisional event in the Middle-

Late Devonian (Fig. 13), which also affected more internal areas as at Uimen-Lebed (the dextral 

Kuznetz-Telesk Fault, Buslov et al., 2004b) and also the Bayanhongor Zone (Devonian thrust 

stacking, Osozawa et al., 2008). From palaeomagnetic data Abrajevitch et al. (2008) showed that 

the northern tail of the Kazakhstan Terrane was probably located close to the Siberian margin in 

the Late Devonian. Buslov et al. (2000, 2004a, 2004b) already demonstrated Late Devonian 

interaction between the Altai-Mongolian Microcontinent, the Kazakhstan continent and the 

Siberian margin (i.e. formation of the Charysh-Terekta Shear Zone). We propose in our model 

that the Mongol-Okhotsk ridge temporarily joined the Kuerti ridge (Fig. 14). The Kazakhstan 

active margin may have extended to an island arc that was accreted in the Middle-Late Devonian 

Ma in Inner, southern and southwestern Mongolia. The oblique collision between the 

Kazakhstan continent and Siberia probably caused the closure of the Kuerti back-arc basin and 

the northward motion of the Altai-Mongolian Microcontinent along the Siberian margin (Fig. 15-

16). 

6.3.2. Late Carboniferous-Early Permian interactions 

The oblique collision between Kazakhstan and Siberia prevented their amalgamation in the 

Late Devonian-Early Carboniferous; their final amalgamation took place along the Chara 

sinistral shear zone in the Late Carboniferous-Early Permian (the Chara, Irtysh, northeastern 

Bashchelkak and Kuznetz-Telesk Faults, Buslov et al., 2000, 2004a b). The offset of the sinistral 
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Erqis Shear Zone, which is the southward extension of the main Chara fault zone, was estimated 

to be 1000 km (Sengör et al., 1993; Laurent-Charvet et al., 2002, 2003). Strike-slip deformation 

in the Erqis Zone took place in the Early Permian according to isotopic data from metamorphic 

and magmatic rocks, but sinistral/dextral motion and northwestward folding continued until the 

Late Permian (Laurent-Charvet et al., 2002, 2003; Briggs et al., 2007). In the Siberian Altai, 

ophiolitic mélanges in the Chara Zone are sealed by Middle-Late Carboniferous volcaniclastics 

and Late Carboniferous molasse deposits (Buslov et al., 2004a, 2004b). In the Chinese Altai, 

accretionary processes in the Erqis Zone and arc activity in Altai-Mongolia continued at least 

until the Latest Carboniferous (Xiao et al., 2009b; Wan et al., 2011). The end of arc activity was 

likely caused by the oblique accretion of the northeastern Junggar arc system (the Dulate-Baytag, 

Junggar-Yamaquan zones in Fig. 9) that is partly considered here as a possible extension of the 

Kazakhstan Continent (ss. 6.1 and Fig. 16-17). The sinistral motion of the Chara-Erqis Shear 

Zone is consistent with the probable southeastward diachronous oceanic closures along the 

Siberian margin (Fig. 13) and with the larger plate tectonic context (ss. 6.5). 

6.4. The oroclinal bending of Kazakhstan  

During the Middle-Late Palaeozoic the Altaid plate tectonic framework was dominated by 

oroclinal bending and large-scale rotations (see Xiao et al., 2010a). The timing of oroclinal 

bending in Kazakhstan is constrained by palaeomagnetic data (Levashova et al., 2003, 2007; 

Abrajevitch et al., 2007, 2008), and is strongly supported by the geological record along the 

Siberian (6.3) and Tarim-North China margins (6.2). The latter observations added to the present 

juxtaposition of the Kazakhstan terranes and their potential extensions in China (6.1) lead us to 

propose an alternative plate tectonic model for this time-period.  

Following its amalgamation in eastern Gondwana, the Kazakhstan Continent was detached 

from the Gondwanan margin (Fig. 8-14) and moved along the North China margin (Fig. 11). 
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Since the Early Devonian, the southern branch of Kazakhstan was probably attached to the 

Tarim-North China continent in the Beishan area (Beishan Orogeny, Fig. 12C); thus a single 

subduction zone likely extended along the northern side of North China and the eastern side of 

Kazakhstan (Fig. 15). In the Middle-Late Devonian, the northern Kazakhstan branch started to 

collide with the Siberian margin (Fig. 16): the island arc tail of the Kazakhstan Continent 

accreted in Inner and southwestern Mongolia, and consequently oblique collision started 

between Kazakhstan and the Siberian continents in the Chinese and Siberian Altai. This Middle-

Late Devonian plate tectonic framework favoured and initiated or enabled the oroclinal bending 

and major rotation processes.  

The Early Palaeozoic Chingiz and Akbastau arcs, accreted to Kazakhstan microcontinents by 

the end of the Ordovician (see 4.1 and Fig. 2), are today partly juxtaposed against the Late 

Palaeozoic Chara Suture Zone (Buslov et al., 2004a; Windley et al., 2007) (Fig. 9). This implies 

that the northern branch of the Kazakhstan continent (North Balkash, East Baidaulet-Abkastau, 

Boshchekul-Chingiz and maybe the Zharma-Saur Zone on Fig. 9, ss. 6.1) were separated from 

the main Kazakhstan continent between the Silurian and Carboniferous. A possible and viable 

palaeotectonic model that respects the available data would consider the northern branch of 

Kazakhstan as detached by oblique back-arc opening in the Middle-Late Devonian (i.e. the 

beginning of major clockwise rotation, Abrajevitch et al., 2008); this would be similar to the 

present-day plate tectonic situation of the North Fiji Basin (Johnston, 2004). In the Altaids, the 

opening of the back-arc basin may have been triggered by the Kazakhstan-Siberia oblique 

interaction (Fig. 16). Assuming this palaeotectonic model to be correct, only the continental 

southwestern branch of Kazakhstan would have bent in the orocline; accordingly, the tectonic 

evolution of the northern branch can be explained by large-scale rotation (Fig. 17).  
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6.5. The final formation of the Altaids in the Permian: the Junggar-Balkash and Solonker 

sutures 

The timing of interactions between Siberia, Kazakhstania and Tarim-North China and their 

evolution within a global plate tectonic framework is constrained by the final formation of the 

main Altaid suture zones (Fig. 9): Uralian (not discussed here, Puchkov, 1997), Turkestan (ss. 

6.2.5), South Tianshan (ss. 6.2.4-6), Chara (ss. 6.3.2), Junggar-Balkash, and Solonker (see 

below).   

Such a huge volume of crust was formed by multiple subduction-accretion processes in the 

Junggar-Balkash region (ss. 6.1) that a suture trace becomes difficult to define, so the whole 

region (i.e. Zhaman-Sarysu, Junggar-Balkash, Junggar, Junggar-Yamaquan, Dulate-Baytag, 

Turpan-Bogda and Atasbogd zones) might eventually be considered as a “suture zone” (Fig. 9). 

Nevertheless, we assume that the “main” internal subduction of the Kazakhstan orocline during 

the Carboniferous is represented by the Junggar-Balkash Suture Zone in Kazakhstan. The 

southern branch extended to the North Tianshan Suture in China (Charvet et al., 2007) and the 

Altan-Uul Suture in Mongolia (Rippington et al., 2008), and the northern branch to the Karamai 

(Buckman and Aitchison, 2004) and Kelameili (Xiao et al., 2009b) sutures in China (Fig. 9). 

These correlations are proposed according to the similar vergence and age of their accretionary 

belts (see details in the latter works). The final closure of the internal Junggar-Balkash Ocean 

was determined by field geology in Chinese Tianshan, western and northeastern Junggar.  

In the northern Chinese Tianshan, Middle Permian molasse deposits and ca. 280-265 Ma 

granitic intrusions post-date north-vergent thrusting and folding of Carboniferous arc-related 

rocks (Charvet et al., 2007). In western Junggar, Late Carboniferous accretionary rocks are 

sealed by Lower-Middle Permian volcanic, volcaniclastic and clastic rocks interpreted as the 

initial in-fill of the Junggar Basin (Buckman and Aitchison, 2004). This idea was recently 
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supported by Chen et al. (2010) who underlined that the western Junggar accretionary complexes 

were intruded by ca. 304-263Ma post-collisional plutons coeval with those emplaced in the 

Chara Suture Zone and Zharma-Saur arc. These field observations are consistent with the 

lithologic-palaeogeographic maps of Daukeev et al. (2002), which illustrate the passage from 

Late Carboniferous slope deposits to Early Permian coastal plain sediments in the Balkash and 

Junggar regions. After the latest Early Permian, the sediments were exclusively non-marine in 

the Junggar and Turpan Basins; a large lacustral plain developed in the Late Permian (Carroll et 

al., 1990; Wartes et al., 2002). Subsidence analysis shows that the Turpan Basin underwent 

extension in the Early Permian, while the Junggar Basin remained more or less stable (Carroll et 

al., 1990; Wartes et al., 2002). This extension was associated with transcurrent deformation and 

major strike-slip displacement along the North Tianshan Fault (Laurent-Charvet et al., 2002, 

2003; Wang, B. et al., 2009). The Chinese Tianshan was extensively intruded by a wide variety 

of magmatic rocks (e.g. granitoids, mafics, ultramafics, adakites, shoshonites) during the 

Permian. Although several tectonic environments have been proposed to account for the 

magmatism (e.g. rifting, syn-post-collisional extension, transcurrent faulting), most geochemical 

signatures suggest a continental environment (Liu and Fei, 2006; Pirajno et al., 2008; Zhao et al., 

2008; Wang, B. et al., 2009; Han et al., 2010; Shu et al., 2010; Chen et al., 2011). As pointed out 

by several authors (e.g. Carroll et al., 1995; Charvet et al., 2007; Han et al., 2011), the above 

relations strongly support the complete amalgamation of the Chinese Tianshan and Junggar 

region by the Latest Carboniferous-Early Permian.  

From multidisciplinary data Xiao et al. (2009b) argued that the Jiangjun subduction-accretion 

complex in northeastern Junggar (Kelameili in Fig. 9), interpreted as the northern accretionary 

wedge of to the Dulate-Yamaquan island arc system, persisted during the Permian. This 

northeastern Junggar island arc system seems to have accreted to the Siberian active margin by 

the latest Carboniferous (the Erqis Suture, Wan et al., 2011) (ss. 6.3.2). The northeastern Junggar 

and Chinese Altai regions were finally juxtaposed in the Permian by sinistral motion in the 
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Chara-Erqis Zone (Wan et al., 2011). Following that accretion, northward subduction continued 

under the Siberian margin until at least the Early Permian (Xiao et al., 2009b; Wan et al., 2011). 

However, other authors considered that the Junggar region was already amalgamated in the 

Permian, because it was stitched by post-collisional plutons (see references and discussion in 

Han et al., 2011). According to Wan et al. (2011), the youngest Alaskan-type hydrous mafic-

ultramafic complexes in northeastern Junggar are Early Permian in age. Some of these Alaskan-

type complexes have been incorrectly, in our opinion, interpreted as a result of the Permian 

Tarim plume (Piajno et al., 2008); hydrous amphibole-bearing magmas are not an expected 

consequence of plume activity. The final suture of the Junggar-Balkash region is located under 

the Junggar Basin and thus makes the interpretation of timing difficult. Moreover, the region was 

traversed by and enveloped within prominent strike-slip faults (North Tianshan and Erqis faults, 

Laurent-Charvet et al., 2002). However, the above available data lead to different considerations 

that are mutually consistent in a larger plate tectonic context. Much of the Junggar region was 

probably amalgamated by the latest Carboniferous (i.e. northern Tianshan, western Junggar and 

Junggar Basin), but the Alaskan-type magmatism indicates that subduction persisted in the Early 

Permian under the new Siberian margin (northeastern Junggar). This suggests that the Junggar 

Ocean was progressively closed by oblique motion in latest Carboniferous to Early Permian (Fig. 

18), and that the Junggar and Chinese Altai region was completely amalgamated by the end of 

the Permian when major strike-slip faulting ended. 

During the Late Palaeozoic, the Junggar-Balkash Ocean extended to Inner Mongolia where 

there are numerous remnants of the Permian ocean (e.g. Hegenshan, Solon-Obo, Balengshan, 

Kedanshan, Banlashan ophiolites, Miao et al., 2007a, 2007b; Jian et al., 2008, 2010b; and 

references in Xiao et al., 2009a). Although authors have not always agreed on the exact time of 

suturing, it is now widely accepted that the main Solonker Ocean that separated Siberia and 

North China disappeared in the Permian (Wang, Q. and Liu, 1986; Hsü et al., 1991a; Sengör and 

Natal'in, 1996; Yue et al., 2001; Xiao et al., 2003; Li, 2006; Shen et al., 2006; Miao et al., 2007a, 
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2007b; Jian et al., 2010b). Nevertheless, Xiao et al. (2009a) proposed that accretionary processes 

lasted to the Early-Middle Triassic mainly because of the occurrence of Late Permian basic rocks 

(Banlashan and Balengshan). Jian et al. (2010b) recently presented new Carboniferous-Permian 

geochronological data and detailed geochemistry of magmatic rocks, which help to clarify the 

tectonic interpretation of the Solonker Zone. In their palaeotectonic model for the evolution of 

North China Jian et al. (2010b) accounted for the varied magmatic activity by different tectonic 

events and mechanisms: (1) ca. 294-280 Ma subduction initiation, (2) ca. 281-273 Ma ridge 

subduction, (3) ca. 271-260 Ma forearc-continent collision, and (4) ca. 255-248 Ma post-

collisional slab break-off. Miao et al. (2007a) presented detailed geochronological and 

geochemical data for the Mongolian Altaids and suggested that a back-arc basin (Hegenshan) 

probably opened in the latest Carboniferous (Fig. 18) and closed coevally with the Solonker 

Ocean in the latest Permian. However, this ignores or negates the data in Hsü et al. (1991a) that 

the Hegenshan Ophiolite is now sitting on a thrust above Jurasic red beds, and thus the ophiolite 

cannot define a suture. Miao et al. (2007a) and Jian et al. (2010b) supported and refined the 

palaeotectonic model of Xiao et al. (2003) by interpreting the formation of the Solonker 

zone/suture by facing arc-arc collisions between Mongolia and North China (Fig. 18). In 

northeastern China, the Solonker Suture probably continues as the Jilin and Cheongjin sutures 

that formed in Late Permian-Early Triassic time (Jia et al., 2004; Lin et al., 2008) 

The probable southeastward diachronous closure of the Junggar-Balkash-Solonker Ocean 

during the Late Carboniferous through Permian-Early Triassic is consistent with the Early 

Permian sinistral strike-slip movements on the Chara-Erqis and North Tianshan Faults (Laurent-

Charvet et al., 2002), the Middle-Late Carboniferous Tien-Shan-Urals Orogeny (Alexeiev et al., 

2009), and the northward diachronous closure of the Uralian-Khanty-Mansi Ocean through the 

Permian (Puchkov, 1997; Cocks and Torsvik, 2007) (Fig. 18). Important issues currently exist on 

the potential existence of a Permian-Triassic Ocean in Beishan (ss. 6.2.3) and in Tianshan 

(6.2.6), and so they were not considered in our models. With the present available knowledge we 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 76 

assume that only the Khanty-Mansi, Junggar-Solonker and Mongol-Okhotsk Oceans remained 

opened during the Permian. Following the amalgamation of Baltica-Siberia and North China-

Mongolia, only the Mongol-Okhotsk Ocean remained open for most of the Mesozoic (Zorin, 

1991). In the Far East of the Altaids, the Heilongjiang Ocean probably opened in the Permian 

and the Khanka-Jiamusi-Bureya Terrane formed; the latter was already re-accreted in the 

Triassic (Zhou et al., 2009).  

The Middle-Late Palaeozoic reconstructions presented on Figures 14-18 are from a global 

600-0 Ma plate tectonic model constructed at ca. 20-10 intervals (Neftex Petroleum Consultant 

Ltd.), which was refined by spatial and kinematic constraints by Wilhem (2010). These 

reconstructions only aim to explain the interactions between the three major continents (i.e. 

Siberia, Tarim-North China and Kazakhstan) that led to the formation of the Altaids of Central 

Asia. In reality, the tectonic framework of the involved oceans, and particularly the Junggar-

Balkash Ocean, was probably more complex than presented here, and more like the present plate 

tectonic framework of the Circum-Pacific (see Xiao et al., 2008, 2009b, 2010a for the Altaids, 

and Hall, 2002 for the Circum-Pacific).  

7. Final Discusssion and Conclusions 

The Altaids was formed by multiple accretion/collision processes through the whole 

Palaeozoic within distinct Early Palaeozoic palaeogeographic domains, which mutually 

interacted during the Middle-Late Palaeozoic. The major terranes involved in the continental 

growth of the Altaids were island arcs, and microcontinents commonly with continental margin 

arcs. Present knowledge suggests that they mostly originated in three Vendian-Cambrian 

palaeogeographic domains: (1) peri-Siberia, (2) Eastern Gondwana (Kazakhstan continent) and 

(3) Tarim-North China. 
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The peri-Siberian Domain mainly grew during Vendian to Ordovician time by the formation 

of Siberian back-arc basins such as the Altai-Sayan and Barguzin back-arc terranes, by the 

accretion of microcontinents of Siberian (Tuva-Mongolian) and exotic (Altai-Mongolian) origin 

as well as by the accretion of island arcs formed within the palaeo-Asian Ocean (e.g. Lake-

Khamsara and Uimen-Lebed island arcs). In addition to these major terranes, wide subduction-

accretion complexes (i.e. Dzhida-Bayangol, Borus-Kurtushiba), in places with ocean plate 

stratigraphy, but often still poorly known, were created by accretion in trenches and contributed 

to significant crustal growth. Seamounts, oceanic islands and plateaus also widely participated in 

the growth of accretionary wedges in the Vendian–Early Palaeozoic (e.g. Gorny-Altai, 

Bayanhongor, Lake, Dzhida). Following the major Ordovician phase of continental growth, 

continental and oceanic back-arc basins developed all along the new Siberian margin. In the 

latest Ordovician-Early Silurian the triangular Mongol-Okhotsk Ocean opened. 

South China and part of Kazakhstan (western microcontinents) were derived from Eastern 

Gondwana during the Vendian-Early Palaeozoic. Most of the other Kazakhstan microcontinents 

probably originated in Far Eastern Gondwana, were detached and finally re-accreted to it at the 

end of the Early Palaeozoic. Ribbon-shape terranes likely formed in two major periods of 

extension in the Vendian and Amgan. The Kazakhstan Continent mainly grew as a result of two 

major periods of collision: (1) the Arenigian and (2) the Hirnantian-Rhuddanian. Island arc 

accretion played a major contribution in the continental growth of Kazakhstan (i.e. Kokchetav, 

Baidaulet-Akbastau, and Boshchekul-Chingiz island arcs).  

The Tarim-North Chinese Domain was likely isolated and close to Eastern Gondwana during 

the Vendian-Early Palaeozoic. An island arc was accreted to its northern margin in the 

Ordovician (i.e. Tulinkai) and most probably caused the onset of active margin growth (i.e. 

Bainaimiao arc and Ondor Sum accretionary wedge). In the Silurian, the Central Tianshan-
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Hanshan Terrane probably formed by the back-arc opening of the South Tianshan-Turkestan 2 

Ocean.  

Since the Middle Palaeozoic the peri-Siberian, Tarim-North Chinese and Kazakhstan 

continents mutually interacted. This new plate tectonic arrangement led to the oroclinal bending 

and large-scale rotation of Kazakhstan during the Carboniferous and to the final amalgamation of 

the Altaids in the Permian.  

Although available knowledge has provided interesting compilations and configurations for 

the general tectonic evolution of the Altaids, many multidisciplinary studies are still required to 

refine the scenario and to resolve the many controversies, which still persist in the scientific 

community. Some relevant polemic issues are presented below:  

• The extension of the Tuva-Mongolian Ribbon-Microcontinent: Was the Khangai-

Argunsky Microcontinent part of it or another exotic independent terrane? Does the 

Bayanhongor Zone represent the suture trace between the Tuva-Mongolian and Khangai-

Argunsky terranes or just relics derived from the northern Dzhida-Bayangol Ocean? 

• The extension of the Altai-Mongolian Microcontinent-type terrane: Did it form an exotic 

terrane with the Nuhetdavaa-Enshoo Microcontinent? Does the Vendian-Cambrian Lake-

Khamsara island arc extend under the eastern Mongolian Middle-Late Palaeozoic cover, 

implying the exotic origin of the Nuhetdavaa-Enshoo Microcontinent? 

• The possible accretion of the Altai-Mongolian Terrane to Siberia in the Ordovician needs 

to be tested by detailed field studies in southern Mongolia.  

• The western extension of the Mongol-Okhotsk Ocean and suture: Did the Bayanhongor 

and Onon oceanic relics originate from a single or two oceans? At present we know that the 
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Bayanhongor Zone contains a 660-640 Ma ophiolite and a 298-210 Ma ophiolite), but their 

extent and occurrence are not known. It is probable that the Permo-Triassic ophiolite is far the 

biggest. The whole, beautifully exposed, Bayanhongor Zone needs to be remapped in order to 

work out the distribution, extent, and boundaries of the two ophiolites, new trace element and 

isotopic studies are required to better understand their ages, characteristics and differences, and 

the two generations of thrusts should be dated.  

• What does the discovery, particularly by Alfred Kröner, mean that ostensibly juvenile 

Palaeozoic island arc rocks commonly contain Precambrian zircon xenocrysts? Does this mean 

these are all continental margin arcs? But geological relations often indicate an absence of 

associated Precambrian rocks. So how much of the Altaids is juvenile? 

• The correlation of oceanic domains along the Tarim margin. Detailed stratigraphic and 

structural fieldwork should be undertaken in the Beishan in order to test and constrain the 

palaeogeographic origins of the different tectonic units, and thus establish their correlations with 

those in the Chinese Tianshan and Inner Mongolia. Although the potential Ordovician-Silurian 

continental arc, well identified in the Chinese Tianshan, it has not found in the Kyrgyz Tianshan; 

so, does the Turkestan Suture contain relics of this potential disappeared plate boundary, and 

thus the relics of both Chinese oceans? This would test the back-arc model all along the Tarim 

margin and constrain the Tarim-origin of the Central Tianshan-Hanshan Microcontinent.  

• The location and timing of main sutures leading to the final amalgamation of the Altaids. 

The Junggar-Balkash-Solonker oceanic relics probably come from the last Palaeozoic ocean of 

the Altaids, but the precise time of its closure still needs to be clarified and refined (i.e. 

Carboniferous, Permian or Trias). The available data and interpretations from Xingjian and Inner 

Mongolia are in conflict, and so a detailed re-investigation is required, which should obtain a 

better understanding of the field relations and structural geology, which should form a basis for 
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understanding the geochronology and metamorphism. A better palaeotectonic model showing a 

possible eastward diachronous closure of the ocean from Junggar-Balkash to Solonker and even 

the Pacific margin is required; and anyway was there a single simple ocean or small pockets of 

oceanc relicts?  

• The potential existence of a Permian Ocean along the Tarim margin. This innovative idea 

was recently contested by some authors based on a detailed regional review of the Tianshan. 

However, recent data from Beishan (Permian gabbros and turbidites) and the presence of 

Alaskan-type hydrous mafic-ultramafic complexes rather than plutons derived from a mantle 

plume in Kuluketaq and Beishan suggest the existence of an ocean in the Permian. Is the 

Permian plume magmatism confined to the Tarim plateau basalts, and does not include intrusive 

plutons and complexes? 

So far, all studies of the Altaids have been devoted to understanding what is there. But, in 

view of the recent realisation that in accretionary orogens as much crust has been lost by 

subduction as has been accreted (Stern and Scholl, 2010), and in the light of the recent 

realisation that in the arc-dominated orogen of the Japanese Islands at least one major island arc 

has gone, presumably subducted (Isozaki et al., 2010), should we also be considering how much 

or what parts of our island arcs are missing? Many so-called arcs in the Altaids are only a few 

hundred or a few kilometres thick, and yet modern extant island arcs in the Caribbean are of the 

order of 30 km thick. This knowledge would help understand how much the chemistry of the 

mantle has been modified by all the crustal additions. 

We personally feel that far more fieldwork and far better understanding of structural relations 

are required throughout the Altaids, followed by geochemical and isotopic studies, in order to 

produce the next major advances in this incredible accretionary orogen.  
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Figure captions 

Figure 1: General map of the Altaids with regions and localities discussed in the text. The 

localities are relevant geological localities and may correspond to ranges, town or villages. The 

regions are for the Northern Altaids: (1) Northern Kazakhstan: ss. 4.1, 6.1, 6.4, (2) Altai-Sayan: 

ss. 3.1, 3.2.2, 3.4.2, 3.5.3, (3) Baikal: ss. 3.1, 3.2.1, (4) Siberian Altai: ss. 3.5.4, 3.6, 6.3, (5) 

Chinese Altai: ss. 3.3.2, 3.6, 6.3 and (6) Northern Mongolia: ss. 3.3.1, 3.5.2, 3.5.5; Southern 

Altaids: (7) Southern Kazakhstan: ss. 3.4.1, 3.5.1, 4.1, 6.1, (8) Junggar: ss. 6.5 , (9) Southern 

Mongolia: ss. 3.3.2, 3.6, 6.3, (10) Kyrgyz Tianshan: ss. 5.2.4-5, 6.2.5-6, (11) Chinese Tianshan: 

ss. 5.2.1-3, 6.2.4-6, (12) Beishan: ss. 5.2.2-3, 6.2.2-3 and (13) Inner Mongolia: ss. 3.3.2, 3.6, 5.1, 

6.5. 

Figure 2: Map showing the major terranes involved in the Early Palaeozoic formation of the 

Altaids; most zones (regular and bold text) were adapted from Sengör and Natal'in (1996), 

Badarch et al. (2002), Naumova et al. (2006) and Windley et al. (2007); boundaries of zones are 

precisely defined after Wilhem (2010). See names of white zones on Fig. 9. Capital letters: 

Major basins: A: West Siberian, B: Kuznetsk, C: Altai-Sayan, D: Khemchik-Sistigkhem, E: 

Huvsgol-Bokson, F: Upper Angaran; G: Songliao, H: Ordos, I: Tarim, J: Turfan, K: Junggar, L: 

Chu-Sarysu, M: Teniz. Black lines: Stratigraphic transects presented on Fig. 3 and 4. This figure 

is in part derivative from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants 

Ltd. 

Figure 3: Siberia-Chinese Altai stratigraphic transect (see section on Fig. 2). See legend on 

Fig. 4; data compiled from the works cited in the text. Time scale from Gradstein et al. (2004). 

Figure 4: Siberia-Siberian Altai stratigraphic transect (see section on Fig. 2). Data compiled 

from the works cited in the text. Time scale from Gradstein et al. (2004). 
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Figure 5: A tentative tectonic sketch ofthe Vendian-Cambrian continental growth of Siberia 

(see Fig. 2 for zones and localities): a) Early Cambrian: two potential scenarios (1 and 2) for the 

formation of the Tuva-Mongolian Ribbon-microcontinent and the origin of the Bayanhongor 

Ocean; seamounts: KU: Kurai, BA: Bayanhongor, DZ: Dzhida, LA: Lake; b) Late Cambrian: 

Assuming scenario 1 (i.e. Khangai-Argunsky microcontinent as a part of the Tuva-Mongolian 

terrane, obduction of the Bayanhongor/Dzhida ophiolites on the microcontinent passive margin).  

Figure 6: Correlations of the peri-Siberian active margin from the Late Ordovician through 

the Carboniferous. After the Ordovician accretion of the Altai-Mongolian microcontinent to 

Siberia (Fig. 5b), the peri-Siberian subduction zone prograded southward.  

Figure 7: Potential correlations of major Early Palaeozoic Kazakhstan Terranes mainly based 

on the identification of the following tectonic events: (1) Terreneuvian island arc accretion; (2) 

Amgan back-arc opening; (3) Arenigian collision (i.e. back-arc closure); (4) Hirnantian-

Rhuddanian collision (i.e. final formation of the Kazakhstan Continent). See legend on Figure 4; 

data compiled from works cited in text. Time scale from Gradstein et al. (2004). 

Figure 8: A preliminary and tentative sketch of the Early Palaeozoic formation of the 

Kazakhstan Continent in Eastern Gondwana (see map on Fig. 2 for zones and localities); Major 

potential tectonic stages (Fig. 7): (1) Terreneuvian accretion of a Vendian-Early Cambrian island 

arc; (2) Amgan back-arc opening: formation of a new terrane; (3) Arenigian back-arc closure 

following ridge failure; (4) Hirnantian-Rhuddanian major collision: Accretion of the Aktau-

Junggar Ribbon-microcontinent, and its possible Baidaulet-Akbastau continuation (i.e. it could 

also be independent in the Yili-Maikain-Kyzyltas Ocean) to the Kazakhstan continent, which in 

turn caused the inversion of the South China-Naryn intra-continental basin; (5) Future Early 

Silurian detachment of Kazakhstan from Gondwana. Some relevant localities: KU: Kumdykol, 
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ST: Stepnyak, U: Urumbai, AR: Arkalyk, AN: Anrakhai, DN: Dzhalair-Naiman, AK: Aktyuz, 

KT: Kyrgyz-Terskey.  

Figure 9: Map showing the major terranes involved in the Middle-Late Palaeozoic formation 

of the Altaids; the zones (regular and bold text) are mainly after the maps of Sengör and Natal'in 

(1996), Badarch et al. (2002), Naumova et al. (2006) and Windley et al. (2007); precise zone 

boundaries are after Wilhem (2010). See name of zones forming the Kazakhstan, Peri-Siberian 

and Mongolian continents on Fig. 2. Capital letters: Some major basins (see legend of Fig. 2). 

This figure is in part derivative from the Neftex Geodynamic Earth Model. © Neftex Petroleum 

Consultants Ltd.  

Figure 10: Diagram showing affinities between the Early-Middle Palaeozoic tectonic 

environments and events along the Tarim-North China margin: Environments and events related 

to: A) the Ondor Sum-Central Tianshan-Turkestan 1 Ocean, (B) the South Tianshan-Turkestan 2 

Ocean. See Figure 12 for a potential palaeotectonic scenario. 

Figure 11: Tectonic sketch of the Tarim-North China margin in the Late Silurian (Fig. 9) 

Figure 12: Potential correlations along the Tarim-North China margin with some relevant 

geological data from papers cited in the text. Diachronous oceanic closure related to the 

westward motion of Kazakhstan. 

Figure 13: Correlation of major tectonic environments and events affecting the Siberian 

margin (see also Fig. 6 for main compiled data and map on Fig. 9). 

Figure 14: Early Silurian (442 Ma) global plate tectonic reconstruction (orthographic 

projection, fixed Africa). Some major tectonic events for the Altaids: 1) Rifting that gave rise to 

the Mongol-Okhotsk Ocean after the Ordovician “Tuva-Mongolian Orogeny” (Fig. 3 and 4); 2) 
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Rudny Altai back-arc basin (Fig. 4 and 12); 3) Strike-slip detachment of the Kazakhstan 

Continent from Gondwana following the final major Kazakhstan Orogeny (Fig. 8) and 4). Initial 

breakup of the South Tianshan Ocean (Fig. 12). Localities (zones on Fig. 9): Gondwana: Ca: 

Cathay, Ir: Iran and Ya: Yangtze; Hunia: Ku: Kunlun, Qa: Qaidam and Qi: Qinling; Kazakhstan: 

BA: Baidaulet-Abkastau, BC, Boshchekul-Chingiz, ChK: Chatkal-Karatau, CY: Chu-Yili and 

Tu: Tourgai; peri-Siberia: AM: Altai-Mongolia, Ba: Baolidao, GA: Gorny Altai, GuZo: 

Gurvansayhan-Zoolen, Ts: Tseel; North China-Tarim: Al: Alay, CT: Central Tianshan, Ha: 

Hanshan, On: Ondor Sum. See Stampfli et al. (2011) for information about the global tectonic 

framework (i.e. Hunia and Rheic Ocean). This figure is in part derivative from the Neftex 

Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd. 

Figure 15: Frasnian (382 Ma) plate tectonic reconstruction (Longitude/Latitude WGS 1984, 

fixed Europe, legend on Fig. 14). Tectonic events: 1) Mongolian-Inner Mongolian continental 

back-arc basin (Fig. 13); 2) accretion of an island arc (i.e. Sunidzuoqi 380 Ma blueschist facies, 

Gurvansayhan island arc relics, Fig. 13); 3) Kuerti back-arc basin (Fig. 13), 4) Siberian Altai 

continental back-arc basin (Fig. 13); 5) Kazakhstan continental back-arc basin (Chu-Sarysu and 

Teniz carbonate platform), 6) Island arc accretion inferred from the model (i.e. partial formation 

of the Zhaman-Sarysu subduction-accretion complexes), 7) inferred microcontinent formed by 

the opening of the South Tianshan-Turkestan 2 Ocean (Fig. 12A-B); 8) collision between the 

Central Tianshan microcontinent and Kazakhstan Continent and formation of the Central 

Tianshan Suture Zone (Fig. 12B) and 9): Beishan back-arc basin following the Late Silurian-

Early Devonian Beishan Orogeny (i.e. the Late Silurian oblique collision between the 

Kazakhstan and Hanshan microcontinents caused the closure of the Hongliuhe Ocean and the 

accretion of the Hanshan microcontinent to Tarim, Fig. 12C). Localities (zones on Fig. 9): 

Kazakhstan: BC: Boshchekul-Chingiz, ChSa: Chu-Sarysu, CT: Central Tianshan, CY: Chu-Yili, 

Na: Naryn, Te: Teniz and ZS: Zhaman-Sarysu; peri-Siberia: AM: Altai-Mongolia, Ar: Argunsky, 

Ba: Bayanhongor, Ch: Chara, ChT: Charysh-Terekta, GA: Gorny Altai, GuZo: Gurvansayhan-
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Zoolen, Ku: Kuerti, RA: Rudny Altai, Su: Sunidzuoqi, Ts: Tseel, St: Stanovoy; Tarim-North 

China: Al: Alai, Ha: Hanshan, Ho: Hongliuhe, On: Ondor Sum. This figure is in part derivative 

from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd. 

Figure 16: Famennian (370 Ma) plate tectonic reconstruction (Longitude/Latitude WGS 1984, 

fixed Europe, legend on Fig. 14). Tectonic events: 1) Oblique collision between Kazakhstania 

and Siberia (Fig. 12), a: accretion of the island arc “tail” of the Kazakhstan Continent (i.e. 

southwestern Mongolian deformation), b: Bayanhongor stacking, c: closure of the Kuerti back-

arc basin and d: beginning of strike-slip deformation within the Charysh-Terekta (ChT) and 

Kuznetz-Telesk (KuT) zones (i.e. movement of the Altai-Mongolian microcontinent along the 

Siberian margin); 2) Detachment of the northern “branch” of the Kazakhstan Continent (TM: 

Tar-Muromtsev) by oblique back-arc opening and 3) Accretion of the inferred Kyrgyz 

microcontinent (closure of the Turkestan 1 Ocean). Localities: Internal Kazakhstan arc and 

related accretionary wedge (Fig. 9): Ha: Hanshan, CY: Chu-Yili, NBa: DuBa: Dulate-Baytag, 

North Balkash, TB: Turpan-Bogda, ZS: Zhaman-Sarysu, ZSa: Zharma-Saur. See Stampfli et al. 

(2011) for information about the global tectonic framework (i.e. Galatian Superterrane and Rheic 

Ocean). This figure is in part derivative from the Neftex Geodynamic Earth Model. © Neftex 

Petroleum Consultants Ltd. 

Figure 17: Visean (330 Ma) plate tectonic reconstruction (Longitude/Latitude WGS 1984, 

fixed Europe, legend on Fig. 14). Tectonic events: 1) Accretion of the Khangai-Khentey Terrane 

(KK) detached from the Southern Mongolian margin (not discussed in this paper, see Wilhem 

2010); 2) Rotation of the northern branch of Kazakhstan (ZhS: Zharma-Saur, DuBa: Dulate-

Baytag, Fig. 9) and 3) Formation of the South Tianshan (ST) Suture (Fig. 12B). Localities: 

Siberian active margin (Fig. 13): ChA: Chinese Altai, IM: Inner Mongolia, SA: Siberian Altai 

and SM: southern Mongolia. Tarim passive margin (Fig. 12A): Ko: Kokshaal, Al: Alay. 

Kazakhstan internal active margin (Fig. 9: AJ: Aktau-Junggar, At: Atasbogd, CY: Chu-Yili, NT: 
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North Tianshan and JuBa: Junggar-Balkash, Kazakhstan external margin (Fig. 9): ChK: Chatkal-

Karatau, Va: Valerianov. See Stampfli et al. (2011) for information about the global tectonic 

framework (i.e. Galatian Superterrane and Rheic Ocean). This figure is in part derivative from 

the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd.  

Figure 18: Gzhelian-Asselian (300 Ma) plate tectonic reconstruction (Longitude/Latitude 

WGS 1984, fixed Europe, legend on Fig. 14). Tectonic events: 1) Chara Zone: Middle-Late 

Carboniferous formation of the suture in Siberian Altai (SA) and latest Carboniferous-Early 

Permian strike-slip motion (Fig. 13), 2) Middle-Late Carboniferous formation of the Uralian 

suture, 3) Late Carboniferous formation of the Turkestan suture (Fig. 12A), 4) Latest 

Carboniferous partial formation of the Junggar-Balkash suture zone (Bal: Balkash, JuB: Junggar 

Basin NT: North Tianshan, WJu: Western Junggar), 5) Accretion of the northeastern Junggar arc 

(NEJu) to the Siberian margin (i.e. Erqis Suture): end of arc activity in the Chinese Altai (ChA) 

(Fig. 13) and progradation of the northward accretionary wedge (i.e. Kelameili-Karamai 

Ophiolitic Belt, see Fig. 9), (6) Opening of the Hegenshan back-arc ocean (Ba: Baolidao, Fig. 

13), and 7) Eastward diachronous closure of the Junggar-Solonker Ocean (Ocean margins: At: 

Atasbogd, GuZo: Gurvansayhan-Zoolen) during the Permian. This figure is in part derivative 

from the Neftex Geodynamic Earth Model. © Neftex Petroleum Consultants Ltd. 
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