
UNIVERSITE DE LAUSANNE

FACULTE DES HAUTES ETUDES COMMERCIALES

__

A GAME THEORETICAL APPROACH TO THE ALGEBRAIC

COUNTERPART OF THE WAGNER HIERARCHY

THESE

Présentée à la Faculté des Hautes Etudes Commerciales

de l’Université de Lausanne

en cotutelle avec l'Université Paris Diderot – Paris 7

par

Jérémie CABESSA

Titulaire d'un diplôme d’ingénieur mathématicien de

l’Ecole Polytechnique Fédérale de Lausanne (EPFL)

Titulaire d’un DEA en Logique Mathématique et Fondements de

l’Informatique de l’Université Paris Diderot – Paris 7

Pour l’obtention du grade de

Docteur en Systèmes d’Information

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Serveur académique lausannois

https://core.ac.uk/display/18168187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

Thesis Committee

• Jacques DUPARC, Professor at the University of Lausanne, Co-supervisor.

• Jean-Eric PIN, Professor at the University Paris Diderot - Paris 7 and
member of the CNRS, Co-supervisor.

• Marco TOMASSINI, Professor at the University of Lausanne, Internal
member.

• Olivier CARTON, Professor at the University Paris Diderot - Paris 7,
External member.

• Thomas HENZINGER, Professor at the Ecole Polytechnique Fédérale de
Lausanne (EPFL), External member.

• Victor SELIVANOV, Professor at the Novosibirsk Pedagogical University,
External member and referee.

• Pascal WEIL, Professor at the University Bordeaux I and member of the
CNRS, External member and referee.

III

IV

Acknowlegements

I would like to express my gratitude to my two PhD supervisors, Jacques Duparc
and Jean-Eric Pin, for their supports throughout this research work.

I am as ever, deeply indebted to my parents, my sister Gaëlle, my whole
family, and especially to my uncle Joseph.

I would also like to acknowledge all my friends, with particular thanks to
Gaudi, GZA, Le Gnou, Max, and to my friends and colleagues Alessandro,
Christian, Denis, and Leslie.

My final heartfelt thanks go to Cinthia.

V

VI

Contents

Abstract (in French) 1

Introduction 3

1 Preliminaries 7

1.1 Ordinals . 7
1.1.1 Classical presentation . 7

1.1.2 Alternative presentation 10
1.1.3 Some new definitions . 10

1.2 Topology . 11
1.3 Languages . 13

1.4 The Gale-Stewart game . 14

2 Automata 15

2.1 General concept . 15
2.2 Automata over finite words . 17

2.3 Automata over infinite words . 18
2.3.1 Büchi automata. 18

2.3.2 Muller automata. 19
2.3.3 Rabin automata . 20

2.3.4 Recognizable ω-languages 20

3 Algebra and automata 23

3.1 Semigroups . 24
3.1.1 Generalities . 24

3.1.2 Infinite words in finite semigroups. 30
3.2 Semigroups and rational languages 33

3.2.1 Semigroups and automata 33
3.2.2 Syntactic semigroups . 36

3.3 ω-Semigroups . 38
3.3.1 Generalities . 38

3.3.2 Finite ω-semigroups . 41
3.4 ω-Semigroups and ω-rational languages 45

3.4.1 ω-Semigroups and automata 45
3.4.2 Syntactic ω-semigroups 48

VII

VIII CONTENTS

4 The Wadge hierarchy 53
4.1 The Wadge game . 53
4.2 The Wadge hierarchy . 56

5 The Wagner hierarchy 61
5.1 The DAG representation of Muller automata 62
5.2 Chains in Muller automata . 63
5.3 Chains as topological invariants 66
5.4 Description of the Wagner hierarchy 72
5.5 The Wagner degree as a syntactic invariant 73

6 The SG-hierarchy 77
6.1 The SG-game . 77
6.2 The SG-hierarchy . 79

7 The FSG-hierarchy 85
7.1 The FSG and the Wagner hierarchies 86
7.2 Describing finite pointed ω-semigroups 89

7.2.1 Finite semigroups as graphs 89
7.2.2 Finite pointed ω-semigroups as graphs 93
7.2.3 Alternating chains . 95
7.2.4 Veins . 96
7.2.5 Main veins . 99
7.2.6 DAG of main veins . 102

7.3 Main algorithm . 103
7.4 Correctness of the main algorithm 108
7.5 Building an ω-subset of any SG-degree 117

7.5.1 Direct construction . 118
7.5.2 The algebraic counterpart of the ordinal operations 120

7.6 Normal forms . 124

8 Computational complexity 133

9 Additional results 137
9.1 The DAG representation of finite semigroups 137
9.2 Two negative and one positive results 141
9.3 Revisiting some basic algebraic concepts 143

9.3.1 Finite ω-monoids . 143
9.3.2 Finite left-cancelable ω-semigroups 144
9.3.3 Finite ω-groups . 145
9.3.4 Finite cyclic ω-semigroups 145
9.3.5 Finite commutative ω-semigroups 146

Conclusion 149

Bibliography 151

Résumé

Ce travail traite de la classification topologique des langages ω-réguliers, ques-
tion qui a déjà été abordée sous de multiples facettes que sont la théorie des
automates, théorie descriptive des ensembles, ou encore théorie des semigroupes,
en algèbre.

En effet, d’une part, l’approche automatique de la théorie des langages
formels révèle l’équivalence entre les langages ω-réguliers et ceux reconnus par
automates de Büchi, Muller ou Rabin. Dans ce contexte, Klaus Wagner décrivit
alors une fine et pertinente hiérarchisation topologique des langages ω-réguliers
– la hiérarchie de Wagner –, et ce en classifiant les automates de Muller sous-
jacents par rapport à une notion de complexité graphique. Cette hiérarchie
possède une hauteur de ωω, est décidable, et s’avère cöıncider avec la restriction
de la hiérarchie de Wadge aux ensembles ω-réguliers.

D’autre part, en 1998, Victor Selivanov proposa quant à lui une description
complète de cette hiérarchie d’un point de vue purement ensembliste.

Au cours des mêmes années, l’approche algébrique de la théorie des lan-
gages formels introduisit la structure d’ω-semigroupe fini comme contrepartie
pertinente des langages ω-réguliers. Cette considération algébrique possède un
intérêt bien spécifique dans le fait qu’il existe, pour tout langage ω-régulier,
une structure minimale – dite syntaxique – qui le caractérise ; une propriété
qui ne trouve pas de contrepartie convaincante du point de vue ensembliste ou
automatique.

Ce travail de thèse vise à renforcer ce point de vue algébrique, en présentant
une description détaillée de la contrepartie algébrique de la hiérarchie de Wag-
ner, et ce par le biais de la théorie descriptive des jeux.

Les chapitres 1 à 3 présentent l’étroite correspondance entre les considérations
automatique et algébrique des langages ω-réguliers. On y introduit la notion
d’ω-semigroupe, qui, dans le cas fini, apparâıt comme contrepartie algébrique
pertinente des automates de Büchi. On montre ensuite que tout langage ω-
régulier possède un ω-semigroupe syntaxique correspondant qui vérifie les pro-
priétés de minimalité requises.

Dans les chapitres 4 et 5, on présente, par le biais de la théorie des jeux, la
hiérarchie de Wadge des ω-ensembles Boréliens, ainsi que la hiérarchie de Wag-
ner, vue comme trace de la hiérarchie de Wadge sur les ensembles ω-réguliers.

Les chapitre 6, 7 et 8 fournissent une description détaillée de la contrepartie
algébrique de la hiérarchie de Wagner. Ces résultats reposent principalement
sur une transposition de la théorie des jeux de Wadge dans le cadre des ω-
semigroupes. Ainsi, on définit d’abord une réduction de type Wadge sur les

1

2 RÉSUMÉ

ω-semigroupes finis pointés. On prouve que la hiérarchie algébrique qui en
résulte est effectivement isomorphe à la hiérarchie de Wagner, correspondant
alors à un ordre partiel décidable de hauteur ωω et de largeur 2. On décrit
ensuite une procédure de décision efficace de cette hiérarchie. Pour ce faire, on
introduit une représentation graphique des ω-semigroupes finis pointés, révélant
des invariants de Wagner algébriques a priori sensiblement différents des invari-
ants automatiques. Une reformulation de la procédure de Wagner en termes
d’ordinaux permet alors de calculer le degré de Wagner de tout ω-semigroupe
fini pointé à partir de sa représentation graphique, et ce en un temps polynomial.
Il en résulte que le degré de Wagner de tout langage ω-rationnel peut être calculé
directement sur son image syntaxique. Par la suite, on décrit également deux
méthodes constructives, l’une directe et l’autre inductive, permettant d’exhiber
un ω-semigroupe fini pointé de degré de Wagner quelconque. On introduit fi-
nalement un invariant topologique caractérisant chaque classe de Wagner de
cette hiérarchie algébrique.

Le chapitre 9 présente quelques propriétés additionnelles concernant la con-
trepartie algébrique de la hiérarchie de Wagner, et par là même conclut ce tra-
vail. En particulier, à équivalence près, on montre que les structures algébrique
non auto-duales de cette hiérarchie sont exactement les ω-monöıdes finis pointés.
De plus, les ω-semigroupes finis simplifiables à gauche, ω-groupes finis, et ω-
semigroupes cycliques finis, lorsque pointés, se trouvent être tous de degré trivial
dans cette hiérarchie.

Introduction

Automata theory arose in the thirties, before being more deeply investigated
from the middle of the fifties. More precisely, in 1936, Alan Turing introduced
the concept of a Turing machine as an abstract model of a computer [38], a
notion which happens to already capture the entire concept of a finite automa-
ton. In 1943, the two neuroscientists Warren S. McCulloch and Walter Pitts
presented a mathematical formalization of the neural network in terms of fi-
nite automata. Later, in 1956, Stephen Kleene proved the equivalence between
languages recognized by finite automata and regular languages [18], creating a
significant bridge between abstract machines and formal languages [11, 12]. Au-
tomata theory kept on developing during the following years, providing many
practical applications in lexical analysis, text processing, software verification,
etc.

In the eighties, an algebraic approach to automata theory emerged, introduc-
ing finite semigroups as a relevant algebraic counterpart to finite automata, and
revealing a succeeding correspondence between pseudo-varieties of semigroups
and varieties of formal languages [28, 29]. Nowadays, automata theory stands at
the crossroad of finite state machine, formal language, and semigroup theories.

In a parallel development, Richard Büchi’s seminal work leading to the decid-
ability of the monadic second order logic brought him to consider an extension of
automata reading finite words to automata reading infinite words [2], thus open-
ing the study of non-terminating processes. Thomas Wilke generalized Kleene’s
theorem in this context [42], stating the equivalence between languages recog-
nized by infinite words reading automata and so-called ω-rational languages,
and hence strengthening the link between automata and formal languages. In
1979, Klaus Wagner proposed an efficient classification of ω-rational languages
by focusing on graph theoretical properties of their underlying automata, the
Wagner hierarchy [41, 43]. This hierarchy was further proved to correspond to
the restriction of the Wadge hierarchy – the most refined hierarchy in descriptive
set theory – to ω-rational languages [39, 40, 34].

In the nineties, the algebraic approach to automata theory was extended
from finite to infinite words. Jean-Eric Pin introduced the notion of an ω-semi-
group as the algebraic counterpart to automata reading infinite words [26, 30].
In this framework, Olivier Carton and Dominique Perrin went into the algebraic
reformulation of the Wagner hierarchy [4, 5, 6], a work carried on by Jacques
Duparc and Mariane Riss in [10]. The present work follows this perspective,
and hopes to provide a complete description of the algebraic counterpart of the
Wagner hierarchy by means of a game theoretical approach.

3

4 INTRODUCTION

Hence, this writing lies at the crossroad of two mathematical fields: the al-
gebraic theory of automata working on infinite words, and hierarchical games,
in descriptive set theory. Each of these two components enriches the strict
mechanical aspect of automata theory.

The algebraic approach draws the equivalence between Büchi automata and
ω-semigroups [27], providing several interesting properties. Firstly, given a finite
Büchi automaton, one can effectively compute a finite ω-semigroup recognizing
the same ω-language, and vice versa. Secondly, there exists a minimal finite
ω-semigroup among all the ones recognizing a given ω-language – called the
syntactic ω-semigroup –, whereas there is no convincing notion of Büchi (or
Muller) minimal automaton. Thirdly, ω-semigroups appear as a powerful clas-
sification tool: for instance, an ω-language is first-order definable if and only
if it is recognized by an aperiodic ω-semigroup [20, 37, 25], a generalization to
infinite words of Schützenberger and McNaughton’s famous result. Also, topo-
logical properties (being open, closed, clopen, Σ0

2, Π0
2, ∆0

2) can be characterized
by algebraic properties on ω-semigroups (see [31] or [27, Chap. 3]).

Hierarchical games aim to classify subsets of topological spaces, in particular
by means of the following Wadge reduction: given two topological spaces E and
F , and two subsets X ⊆ E and Y ⊆ F , one says that X Wadge reduces to Y
if there exists a continuous function from E into F such that X = f−1(Y), or
equivalently, if there exists a winning strategy for Player II in the Wadge game
W(X, Y). The resulting Wadge hierarchy appeared of a special interest for com-
puter scientists, for it enlightens the study of classifying ω-rational languages.
In this context, two main questions arise when X Wadge reduces to Y :

– Effectivity: if X and Y are given effectively, is it then possible to effectively
compute a continuous function f such that X = f−1(Y)?

– Automaticity: if X and Y are recognized by finite ω-automata, is there
also an automatic1 continuous function f such that X = f−1(Y)?

An extended literature exists on both questions. In particular, Klaus Wagner
answered positively to the second problem [41], and the restriction of the Wadge
hierarchy to ω-rational sets is in fact entirely known. It corresponds precisely
to the original Wagner hierarchy – an ordered set of width 2 and height ωω

–, and the Wagner degree of any ω-rational set is efficiently computable [43].
Wagner’s original proofs rely on a careful analysis of Muller automata, away
from the algebraic framework. Olivier Carton and Dominique Perrin [4, 5, 6]
investigated the algebraic reformulation of the Wagner hierarchy, a work carried
on by Jacques Duparc and Mariane Riss [10]. However, this new approach is not
yet entirely satisfactory, for it fails to provide a complete algorithm computing
the Wagner degree of any ω-rational set directly on its syntactic ω-semigroup.
Our work fills this gap, and provides a complete description of the algebraic
counterpart of the Wagner hierarchy by means of hierarchical games.

In Chapter 1, we introduce the preliminary definitions and results involved in
this work. We particularly focus on ordinals below ωω, and ordinal arithmetic.

Chapter 2 is a reminder of the classical definitions of a Büchi, Muller, and
Rabin automaton. We conclude by mentioning the generalization of Kleene’s
theorem in the case of infinite words, stating the equivalence between languages
recognized by automata reading infinite words, and ω-rational languages.

1i.e. computed by some finite automaton.

5

Chapter 3 describes the basis of the algebraic approach to automata theory,
in both cases of finite and infinite words. First of all, we describe the equiva-
lence between finite automata reading finite words and finite semigroups. We
then define and prove the minimality properties of the syntactic semigroup of
a rational language. We finally show that the morphism reduction between ra-
tional languages precisely coincides with the division relation on their syntactic
structures. Thereafter, as a generalization of these results, we prove the equiv-
alence between finite automata reading infinite words and finite ω-semigroups.
We explore factorization properties of infinite words in finite semigroups, and
prove that every finite ω-semigroup is entirely defined by only a finite amount of
data. We finally define and state the expected minimality properties of syntactic
ω-semigroups.

Chapter 4 is devoted to the description of the Wadge hierarchy. We define
the continuous reduction via Wadge games, and introduce the resulting Wadge
hierarchy. We then prove the determinacy of Wadge games with Borel winning
sets, a key result providing a detailed description of the Borel Wadge hierarchy.

In Chapter 5, we describe the Wagner hierarchy as the trace of the Wadge
hierarchy on ω-rational languages. We show that this hierarchy is decidable,
and has height ωω. We prove that the Wagner degree of an ω-rational language
is given by the length of the maximal chains contained in a complete underlying
Muller automata. We finally show by a direct argument that the Wagner degree
is indeed a syntactic invariant.

In Chapter 6, we translate the Wadge theory from the ω-rational languages
to the ω-semigroups context. We define a reduction on pointed ω-semigroups
by means of games, without any direct reference to the Wagner hierarchy. The
resulting hierarchy, called the SG-hierarchy, happens to be a generalization of
the Wadge hierarchy. Many results concerning Wadge games are proved to also
hold in this framework.

In Chapter 7, we first state that the restriction of the SG-hierarchy to fi-
nite pointed ω-semigroups is the precise algebraic counterpart of the Wagner
hierarchy, and hence corresponds to a refinement of the hierarchies of chains
and superchains introduced by Olivier Carton and Dominique Perrin. We then
provide a complete description of this hierarchy. We present a graph repre-
sentation of finite pointed ω-semigroups, and deduce an algorithm on graphs
that computes the precise Wagner degree of any such structure. We then show
how to build a finite pointed ω-semigroup of any given Wagner degree. Finally,
we introduce the normal form of any finite pointed ω-semigroup, which is a
topological invariant for its Wagner class.

Chapter 8 explores the computational complexity of the decidability of the
FSG-hierarchy. We prove that the Wagner degree of any finite pointed ω-
semigroup is efficiently computable in time O(n3), where n is the cardinality of
the finite semigroup given in input.

Chapter 9 provides additional results concerning the algebraic counterpart
of the Wagner hierarchy, and concludes this work. Among other properties, we
prove that finite ω-semigroups build on left-cancelable semigroups, groups, and
cyclic semigroups only contain subsets of trivial Wagner degrees.

6 INTRODUCTION

Chapter 1

Preliminaries

1.1 Ordinals

1.1.1 Classical presentation

We present some basic definitions and facts about ordinals, focusing particularly
on the ordinal arithmetic. A more detailed and complete presentation can be
found in [32, 19, 22, 23, 17].

Let E and F be two sets. A binary relation on E and F is a subset R ⊆ E×F .
Such a relation is called left-total if for all x ∈ E, there exists y ∈ F such that
(x, y) ∈ R. It is called right-total if for all y ∈ F , there exists x ∈ E such that
(x, y) ∈ R. It is functional if for all x ∈ E and y, z ∈ F , the two relations
(x, y) ∈ R and (x, z) ∈ R imply y = z.

A relation on E is a subset R of E×E. The expression (x, y) ∈ R is usually
denoted by xRy. The relation R is reflexive if xRx, for all x ∈ E. It is irreflexive
if xRx holds for no x ∈ E. It is symmetric if xRy implies yRx, for all x, y ∈ E.
It is antisymmetric if xRy and yRx imply x = y, for all x, y ∈ E. It is transitive
if xRy and yRz imply xRz, for all x, y, z ∈ E. Finally, it is trichotomic if either
x = y, or xRy, or yRx holds, for all x, y ∈ E.

An equivalence relation is a reflexive, transitive, and symmetric relation. A
preorder is a reflexive and transitive relation. An order (or partial order) is a
reflexive, transitive, and antisymmetric relation. A total order is an irreflexive,
transitive, and trichotomic relation. A well-ordering on E is a total order R
on E such that every nonempty subset of E has an R-least element. In this
case, one also says that the relation R well-orders E. Finally, a set E is called
transitive if every element of E is also a subset of E.

An ordinal is a transitive set well-ordered by the membership relation ∈.
From now on, ordinals always will be denoted by greek letters. Given a set of
ordinals X , the expression sup(X) denotes

⋃

X , and in case X $= ∅, inf(X)
denotes

⋂

X . Both sup(X) and inf(X) are ordinals. For any ordinal α, the set
S(α) = α∪ {α} is also an ordinal called the successor of α. An ordinal α is said
to be successor if there exists an ordinal β such that α = S(β); it is called limit
otherwise.

The natural numbers are the finite ordinals defined by induction as follows:
0 = ∅, and n+1 = S(n), for every integer n ≥ 0. This way, every ordinal number
is defined as the set of its predecessors. The element 0 has no predecessor, it

7

8 CHAPTER 1. PRELIMINARIES

is the empty set. Then 1 = S(0) = {0} = {∅}, 2 = S(1) = {0, 1} = {∅, {∅}},
and so on, and so forth. The least infinite ordinal, denoted by ω, is defined
by ω = sup{0, 1, 2, . . .}, and thus corresponds to the set of all natural numbers.
Afterwards, a succession of larger ordinals can be defined by induction on α as
follows: for α = 0, one sets ω0 = ω; then for every ordinal α > 0, the set ωα+1

is defined as the least ordinal such that there is no injection from ωα into ωα;
for α limit, one has ωα = sup{ωβ : β < α}.

We now introduce the arithmetical operations on ordinals with some of their
properties. A formal definition of the ordinal sum can be found in many text-
books, for instance [19]. We present an equivalent definition by transfinite
induction. The intuitive interpretation of the expression “α + β” is exactly the
same as with integers: the number of items that we get when we lay α items on
a table followed by β other items. Given two ordinals α,β, then

• α + 0 = α,

• α + S(β) = S(α + β),

• α + β = sup{α + ξ | ξ < β}, if β is a limit ordinal.

Lemma 1.1. Let α,β, γ be ordinals.

(1) If β < γ, then α + β < α + γ.

(2) If α ≤ β, then α + γ ≤ β + γ.

(3) If α + β = α + γ, then β = γ.

(4) (α + β) + γ = α + (β + γ).

(5) α ≤ β if and only if there exists an ordinal δ such that α + δ = β.

(6) α < β if and only if there exists an ordinal δ > 0 such that α + δ = β.

(7) If B is a nonempty set of ordinals, then α+sup{β | β ∈ B} = sup{α+β |
β ∈ B}.

The ordinal sum over the natural numbers coincides with the usual addition.
It is associative and commutative in this context. However, the ordinal sum is
generally not commutative: for instance,

1 + ω = 1 + sup{n | n < ω} = sup{1 + n | n < ω} = ω < ω + 1.

In addition, for every k < ω, one has the following absorption property: k+ω =
sup{k + n | n < ω} = sup{n | n < ω} = ω. For example, 3 + 15 + ω + 7 + 2 =
ω + 7 + 2 = ω + 9.

Here again, we do not present the formal definition of the ordinal multi-
plication, but an equivalent definition by transfinite induction. The intuitive
interpretation of the expression “α ·β” is the number of items that we get when
we count α items β times. Given two ordinals α,β, then

• α · 0 = 0,

• α · S(β) = α · β + α,

• α · β = sup{α · ξ | ξ < β}, if β is a limit ordinal.

Lemma 1.2. Let α,β, γ be ordinals.

(1) If α $= 0 and β < γ, then α · β < α · γ.

(2) If α ≤ β, then α · γ ≤ β · γ.

1.1. ORDINALS 9

(3) If α $= 0 and α · β = α · γ, then β = γ.

(4) α · (β + γ) = α · β + α · γ.

(5) (α · β) · γ = α · (β · γ).

(6) If B is a nonempty set of ordinals, then α · sup{β | β ∈ B} = sup{α · β |
β ∈ B}.

The ordinal multiplication over the natural numbers coincides with the usual
multiplication. However, the ordinal multiplication is not commutative in gen-
eral: for instance,

2 · ω = sup{2 · n | n < ω} = ω < ω + ω = ω · 2.

As for the ordinal sum, for every k < ω, one has k · ω = sup{k · n | n < ω} =
sup{n | n < ω} = ω. Hence, one has 15 + 3 · ω · 4 + 2 = ω · 4 + 2.

Apart from its combinatorial definition, the ordinal exponentiation can be
defined by transfinite induction via the ordinal multiplication as follows: given
any two ordinals α,β, one sets

• α0 = 1,

• αβ+1 = αβ · α,

• αβ = sup{αξ | ξ < β}, if β is a limit ordinal.

Lemma 1.3. Let α,β, γ be ordinals.

(1) If α > 1, then β < γ if and only if αβ < αγ .

(2) If α > 1, then αβ = αγ implies β = γ.

(3) If α ≤ β, then αγ ≤ βγ .

(4) If α > 1, then β ≤ αβ.

(5) α(β+γ) = αβ · αγ .

(6) (αβ)
γ

= α(β·γ).

(7) If B is a nonempty set of ordinals, then αsup{β|β∈B} = sup{αβ | β ∈ B}.

By combining the properties of the ordinal sum, multiplication and addition,
one can show that ωp · ωq = ωq, whenever p < q. This property will be partic-
ularly important throughout this work, since we will mostly deal with ordinal
expressions of this form. For instance, one has ω9 · 3 + ω9 · 2 + ω4 + ω6 · 2 + 7 =
ω9 · 5 + ω6 · 2 + 7.

Finally, every ordinal can be uniquely written in a peculiar form called the
Cantor normal form (CNF) of base ω, which is kind of a generalization of the
Euclidian division of integers.

Theorem 1.4 (Cantor). Given an ordinal α ≥ 1, there exists a unique integer
k ≥ 0, and two unique sequences of ordinals β0 > β1 > . . . > βk ≥ 0, and
0 < ni < ω, such that

α =
k

∑

i=0

ωβi · ni.

10 CHAPTER 1. PRELIMINARIES

1.1.2 Alternative presentation

This work only involves ordinals strictly below ωω and we choose to present an
alternative characterization of those ones. The set of ordinals strictly below ωω

(that is ωω itself) is isomorphic to the set

Ord<ωω = {0} ∪
⋃

k∈N

(

N\{0}× N
k
)

– that is the set containing the integer 0 plus all finite nonempty sequences
of integers whose left most component is strictly positive – equipped with the
following ordering: 0 is the least element and given any two sequences α =
(a0, . . . , am), β = (b0, . . . , bn) ∈ Ord<ωω , then

α < β if and only if

{

either m < n,

or m = n and α <lex β,

where <lex denote the lexicographic order. This relation is clearly a well-
ordering. For instance, one has (7, 3, 0, 0, 1) < (1, 0, 0, 0, 0, 0) and (7, 3, 0, 0, 1) <
(7, 3, 1, 0, 1). As usual, given such a sequence α, the ith element of α is denoted
by α(i). For example, if α = (3, 0, 0, 2, 1), then α(0) = 3 and α(3) = 2.

Every ordinal ξ < ωω can then be associated in a unique way with an element
of Ord<ωω as described hereafter: the ordinal 0 is associated with 0, and every
ordinal 0 < ξ < ωω with Cantor normal form ωnk ·pk + · · ·+ωn0 ·p0 is associated
with the sequence of integers ξ̄ of length nk + 1 defined by ξ̄(nk − i) being
the multiplicative coefficient of the term ωi in this Cantor normal form. The
sequence ξ̄ is thence an encoding of the Cantor normal form of ξ. For instance,
the ordinal ω4 · 3 + ω3 · 5 + ω0 · 1 corresponds to the sequence (3, 5, 0, 0, 1).
The ordinal ωn corresponds the sequence (1, 0, 0, . . . , 0) containing n 0’s. This
correspondence is an isomorphism from ωω into Ord<ωω , and from this point
onward, we will make no more distinction between non-zero ordinals strictly
below ωω and their corresponding sequences of integers.

In this framework, the ordinal sum on sequences of integers is defined as
follows: given α = (a0, . . . , am), β = (b0, . . . , bn) ∈ Ord<ωω , then

α+β =

{

β if m < n,

(α(0), . . . ,α(n−m− 1),α(n−m) + β(0),β(1), . . . ,β(n)) if m ≥ n.

For instance, one has (7, 3, 1, 2, 3) + (1, 0, 0, 0, 0, 0) = (1, 0, 0, 0, 0, 0),

(7, 3, 1, 2, 5) + (4, 0, 3) =
(7, 3, 1, 2, 5)

+ (4, 0, 3)
(7, 3, 5, 0, 3)

,

and (7, 3, 1, 2, 5) + (5, 0, 0, 0, 1) = (12, 0, 0, 0, 1). As usual, the multiplication by
an integer is defined by induction via the ordinal sum.

1.1.3 Some new definitions

A signed ordinal is a pair (ε, ξ), where ξ is an ordinal strictly below ωω and
ε ∈ {+,−,±}. It will be denoted by [ε]ξ instead. Signed ordinal are equipped
with the following partial ordering: [ε]ξ < [ε′]ξ′ if and only if ξ < ξ′. Therefore
the signed ordinals [+]ξ, [−]ξ, and [±]ξ are all three incomparable.

1.2. TOPOLOGY 11

Given an ordinal 0 < ξ < ωω with Cantor normal form ωnk ·pk + · · ·+ωn0 ·p0,
the playground of ξ, denoted by pg(ξ), is simply defined as the integer n0.
When regarded as a sequence of integers, the playground of ξ is the number of
successive 0’s from the right end of ξ. For instance, if pg((2, 4, 0, 5, 0, 0)) = 2.

Finally, given a signed ordinal [ε]ξ with ε ∈ {+,−} and Cantor normal form
ξ = ωnk ·pk + · · ·+ωn0 ·p0, a cut of [ε]ξ is a signed ordinal [ε′]ξ′ < [ε]ξ satisfying
the following properties:

(1) ξ′ = ωnk · pk + · · · + ωni · qi, for some 0 ≤ i ≤ k and qi ≤ pi;

(2) if ni = n0, then ε′ = ε if and only if pi and qi have the same parity;
whereas if ni > n0, then ε′ ∈ {+,−} with no restriction.

If ξ is regarded as the sequence of integers (a0, . . . , an), a cut of [ε]ξ is a signed
ordinal [ε′](b0, . . . , bn) < [ε](a0, . . . , an) satisfying the following properties:

(1) there exists an index i such that: firstly, bj = aj , for each 0 ≤ j < i;
secondly, bi < ai; thirdly, bj = 0, for each i < j ≤ n;

(2) if pg(a0, . . . , an) = pg(b0, . . . , bn) = p, then ε′ = ε if and only if an−p

and bn−p have the same parity; whereas if pg(a0, . . . , an) $= pg(b0, . . . , bn),
then ε′ ∈ {+,−} with no restriction.

For instance, the successive cuts of the signed ordinal [+](2, 0, 3, 0) are [−](2, 0, 2, 0),
[+](2, 0, 1, 0), [+](2, 0, 0, 0), [−](2, 0, 0, 0), [+](1, 0, 0, 0), and [−](1, 0, 0, 0). As
another example, the cuts of the signed ordinal [−](4, 2, 0, 3, 0) are all listed
below by decreasing order (i.e. [ε]ξ can access [ε′]ξ′ iff [ε]ξ > [ε′]ξ′).

[−](4, 2, 0, 3, 0)
↙

[+](4, 2, 0, 2, 0)
↘

[−](4, 2, 0, 1, 0)
↙ ↓

[+](4, 2, 0, 0, 0) [−](4, 2, 0, 0, 0)
↓ ↙↘ ↓

[+](4, 1, 0, 0, 0) [−](4, 1, 0, 0, 0)
↓ ↙↘ ↓

[+](4, 0, 0, 0, 0) [−](4, 0, 0, 0, 0)
↓ ↙↘ ↓

[+](3, 0, 0, 0, 0) [−](3, 0, 0, 0, 0)
↓ ↙↘ ↓

[+](2, 0, 0, 0, 0) [−](2, 0, 0, 0, 0)
↓ ↙↘ ↓

[+](1, 0, 0, 0, 0) [−](1, 0, 0, 0, 0)

1.2 Topology

First of all, we recall that T is a tree over the alphabet A if T is a subset of A∗

closed under prefixes, that is if v ∈ T and u ⊆ v, then u ∈ T . A finite branch of
T is a finite word u ∈ T such that there is no v ∈ T satisfying u ⊆ v. An infinite
branch of T is an infinite word α ∈ Aω such that α[0, n] ∈ T , for all n ≥ 0. The
set of infinite branches of T is denoted by [T].

12 CHAPTER 1. PRELIMINARIES

Given any alphabet A, the set Aω will always be equipped with the product
topology of the discrete topology on A. The basic open sets of Aω are thus of
the form uAω, where u ∈ A∗. Hence, a set X ⊆ Aω is open if and only if it is
of the form X = UAω, where U ⊆ A∗. A set X ⊆ Aω is closed if and only if
there exists a tree T ⊆ A∗ such that X = [T]. We will say that the finite word
u entered the open set X = UAω if any infinite extension of u belongs to X ,
or equivalently, if u ∈ UA∗. Conversely, we say that the finite word u left the
closed set X = [T] if u $∈ T , that is if sooner or later, any extension of u will
exit T .

We recall that given any topological space E, the class of Borel subsets –
or the Borel σ-algebra – of E is the smallest class B containing the open sets,
and closed under countable union and complementation. The Borel hierarchy
consists of a collection of classes of Borel subsets which stratifies the whole Borel
algebra with respect to these operations of countable union and complementa-
tion. More precisely, for any countable ordinal α, the Borel classes are defined
by induction as follows:

• Σ0
1 is the class of all open sets,

• Π0
α =

{

Xc | X ∈ Σ0
α

}

,

• ∆0
α = Σ0

α ∩Π0
α,

• Σ0
α =

{

X =
⋃

i∈N
Xi | Xi ∈

⋃

β<α Π0

β

}

.

One can show that

B =
⋃

α<ω1

Σ0

α =
⋃

α<ω1

Π0

α =
⋃

α<ω1

∆0

α.

This hierarchy is partially illustrated in Figure 1.1, where arrows represent the
inclusion relation between classes.

...

Σ0

2

Σ0

3

...

↖ ↗
∆0

1

↗

↖

↗

↖

↖

↗

↖

↗

∆0

2

∆0

3

Π0

1

Π0

2

Π0

3

...

Σ0

1

Figure 1.1: The Borel hierarchy.

1.3. LANGUAGES 13

Another preliminary notion: a subset F ⊆ 2ω is called a flip set [1] if changing
one single bit of any infinite word x ∈ 2ω shifts it from F to its complement,
or vice versa. In other words, for all α,β ∈ 2ω, if there exists a unique k such
that α(k) $= β(k), then α ∈ F if and only if β $∈ F . Without proving it, we will
use the fact that no flip set is Borel, since Borel sets satisfy the Baire property,
whereas flip sets do not [1].

Finally, given a subset X of E, the complement of X in E is denoted by Xc.
Given an integer i, we also set

Xc(i)

{

X if i is even,

Xc if i is odd.

1.3 Languages

An alphabet is a simply set whose elements are called letters. In this work,
alphabets are always finite. A finite words is a finite sequence of letters. An
infinite words is a infinite sequence of letters of length ω. The empty word
is denoted by ε. For a better comprehension, letters of the alphabets will be
denoted by latin letters like a, b, or c, finite words by latin letters like u, v, w, and
infinite words by greek letters like α, β, or γ. The length of a finite word is the
number of letters that it contains, and the length of an infinite word is ω. Given
a finite word u and a finite or infinite word v, then ui denotes the i-th letter of u,
u[i, j] denotes the finite word uiui+1 . . . uj, with i < j, and in particular, u[0, n]
denotes the restriction of u to its n first letters; the expressions uv denotes the
concatenation of u and v, and u ⊆ v expresses that u is a prefix of v. Besides, an
infinite word α = a0a1a2 . . . is periodic if there exists a positive integer p such
that ak = ak+p, for all k ∈ N. It is ultimately periodic if there exist two positive
integers k0 and p such that ak = ak+p, for every k ≥ k0. Finally, a factorization
of the infinite word α is an infinite sequence (un)n∈ω of finite words such that
α = u0u1u2 · · · . A factorization (u′

n)n∈ω of α is a superfactorization of (un)n∈ω

if there exists a strictly increasing sequence of strictly positive integers (kn)n∈ω,
such that u′

0 = u0u1 · · ·uk0−1 and u′
n+1 = uknukn+1 · · ·ukn+1−1, for every n ≥ 0.

A set of finite words is called a language. A set of infinite words is called an
ω-language. Given an alphabet A, then An, A∗, A+, Aω , and A∞ respectively
denote the sets of finite words with n letters, finite words, nonempty finite words,
infinite words, and finite or infinite words, each of them over the alphabet A.
Given X ⊆ A∗ and Y ⊆ A∞, the concatenation of X and Y is defined by
XY = {xy | x ∈ X and y ∈ Y }, the star or finite iteration of X by X∗ =
{x1 · · ·xn | n ≥ 0 and x1, . . . , xn ∈ X}, and the infinite iteration of X by
Xω = {x0x1x2 · · · | xi ∈ X, for all i ∈ N}. One also sets uY = {uv | v ∈ Y },

and u−1Y = {v | uv ∈ Y }. Finally, given a language L ⊆ A∗, the set
−→
L denotes

the ω-language consisting of all infinite words which have infinitely many prefixes
in L.

The class of rational languages of A∗, denoted Rat(A∗), is the smallest class
of subsets of A∗ containing the empty word ε, the singletons {a}, for all a ∈ A,
and closed under finite union, finite concatenation, and finite iteration. The
class of ω-rational languages of A∞, denoted Rat(A∞), is the smallest class
of subsets of A∞ containing ε, the singletons {a}, for all a ∈ A, and closed
under finite union, finite concatenation, finite iteration, and infinite iteration.

14 CHAPTER 1. PRELIMINARIES

The class of ω-rational languages of Aω, denoted by Rat(Aω), is simply the
restriction of Rat(A∞) to the sets of infinite words. This class of languages is
particularly important in automata theory. The following proposition gives a
precise characterization of Rat(Aω) [27].

Proposition 1.5. An ω-language L ⊆ Aω is ω-rational if and only if it can be
written as L =

⋃n
i=1 XY ω, with X and Y being rational languages of A∗, and

n ∈ N.

1.4 The Gale-Stewart game

Game theory plays a crucial role in this work. We will particularly focus on
infinite two-player games with perfect information. The first player, denoted by
Player I, will always be assumed masculine, and the second player, denoted by
Player II, will be assumed feminine. We recall that a two-player game is said
to be determined if either Player I or Player II has a winning strategy in this
game. The following Gale-Stewart game is of particular importance.

Let A be an alphabet, and X ⊆ Aω. The Gale-Stewart game G(X) [15] is an
infinite two-player game with perfect information, where the players alternately
play letters from A. Player I begins. After ω turns, their successive moves
produce an infinite word α ∈ Aω. Player I wins G(X) if and only if α ∈ X . A
play in this game is illustrated below.

I : x0 x2 · · · · · · · · · xn+1 · · · · · · · · ·
↘ ↗ ↘ ↗ ↘

II : x1 · · · · · · xn · · · · · ·

In 1975, D. A. Martin proved Borel determinacy, a major result stating that
Gale-Stewart games were determined for any Borel winning set [21]. The Borel
determinacies of the Wadge and SG-games that we will introduce further on
directly follow from this result.

Theorem 1.6 (Martin). Let A be an alphabet, and X ⊆ Aω be Borel. The
Gale-Stewart game G(X) is determined.

Chapter 2

Automata

Summary

This chapter provides a survey of basic definitions and results in automata
theory. An extended presentation of automata reading finite and infinite words
can be found respectively in [35] and [27].

First, we define the general notion of an automaton, which is a mathemat-
ical model of a very simplistic computer. Such a machine jumps from one
computational state to another, depending on its current state, and on the last
information bit it receives in input. The automaton is said to be deterministic,
if for each input, the resulting computation is uniquely determined. An automa-
ton is commonly represented as a graph, and every one of its computations is
described by a path in the induced graph.

We then focus on the conventional finite automata reading finite inputs. In
this context, the final state reached by the computation determines whether the
input is accepted or rejected by the machine. Kleene’s theorem states that the
input sets accepted by these machines are exactly the rational languages.

When extended to infinite inputs, every computation induces an infinite
path in the graph of the automaton. Several other acceptance conditions can be
defined, leading in particular to the definitions of a Büchi, Muller, and Rabin
automaton. A generalization of Kleene’s theorem states that the expressive
powers of these three kinds of machines are equivalent, and correspond precisely
to the ω-rational languages.

2.1 General concept

We introduce the general notion of an automaton which will be further extended
on the one hand to automata reading finite words, and on the other hand to
automata reading infinite words.

Definition 2.1. A finite automaton is a 4-tuple A = (Q, A, E, I), where

• Q is a finite set called the set of states,

• A is an alphabet,

• E is a subset of Q×A×Q called the set of transitions,

• I is a subset of Q called the set of initial states.

15

16 CHAPTER 2. AUTOMATA

An automaton can be regarded as an abstract machine moving from state
to state depending on the input it receives. The set of transitions describes
the rules for going from one state to another according to the input symbol
that is read. The transition (p, a, q) ∈ E means that if the automaton is in
state p and receives the input letter a, then it will move to state q. A finite
automaton is generally represented by a directed labeled graph. The nodes of
the graph correspond to the states of the automaton. The nodes corresponding
to the initial states are marked by an incoming arrow. The labeled edges of the
graph represent the transitions of the automaton, meaning that there is an edge
labeled by a from p to q if and only if (p, a, q) is a transition of the automaton.
Therefore, the behavior of the automaton on a given input is represented by a
path in this graph.

Example 2.2. The finite automaton A = (Q, A, E, I) defined by Q = {q0, q1},
A = {0, 1}, E = {(q0, 0, q0), (q0, 1, q1), (q1, 0, q0), (q1, 1, q1)}, and I = {q0}, is
illustrated in Figure 2.1. On the sample input string 0110, the automaton A
starts in the initial state q0, and then proceeds to the successive states q0 again,
q1, q1 again, and back to q0.

q0 q1

0

1

0

1

Figure 2.1: A finite automaton.

Given an automaton A = (Q, A, E, I) and a state p ∈ Q, the expression
Ap denotes the automaton A whose set of initial state has been changed into
the singleton p, namely Ap = (Q, A, E, {p}). In addition, for any transition
(p, a, q) ∈ E, the state p is called the origin, q is the end, and a is the label
of this transition. Two transitions (p, a, q) et (p′, a′, q′) are called consecutive if
q = p′. A finite path in A is a finite sequence of consecutive transitions

c = ((q0, a1, q1), . . . , (qn−1, an, qn)) ,

also denoted by c : q0
a1−→ q1 · · · qn−1

an−−→ qn, or simply c : q0
a1···an−−−−→ qn. The

states q0 and qn are respectively called the origin and the end of the path c. A
state qn is said to be accessible from q0 if there exists a path q0

a1···an−−−−→ qn. One
says that such a path c passes through or visits the states q0, q1, . . . , qn, and the
finite word a1 · · · an is called the label of c. More generally, an infinite path in
A is an infinite sequence of consecutive transitions

x = ((q0, a1, q1), (q1, a2, q2), . . .)

also denoted by x : q0
a1−→ q1

a2−→ q2 · · · . The state q0 is the origin of x and the
infinite word a1a2 · · · is its label. The path x passes infinitely often through or

2.2. AUTOMATA OVER FINITE WORDS 17

visits infinitely often the state q if there exist infinitely many integers n such
that qn = q. The set of states visited infinitely often by x is denoted by Inf(x).

An automaton A = (Q, A, E, I) is called complete if for every state q ∈ Q
and every letter a ∈ A, there exists at least one transition (q, a, q′) ∈ E. It is
called deterministic if it has only one initial state q0, and if for every state q ∈ Q
and every letter a ∈ A, there exists at most one transition (q, a, q′) ∈ E. In this
case, the set of transitions E is the graph of a partial function δ : Q×A −→ A,
called the transition function of the automaton, which maps every state q and
every letter a on the unique state q · a – if it exists – such that (q, a, q · a) ∈ E.
The transition function can be naturally extended to a partial function from
Q × A∗ into Q by setting q · 1 = q and q · (ua) = (q · u) · a, for every word
u ∈ A+ and every letter a ∈ A such that (q · u) and (q · u) · a are defined. An
automaton as defined in Definition 2.1 is said to be nondeterministic. Therefore,
a deterministic automaton is simply a specific nondeterministic one.

2.2 Automata over finite words

Finite automata on finite words describe abstract computers with an extremely
limited amount of memory, those reacting according to their current state and
the unique forthcoming bit to be read. As simple as it may be, this computa-
tional model stands for the cornerstone of any other more sophisticated model,
like counter automata or pushdown automata, or even Turing machines.

An automaton reading finite words is a 5-tuple A = (Q, A, E, I, F), where
(Q, A, E, I) is an automaton, and F is a subset of Q called the set of final
states. A finite path of A is called successful if its origin is in I and its end is
in F . A finite word is said to be recognized by A if it is the label of a successful
finite path of A, and the language recognized by A, denoted by L(A), is the set
of finite words recognized by A. Two automata are said to be equivalent if they
recognize the same language. A language is called recognizable if there exists an
automaton that recognizes it.

Example 2.3. Consider the automaton A = (Q, A, E, I, F) defined by Q =
{q0, q1}, A = {0, 1}, E = {(q0, 0, q0), (q0, 1, q1), (q1, 0, q0), (q1, 1, q1)}, I = {q0},
and F = {q1}. This automaton is illustrated in Figure 2.2, where final states
are double-circled. One easily notices that the language recognized by A corre-
sponds to the set of finite words ending by 1, that is L(A) = A∗1.

q0 q1

0

1

0

1

Figure 2.2: An automaton reading finite words.

18 CHAPTER 2. AUTOMATA

One can show that the languages recognized by nondeterministic and deter-
ministic automata are the same [35]. Kleene’s theorem precisely characterizes
these languages.

Theorem 2.4 (Kleene). A language is recognizable if and only if it is rational.

2.3 Automata over infinite words

In the sixties, the work of Julius Richard Büchi on the decidability of the
monadic second order logic led up to an extension of the classical notion of
an automaton to the case of infinite words. In this context, we present three
main different kinds of automata reading infinite words, namely the Büchi,
Muller, and Rabin automata, and mention that their respective expressive pow-
ers, which may appear different at first sight, are in fact the very same. A
detailed presentation of these concepts can be found in [27].

2.3.1 Büchi automata.

Büchi automata over infinite words are the ones with the weakest mode of
recognition [2]. A Büchi automaton reading infinite words is a 5-tuple A =
(Q, A, E, I, F), where (Q, A, E, I) is an automaton and F is a subset of Q.
An infinite path x of A is called successful if its origin is in I and if it visits
F infinitely often, that is if Inf(x) ∩ F $= ∅. An infinite word is said to be
recognized by A if it is the label of a successful infinite path in A, and the
ω-language recognized by A, denoted by Lω(A), is the set of infinite words
recognized by A. An ω-language is said to be recognizable if there exists a finite
Büchi automaton that recognizes it.

Example 2.5. Consider the Büchi automaton A = (Q, A, E, I, F), defined by
Q = {q0, q1}, A = {0, 1}, E = {(q0, 0, q0), (q0, 1, q1), (q1, 0, q0), (q1, 1, q1)}, I =
{q0}, and F = {q1}, illustrated in Figure 2.3. The ω-language recognized by
this automaton is the set of infinite words containing infinitely many 1’s, i.e.
Lω(A) = (A∗1)ω.

q0 q1

0

1

0

1

Figure 2.3: A Büchi automaton reading infinite words.

Nondeterministic Büchi automata are strictly more powerful than deter-
ministic ones. In order to establish this statement, consider the ω-language
L = (0 ∪ 1)∗1ω. This language is recognized by the nondeterministic Büchi

2.3. AUTOMATA OVER INFINITE WORDS 19

automata of Figure 2.4. However, it cannot by recognized by a deterministic
Büchi automaton. Indeed, towards a contradiction, assume that there exists
a deterministic Büchi automaton A recognizing L. Since the infinite word 1ω

belongs to L, it is recognized by A. Then there necessarily exists an integer n0

such that A ends up in a final state after reading the prefix u0 = 1n0 . Further-
more, since 1n001ω belongs to L, it is recognized by A, and there necessarily
exists an integer n1 such that A ends up in a final state after reading the prefix
u1 = 1n001n1. By iterating this construction, one produces an infinite word
α = 1n001n101n20 · · · such that A ends up in a final state after reading every
prefix ui of α. Therefore, the automaton A visits a final state infinitely of-
ten when reading the infinite word α, meaning that α is recognized by A. A
contradiction, since α $∈ L.

q0 q1

0, 1 1

1

Figure 2.4: A nondeterministic Büchi automaton recognizing the ω-language
L = (0 ∪ 1)∗1ω.

2.3.2 Muller automata.

Muller automata are deterministic automata with a more powerful acceptance
mode than the Büchi automata have [24]. A Muller automaton is a 5-tuple
A = (Q, A, δ, {i}, T), where (Q, A, δ, {i}) is a deterministic automaton, and T
is a subset of P(Q) called the table of A. An infinite path x of A is said to be
successful if it starts in the state i and if Inf(x) belongs to T . An infinite word
is recognized by A if it is the label of a successful infinite path in A. The ω-
language recognized by A, denoted Lω(A), is the set of infinite words recognized
by A. Besides, a subset T of Q is called admissible if there exists an infinite
initial path x such that Inf(x) = T . The table T is said to be full if for every
admissible set T of T and for every admissible set T ′ containing T , then T ′ also
belongs to T .

Example 2.6. Consider the Muller automaton A = (Q, A, δ, {i}, T) defined by
Q = {q0, q1}, A = {0, 1}, the graph of δ being given by

{(q0, 0, q0), (q0, 1, q1), (q1, 0, q0), (q1, 1, q1)},

i = q0, and T = {{q1}}. This automaton is illustrated in Figure 2.5. The ω-
language recognized by this automaton is the set of infinite words ending with
infinitely many successive 1’s, that is Lω(A) = A∗1ω.

20 CHAPTER 2. AUTOMATA

q0 q1

0

1

0

1

Figure 2.5: A Muller automaton.

2.3.3 Rabin automata

Rabin automata propose another mode of recognition. A Rabin automaton is a
5-tuple A = (Q, A, δ, {i},R), where (Q, A, δ, {i}) is a deterministic automaton,
and R = {(Uj , Vj) | j ∈ J} is a family of pairs of sets of states. An infinite path
x of A is said to be successful if it starts in the state i and if there exists an index
j ∈ J such that x visits Uj finitely often and Vj infinitely often. An infinite
word is said to be recognized by A if it is the label of a successful infinite path
in A, and the ω-language recognized A, denoted by Lω(A), is the set of infinite
words recognized by A.

Example 2.7. Consider the Rabin automaton A = (Q, A, δ, {i}, T) defined by
Q = {q0, q1}, A = {0, 1}, the graph of δ being given by

{(q0, 0, q0), (q0, 1, q1), (q1, 0, q0), (q1, 1, q1)},

i = q0, and R = {({q0, q1}, {q1})}. This automaton is illustrated in Figure 2.6.
The ω-language recognized by this automaton is the set of infinite words ending
with infinitely many successive 1’s, that is Lω(A) = A∗1ω.

q0 q1

0

1

0

1

Figure 2.6: A Rabin automaton.

2.3.4 Recognizable ω-languages

Finally, as a generalization of Kleene’s theorem, we mention two results describ-
ing the expressive powers of these different kinds of automata. The proofs of
these results can be found in [27].

2.3. AUTOMATA OVER INFINITE WORDS 21

Theorem 2.8. Let L be an ω-language. The following conditions are equivalent:

(1) L is ω-rational.

(2) L is recognizable (by a finite Büchi automaton).

(3) L is recognizable by a finite Muller automaton.

(4) L is recognizable by a finite Rabin automaton.

Theorem 2.9. Let L be an ω-language. The following conditions are equivalent:

(1) L is recognizable by a finite deterministic Büchi automaton.

(2) L is recognizable by a finite Muller automaton with full table.

(3) L can be written of the form L =
−→
X , with X recognizable subset of A+.

22 CHAPTER 2. AUTOMATA

Chapter 3

Algebra and automata

Summary

The algebraic approach to automata theory draws a tight correspondence be-
tween automata and specific algebraic structures. Semigroups are proved to be
a convincing algebraic counterpart to automata reading finite words, and many
properties on rational languages benefit from a purely algebraic characteriza-
tion. Furthermore, this relation can be extended to the case of infinite words,
in which finite ω-semigroups appear as the algebraic representatives of Büchi
automata [27]. The present chapter describes these equivalences for both finite
and infinite word cases.

First of all, we introduce basic notions and results of semigroup theory. We
particularly focus on properties characterizing the structure of finite semigroups.
In this context, the study of infinite words in finite semigroups plays an impor-
tant role. A key result from Ramsey shows that every such infinite sequence
can be factorized into a specific form seee · · · , called a linked pair, and usually
written as (s, e). As a consequence, every infinite word can be uniquely associ-
ated with an equivalence class of linked pairs. Linked pairs thus provide a finite
classification of infinite words according to their factorizations.

Thereafter, we establish the equivalence between semigroups and automata
reading finite words. We define an algebraic notion of recognizability, and prove
that one can effectively shift from an automaton to a semigroup recognizing the
same language, and conversely, from a semigroup to a corresponding automaton.
In addition, we prove that there exists a unique minimal semigroup among all
those recognizing a given rational language, called the syntactic semigroup.
Finally, we present an algebraic characterization of the morphism reduction on
rational languages.

We further extend these results to the case of infinite words. For this pur-
pose, we introduce the concept of an ω-semigroup as a generalization of a semi-
group. We then exclusively focus on finite ω-semigroups. Based on the study of
infinite words in finite semigroups, we show that finite ω-semigroups are equiv-
alent to other algebraic structures, called Wilke algebras, hence determined by
only a finite amount of data.

Finally, we prove the expected equivalence between finite ω-semigroups and
Büchi automata. We conclude by introducing the notion of a syntactic ω-

23

24 CHAPTER 3. ALGEBRA AND AUTOMATA

semigroup, and prove the same minimality properties as in the semigroup con-
text. This feature is particularly interesting, since there is no convincing notion
of minimal Büchi or Muller automaton.

3.1 Semigroups

3.1.1 Generalities

In this section, we expose basic definitions and facts of semigroup theory,
focusing particularly on finite semigroups.

Let S be a set. A binary operation on S is a mapping from S × S into S.
The image of the couple (x, y) under this mapping is usually denoted by xy
and is called the product of x and y. A binary operation on S is associative
if the equality (xy)z = x(yz) holds, for all x, y, z ∈ S. It is commutative if
xy = yx holds, for all x, y ∈ S. A semigroup is a pair consisting of a set S and
an associative binary operation on S. When the binary operation is clear from
the context, a semigroup is simply denoted by its set. A semigroup S is called
finite if S is a finite set and infinite otherwise. Once equipped with an identity
element, a semigroup becomes a monoid. If S is a semigroup, S1 denotes S if S
is a monoid, and S ∪ {1} otherwise, with the operation of S completed by the
relations 1 · x = x · 1 = x, for all x ∈ S1. Finally, a pointed semigroup [33] is a
pair (S, X), where S is a semigroup and X is a subset of S.

Example 3.1. The trivial monoid, denoted by {1}, consists of a single identity
element.

Example 3.2. The semigroup U1 is the set {1, 0} equipped with the usual mul-
tiplication. This semigroup is a commutative monoid.

Example 3.3. The set {0, 1, 2, . . . , n} equipped with the max operation is a
commutative monoid whose identity is the element 0.

Example 3.4. The set {a, b, c, d} is a semigroup for the operation defined by
the relations:

a2 = a ab = a ac = a ba = a

b2 = b bc = c ca = d cb = c

c2 = c

Given a semigroup S, an idempotent of S is an element e such that e2 = e. The
set of idempotents of S is denoted by E(S), or simply by E when the semigroup
involved is clear from the context. The following result will be frequently used
throughout this work. It shows that any element of a finite semigroup has an
idempotent power.

Lemma 3.5 ([27, pp. 441–442]). Let S be a finite semigroup. There exists
an integer π such that, for each s ∈ S, sπ is idempotent. The least integer
satisfying this property is called the exponent of S.

3.1. SEMIGROUPS 25

Proof. Since S is finite, for all x ∈ S, there exist two strictly positive integers
i and p such that xi+p = xi (otherwise S would be infinite). The minimal i and
p satisfying this property are respectively called the index and the period of x.
For any k ≥ i, one has

xk = xi+n = xixn = xi+pxn = xixpxn = xi+nxp = xk+p.

In particular, if k is a multiple of p, that is k = qp, then

(xk)2 = x2k = xk+qp = xk,

showing that xk is idempotent. Therefore, every element s of S has a least
idempotent power sns . The conclusion is drawn by setting π as the least common
multiple of all the ns.

A semigroup morphism is a mapping ϕ from a semigroups S into a semigroup
T such that ϕ(xy) = ϕ(x)ϕ(y) holds, for every x, y ∈ S. A morphism ϕ : S −→
T is an isomorphism if there exists another morphism ψ : T −→ S such that
ϕ ◦ ψ = idT and ψ ◦ ϕ = idS. A morphism is an isomorphism if and only if
it is a bijection. As a general rule, isomorphic semigroups shall be identified.
From this perspective, a semigroup S is a subsemigroup of a semigroup T if
there exists an injective morphism from S into T . A semigroup S is a quotient
of a semigroup T if there exists a surjective morphism from T onto S. Finally,
a semigroup S divides a semigroup T if S is quotient of a subsemigroup of T .
The two following results prove that the division relation is transitive and is a
partial order on finite semigroups, up to isomorphism.

Proposition 3.6. The division relation is transitive.

Proof. Assume that S1 divides S2 and S2 divides S3. Then there exist a
subsemigroup T1 of S2, a subsemigroup T2 of S3, and surjective morphisms
π1 : T1 −→ S1 and π2 : T2 −→ S2. Let us set T = π−1

2 (T1). Then T is a
subsemigroup of S3 and S1 is a quotient of T , since π1(π2(T)) = π1(T1) = S1.
Therefore, S1 divides S3.

Proposition 3.7. Two finite semigroups that divide each other are isomorphic.

Proof. This proof uses the notations of the proof of Proposition 3.6 with S3 =
S1. Since T1 is a subsemigroup of S2 and T2 is a subsemigroup of S1, then
|T1| ≤ |S2| and |T2| ≤ |S1|. Furthermore, since π1 and π2 are surjective, then
|S1| ≤ |T1| and |S2| ≤ |T2|. It follows that |S1| = |T1| = |S2| = |T2|, and thus
T1 = S2 and T2 = S1, up to isomorphism. Finally, π1 and π2 are bijections and
therefore, S1 and S2 are isomorphic.

Finally, a morphism of pointed semigroups from a pointed semigroup (S, X)
into a pointed semigroup (T, Y) is a semigroup morphism ϕ : S −→ T such
that ϕ−1(Y) = X . The notions of subsemigroups, quotient, and division can
be easily adapted in the context of pointed semigroups, and the two previous
results also hold in this case.

26 CHAPTER 3. ALGEBRA AND AUTOMATA

A congruence on a semigroup S is an equivalence relation ∼ such that s ∼ t
implies xsy ∼ xty, for each s, t ∈ S and each x, y ∈ S1. The quotient set S/∼ of
equivalence classes of S is naturally equipped with a structure of semigroup. The
function which maps every element onto its equivalence class is the canonical
morphism from S onto S/∼. When two congruences are comparable, their
associated quotient structures can also be compared.

Proposition 3.8. Let ∼1 and ∼2 be two congruences on a semigroup S. If ∼2

is coarser than ∼1, then S/∼2 is a quotient of S/∼1.

Proof. Let π1 : S −→ S/∼1 and π2 : S −→ S/∼2 be the corresponding
canonical morphisms. Since ∼2 is coarser than ∼1 and since π1 is surjective,
the relation π2 ◦ π−1

1 is a function from S/∼1 into S/∼2. Since π1 and π2 are
morphisms and π2 is onto, this function is a surjective morphism. Therefore,
S/∼2 is a quotient of S/∼1.

For any semigroup morphism ϕ from S into T , the equivalence ∼ϕ on S
defined by s ∼ϕ t if and only if ϕ(s) = ϕ(t) is a congruence called the nuclear
congruence of ϕ. In addition, given a subset P of a semigroup S, the syntactic
congruence of P is the congruence ∼P over S defined by s ∼P t if and only
if xsy ∈ P ⇔ xty ∈ P , for every x, y ∈ S1. The quotient semigroup S/∼P is
called the syntactic semigroup of P and the canonical morphism from S onto
S/∼P is the syntactic morphism of P .

Let A be an alphabet. The set A+ equipped with the concatenation is a
semigroup called the free semigroup on A. The set A∗ is called the free monoid
on A. The following universal property justifies this terminology.

Proposition 3.9. Let ϕ be a function from A into a semigroup S. Then there
exists a unique semigroup morphism ϕ̄ : A+ −→ S such that ϕ̄(a) = ϕ(a), for
each a ∈ A.

Proof. The mapping ϕ̄ from A+ into S defined by

ϕ̄(a0a1 · · · an) = ϕ(a0)ϕ(a1) · · ·ϕ(an),

for every finite word a0a1 · · · an, is the required morphism. In addition, any
other morphism ϕ̄′ such that ϕ̄′(a) = ϕ(a) for each a ∈ A must satisfy the
previous equalities. Therefore, ϕ̄ is unique.

In particular, the morphism from S+ onto S induced by the identity over S is
called the natural morphism associated with S. This leads to the mention of
the following useful corollary.

Corollary 3.10. Let µ : A+ −→ S be a morphism and σ : T −→ S be a
surjective morphism. Then there exists a morphism ϕ : A+ −→ T such that
µ = σ ◦ ϕ.

Proof. Let us associate with each letter a ∈ A an element ϕ(a) of σ−1(µ(a)).
This defines a function ϕ : A −→ T , which, by Proposition 3.9, can be extended
to a morphism ϕ : A+ −→ T such that µ = σ ◦ ϕ.

3.1. SEMIGROUPS 27

A+ ϕ
> T

S

σ

<

µ

>

We now introduce the different ideals of a semigroup. Let S be a semigroup.
A left ideal L of S if a subset L of S such that S1L ⊆ L. Symmetrically, a
right ideal R of S if a subset R of S such that RS1 ⊆ R. An ideal I of S is
a subset which is simultaneously a left and right ideal of S. If K is a subset
of S, the ideal (resp. left ideal, right ideal) generated by K is the set S1KS1

(resp. S1K, KS1). In addition, a nonempty ideal I of S is called minimal if,
for every nonempty ideal J of S, the relation J ⊆ I implies J = I. Minimal
left and right ideals are defined similarly. Finally, a subset I of S is a universal
minimal ideal of S if it is a minimal ideal contained in every other ideal of S.
Universal minimal left and right ideals are defined similarly. We conclude by
the following result.

Proposition 3.11. Every finite nonempty semigroup has a unique minimal
ideal.

Proof. Let S be a nonempty finite semigroup. Since S itself is a nonempty
ideal, there exists at least a minimal ideal in S. In addition, let I1 and I2

be two minimal ideals of S. One has S1I1I2S1 = (S1I11)(1I2S1) ⊆ I1I2, and
therefore, I1I2 is an ideal contained in I1 ∩ I2. The minimality of I1 and I2

implies I1 = I2.

Green’s relations are fundamental equivalence relations introduced by James
Alexander Green in 1951 [16]. They characterize the elements of a semigroup
in terms of the principal ideals they generate.

Given a semigroup S, we first introduce the following four preorder relations:

• x ≤L y if and only if there exists u ∈ S1 such that x = uy,

• x ≤R y if and only if there exists u ∈ S1 such that x = yu,

• x ≤J y if and only if there exist u, v ∈ S1 such that x = uyv,

• x ≤H y if and only if x ≤L y and x ≤R y.

These preorders can be reformulated in terms of ideals as follows: x ≤L y if
and only if S1x ⊆ S1y; x ≤R y if and only if xS1 ⊆ yS1; x ≤J y if and only if
S1xS1 ⊆ S1yS1; x ≤H y if and only if S1x ⊆ S1y and xS1 ⊆ yS1.

Green’s relations are the equivalence relations induced by these four pre-
orders, namely:

• x L y if and only if x ≤L y and y ≤L x, or equivalently S1x = S1y,

• x R y if and only if x ≤R y and y ≤R x, or equivalently xS1 = yS1,

• x J y if and only if x ≤J y and y ≤J x, or equivalently S1xS1 = S1yS1,

• x H y if and only if x L y and x R y.

Hence, two elements x and y are L-equivalent (resp. R-equivalent, J -equivalent)
if they generate the same left ideal (resp. right ideal, ideal). If K denotes one
of the Green’s relation, then both x ≤K y and x !K y will be denoted by x <K y.
The equivalence classes of the relations L, R, J , and H are respectively called

28 CHAPTER 3. ALGEBRA AND AUTOMATA

the L-classes, R-classes, J -classes and H-classes of S. For any element x ∈ S,
the L-class, R-class, J -class, and H-class of x are respectively denoted by L(x),
R(x), J (x), and H(x). The following proposition presents the basic stability
properties of the Green’s relation.

Proposition 3.12. In any semigroup S, the relations ≤R and R are stable on
the left and the relations ≤L and L are stable on the right.

Proof. If x ≤R t, then xS1 ⊆ yS1, and thus uxS1 ⊆ uyS1. Therefore, ux ≤R

uy, for every u ∈ S. The other cases are proved analogously.

We now introduce the fifth Green’s relation denoted by D. The relation D is
the least equivalence relation containing both L and R. The equivalence classes
of D are called the D-classes of S, and the D-class of an element x is denoted
by D(x). The two following results show that the relation D is actually equal
to L ◦ R and to R ◦ L.

Proposition 3.13. Let S be a semigroup. The preorder relations ≤R and ≤L

commute in S. The equivalence relations R and L commute in S.

Proof. Suppose that s ≤R r and r ≤L t. Then s = ru and r = vt, for some
u, v ∈ S1. Hence s = vtu ≤L tu ≤R t, and therefore, ≤R ◦ ≤L ⊆ ≤L ◦ ≤R. The
opposite inclusion holds by duality, and thus ≤L and ≤R commute. A similar
proof shows that the relations L and R also commute.

Corollary 3.14. D = L ◦ R = R ◦ L.

Proof. Let C = L ◦ R = R ◦ L. We first show that C is an equivalence
relation. It is clearly reflexive and symmetric. It is also transitive, since C ◦ C
= (L ◦ R) ◦ (L ◦ R) = L ◦(R ◦ L)◦ R = L ◦(L ◦ R)◦ R = (L ◦ L) ◦ (R ◦ R)
= L ◦ R = C. We finally show that C = D. Since C is an equivalence relation
containing both L and R, it contains also D. Conversely, one has C = L ◦ R ⊆
D ◦ D = D, which concludes the proof.

Therefore, the relation D can be equivalently defined as follows: x D y if and
only if there exists u ∈ S such that x L u and u R y, or equivalently, if and only
if there exists u ∈ S such that x R u and u L y. Corollary 3.14 ensures that
the three relations x D y, R(x)∩L(y) != ∅, and L(x)∩R(y) != ∅ are equivalent.
For this reason, a D-class is commonly represented by an “egg-box picture”, as
illustrated in Figure 3.1, where each row describes an R-class, each column an
L-class, and each cell an H-class.

In addition, the relation D is thinner than J . Indeed, if x D y, there exists
u ∈ S such that x L u and u R y. In other terms, one has S1x = S1u and
uS1 = yS1, and hence S1xS1 = S1yS1, that is x J y. The following diagram
summarizes the connections between the five Green’s relations, where arrows
stand for the usual implication.

x R y

x H y
==

==
=⇒

x D y ==⇒

=====⇒

x J y

x L y
==

==
=⇒

=====⇒

3.1. SEMIGROUPS 29

x

L(x)

R(x)

Figure 3.1: A D-class

The two following result focus on specific properties of the D-classes and H-
classes. The first proposition describes the structure of a D-class. The second
one gives a characterization of the H-classes that are groups.

Proposition 3.15 (Green’s lemma). Let x and y be two R-equivalent el-
ements of a semigroup S. If x = yu and y = xv for some u, v ∈ S1, the
mappings s)→ su and s)→ sv define inverse bijections between L(x) and L(y),
and these bijections preserve the H-classes.

Proof. Let x′ ∈ L(x). Since L is stable on the right, then x′v ∈ L(xv) = L(y).
Furthermore, there exists p ∈ S1 such that x′ = px, and thus x′vu = pxvu =
pyu = px = x′. Similarly, if y′ ∈ L(y), then y′uv = y′. Therefore, the maps
s)→ su and s)→ sv define inverse bijections between L(x) and L(y). Finally,
Proposition 3.12 ensures that these maps preserve the H-classes.

Proposition 3.16. Let H be an H-class of a semigroup S. Then H contains
an idempotent if and only if H is a group.

Proof. If H is a group, then it contains an idempotent: its identity element.
Conversely, let e be an idempotent of H . We first show that e is an identity
for the elements of H . Let x ∈ H , then x L e and x R e. Hence, there exist
u, v ∈ S1 such that x = eu and x = ve, and thus ex = eeu = eu = x and
xe = vee = ve = x. We now show H is a semigroup. Let x, y ∈ H . The
relation y R e implies that e = yy′, for some y′ ∈ S1. Hence, by setting ȳ = y′e,
one obtains xyȳ = xyy′e = xee = xe = x. Thus x = xyȳ ≤R xy ≤R x,
meaning that xy ∈ R(x). We shall prove similarly that xy ∈ L(y). Therefore,
xy ∈ R(x) ∩ L(y) = H and H is a semigroup. Finally, for each x ∈ H ,
the Green’s lemma ensures that the map s)→ sx is a permutation on H . In
particular, there exists x̄ ∈ H such that x̄x = e. Therefore, the class H is a
group with identity e.

In the sequel, we will particularly focus on the restriction of the preorder
≤H to the set of idempotents of a semigroup S. This preorder is called the
natural order on E(S) and is denoted by ≤. The next proposition shows that
this preorder is actually a partial ordering.

Proposition 3.17. Let S be a semigroup and let e and f be two idempotents of
S. The following conditions are equivalent:

30 CHAPTER 3. ALGEBRA AND AUTOMATA

(1) e ≤ f,

(2) ef = fe = e,

(3) fef = e.

Proof. We first show the equivalence between (1) and (2). If e ≤ f , then
e ≤L f and e ≤R f . Therefore, there exist u, v ∈ S1 such that e = fu = vf .
It follows that ef = vff = vf = e and fe = ffu = fu = e. Conversely, if
ef = fe = e, then e ≤L f and e ≤R f , and thus e ≤ f . We now prove the
equivalence between (2) and (3). If fef = e, then ef = feff = fef = e and
fe = ffef = fef = e. Conversely, if ef = fe = e, then fef = f(ef) = fe =
e.

The following two propositions concern some properties of the Green’s rela-
tions in finite semigroups.

Proposition 3.18. In a finite semigroup S, the relations J and D are equal.

Proof. If x D y, there exists z ∈ S such that x L z and z R y. Therefore,
x J z and z J y, that is x J y. Conversely, assume that x J y. Then there
exist u, v, u′, v′ ∈ S1 such that uxv = y and u′yv′ = x. Hence (u′u)x(vv′) = x
and thus (u′u)kx(vv′)k = x, for every k > 0. In particular, since S is finite, one
may choose k as the exponent π of S. Therefore, the elements e = (u′u)π and
f = (vv′)π are idempotents and one has x = exf . It follows that (u′u)πx =
ex = eexf = exf = x and x(vv′)π = xf = exff = exf = x. Hence ux L x and
xv R x. Then the right stability of L implies y = uxv L xv. Finally, the two
relations y L xv and xv R x imply y D x.

Proposition 3.19. Let S be a finite semigroup and let x, y ∈ S.

(1) x J y and x ≤R y implies x R y.

(2) x J y and x ≤L y implies x L y.

Proof. By symmetry, it suffices to prove the first assertion. Since x J y, there
exists u, v ∈ S1 such that y = uxv. Since x ≤R y, there also exists t ∈ S1 such
that x = yt. It follows that y = uytv = uky(tv)k, for all k > 0. In particular,
since S is finite, one may choose k as the exponent π of S. Therefore, the
elements e = uπ and f = (tv)π are idempotents, and y = uπy(tv)π = eyf =
eyff = yf = y(tv)π . This implies y R yt = x.

3.1.2 Infinite words in finite semigroups.

We now describe the specific behavior of infinite words in finite semigroups. For
that purpose, we introduce the key notion of a linked pair. We show that every
infinite word in a finite semigroup can be associated with a specific equivalence
class of linked pairs which witnesses the way it can be factorized. This way,
two infinite words are associated with a same class of linked pairs if and only
if they can be factorized into the same form. Linked pairs will be of special
importance, when considering infinite words of finite semigroups from a playful
perspective. A more detailed analysis of this issue can be found in [27, Chapter
II - 2].

3.1. SEMIGROUPS 31

Given a semigroup S, a pair (s, e) ∈ S2 is called a linked pair if se = s
and e is idempotent. The elements s and e are respectively called the prefix
and the idempotent of the linked pair. The set of all prefixes of linked pairs
of S is denoted by P (S), or simply by P if the semigroup involved is clear
from the context. The set of idempotents associated with a given prefix s is
defined by E(s, S) = {e ∈ E(S) | se = s}, and is simply denoted by E(s) when
the semigroup involved is clear from the context. In addition, two linked pairs
(s, e) and (s′, e′) of S2 are said to be conjugate, denoted by (s, e) =c (s′, e′), if
there exist x, y ∈ S1 such that e = xy, e′ = yx, and s′ = sx. The following
lemma shows that the conjugacy relation between linked pairs is an equivalence
relation. The conjugacy class of a linked pair (s, e) of S2 will be denoted by

[s, e] =
{

(s′, e′) ∈ S2 | (s′, e′) =c (s, e)
}

.

Lemma 3.20. The conjugacy relation on linked pairs is an equivalence relation.

Proof. Reflexivity is trivial. For the symmetry, if (s, e) =c (s′, e′), there exist
x, y ∈ S1 such that e = xy, e′ = yx, and s′ = sx. Therefore, s = se = sxy =
s′y, meaning that (s′, e′) =c (s, e). For the transitivity, if (s, e) and (s′, e′)
are conjugate and (s′, e′) and (s′′, e′′) are conjugate, then there exist elements
x, y, x′, y′ ∈ S1 such that

s′ = sx, e = xy, e′ = yx, s′′ = s′x′, e′ = x′y′, e′′ = y′x′.

Hence x′y′ = yx, and thus (xx′)(y′y) = x(x′y′)y = x(yx)y = (xy)(xy) = e.
Similarly (y′y)(xx′) = y′(x′y′)x′ = e′′, and also s(xx′) = s′′. Therefore, (s, e)
and (s′′, e′′) are conjugate.

Given a semigroup S, an infinite sequence of elements of S is called an infinite
word of S. Infinite words will be generally written in the form a0a1a2 · · · ,
instead of (a0, a1, a2, · · ·). If α = (xn)n∈N and β = (yn)n∈N are two infinite
words of S, then β is said to be a factorization of α if there exists a strictly
increasing sequence of integers (kn)n≥0 such that y0 = x0 · · ·xk0−1 and yn+1 =
xkn · · ·xkn+1−1, for each n ≥ 0. Factorizations of such infinite words will be
generally denoted by use of parentheses. For instance, if ab = c, then the infinite
word (ab)(ab)(ab)(ab) · · · = cccc · · · is a factorization of abababab · · · . The two
following propositions tightly bind infinite words over finite semigroups with
conjugacy classes of linked pairs.

Proposition 3.21. Let S be a finite semigroup and let α = (xn)n∈N be an
infinite word of S. Then there exist a linked pair (s, e) of S2, and a factorization
(kn)n∈N of α such that both x0x1 · · ·xk0−1 = s and xknxkn+1 · · ·xkn+1−1 = e,
for all n ≥ 0.

In this case, the infinite word α is said to be associated with the linked pair
(s, e). One also says that α can be factorized into the form seee · · · .

Proof. We inductively define a sequence of pairs (Ui, ni), where Ui is an infinite
subset of N and ni = min Ui. First of all, let us set U0 = N and thus n0 = 0.
Then, suppose that Ui and ni have already been defined. Since S is finite, there
exists at least one element si ∈ S such that the set

T = {n ∈ Ui | xni · · ·xn−1 = si}

32 CHAPTER 3. ALGEBRA AND AUTOMATA

is infinite. Therefore, one sets Ui+1 = T and ni+1 = min Ui+1. The sequence
on indices (n0, n1, n2, . . .) is illustrated in Figure 3.2. By construction, one has
xni · · ·xni+j−1 = si, for all i ≥ 0 and j > 0. Hence, since S is finite again, there
exists an element e of S such that si = e for infinitely many integers i. These
integers define a subsequence of indices (m0, m1, . . .) such that x0 · · ·xm0−1 = t
and xmi · · ·xmi+j−1 = e, for all i ≥ 0 and j > 0, as illustrated in Figure 3.3. In
addition, the element e is idempotent:

e = xm0 · · ·xm1−1 = xm1 · · ·xm2−1 = xm0 · · ·xm2−1 = ee.

Finally, the required linked pair and sequence of indices are obtained by setting
(s, e) = (te, e) and ki = mi+1, for all i ≥ 0: indeed, one has

se = tee = te = s and e2 = e,

x0 · · ·xk0−1 = x0 · · ·xm0−1xm0 · · ·xm1−1 = te = s,

xkn · · ·xkn+1−1 = xmn+1 · · ·xmn+2−1 = e , for all n > 0.

α

s0

s0

s1 s2

s1

s0

n0 n1 n3n2

. . .

Figure 3.2: The sequence of indices.

. . .

m1 m2m0

e

ee

t

α

Figure 3.3: The subsequence of indices.

Proposition 3.22. Let S be a finite semigroup. There exists an infinite word
of S which can be associated with different linked pairs if and only if these linked
pairs are conjugate.

3.2. SEMIGROUPS AND RATIONAL LANGUAGES 33

Proof. Assume that there exists an infinite word α = (si)i∈N of Sω associ-
ated with two different linked pairs (s, e) and (s′, e′). Then there exist two
factorizations (kn)n∈N and (ln)n∈N of α, such that

s0 · · · sk0−1 = s and skn · · · skn+1−1 = e, for all n ≥ 0,

s0 · · · sl0−1 = s′ and sln · · · sln+1−1 = e′, for all n ≥ 0.

Notice that since (s, e) and (s′, e′) are linked pairs, any subsequence of (kn)n∈N

and (ln)n∈N still verifies the relations above, and therefore, up to considering
subsequences of (kn)n∈N and (ln)n∈N, we may assume that ki ≤ li ≤ ki+1, for
all i. In addition, let us set xi = ski · · · sli−1 and yi = sli · · · ski+1−1, for all i.
Since S is finite, there exists a pair (x, y) such that (xi, yi) = (x, y) for infinitely
many indices i. Let p and q be any two such indices such that p < q. Then

xslp · · · skq−1 = e , slp · · · skq−1x = e′ , and sx = s′,

showing that the linked pairs (s, e) and (s′, e′) are effectively conjugate. Con-
versely, let (s, e) and (s′, e′) be two conjugate linked pairs. There exist elements
x, y ∈ S1 such that sx = s′, e = xy, and e′ = yx. Therefore, the infinite word
α = s(xy)ω of Sω is associated with the two linked pairs (s, e) and (s′, e′).

Corollary 3.23. Let S be a finite semigroup, and let α and β be two infinite
words of S such that β is a factorization of α. Then the linked pairs associated
with α and β are conjugate.

Proof. Let (s, e) and (t, f) be two linked pairs associated with α and β, re-
spectively. Since β is a factorization of α, the linked pair (t, f) is also associated
with the infinite word α. Therefore, the two linked pairs (s, e) and (t, f) are
associated with α, and Proposition 3.22 shows that these linked pairs are con-
jugate.

Given a finite semigroup S, Propositions 3.21 and 3.22 ensure the existence
of an onto mapping

π : Sω −→
{

[s, e] : (s, e) is a linked pair of S2
}

defined by π
(

(sn)n∈N = [s, e], where (s, e) is a linked pair associated with the
infinite word (sn)n∈N in the sense of Proposition 3.21. Proposition 3.22 ensures
that this mapping is consistently defined, since its definition is independent of
the choice of the linked pair. This mapping will be of a particular importance
in the description of finite ω-semigroups.

3.2 Semigroups and rational languages

3.2.1 Semigroups and automata

The algebraic approach to automata theory presents semigroups as the alge-
braic counterpart of automata reading finite words. This section provides the
description of this tight correspondence. We first give the algebraic definition
of recognizable sets. We then show that one can shift from an automaton to a
semigroup recognizing the same language, and conversely, from a semigroup to
an automaton recognizing the same language.

34 CHAPTER 3. ALGEBRA AND AUTOMATA

Let S and T by two semigroups. A surjective morphism of semigroups ϕ :
S −→ T recognizes a subset I of S if there exists a subset J of T such that
ϕ−1(J) = I. By extension, a semigroup T recognizes a subset I of S if there
exist a surjective morphism ϕ : S −→ T that recognizes I. Finally, a subset is
said to be recognizable if it is recognized by a finite semigroup.

Example 3.24. Let A = {a, b} be an alphabet, let U1 be the semigroup {0, 1}
equipped with usual multiplication, and let ϕ be the surjective morphism from
A+ onto U1 induced by the equalities ϕ(a) = 0 and ϕ(b) = 1. Then the lan-
guages of A+ recognized by ϕ are the following: ϕ−1(∅) = ∅, ϕ−1(0) = A∗aA∗,
ϕ−1(1) = b+, and ϕ−1({0, 1}) = A+.

The two following propositions describe the equivalence between automata
and semigroups. We show that the working of an automaton can be simulated by
a specific morphism of semigroups, and conversely, the behavior of a morphism
from the free semigroup can be described by a specific automaton. These results
provide two constructions: firstly, given an automaton on finite words, one can
build a semigroup recognizing the same language; secondly, given a semigroup
recognizing a certain language, one can build an automaton recognizing the same
language. These constructions do not require any finiteness assumption on the
semigroup or the automaton involved. But when applied to finite structures,
these constructions are obviously effective. Therefore, the languages recognized
by finite automata and by finite semigroups coincide and precisely correspond
to the rational languages.

Proposition 3.25. Given any automaton on finite words, there exists a semi-
group recognizing the same language.

Proof. Let A = (Q, A, E, I, F) be an automaton on finite words recognizing the
language L(A) of A+. We built a surjective morphism of semigroups recognizing
L(A). Let R(Q) be the semigroup of binary relations on Q equipped with the
usual concatenation on relations, and let ϕA be the mapping from A+ into R(Q)
which associates with each word u the set of couples of states related by u in
A, that is

ϕA(u) =
{

(p, q) ∈ Q×Q | there exists a path p
u
−→ q in A

}

.

Then ϕA is a morphism of semigroups. Therefore, the set SA = ϕA(A+) is
a semigroup and the restriction ϕA : A+ −→ SA is a surjective morphism of
semigroups. Moreover, the definition of ϕA implies

L(A) = ϕ−1
A {r ∈ SA | r ∩ (I × F) != ∅} .

Consequently, the semigroup morphism ϕA recognizes the language L(A).

Proposition 3.26. Given a semigroup recognizing a certain language, there
exists an automaton on finite words recognizing the same language.

Proof. Let ϕ : A+ −→ S be a morphism of semigroups recognizing the lan-
guage L. Then there exists a subset F of S such that ϕ−1(F) = L. Now, let
Aϕ be the deterministic automaton defined as follows: the set of states is the
monoid S1; the initial state is the identity of the monoid; the set of final states

3.2. SEMIGROUPS AND RATIONAL LANGUAGES 35

is F ; the transition function is given by δ(q, a) = qϕ(a), and can be naturally
extended to δ∗ : Q×A∗ −→ Q defined by δ∗(q, u) = qϕ(u). We prove that the
language L(Aϕ) recognized by Aϕ corresponds precisely to L. One has

L(Aϕ) = {u ∈ A+ : δ∗(1, u) ∈ F} = {u ∈ A+ : 1ϕ(u) ∈ F}

= {u ∈ A+ : ϕ(u) ∈ F} = ϕ−1(F) = L.

The semigroup SA defined in the first part of the proof is called the tran-
sition semigroup of the automaton A. For practical computations, it can be
represented as a semigroup of boolean matrices of order |Q|× |Q| by setting

ϕA(u)p,q =

{

1 if there exists a path p
u
−→ q in A,

0 otherwise.

The following two examples illustrate the equivalence between automata and
semigroups in the case of finite structures. Firstly, starting from a finite au-
tomaton, we build the transition semigroup morphism. Secondly, starting from
a surjective semigroup morphism from the free structure, we build the corre-
sponding automaton.

Example 3.27. Consider the finite automaton A = (Q, A, E, I, F) represented
in Figure 3.4 and recognizing the language L = (ab)+. Then the transition
semigroup of A is given by

SA =
{(

0
0

0
0

)

,
(

0
1

0
0

)

,
(

0
0

1
0

)

,
(

1
0

0
0

)

,
(

0
0

0
1

)}

equipped with the usual matrix multiplication, and the semigroup morphism ϕA

from A+ onto SA is induced by the equalities ϕA(a) =
(0

0
1
0

)

and ϕA(b) =
(0

1
0
0

)

.

One has ϕ−1
A

((1
0

0
0

))

= (ab)+, and thus the semigroup SA also recognizes the
language L.

q0 q1

a

b

Figure 3.4: An automaton recognizing the language L = (ab)+.

Example 3.28. Consider the finite semigroup S = {0, 1} equipped with the
usual multiplication, the surjective morphism of semigroups ϕ from A+ =
{a, b}+ onto S defined by ϕ(a) = 0 and ϕ(b) = 1, and the language L =
A+aA+ = ϕ−1{0} recognized by S. Then L is also recognized by the finite
automaton illustrated in Figure 3.5.

36 CHAPTER 3. ALGEBRA AND AUTOMATA

1 0
a

b a, b

Figure 3.5: An automaton recognizing the langauge L = A+aA+.

3.2.2 Syntactic semigroups

The notion of a syntactic semigroup is central in the algebraic approach to for-
mal languages. Many properties on rational languages can be characterized on
their syntactic structures. For instance, Schützenberger’s theorem state that
a rational language is star-free if and only if its syntactic semigroup is aperi-
odic [28, 29]. In addition, the syntactic semigroup of a rational language is
precisely the transition semigroup of the minimal automaton recognizing this
language. In this section, we show that the syntactic semigroup of a language
is the unique (up to isomorphism) minimal (for the division order) semigroup
recognizing this language. We also prove that the morphism reduction between
rational languages corresponds precisely to the division relation on their syn-
tactic structures, a result that will be generalized to the case of infinite words.

Let L be a language of A+. The syntactic congruence of L is the congruence
∼L over A+ defined by u ∼L v if and only if xuy ∈ L⇔ xvy ∈ L, for every x, y ∈
A∗. The quotient semigroup S(L) = A+/∼L is called the syntactic semigroup of
L, and the canonical morphism µ from A+ onto S(L) is the syntactic morphism
of L. The syntactic pointed semigroup (S(L), µ(L)) is denoted by Synt(L).
The two following results show that the syntactic semigroup of a language is
the smallest semigroup recognizing this language.

Proposition 3.29. Let L be a language of A+. Then S(L) recognizes L.

Proof. Let µ : A+ −→ S(L) be the syntactic morphism of L. We show that
µ−1(µ(L)) = L. The inclusion L ⊆ µ−1(µ(L)) is obvious. Conversely, let
u ∈ µ−1(µ(L)). Then µ(u) ∈ µ(L), and there exists v ∈ L such that µ(v) = µ(u),
meaning that v ∼L u. Since both v ∼L u and v ∈ L, one obtains u ∈ L, by
setting x = y = ε in the definition of ∼L. Thus µ−1(µ(L)) ⊆ L. Finally, by
setting P = µ(L) ⊆ S(L), one has µ−1(P) = L. Therefore, S(L) recognizes
L.

Proposition 3.30. Let L be a language of A+ and let S be a semigroup. Then
S recognizes L if and only if S(L) divides S.

Proof. Assume that S(L) divides S, and let µ be the syntactic morphism of
L. Then, there exist a semigroup T , an injective morphism ι from T into S,
and a surjective morphism σ from T onto S(L). By Corollary 3.10, there exists
a morphism ϕ from A+ into T such that σ ◦ϕ = µ. Now, set P = ι(σ−1(µ(L))).

3.2. SEMIGROUPS AND RATIONAL LANGUAGES 37

Since ι is injective and µ is the syntactic morphism of L, one obtains

(ι ◦ ϕ)−1(P) = ϕ−1(ι−1(ι(σ−1(µ(L))))) = ϕ−1(σ−1(µ(L))) = µ−1(µ(L)) = L.

Therefore, S recognizes L. Conversely, assume that S recognizes L. There exist
a morphism ϕ from A+ onto S, and a subset P of S, such that ϕ−1(P) = L. Let
us set T = ϕ(A+). Then T is a subsemigroup of S. Now, assume that u ∼ϕ v
and let x, y ∈ A∗. One has

xuy ∈ L⇔ ϕ(xuy) ∈ P ⇔ ϕ(x)ϕ(u)ϕ(y) ∈ P

⇔ ϕ(x)ϕ(v)ϕ(y) ∈ P ⇔ ϕ(xvy) ∈ P ⇔ xvy ∈ L.

Hence, the relation u ∼ϕ v implies u ∼L v, and Proposition 3.8 shows that S(L)
is a quotient of T . Therefore, S(L) divides S.

Let K and L be two languages of A+ and B+, respectively. One says that
the language K reduces by morphism to L if there exists a semigroup morphism
ϕ : A+ −→ B+ such that ϕ−1(L) = K. We show that the morphism reduction
between rational languages coincides with the division relation on their syntactic
pointed semigroups.

Proposition 3.31. Let K and L be two rational languages of A+ and B+,
respectively. Then K reduces by morphism to L if and only if Synt(K) divides
Synt(L).

Proof. Let µ and ν be the syntactic morphisms of K and L, respectively.
Assume that K reduces by morphism to L. Then there exists a semigroup
morphism ϕ : A+ −→ B+ such that ϕ−1(L) = K, as illustrated below. We

µ

Synt(K)

(B+, L)

Synt(L)

(A+, K)

ν
f

ϕ

show that the mapping f = ν ◦ ϕ is a morphism of pointed semigroups from
(A+, K) into Synt(L). By composition, it is clearly a semigroup morphism.
Moreover, since ν is the syntactic morphism of L, then

f−1(ν(L)) = ϕ−1(ν−1(ν(L))) = ϕ−1(L) = K.

Hence (f(A+), ν(L)) is a pointed subsemigroup of Synt(L). We now prove that
the relation u ∼f v implies u ∼K v. Let u, v ∈ A+ such that u ∼f v, and let
x, y ∈ A∗. Then

xuy ∈ K ⇔ ϕ(xuy) ∈ L⇔ ν(ϕ(xuy)) ∈ ν(L)⇔ f(xuy) ∈ ν(L)

⇔ f(x)f(u)f(y) ∈ ν(L)⇔ f(x)f(v)f(y) ∈ ν(L)

⇔ f(xvy) ∈ ν(L)⇔ xvy ∈ f−1(ν(L)) = K.

Hence, Proposition 3.8 shows that Synt(K) is a quotient of (f(A+), ν(L)).
Therefore, Synt(K) divides Synt(L). Conversely, assume that Synt(K) divides

38 CHAPTER 3. ALGEBRA AND AUTOMATA

Synt(L). Then there exist a pointed semigroup (S, P), an injective morphism
ι : (S, P) −→ Synt(L), and a surjective morphism σ : (S, P) −→ Synt(K), as
illustrated below. Since σ and ι are morphisms of pointed ω-semigroups, the

(S, P)Synt(K) Synt(L)

(A+, K) (B+, L)

ν
f

g

ισ

µ

equalities σ−1(µ(K)) = P = ι−1(ν(L)) hold. Now, since A+ is free and σ is sur-
jective, Proposition 3.10 ensures that there exists a morphism of ω-semigroups
f : A+ → S such that σ ◦ f = µ. In addition, since µ is the syntactic morphism
of K, then

f−1(P) = f−1(σ−1(µ(K))) = µ−1(µ(K)) = K.

Thus f : (A+, K) −→ (S, P) is a morphism of pointed ω-semigroups. By com-
position, the mapping ι ◦ f from (A+, K) into Synt(L) is also a morphism of
pointed ω-semigroups. Once again, since A+ is free and ν is surjective, there
exists a morphism of free semigroups g : A+ −→ B+ such that ν ◦ g = ι ◦ f .
Moreover, since ν is the syntactic morphism of L, one has

g−1(L) = g−1(ν−1(ν(L))) = f−1(ι−1(ν(L))) = f−1(P) = K.

Therefore, K reduces to L by morphism.

3.3 ω-Semigroups

3.3.1 Generalities

The notion of an ω-semigroup was first introduced by Jean-Eric Pin [26, 30] as
a generalization of semigroups. In case of finite structures, these objects repre-
sent a convincing algebraic counterpart to automata reading infinite words. In
this section, we present general definitions and results concerning ω-semigroups.
Some statements are straightforward generalizations of results presented in Sec-
tion 3.1.1. Their proofs will be omitted in this case.

Definition 3.32 (see [27, p. 92]). An ω-semigroup is an algebra consisting of
two components, S = (S+, Sω), and equipped with the following operations:

• a binary operation on S+, denoted multiplicatively, such that S+ equipped
with this operation is a semigroup;

• a mapping S+ × Sω −→ Sω, called mixed product, which associates with
each pair (s, t) ∈ S+ × Sω an element of Sω, denoted by st, and such that
for every s, t ∈ S+ and for every u ∈ Sω, then s(tu) = (st)u;

• a surjective mapping πS : Sω
+ −→ Sω, called infinite product, which is

compatible with the binary operation on S+ and the mixed product in the

3.3. ω-SEMIGROUPS 39

following sense: for every strictly increasing sequence of integers (kn)n>0,
for every sequence (sn)n≥0 ∈ Sω

+, and for every s ∈ S+, then

πS(s0s1 · · · sk1−1, sk1 · · · sk2−1, . . .) = πS(s0, s1, s2, . . .),

sπS(s0, s1, s2, . . .) = πS(s, s0, s1, s2, . . .).

Intuitively, an ω-semigroup is a semigroup equipped with a suitable infinite
product. The conditions on the infinite product ensure that one can replace
the notation πS(s0, s1, s2, . . .) by the notation s0s1s2 · · · without ambiguity. In
addition, since an ω-semigroup is a pair (S+, Sω), it is convenient to call +-
subsets and ω-subsets for the subsets of S+ and Sω, respectively. Then given an
ω-subset X ⊆ Sω and an element u of S+, we set

uX = {uα ∈ Sω | α ∈ X},

u−1X = {α ∈ Sω | uα ∈ X}.

An ω-semigroup is said to be finite if its first component is a finite semigroup.
It is infinite otherwise. In the sequel, we will essentially focus on finite ω-
semigroups. Finally, a pointed ω-semigroup is a pair (S, X), where S is an
ω-semigroup and X is a subset of S.

Example 3.33. The trivial ω-semigroup is the finite ω-semigroup 1 = ({1}, {a}),
obtained by equipping the trivial semigroup {1} with the infinite product π
defined by π(1, 1, 1, . . .) = a.

Example 3.34. The set S = ({0, 1}, {a}) is an ω-semigroup for the operations
defined as follows: the set {0, 1} is equipped with the usual multiplication and
every infinite product is equal to a.

Given two ω-semigroups S = (S+, Sω) and T = (T+, Tω), a morphism of ω-
semigroups from S into T is a pair ϕ = (ϕ+,ϕω), where ϕ+ : S+ −→ T+ is a
semigroup morphism and ϕω : Sω −→ Tω is a mapping preserving the infinite
product in the following sense: for every infinite sequence (sn)n∈N of elements
of S+,

ϕω(s0s1s2 · · ·) = ϕ+(s0)ϕ+(s1)ϕ+(s2) · · · .

In this case, the morphism ϕ also preserves the mixed product, that is, for
every s ∈ S+ and for every t ∈ Sω, then ϕ+(s)ϕω(t) = ϕω(st). Indeed, given
t = t0t1t2 · · · , one has

ϕ+(s)ϕω(t) = ϕ+(s)ϕω(t0t1t2 · · ·)

= ϕ+(s)ϕ+(t0)ϕ+(t1)ϕ+(t2) · · ·

= ϕω(st0t1t2 · · ·) = ϕω(st).

As in the semigroup context, a morphism of ω-semigroups ϕ : S −→ T is an
isomorphism if there exists another morphism ψ : T −→ S such that ϕ◦ψ = idT

and ψ◦ϕ = idS . Isomorphic ω-semigroups are generally assumed to be identical.
By this convention, one says that S is an ω-subsemigroup of T if there exists
an injective morphism from S into T . The ω-semigroup S is a quotient of T if
there exists a surjective morphism from T onto S. The ω-semigroup S divides T
if S is quotient of an ω-subsemigroup of T . A straightforward generalization of

40 CHAPTER 3. ALGEBRA AND AUTOMATA

propositions 3.6 and 3.7 shows that the division relation is transitive and that
it is a partial order on finite ω-semigroups, up to isomorphism.

Finally, a morphism of pointed ω-semigroups from (S, X) into (T, Y) is mor-
phism of ω-semigroups ϕ : S −→ T such that ϕ−1(Y) = X . The notions of
subsemigroups, quotient, and division can be easily adapted in the context of
pointed ω-semigroups.

A congruence of an ω-semigroup S = (S+, Sω) is a pair (∼+,∼ω), where the
relation ∼+ is a semigroup congruence on S+, the relation ∼ω is an equivalence
relation on Sω, and these relations are stable for the infinite and the mixed
products: if (s0, s1, . . .) and (t0, t1, . . .) are sequences of elements of S+ such
that si ∼+ ti, for every i ≥ 0, then s0s1s2 · · · ∼ω t0t1t2 · · · , and if s, s′ ∈ S+ and
x, x′ ∈ Sω are such that s ∼+ s′ and x ∼ω x′, then sx ∼ω s′x′. The quotient set
S/∼ = (S/∼+, S/∼ω) is naturally equipped with a structure of ω-semigroup.
In addition, if (∼i)i∈I is a family of congruences on a an ω-semigroup, then the
congruence ∼, defined by s ∼ t if and only if s ∼i t for all i ∈ I, is called the
lower bound of the family (∼i)i∈I . The upper bound of the family (∼i)i∈I is the
lower bound of the congruences that are coarser than all the ∼i. The following
result is a straightforward generalization of Proposition 3.8.

Proposition 3.35. Let ∼1 and ∼2 be two congruences on an ω-semigroup S.
If ∼2 is coarser than ∼1, then S/∼2 is a quotient of S/∼1.

As in the context of semigroups, given a morphism of ω-semigroups ϕ from
S into T , the nuclear congruence of ϕ is the equivalence ∼ϕ on S defined by
s ∼ϕ t if and only if ϕ(s) = ϕ(t). However, the syntactic congruence cannot
be defined in such a convenient way as for semigroups. It will be presented
properly in a further section.

The notion of free structure can also be extended to the case of ω-semigroups.
Let A be an alphabet. The ω-semigroup A∞ = (A+, Aω) equipped with the
usual concatenation is the free ω-semigroup over the alphabet A. Indeed, this
ω-semigroup satisfies the following universal property characterizing free struc-
tures.

Proposition 3.36. Let A be an alphabet, S = (S+, Sω) be an ω-semigroup,
and ϕ be a function from A into S+. Then there exists a unique morphism of
ω-semigroups ϕ̄ : A∞ −→ S such that ϕ̄(a) = ϕ(a) holds, for each a ∈ A.

Proof. The mapping ϕ̄ from A∞ into S defined for each finite word a0a1 · · · an

and for each infinite word a0a1a2 · · · by the relations

ϕ̄(a0a1 · · ·an) = ϕ(a0)ϕ(a1) · · ·ϕ(an)

ϕ̄(a0a1a2 · · ·) = ϕ(a0)ϕ(a1)ϕ(a2) · · ·

is the required morphism. In addition, any other morphism ϕ̄ such that ϕ̄(a) =
ϕ(a) for every a ∈ A must satisfy the previous equalities. Therefore, ϕ̄ is
unique.

In particular, the morphism from S∞
+ onto S = (S+, Sω) induced by the identity

over S+ is called the natural morphism associated with S. The following result
is a generalization of Corollary 3.10.

3.3. ω-SEMIGROUPS 41

Corollary 3.37. Let µ : A∞ −→ S be a morphism of ω-semigroups, and
σ : T −→ S be a surjective morphism of ω-semigroups. Then, there exists a
morphism ϕ : A∞ −→ T such that µ = σ ◦ ϕ.

A∞ ϕ
> T

S

σ

<

µ

>

Finally, we define a topology over ω-subsets of ω-semigroups. Given an ω-
semigroup S = (S+, Sω) and an ω-subset X ⊆ Sω, then X is a basic open set of
Sω if and only if π−1

S (X) is an open subset of Sω
+, where Sω

+ is equipped with
the product topology of the discrete topology on S+. This topology is the final
topology on Sω defined by the infinite product πS , and it makes πS become a
continuous function by definition.

Remark 3.38. The topology defined by setting sSω as a basic open set for every
s ∈ S+ would be more natural at first sight. However, this topology is too weak
for our purpose. For example, in case S+ is a group, then Borel subsets of Sω
reduce to the empty set and the whole space: indeed, given any basic open set
sSω, then Sω = ss−1Sω ⊆ sSω, and thus sSω = Sω.

3.3.2 Finite ω-semigroups

We now particularly focus on finite ω-semigroups. First, we show that any
finite semigroup can be extended to a maximal (for the division relation) finite
ω-semigroup. Then, we prove that a finite ω-semigroup is entirely and uniquely
determined by some specific values of its infinite product.

Any finite semigroup can be extended to a finite ω-semigroup. Given a finite
semigroup S+, we set S = (S+, Sω), where Sω is defined by

Sω =
{

[s, e] | (s, e) is a linked pair of S2
+

}

.

We also set an infinite product πS : Sω
+ −→ Sω defined by πS

(

(sn)n≥0

)

= [s, e],
where (s, e) is a linked pair associated with (sn)n≥0 as described in Propo-
sition 3.21. Proposition 3.22 warrants that this mapping is consistently de-
fined. Finally, we set a mixed product from S+ × Sω into Sω defined by
x[s, e] = πS(x, s, e, e, e, . . .) = [xs, e]. We say that the structure S = (S+, Sω) is
induced by the semigroup S+. We prove that S is the maximal (for the division
relation) ω-semigroup containing S+ as first component.

Lemma 3.39. Let S = (S+, Sω) be induced by the finite semigroup S+. Then S
is a finite ω-semigroup.

Proof. We show that the mixed product defined above satisfies the required
property. Let x, y ∈ S+ and let [s, e] ∈ Sω, then

x(y[s, e]) = x[ys, e] = [x(ys), e] = [(xy)s, e] = (xy)[s, e].

We now show that the infinite product defined above also satisfies the required
properties. First, propositions 3.21 and 3.22 ensure that this product is a sur-
jective mapping from Sω

+ onto Sω. Now, let x ∈ S+, and let (sn)n∈N be an

42 CHAPTER 3. ALGEBRA AND AUTOMATA

infinite word of Sω
+ associated with the linked pair (s, e). Then, by definitions

of both the infinite and the mixed products, and by Corollary 3.23, the following
equalities hold:

xπS(s0, s1, s2, . . .) = x[s, e] = πS(x, s0, s1, s2, . . .),

πS(s0 · · ·k0−1 , sk0 · · ·k1−1 , . . .) = [s, e] = πS(s0, s1, s1, . . .).

Therefore, S = (S+, Sω) is a finite ω-semigroup.

Proposition 3.40. Let S = (S+, Sω) be induced by the finite semigroup S+.
Then every ω-semigroup containing S+ as first component is a quotient of S.

Proof. Lemma 3.39 shows that S = (S+, Sω) is a finite ω-semigroup. Now, let
T = (S+, Tω) be another ω-semigroup containing S+ as first component. Let
also ϕ = (ϕ+,ϕω) be the mapping from S into T defined as follows: ϕ+ = idS+ ,
and ϕω([s, e]) = πT (s, e, e, e, . . .). We prove that the mapping ϕω is consistently
defined. Let (s, e) and (s′, e′) be two conjugate linked pairs. Then there exist
x, y ∈ S1

+ such that s = s′y, e = xy, and e′ = yx. Therefore, the properties of
the infinite product ensure that

ϕω([s, e]) = πT (s, e, e, e, . . .)

= πT (s′y, xy, xy, xy, . . .)

= πT (s′, yx, yx, yx, . . .)

= πT (s′, e′, e′, e′, . . .)

= ϕω([s′, e′]).

We now show that ϕ is a morphism of ω-semigroups. Let (sn)n∈N be an infinite
word of Sω

+ associated with the linked pair (s, e). Then there exists a factoriza-
tion (kn)n∈N of α such that s0 · · · sk0−1 = s and ski−1 · · · ski−1 = e, for every
i > 0. Therefore, the properties of the infinite product implies

ϕ (πS(s0, s1, s2, . . .)) = ϕ ([s, e]) = πT (s, e, e, e, . . .)

= πT (s0 · · · sk0−1, sk0 · · · sk1−1, sk1 · · · sk2−1, . . .)

= πT (s0, s1, s2, . . .)

= πT (ϕ+(s0),ϕ+(s1),ϕ+(s2), . . .) .

By the same argument, we finally prove that ϕ is surjective. Let y ∈ Tω. Since
πT is surjective by definition, there exists α ∈ Sω

+ such that y = πT (α). By
setting x = πS(α) ∈ Sω, the equalities above show that ϕ(x) = ϕ(πS(α)) =
πT (α) = y. Therefore, T is a quotient of S.

Example 3.41. Consider the finite semigroup U1 = {0, 1} equipped with the
usual multiplication. The elements 0 and 1 are idempotents and the pairs (0, 0),
(0, 1), and (1, 1) are linked and pairwise non-conjugate. Therefore, the finite
semigroup U1 induces the finite ω-semigroup U = (U1, U1ω) given by

U1ω = {[0, 0], [0, 1], [1, 1]} .

In addition, the infinite product πU is defined by the relations

π−1
U ([0, 0]) = ({0, 1}∗0)ω : set of infinite words containing infinitely many 0’s,

π−1
U ([0, 1]) = {0, 1}∗01ω : set of infinite words containing finitely many 0’s,

π−1
U ([1, 1]) = 1ω : set of infinite words containing no 0 at all.

3.3. ω-SEMIGROUPS 43

Example 3.42. Given an integer n ≥ 0, consider the finite semigroup S+ =
{0, . . . , n} equipped with the max operation. The linked pairs are of the form
(i, j), for every i ≥ j. The semigroup S+ induces the finite ω-semigroup S =
(S+, Sω) given by

Sω = {[i, j] | j ≤ i and 0 ≤ i, j ≤ n}.

If we set i + 1 = {0. . . . , i} for every i ≥ 0, then for every 0 ≤ j ≤ i ≤ n, the
infinite product πS is defined by the relations

π−1
S ([i, j]) = (i + 1)∗i(j + 1)ω.

Now, we prove that a finite ω-semigroup is entirely and uniquely defined
by a finite amount of data, namely its underlying finite semigroup, its mixed
product, and some specific values of its infinite products. For that purpose, we
introduce another algebraic structure, the Wilke algebra, precisely defined by
these features. We then show that every finite Wilke algebra can be equipped,
in a unique way, with a structure of ω-semigroup.

Definition 3.43. A Wilke algebra is an algebra consisting of two components,
S = (S+, Sω), and equipped with the following operations:

• a binary operation on S+, denoted multiplicatively, such that S+ equipped
with this operation is a semigroup;

• a mapping S+ × Sω −→ Sω, called mixed product, which associates with
each pair (s, t) ∈ S+ × Sω an element of Sω, denoted by st, and such that
for every s, t ∈ S+ and for every u ∈ Sω, then s(tu) = (st)u;

• a mapping S+ −→ Sω, called ω-operation and denoted by s 4−→ sω, such
that every element of Sω can be written as stω, for some s, t ∈ S+, and
such that for every s, t ∈ Sω and for every integer n, then

s(ts)ω = (st)ω,

(sn)ω = sω.

First of all, we show that any finite semigroup can also be extended to a
finite Wilke algebra. Given a finite semigroup S+, we set S = (S+, Sω), where
Sω is defined by

Sω = {[s, e] | (s, e) is a linked pair of S2
+}.

Then, for every [s, e] ∈ Sω and every t ∈ S+, we define an ω-operation and a
mixed product by tω = [tπ, tπ] and t[s, e] = [ts, e], where π is the exponent of
S+. The definition of the mixed product is consistent, since if [s, e] = [s′, e′],
then [ts, e] = [ts′, e′]. We prove that S is a Wilke algebra.

Lemma 3.44. Let S = (S+, Sω) be defined by the the finite semigroup S+ as
described above. Then S is a Wilke algebra.

Proof. Let u, v ∈ S+ and let [s, e] ∈ Sω. By definitions of the ω-operation and
the mixed product, one has

u(v[s, e]) = u[vs, e] = [u(vs), e] = [(uv)s, e] = (uv)[s, e],

u(vu)ω = u[(vu)π, (vu)π] = [u(vu)π, (vu)π] = [(uv)π , (uv)π] = (uv)ω,

(un)ω = [(un)π, (un)π] = [uπ, uπ] = uω.

44 CHAPTER 3. ALGEBRA AND AUTOMATA

Now, we prove that every finite ω-semigroup is equivalent to a finite Wilke
algebra. As a consequence, a finite ω-semigroup is entirely and uniquely defined
by the mixed product and the infinite products of the form sss · · · = sω, and can
thus be described by only a finite amount of data. This result will be specially
useful in the sequel, for we will no more distinguish between finite Wilke algebras
and finite ω-semigroups.

Proposition 3.45. For any finite Wilke algebra S = (S+, Sω), there is a unique
infinite product πS from Sω

+ into Sω making S a finite ω-semigroup, and such
that sω = πS(s, s, s, . . .), for all s ∈ S+.

Proof. By Proposition 3.21, any infinite word (sn)n∈N of Sω
+ can be associated

with a linked pair (s, e). Therefore, if S can be equipped with a structure of
ω-semigroup satisfying the properties of a Wilke algebra, the infinite product
s0s1s2 · · · is forced to be equal to seω. Now, let S = (S+, Sω) be a finite
Wilke algebra. We equip S with a structure of ω-semigroup that satisfies the
required properties. If (si)i∈N is an infinite word of Sω

+, we define the infinite
product πS by πS(s0, s1, s2, . . .) = seω, where (s, e) is a linked pair associated
with the infinite word s0s1s2 · · · . We show that this definition is independent
of the choice of the linked pair (s, e). Let (s, e) and (s′, e′) be two linked pairs
associated with the infinite word s0s1s2 · · · . Then Proposition 3.22 shows that
these linked pairs are conjugate, and thus there exist x, y ∈ S1

+ such that s = s′y,
e = xy, and e′ = yx. Therefore, the properties of the ω-operation imply that

seω = s′y(xy)ω = s′(yx)ω = s′e′
ω
.

In addition, we show that this definition satisfies the properties of an infinite
product. Let (sn)n∈N be an infinite word of Sω

+ associated with the linked pair
(s, e), let t ∈ S+, and let (kn)n∈N be a strictly increasing sequence of integers.
By definition of the infinite product, by the properties of the ω-operation, and
by Corollary 3.23, one has

tπS(s0, s1, s2, . . .) = t(seω) = (ts)eω = πS(t, s0, s1, s2, . . .),

πS(s0 · · · sk0−1, sk0 · · · sk1−1, . . .) = πS(s0, s1, s2, . . .).

Finally, it remains to show that πS(s, s, s, . . .) = sω, for every s ∈ S+. Let π
be the exponent of S+. Then, by definition of πS and by the properties of the
ω-operation, one has πS(s, s, s, . . .) = (sπ)ω = sω.

Example 3.46. The set S = ({0, 1}, {0ω, 1ω}) is an ω-semigroup for the opera-
tions defined as follows:

0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = 1

00ω = 0ω 10ω = 0ω 01ω = 1ω 11ω = 1ω

In this ω-semigroup, the infinite product πS is defined by π−1
S (0ω) = ({0, 1}∗0)ω

and π−1
S (1ω) = {0, 1}∗01ω.

Example 3.47. The set T = ({a, b, c, ca}, {aω, (ca)ω, 0}) is an ω-semigroup for

3.4. ω-SEMIGROUPS AND ω-RATIONAL LANGUAGES 45

the operations defined as follows:

a2 = a ab = a ac = a ba = a

b2 = b bc = c cb = c c2 = c

bω = aω cω = 0 aaω = aω a(ca)ω = aω

baω = aω b(ca)ω = (ca)ω caω = (ca)ω c(ca)ω = (ca)ω

3.4 ω-Semigroups and ω-rational languages

3.4.1 ω-Semigroups and automata

In this section, we explore the generalization of the correspondence between
finite semigroups and finite automata. We prove that finite ω-semigroups stand
for the algebraic counterpart of finite Büchi automata. In order to state this
result, we first introduce the notions of recognizability for finite ω-semigroups.
We then show a construction to go from a finite Büchi automaton to a finite ω-
semigroup recognizing the same ω-language, and conversely, we prove that any
ω-language recognized by a finite ω-semigroup is ω-rational, so that there also
exists a construction to go from a finite ω-semigroup to a finite Büchi automaton
recognizing the same ω-language [27].

Let S = (S+, Sω) and T = (T+, Tω) by two ω-semigroups. A surjective
morphism of semigroups ϕ : S −→ T recognizes a subset I = (I+, Iω) of S if there
exists a subset J = (J+, Jω) of T such that ϕ−1(J) = I, that is ϕ−1(J+) = I+

and ϕ−1(Jω) = Iω . By extension, an ω-semigroup T recognizes a subset I of an
ω-semigroup S if there exist a surjective morphism ϕ : S −→ T that recognizes
I. In addition, a congruence ∼ on the ω-semigroup S recognizes a subset I of
S if the natural morphism ϕ : S −→ S/∼ recognizes I. Finally, a subset is said
to be recognizable if it is recognized by a finite ω-semigroup.

Example 3.48. Let A = {a, b} be an alphabet, let U be the finite ω-semigroup
defined in Example 3.41, and let ϕ be the surjective morphism of ω-semigroups
from A∞ onto U induced by the relations ϕ(a) = 0 and ϕ(b) = 1. Then the
ω-languages of Aω recognized by ϕ are the following: ϕ−1([0, 0]) = (A∗a)ω ,
ϕ−1([0, 1]) = A∗abω, and ϕ−1([1, 1]) = bω.

Both following results show that the ω-languages recognized by finite au-
tomata and by finite ω-semigroups coincide, hence correspond precisely to the
ω-rational languages. These results provides two effective constructions: firstly,
given a Büchi automaton, one can build a Wilke algebra recognizing the same
ω-language; secondly, given an ω-semigroup recognizing a certain ω-language,
one can build an ω-rational expression describing this language, and thus, one
can also build a Büchi automaton recognizing this ω-language (see [27]).

Proposition 3.49. Given any finite Büchi automaton recognizing an ω-language,
there exists a finite ω-semigroup recognizing the same ω-language.

Proof. Let A = (Q, A, E, I, F) be some finite Büchi automaton recognizing the
language L(A) ⊆ Aω. We build a finite Wilke algebra SA = (S+, Sω) recognizing
it. First of all, we associate with every finite word u of A+ a (Q × Q)-matrix

46 CHAPTER 3. ALGEBRA AND AUTOMATA

µ(u) which expresses, for all p, q ∈ Q, whether there exists a path p
u
−→ q in

A, and in case such a path exists, whether it visits a final state of A. For that
purpose, let k = {−∞, 0, 1} be the semiring whose addition is the maximum for
the ordering −∞ < 0 < 1, and whose multiplication is described in the table
below:

·↗ −∞ 0 1
−∞ −∞ −∞ −∞
0 −∞ 0 1
1 −∞ 1 1

Then the set kQ×Q of (Q × Q)-matrices over k is a semigroup. Therefore, the
mapping µ from A into kQ×Q defined for all a ∈ A by

µ(a)p,q =











−∞ if (p, a, q) !∈ E,

0 if (p, a, q) ∈ E, p !∈ F and q !∈ F ,

1 if (p, a, q) ∈ E, p ∈ F or q ∈ F ,

can be naturally extended to a semigroup morphism from A+ into kQ×Q. Now,
we set SA = (S+, Sω), where S+ = kQ×Q, and Sω = kQ is the set of vectors
over k indexed by Q. It remains to equip SA with a structure of Wilke algebra.
Hence, we define an ω-operation from kQ×Q into kQ which describes whether
a given transition matrix µ(u) associated with the finite word u may yield an
infinite successful path in A. For that purpose, given any matrix s ∈ S+, we call
infinite s-path starting at p an infinite sequence (p0 = p, p1, p2, . . .) of states of A
such that spi,pi+1 != ∞, for all i; such an s-path is called successful if spi,pi+1 = 1
for infinitely many integers i. Then, for any s ∈ S+, we define sω ∈ Sω by: for
all p ∈ Q,

sωp =

{

1 if there exists a successful s-path of origin p,

−∞ otherwise,

Furthermore, the mixed product is the usual product between matrices and
vectors. These operations provide SA with a structure of finite Wilke algebra,
see [27, Proposition 7.1, p. 107] for more details. Therefore, Proposition 3.45
shows that SA can be equipped in a unique way with a structure of finite ω-
semigroup. Furthermore, proposition 3.36 and 3.45 show that the morphism µ
can be extended in a unique way to a morphism of ω-semigroups µA from A∞

into SA. In order to conclude, we prove that the morphism µA recognizes the
ω-language L(A). Let us set

P = {s ∈ Sω | si = 1 for some i ∈ I}.

By construction, one has µA(α) ∈ P if and only if there exists an infinite initial
and successful path labeled by α. In other words, L(A) = µA

−1(P), thus µA

recognizes L(A).

Proposition 3.50. Any ω-language recognized by a finite ω-semigroup is ω-
rational.

Proof. Let S = (S+, Sω) be a finite ω-semigroup and let ϕ : A∞ −→ S be a
surjective morphism of ω-semigroups recognizing the ω-language L of Aω . Then

3.4. ω-SEMIGROUPS AND ω-RATIONAL LANGUAGES 47

there exists an ω-subset X of Sω such that ϕ−1(X) = L. We prove that

L =
⋃

(s,e)∈Y

(

ϕ−1(s)
) (

ϕ−1(e)
)ω

, (3.1)

where Y is the set of liked pairs (s, e) of S2
+ such that seω ∈ X . Let α =

a0a1a2 · · · ∈ L. Since L = ϕ−1(X), there exists x ∈ X such that

ϕ(α) = πS(ϕ(a0),ϕ(a1),ϕ(a2), . . .) = x.

By definition of the infinite product πS , one has x = seω, for some linked
pair (s, e) of S2

+ associated with the infinite word (ϕ(ai))i∈N. Thus (s, e) ∈ Y .
Moreover, there exists a factorization of the infinite word (ϕ(ai))i∈N

such that

ϕ(a0) · · ·ϕ(ak0−1) = ϕ(a0 · · ·ak0−1) = s,

ϕ(aki) · · ·ϕ(aki+1−1) = ϕ(aki · · · aki+1−1) = e,

for all i ≥ 0. It follows that a0 · · ·ak0−1 ∈ ϕ−1(s) and aki · · · aki+1−1 ∈ ϕ−1(e),

for all i ≥ 0. Therefore, α = a0a1a2 · · · ∈
(

ϕ−1(s)
) (

ϕ−1(e)
)ω

for some (s, e) ∈
Y . Conversely, let α ∈

⋃

(s,e)∈Y

(

ϕ−1(s)
) (

ϕ−1(e)
)ω

. There exists a specific

linked pair (s, e) ∈ Y such that α ∈
(

ϕ−1(s)
) (

ϕ−1(e)
)ω

. Since ϕ is a surjective
morphism of ω-semigroups and since (s, e) is a linked pair of Y , one has

ϕ(α) ∈ ϕ
(

(

ϕ−1(s)
) (

ϕ−1(e)
)ω

)

= πS

(

ϕ ◦ ϕ−1(s),ϕ ◦ ϕ−1(e),ϕ ◦ ϕ−1(e), . . .
)

= πS (s, e, e, . . .) = seω ∈ X.

Therefore, α ∈ ϕ−1(X) = L. Finally, Proposition 3.26 shows that every term
ϕ−1(s) and ϕ−1(e) of (1.1) are rational languages. Therefore, Proposition 1.5
ensures that L is ω-rational.

The following two examples illustrate the equivalence between the recogni-
tion by finite Büchi automata and by finite ω-semigroups. Firstly, given a finite
Büchi automaton, we build a morphism ω-semigroups recognizing the same ω-
language. Secondly, given a surjective morphism of ω-semigroups from the free
structure, we exhibit a Büchi automaton recognizing the same ω-language.

Example 3.51. Let A = {a, b} and consider the finite Büchi automaton A =
(Q, A, E, I, F) illustrated in Figure 3.6. This automaton recognizes the ω-
language L(A) = A∗baω. The construction described in Proposition 3.49 gives
the finite ω-semigroup SA = ({x, y}, {xω, yω, yxω}) defined by

x =
(

0
−∞

−∞
1

)

, y =
(

0
−∞

1
−∞

)

, xω =
(

−∞
−1

)

, yω =
(

−∞
−∞

)

, yxω =
(

1
−∞

)

,

and by the relations x2 = x, xy = yx = y2 = y, xxω = xω , and xyω = xxω =
xω . It also gives the morphism of ω-semigroups µA : A∞ −→ SA defined by
µA(a) = x and µA(b) = y. Then the ω-language L(A) is recognized by the
morphism µA since L(A) = A∗baω = µ−1

A (yxω).

Example 3.52. Let A = {a, b} be an alphabet and let A∞ be the free ω-
semigroup over A. Consider the finite ω-semigroup U = (U1, U1ω) of Example
3.41, the surjective morphism of ω-semigroups ϕ : A∞ −→ U defined by ϕ(a) =
0 and ϕ(b) = 1, and the ω-language L = (A∗a)ω = ϕ−1 ([0, 0]) recognized by ϕ.
Then L also is recognized by the finite Büchi automaton of Figure 3.7.

48 CHAPTER 3. ALGEBRA AND AUTOMATA

1 2
b

a, b a

Figure 3.6: A Büchi automaton

1 2

b

a

a, b

Figure 3.7: A Büchi automaton

3.4.2 Syntactic ω-semigroups

In this section, we focus on the notion of syntactic congruence for ω-semigroups.
Unlike in the semigroup framework, there is no simple constructive definition of
this congruence in the case of ω-semigroups, except for some particular cases.
Nevertheless, we show that every recognizable ω-language admits a syntactic
congruence, and as in the semigroup context, the syntactic ω-semigroup of an
ω-rational language is the unique (up to isomorphism) minimal (for the divi-
sion ordering) ω-semigroup recognizing this language. This feature is specially
interesting since there is no convincing notion of Büchi or Muller minimal au-
tomaton.

Let S = (S+, Sω) be an ω-semigroup and let X be a subset of S. The
syntactic congruence of X , denoted by ∼X , is the upper bound of the family
of congruences recognizing X , if this upper bound still recognizes X . It is
undefined otherwise. Whenever defined, the quotient S(X) = S/∼X is called
the syntactic ω-semigroup of X , the corresponding morphism µ : S −→ S(X)
is the syntactic morphism of X , and the set µ(X) is the syntactic image of X .
The pointed ω-semigroup (S(X), µ(X)) will be denoted by Synt(X).

We now define an equivalence relation associated with every recognizable ω-
subset. We will further prove that this relation is precisely the required syntactic
congruence. Let S = (S+, Sω) be an ω-semigroup, and let X be a recognizable
ω-subset of S. We set the equivalence relation ∼X on S, defined on S+ by

3.4. ω-SEMIGROUPS AND ω-RATIONAL LANGUAGES 49

s ∼X t if and only if

xsyzω ∈ X ⇔ xtyzω ∈ X,

x(sy)ω ∈ X ⇔ x(ty)ω ∈ X,

hold, for every x, y ∈ S1
+ and every z ∈ S+, and defined on Sω by u ∼X v if and

only if

xu ∈ X ⇔ xv ∈ X,

holds, for every x ∈ S1
+. The following two results show that this relation is

precisely the syntactic congruence of the recognizable subset X .

Proposition 3.53. Let X be a recognizable subset of an ω-semigroup S =
(S+, Sω). Then the relation ∼X is a congruence of ω-semigroup.

Proof. First of all, we prove that the relation ∼X is a congruence of semigroup
on S+. Let s, t be two elements of S+ such that s ∼X t, and let x, y be two
elements of S1

+. We show that xsy ∼X xty. Let x′, y′ ∈ S1
+, and let z ∈ S+. By

definition of ∼X and by the properties of the ω-operation, one has

x′(xsy)y′zω ∈ X ⇔ (x′x)s(yy′)zω ∈ X ⇔ (x′x)t(yy′)zω ∈ X

⇔ x′(xty)y′zω ∈ X, and

x′((xsy)y′)ω ∈ X ⇔ x′x(syy′x)ω ∈ X ⇔ x′x(tyy′x)ω ∈ X

⇔ x′((xty)y′)ω ∈ X.

Furthermore, the relation ∼X is an equivalence relation on Sω. We now prove
that ∼X is stable for the mixed product. For that purpose, we use our key hy-
pothesis. Since X is recognizable, there exist a finite ω-semigroup T = (T+, Tω),
a subset Y of T , and a surjective morphism of ω-semigroups ϕ from S onto T
such that ϕ−1(Y) = X . Let s, t ∈ S+ and let u, v ∈ Sω such that s ∼X t and
u ∼X v. Since T is finite and ϕ is surjective, there exist y = ϕ(a) and z = ϕ(b)
in Tω such that ϕ(v) = yzω = ϕ(abω). Let x ∈ S1

+, one has

x(su) = (xs)u ∈ X ⇔ (xs)v ∈ X

⇔ ϕ(x)ϕ(s)ϕ(abω) ∈ Y

⇔ xsabω ∈ X ⇔ xtabω ∈ X

⇔ ϕ(x)ϕ(t)ϕ(v) ∈ Y

⇔ x(tv) ∈ X

Therefore, su ∼X tv. We finally prove that ∼X is stable for the infinite prod-
uct. Let (s0, s1, s2, . . .) and (s′0, s

′
1, s

′
2, . . .) be two infinite sequences of Sω

+ such
that si ∼X s′i, for each i ≥ 0. We show that s0s1s2 · · · ∼X s′0s

′
1s

′
2 · · · holds.

We use our key hypothesis again. Since X is recognizable, there exist a fi-
nite ω-semigroup T = (T+, Tω), a subset Y of T , and a surjective morphism
of ω-semigroups ϕ from S onto T such that ϕ−1(Y) = X . Since the pair
(ϕ(s0)ϕ(s1)ϕ(s2) · · · ,ϕ(s′0)ϕ(s′1)ϕ(s′2) · · ·) is an infinite word of the finite semi-
group T+ × T+, Proposition 3.21 shows that there exist a strictly increasing
sequence of integers (kn)n≥0 and a linked pair ((s, s′), (e, e′)) of (T+×T+)2 such

50 CHAPTER 3. ALGEBRA AND AUTOMATA

that

ϕ(s0) · · ·ϕ(sk0−1) = ϕ(s0 · · · sk0−1) = s,

ϕ(s′0) · · ·ϕ(s′k0−1) = ϕ(s′0 · · · s
′
k0−1) = s′,

ϕ(ski) · · ·ϕ(ski+1−1) = ϕ(ski · · · ski+1−1) = e , for each i ≥ 0,

ϕ(s′ki
) · · ·ϕ(s′ki+1−1) = ϕ(s′ki

· · · s′ki+1−1) = e′ , for each i ≥ 0.

Now, let x ∈ S1
+, one obtains

xs0s1s2 · · · ∈ X ⇔ ϕ(x)ϕ(s0)ϕ(s1) · · · = ϕ(x)seω ∈ Y

⇔ ϕ(x(s0 · · · sk0−1)(sk0 · · · sk1−1)
ω) ∈ Y

⇔ x(s0 · · · sk0−1)(sk0 · · · sk1−1)
ω ∈ X

⇔ x(s′0 · · · s
′
k0−1)(sk0 · · · sk1−1)

ω ∈ X

⇔ x(s′0 · · · s
′
k0−1)(s

′
k0

· · · s′k1−1)
ω ∈ X

⇔ ϕ(x(s′0 · · · s
′
k0−1)(s

′
k0

· · · s′k1−1)
ω) ∈ Y

⇔ ϕ(x)s′e′ω = ϕ(x)ϕ(s′0)ϕ(s′1) · · · ∈ Y ⇔ xs′0s
′
1s

′
2 · · · ∈ X.

Therefore, s0s1s2 · · · ∼X s′0s
′
1s

′
2 · · · , which concludes the proof.

Proposition 3.54. Let X be any recognizable subset of an ω-semigroup S =
(S+, Sω). The relation ∼X is the syntactic congruence of X.

Proof. We first show that the congruence ∼X is coarser than all the congru-
ences recognizing X . Let ∼ be a congruence recognizing X , and let ϕ : S −→
S/∼ be the corresponding canonical morphism. Since ϕ recognizes X , the set
X is a union of ∼-equivalence classes, and thus ϕ−1(ϕ(X)) = X . Now, let
s, t ∈ S+, we show that s ∼ t implies s ∼X t. For that purpose, let x, y ∈ S1

+

and z ∈ S+. By the properties of the morphism ϕ, and since s ∼ t precisely
means that ϕ(s) = ϕ(t), one has

xsyzω ∈ X ⇔ ϕ(xsyzω) ∈ ϕ(X)

⇔ ϕ(x)ϕ(s)ϕ(y)ϕ(z)ω ∈ ϕ(X)

⇔ ϕ(x)ϕ(t)ϕ(y)ϕ(z)ω ∈ ϕ(X)

⇔ ϕ(xtyzω) ∈ ϕ(X)

⇔ xstyzω ∈ X, and

x(sy)ω ∈ X ⇔ ϕ(x(sy)ω) ∈ ϕ(X)

⇔ ϕ(x)(ϕ(s)ϕ(y))ω ∈ ϕ(X)

⇔ ϕ(x)(ϕ(t)ϕ(y))ω ∈ ϕ(X)

⇔ ϕ(x(ty)ω) ∈ ϕ(X)

⇔ x(ty)ω ∈ X.

Similarly, let u, v ∈ Sω, we show that u ∼ v implies u ∼X v. Let x ∈ S1
+, then

xu ∈ X ⇔ ϕ(xu) ∈ ϕ(X)

⇔ ϕ(x)ϕ(u) ∈ ϕ(X)

⇔ ϕ(x)ϕ(v) ∈ ϕ(X)

⇔ ϕ(xv) ∈ ϕ(X)

⇔ xv ∈ X.

3.4. ω-SEMIGROUPS AND ω-RATIONAL LANGUAGES 51

Finally, we prove that the congruence∼X recognizes X itself, meaning that X is
a union of ∼X-equivalence classes. This is true on S+, since ∼X is a congruence
of semigroups. On Sω, if u ∼X v and u = 1u belongs X , then, by definition of
the relation ∼X , 1v = v also belongs to X .

We proved that the syntactic congruence of every recognizable subsets ex-
ists and is well defined. In particular, Proposition 3.49 shows that the syntactic
congruence of any ω-rational language is well defined. We now prove that the
syntactic ω-semigroup of an ω-rational language is the minimal structure – for
the division relation – recognizing this ω-language. This result is a straightfor-
ward generalization of Proposition 3.30.

Proposition 3.55. Let L be an ω-language of A∞. Then S recognizes L if and
only if S(L) divides S.

Proof. First, assume that S(L) divides S, and let µ be the syntactic morphism
of L. Then there exist a semigroup T , an injective morphism ι from T into
S, and a surjective morphism σ from T onto S(L). By Corollary 3.37, there
exists a morphism ϕ from A∞ into T such that σ ◦ ϕ = µ. Now, let us set
P = ι(σ−1(µ(L))). Since ι is injective and µ is the syntactic morphism, one has

(ι ◦ ϕ)−1(P) = ϕ−1(ι−1(ι(σ−1(µ(L))))) = ϕ−1(σ−1(µ(L))) = µ−1(µ(L)) = L.

Therefore, S recognizes L. Conversely, assume that S recognizes L. There exist
both a morphism ϕ from A∞ onto S, and a subset P of S such that ϕ−1(P) = L.
Set T = ϕ(A∞). Then T is an ω-subsemigroup of S. Now, let u, v ∈ A+ such
that u ∼ϕ v, let α,β ∈ Aω such that α ∼ϕ β, and let x, y ∈ A∗ and z ∈ A+.
One has

xuyzω ∈ L ⇔ ϕ(xuyzω) ∈ P

⇔ ϕ(x)ϕ(u)ϕ(y)ϕ(z)ω ∈ P

⇔ ϕ(x)ϕ(v)ϕ(y)ϕ(z)ω ∈ P

⇔ ϕ(xvyzω) ∈ P

⇔ xvyzω ∈ L,

x(uy)ω ∈ L ⇔ ϕ(x(uy)ω) ∈ P

⇔ ϕ(x)(ϕ(u)ϕ(y))ω ∈ P

⇔ ϕ(x)(ϕ(v)ϕ(y))ω ∈ P

⇔ ϕ(x(vy)ω) ∈ P

⇔ x(vy)ω ∈ L, and

xα ∈ L ⇔ ϕ(xα) ∈ P

⇔ ϕ(x)ϕ(α) ∈ P

⇔ ϕ(x)ϕ(β) ∈ P

⇔ ϕ(xβ) ∈ P

⇔ xβ ∈ L.

Hence, the relations u ∼ϕ v and α ∼ϕ β respectively imply u ∼L v and α ∼L β,
and Proposition 3.35 shows that S(L) is a quotient of T . Therefore, S(L) divides
S.

52 CHAPTER 3. ALGEBRA AND AUTOMATA

Example 3.56. Let A = {a, b}, and let K = (A∗a)ω be an ω-language over A.
The ω-semigroup S given in Example 3.46 is the syntactic ω-semigroup of K.
The morphism ϕ from A∞ into S defined by the relations ϕ(a) = 0 and ϕ(b) = 1
is the syntactic morphism of K. The ω-subset X = {0ω} of S is the syntactic
image of K.

Example 3.57. Let B = {a, b, c}, and let L = (a{b, c}∗∪{b})ω be an ω-language
over B. The ω-semigroup T given in Example 3.47 is the syntactic ω-semigroup
of L. The morphism ψ from B∞ into T defined by ψ(a) = a, ψ(b) = b, and
ψ(c) = c is the syntactic morphism of L . The ω-subset Y = {aω} of T is the
syntactic image of L.

Chapter 4

The Wadge hierarchy

Summary

This chapter describes the theory of Wadge games – a crucial topic through this
work [39, 40]. The infinite games over ω-semigroups presented in Chapter 6 are
highly inspired by the Wadge games, and many results of the Wadge theory
presented below will be translated to the ω-semigroup context.

First, we define the Wadge reduction on ω-languages by means of the Wadge
game, an infinite two-player game with perfect information. This reduction
was introduced by William W. Wadge in order to provide a game theoretical
reformulation of the continuous reduction. Consequently, the Wadge reduction
is a preorder, and hence gives rise to an equivalence relation on ω-languages.
The collection of ω-languages ordered by the Wadge reduction is then called the
Wadge hierarchy.

In addition, we prove that Borel determinacy of Gale-Stewart games induces
determinacy of Wadge games for every Borel winning set. This key result implies
strong consequences on the Wadge hierarchy of Borel ω-languages. Therefore,
up to Wadge equivalence and complementation, the Borel Wadge hierarchy is
proved to be a well-ordering.

4.1 The Wadge game

Let A and B be two alphabets, and let X ⊆ Aω and Y ⊆ Bω. The Wadge game
W ((A, X), (B, Y)) [39] is a two-player infinite game with perfect information,
where Player I is in charge of the subset X and Player II is in charge of the
subset Y . Players I and II alternately play letters from the alphabets A and
B, respectively. Player I begins. Player II is allowed to skip her turn – which
is formally denoted by the symbol “−” – provided she plays infinitely many
letters, whereas Player I is not allowed to do so. After ω turns, players I and
II have respectively produced two infinite words α ∈ Aω and β ∈ Bω. Player
II wins W ((A, X), (B, Y)) if and only if (α ∈ X ⇔ β ∈ Y). From this point
onward, the Wadge game W ((A, X), (B, Y)) will be denoted by W(X, Y) and
the alphabets involved will always be assumed to be known from the context.

53

54 CHAPTER 4. THE WADGE HIERARCHY

A play of this game is illustrated below.

(X) I : a0 a1 · · · · · ·
after ω moves
−→ α = a0a1a2 · · ·

↘ ↗

(Y) II : b0 · · · · · ·
after ω moves
−→ β = b0b1b2 · · ·

Along the play, the finite sequence of the previous moves of a given player
is called the current position of this player. A strategy for Player I is a mapping
from (B ∪ {−})∗ into A. A strategy for Player II is a mapping from A+ into
B ∪ {−}. A strategy is winning if the player following it must win, no matter
what his opponent plays.

The Wadge reduction is defined via the Wadge game. The set X is said to
be Wadge reducible to Y , denoted by X ≤W Y , if and only if Player II has a
winning strategy in W(X, Y). One then sets X ≡W Y if and only if X ≤W Y
and Y ≤W X , and X <W Y if and only if X ≤W Y and X !≡W Y . The sets
X and Y are called incomparable when both X !≤W Y and Y !≤W X hold. In
addition, a set X is called self-dual if X ≡W Xc, and non-self-dual if X !≡W Xc.
The following lemma sates a basic property of the Wadge reduction.

Lemma 4.1. The Wadge reduction is a preorder.

Proof. We first prove the reflexivity. Let X be an ω-language, we describe a
winning strategy for Player II in the game W(X, X). Player II simply copies
Player I’s moves and wins. For the transitivity, let X , Y , and Z be three ω-
languages such that X ≤W Y and Y ≤W Z. Then Player II has two winning
strategies σ and τ in the respective games W(X, Y) and W(Y, Z). The com-
position of these two strategies is a winning strategy for Player II in the game
W(X, Z). Therefore, X ≤W Z.

Lemma 4.1 implies in particular that the relation ≡W is an equivalence
relation, called the Wadge equivalence. In addition, the following result shows
that the empty set and the full space are incomparable one to the other, but
Wadge reducible to any other set. Other basic properties follow.

Lemma 4.2. Let A be an alphabet, and let X ⊆ Aω.

(1) If X != Aω, then ∅ ≤W X.

(2) If X != ∅, then Aω ≤W X.

(3) ∅ and Aω are incomparable.

Proof.

(1) We describe a winning strategy for Player II in the game W(∅, X). At the
end of the play, the infinite sequence played by Player I does not belong to
∅. Hence, the winning strategy for Player II consists in playing an infinite
sequence (s0, s1, s2, . . .) which doesn’t belong to X . This is possible, since
X != Aω .

(2) Similarly, we describe a winning strategy for Player II in W(Aω , X). At
the end of the play, the infinite sequence played by Player I obviously
belongs to Aω. Therefore, Player II wins the game by playing an infinite
sequence which belongs to X . This is indeed possible, since X != ∅.

4.1. THE WADGE GAME 55

(3) We show that Player II has no winning strategy in the game W(∅, Aω).
At the end of the play, Player I’s infinite sequence does not belong to ∅
whereas Player II’s infinite sequence belongs to Aω . Therefore, ∅ !≤W Aω .
The same argument shows that Aω !≤W ∅.

Lemma 4.3. Let A and B be two alphabets, and let X ⊆ Aω and Y ⊆ Bω.

(1) X ≤W Y if and only if Xc ≤W Y c.

(2) X and Xc are either equivalent or incomparable.

(3) If X <W Y , then Y !≤W X and Y c !≤W X.

Proof.

(1) By definition of the winning conditions of the Wadge game, a strategy
is winning for Player II in W(X, Y) if and only if it is also winning for
Player II in W(Xc, Y c). Indeed, since α ∈ X ⇔ β ∈ Y if and only if
α ∈ Xc ⇔ β ∈ Y c, every infinite play is winning for II in W(X, Y) if and
only if it is also winning for II in W(Xc, Y c).

(2) Either X ≤W Xc, or X !≤W Xc. If X ≤W Xc, then (1) implies Xc ≤W X ,
thus X ≡W Xc. If X !≤W Xc, then (1) implies Xc !≤W X , hence X and
Xc are incomparable.

(3) If X <W Y , then Y !≤W X , by definition. Now, assume that Y c ≤W X .
Then Y c ≤W X and X <W Y imply Y c <W Y , which contradicts (2).

Finally, the following result recalls that the Wadge games were precisely
introduced in order that the Wadge reduction coincides with the continuous
reduction.

Lemma 4.4 (Wadge). Let A and B be two alphabets, and let X ⊆ Aω and
Y ⊆ Bω. Then X is Wadge reducible to Y if and only if X is continuously
reducible to Y .

Proof. Assume that X ≤W Y . Then there exists a winning strategy σ for
Player II in the game W(X, Y). This strategy naturally induces the function σ̄
from A∞ into B∞ which maps every finite word u and every infinite word α to
Player II’s respective answers to u and α via σ. We prove that the restriction of
this mapping from Aω into Bω is continuous. Let V Bω be an open set of Bω ,
for some V ⊆ B∗. Then σ̄−1(V Bω) = (σ̄−1V)Aω , showing that the preimage
of any open set is an open set. Moreover, the winning condition of the Wadge
game states that α ∈ X if and only if σ̄(α) ∈ Y , and therefore, σ̄−1(Y) = X .
Conversely, let f : Aω −→ Bω be a continuous mapping such that f−1(Y) = X .
We describe a winning strategy for Player II in the game W(X, Y). For that
purpose, consider an enumeration {b0, . . . , bn} of the elements of B. Since f
is continuous, the sets Ai = f−1(biBω) form a partition of Aω in open sets.
Therefore, as long as I’s play does not enter any of the sets Ai, II skips her
turn. As soon as I’s play enters a set Ai0 , for some i0 ≤ n, II plays bi0 . Notice
that since the sets Ai form a partition of Aω, I’s play is forced to enter a set
Ai0 after a finite amount of time. Then, consider the sets A′

i = f−1(bi0biBω),
for every i ≤ n, and proceed the same way. As long as I’s play doesn’t enter
any of the sets A′

i’s, II skips her turn. As soon as I’s play enters an A′
i1

, II
plays bi1 . And so on and so forth. At the end of the play, the infinite words α
and β played respectively by players I and II satisfy f(α) = β. Moreover, since
f−1(Y) = X , the relation α ∈ X if and only if β ∈ Y holds. Therefore, this
strategy is winning for Player II in the game W(X, Y), thus X ≤W Y .

56 CHAPTER 4. THE WADGE HIERARCHY

4.2 The Wadge hierarchy

The Wadge hierarchy consists of the collection of all ω-languages ordered by
the Wadge reduction, and the Borel Wadge hierarchy is the restriction of the
Wadge hierarchy to the Borel ω-languages. In the sequel, we will particularly
focus on the Borel Wadge hierarchy. For a start, we prove that Martin’s Borel
determinacy [21] implies the determinacy of Wadge games, for every pair of
Borel winning sets. This result is the cornerstone of the description of the Borel
Wadge hierarchy.

Theorem 4.5 (Borel Wadge determinacy). Let X and Y be two Borel
ω-languages of Aω and Bω, respectively. Then W(X, Y) is determined.

Proof. We define a Borel subset Z ⊆ (A ∪B)ω such that a given player has a
winning strategy in G(Z) if and only if the same player has a winning strategy
in W(X, Y). Theorem 1.6 then leads to the conclusion. Let p1 and p2 be the
continuous projections from (A ∪B)ω into (A ∪B)ω defined by

p1(u0u1u2u3 · · ·) = u0u2u4 · · · ,

p2(u0u1u2u3 · · ·) = u1u3u5 · · · .

Let also X ′ = p−1
1 (X), X ′′ = p−1

1 (Xc), Y ′ = p−1
2 (Y), and Y ′′ = p−1

2 (Y c). By
continuity of the functions p1 and p2, all these sets are Borel. Now, set Z =
(X ′ ∩Y ′)∪ (X ′′ ∩Y ′′). This set is Borel and satisfies the required property.

The Wadge Borel determinacy induces the following corollaries: the ≤W -
antichains have length at most two, and the only incomparable ω-languages
are – up to Wadge equivalence – of the form X and Xc, for X non-self-dual.
Furthermore, the Wadge reduction is wellfounded on Borel sets.

Proposition 4.6. Let X and Y be two Borel ω-languages of Aω and Bω, re-
spectively. The following properties hold.

(1) (Wadge’s Lemma) Either X ≤W Y , or Y ≤W Xc.

(2) If X and Y are incomparable, then X ≡W Y c.

(3) The ≤W -antichains have length at most two.

Proof.

(1) Either X ≤W Y , or X !≤W Y . If X !≤W Y , then Player II has no win-
ning strategy in W(X, Y). Hence, by determinacy, Player I has a winning
strategy σ in this game. Therefore, we describe a winning strategy for
Player II in W(Y, Xc). On her first move, regardless Player I’s move,
Player II answers by σ(ε). Then, Player II answers to every current po-
sition (a0, a1, . . . , an) of Player I by the move σ(a0, a1, . . . , an−1). At the
end of the play, the definition of σ ensures that a0a1a2 · · · belong to Y if
and only if σ(ε)σ(a0)σ(a0, a1) . . . doesn’t belongs to X . Hence, Player II
wins the game W(Y, Xc), and therefore Y ≤W Xc.

(2) If X !≤W Y and Y !≤W X , then (1) implies that Y ≤W Xc and X ≤W Y c.
Therefore, Y ≤W Xc and Xc ≤W Y , and thus Xc ≡W Y .

(3) Let X , Y and Z be such that X !≤W Y and Y !≤W Z. Then (1) shows
that Y ≤W Xc and Z ≤W Y c. Therefore, Z ≤W Y c and Y c ≤W X , thus
Z ≤W X .

4.2. THE WADGE HIERARCHY 57

Proposition 4.7 (Martin, Monk). The Wadge strict reduction is wellfounded
on Borel ω-languages.

Proof. Towards a contradiction, assume that there exists an infinite strictly
<W -descending sequence of Borel ω-languages (Xn)n≥0, where Xi ⊆ Aω

i for
all i. For all n ≥ 0, the relation Xn >W Xn+1 implies Xn !≤W Xn+1 and
Xc

n !≤W Xn+1, meaning by determinacy that Player I has the winning strategies
σ0

n and σ1
n in the respective games W(Xn, Xn+1) and W(Xc

n, Xn+1). Now, for

any α ∈ {0, 1}ω, consider the infinite sequence of strategies (σα(n)
n)n≥0 and

the infinite sequence of games (W(Xc(α(n))
n , Xn+1))n≥0 defined as follows: in

the game W(Xc(α(k))
k , Xk+1), Player I applies his winning strategy σα(k)

k , and

Player II copies Player I’s moves from the next game W(Xc(α(k+1))
k+1 , Xk+2).

Therefore, in the first game, Player I applies his winning strategy σα(0)
0 . Since

it is a strategy for Player I, it gives the first letter a0
0 before Player II has ever

played anything. Then Player II copies Player I’s first move a1
0 in the second

game, and Player I answers with his winning strategy. And so on and so forth
for every move and every game. This infinite sequence of games are illustrated
below. Big arrows stand for playing and little ones for copying.

I
σ

α(0)
0
! II I

σ
α(1)
1
! II I

σ
α(2)
2
! II · · ·

a0
0 a1

0 a2
0

↘ ↙ ↘ ↙ ↘
a1
0 a2

0 a3
0

↙ ↙ ↙
a0
1 a1

1 a2
1

↘ ↙ ↘ ↙

a1
1 a2

1

↙ ↙
a0
2 a1

2

↘ ↙

a1
2

↙
a0
3

Let xα be the infinite word played by Player I in the first game, and let ϕ :
{0, 1}ω −→ Aω

0 be defined by ϕ(α) = xα. We show that ϕ is continuous.
By definition of these chained games, the k first letters of xα only depend
on the k first letters of α, since the games number k + 1, k + 2, . . . do not
influence the construction the prefix xα[0, k]. Thus, for any U ⊆ A∗

0, one has
ϕ−1(UAω

0) = V {0, 1}ω, with V ⊆ {0, 1}∗, meaning that the preimage by ϕ of
any open set is an open set. Now, consider F = ϕ−1(X0). By construction
of these chained games, F is a flip set, because if α and α′ only differ by one
position (meaning if there exists a unique i such that α(i) != α′(i)), then α ∈ F
if and only if α′ !∈ F . On the other hand, the set F is also Borel, since ϕ is
continuous, a contradiction.

Propositions 4.6 and 4.7 show that, up to complementation and Wadge
equivalence, the Borel Wadge hierarchy is a well-ordering. Therefore, there
exists a unique ordinal, called the height of the Borel Wadge hierarchy, and a
mapping dW from the Borel Wadge hierarchy onto its height, called the Wadge

58 CHAPTER 4. THE WADGE HIERARCHY

degree, such that dW (X) < dW (Y) if and only if X <W Y and dW (X) = dW (Y)
if and only if X ≡W Y or X ≡W Y c, for every Borel ω-languages X and Y .
The wellfoundness of the Borel Wadge hierarchy ensures that the Wadge degree
can be defined by induction as follows:

dW (X) =

{

0 if X = ∅ or X = ∅c,

sup{dW (B) + 1 : B <W A} otherwise.

Another consequence of the Borel determinacy of Wadge games due to Martin
and Wadge gives a precise characterization of non-self-duals sets. As a corollary,
every self-dual set can be described by translations of strictly ≤W -smaller non-
self-dual sets.

Proposition 4.8 (Martin, Wadge). Let X be a Borel subset of Aω. Then X
is non-self-dual if and only if there exists α ∈ Aω such that (α[0, n])−1X ≡W X,
for all n ∈ N.

Proof. Notice that a player in charge of the set u−1X in a Wadge game is
exactly as strong as a player in charge of X , but having already played the
finite word u. Therefore, the relation u−1X ≤W X always holds, for any u ∈
A∗. Indeed, the winning strategy for Player II in W(u−1X, X) consists in:
first, playing the finite word u, and then copying Player I’s infinite sequence
letter by letter. The proposition that we have to prove then reduces to the
following: the set X is non-self-dual if and only if there exists α ∈ Aω such that
X ≤W (α[0, n])−1X , for all n ∈ N.

(⇒) Assume that X is non-self-dual. Then there exists a winning strategy σ
for Player I in the game W(X, Xc). Let α = σ(−)σ(−,−)σ(−,−,−) · · · .
We show that α satisfies X ≤W (α[0, n])−1X , for all n ∈ N. Let Player
II apply the strategy σ in the game W(X, (α[0, n])−1X), and let β and β′

be the infinite words respectively played by players I and II in this game.
The definition of σ ensures that β ∈ X , if and only if α[0, n]β′ !∈ Xc, if
and only if α[0, n]β′ ∈ X , if and only if β′ ∈ (α[0, n])−1X . Therefore, the
strategy σ is winning for Player II in the game W(X, (α[0, n])−1X), for
all n ∈ N.

(⇐) We prove that if X is self-dual, then for all α ∈ Aω, there exists an in-
teger n ≥ 0 such that X !≤W (α[0, n])−1X . Towards a contradiction,
assume that there exists α ∈ Aω satisfying X ≤W (α[0, n])−1X , for all
n ∈ N. Then for each integer n, on the one hand, there exists a win-
ning strategy σ0

n for Player II in the game W(X, (α[0, n])−1X), and on
the other hand, since X is self-dual, there also exists a winning strat-
egy σ1

n for Player II in the game W(X, (α[0, n])−1Xc). Now, for any

γ ∈ {0, 1}ω, consider the infinite sequence of strategies (σγ(k)
k)k≥0, and

the infinite sequence of games (W(X, (α[0, nk])−1Xc(γ(k))))k≥0 defined as
follows: in the game W(X, (α[0, nk])−1Xc(γ(k))), Player II applies his win-

ning strategy σγ(k)
k , and Player I copies Player II’s moves in the next game

W(X, (α[0, nk+1])−1Xc(γ(k+1))), where nk is the least integer larger than

nk−1 such that the sequence of strategies σγ(0)
0 ◦σγ(1)

1 ◦ . . .◦σγ(k−1)
k−1 applied

to the finite word α[0, nk] yields a word of length at least k. This infinite

4.2. THE WADGE HIERARCHY 59

sequence of games is illustrated below. Big arrows denote the action of
playing and little ones denote the action of copying.

II
σ

γ(0)
0
! I II

σ
γ(1)
1
! I II

σ
γ(2)
2
! I · · ·

a1
0 a2

0 a3
0

↖ ↖

a0
0 a1

0 a2
0

↘ ↘
a1
1 a2

1

↖

a0
1 a1

1

↘
a1
2

a0
2

Let a0
0a

0
1a

0
2 · · · be the infinite word played by Player II in the first of these

chained game induced by γ. Then the mapping f : {0, 1}ω −→ Aω defined
by f(γ) = a0

0a
0
1a

0
2 · · · is continuous, and thus the set Y = f−1(X) is Borel.

However, by construction of these chained game, the set Y is also a flip
set, a contradiction.

Corollary 4.9. If X is a self-dual Borel subset of Aω, then there exist a set
I ⊆ A+ and a family of non-self-dual subsets (Xi)i∈I satisfying Xi <W X, such
that X =

⋃

i∈I iXi.

Proof. The proof goes by induction on dW (X). If dW (X) = 0, then X is the
empty set or the full space. Since these sets are non-self-dual, there is nothing
to prove in this case. For the induction step, assume that X is a self-dual set.
Then Proposition 4.8 shows that, for all α ∈ Aω, there exists a least integer
nα, such that (α[0, nα])−1X <W X . Let us set I = {α[0, nα] | α ∈ Aω}. One
obviously has X =

⋃

u∈I u
(

u−1X
)

. More precisely, consider the partition of I
in I ′ and I ′′ given by I ′ = {u ∈ I | u−1X is non-self-dual}, and I ′′ = {u ∈ I |
u−1X is self-dual}. Then

X =
⋃

u∈I′

u
(

u−1X
)

∪
⋃

u∈I′′

u
(

u−1X
)

. (4.1)

Now, by construction, every set u−1X satisfies u−1X <W X , for all u ∈ I. If
u−1X is self-dual, the induction hypothesis guarantees that u−1X =

⋃

v∈Ju
vXv,

for some subset Ju of A+, and some non-self-dual sets Xv satisfying Xv <W

u−1X <W X . Therefore, one has

⋃

u∈I′′

u
(

u−1X
)

=
⋃

u∈I′′

u
⋃

v∈Ju

vXv =
⋃

u∈I′′,v∈Ju

u(vXv) =
⋃

uv∈I′′Ju

(uv)Xv.

Finally, by replacing the expression above in (4.1), one obtains the desired
formula

X =
⋃

u∈I′

u
(

u−1X
)

∪
⋃

uv∈I′′Ju

(uv)Xv.

60 CHAPTER 4. THE WADGE HIERARCHY

Corollary 4.9 shows that every self-dual ω-languages is a finite union of trans-
lations of strictly smaller non-self-dual sets. Hence, in order to exclusively con-
centrate on the non-self-dual sets, we consider another definition of the Wadge
degree which sticks every self-dual set on a non-self-dual set lower at just one
level in the hierarchy.

dw(X) =











1 if X = ∅ or X = ∅c,

sup {dw(Y) + 1 | Y n.s.d. and Y <W X} if X is non-self-dual,

sup {dw(Y) | Y n.s.d. and Y <W X} if X is self-dual.

Finally, one can show that the Borel Wadge hierarchy consists of an alter-
nating succession of non-self-dual and self-dual sets, except for some levels of
special cofinality that we will not discuss here. This hierarchy is partially illus-
trated in Figure 4.1, where circles denote the Wadge equivalence classes, and
arrows represent the Wadge reduction. The Borel Wadge hierarchy drastically
refines the Borel hierarchy: the Borel sets of only finite ranks provide Wadge
degrees ranging from 1 to the first fixpoint of the exponentiation of base ω1.

...

↖

↗

↖

↖

↗

↖

↗

•

•

•

......

•

•

•

•

•

↗

Figure 4.1: The Wadge hierarchy.

Chapter 5

The Wagner hierarchy

Summary

In 1979, Wagner defined a partial ordering on ω-rational languages by analyzing
the graphs of their underlying Muller automata. The resulting hierarchy is a
fine and effective classification of ω-rational sets, known as the Wagner hierar-
chy [41]. It was proved to be decidable, and has a height of ωω. In addition,
this hierarchy happens to coincide with the restriction of the Wadge hierarchy
to ω-rational languages, and therefore refines the lower levels of the Borel hier-
archy. The Wagner reduction thus corresponds to the Wadge or the continuous
reduction; but it also coincides with the sequential reduction – a reduction de-
fined by means of automata – on the class of ω-rational languages [27, Thm 5.2,
p. 209].

The Wagner hierarchy has been thoroughly investigated since then. Wilke
and Yoo described an efficient algorithm computing the Wagner degree of any ω-
rational language in polynomial time [43]. Carton, Perrin, Duparc, and Riss [4,
5, 6, 10] studied an algebraic description of this hierarchy in connection with the
theory of ω-semigroup. Selivanov proposed a purely descriptive set theoretical
description of the Wagner hierarchy in [34].

In this chapter, the Wagner hierarchy is described as the trace of the Wadge
hierarchy on ω-rational sets [10]. This description relies mainly on the follow-
ing observation: every Wadge play involving two ω-rational languages naturally
induces two infinite paths in the respective underlying Muller automata. There-
fore, the Wadge complexity of an ω-rational language obviously depends on the
graph structure of its underlying Muller automaton.

Hence, we first introduce a simplified graph representation of Muller au-
tomata. We then define step by step three different notions of chains in the
graph of Muller automata. We further show that the maximal chains contained
in a Muller automaton is a signature of the Wagner equivalence class of the
corresponding ω-rational language. Consequently, we prove that the Wagner
hierarchy has height ωω, and is decidable. The Wagner degree of an ω-rational
language is then precisely given by the length of a maximal chain contained
in the corresponding underlying Muller automaton. Finally, we show that the
Wagner degree is a syntactic invariant: if two ω-rational languages have the
same syntactic ω-semigroup, then they share the same Wagner degree.

61

62 CHAPTER 5. THE WAGNER HIERARCHY

5.1 The DAG representation of Muller automata

The description of the Wagner hierarchy is rather technical but relies on the
following main consideration. If A is a complete Muller automaton recognizing
the language L(A), then any Wadge play according to L(A) traces an infinite
path in the graph of the automaton A. Such a play belongs to L(A) if an only
if the corresponding infinite path is accepted by A. Similarly, any position u
in the Wadge game leads to a state q in the graph of the automaton. The
Wadge positions and plays can thus be visualized in the corresponding automa-
ton graph. Therefore, a Wadge player in charge of L(A) is constantly aware
of the accepting and rejecting plays that he can still produce from his current
position: it corresponds precisely to the accepting and rejecting loops in A that
are reachable from his current state. For this reason, we introduce a pruned
representation of the graph of A which precisely reveals these characteristics.
We first need the following definitions.

Definition 5.1. Let A = (Q, A, δ, {i}, T) be a complete Muller automaton, and
let q and q′ be two states of A. We set q ≤ q′ if either q = q′ or if there exists
a path in A going from q to q′.

This accessibility relation is reflexive and transitive. It induces an equivalence
relation defined by q ≡ q′ if and only if q ≤ q′ and q′ ≤ q. The equivalence
classes of this relation are the strongly connected components of the graph of
A. Given two strictly connected components Qi and Qj of the graph of A, we
set Qi < Qj if and only if there exists a path in A from some state in Qi to
some state in Qj .

Definition 5.2. Let A = (Q, A, δ, {i}, T) be a complete Muller automaton. A
loop in A is a set of states l = {q0, . . . , qn} such that there exists a path is A
which starts at q0, visits successively every state of l, and comes back to q0.

In addition, a loop l of A is called accepting if it belongs to T and rejecting
otherwise. A sequence of loops (l0, . . . , ln) is called alternating if li is accepting
if and only if li+1 is rejecting. It is called increasing if li ⊂ li+1. Finally, the
height of a loop l, denoted by ht(l), is the maximal length of an alternating
increasing sequence of loops that are all strictly contained in l. For instance,
if we consider the semi-lattice ordered by inclusion of all loops contained in a
given strictly connected component, then every loop at the bottom has height
zero.

The quotient of the graph of a Muller automatonA by the equivalence relation
“≡” is a directed acyclic graph (DAG) whose nodes are the strictly connected
components of the graph of A. Furthermore, every node of this graph can be
associated with the semi-lattice of loops (ordered by inclusion) contained in
this strictly connected component. This enriched graph will be called the DAG
representation of the automaton A. It is illustrated in Figure 5.1, where edges
stand for the accessibility relation between the strictly connected components.
The DAG representation of A allows to follow the moves of a Wadge player in
charge of the set L(A). The successive positions of such a player induce a path
in this graph which either remains indefinitely in a given semi-lattice, or climbs
along a branch, with no chance of returning.

5.2. CHAINS IN MULLER AUTOMATA 63

Figure 5.1: The DAG representation of a Muller automaton: every strictly
connected component is associated with its corresponding semi-lattice of loops.

5.2 Chains in Muller automata

We introduce three successive definitions of chains in Muller automata. We will
further prove that the maximal chains contained in a Muller automata describe
entirely the Wagner class of the corresponding ω-rational language.

Definition 5.3 (see [10]). Let A = (Q, A, δ, {i}, T) be a complete Muller au-
tomaton, and let n be a positive integer. An ωn-T -chain in A is a sequence
R0 ⊂ R1 ⊂ . . . ⊂ Rn of admissible subsets of Q such that Rk ∈ T if and only if
k is even.

Hence, an ωn-T c-chain in A is a sequence R0 ⊂ R1 ⊂ . . . ⊂ Rn of admissible
subsets of Q such that Rk ∈ T if and only if k is odd.

Example 5.4. Consider the Muller automaton represented in Figure 5.2 whose
table is given by

T = {{q0}, {q0, q1, q2}} .

Then {q0} ⊂ {q0, q1} ⊂ {q0, q1, q2} is an ω2-T -chain, and {q0, q1} ⊂ {q0, q1, q2}
is an ω1-T c-chain.

q0

q1

1 1

q2

0 0, 1
1

0

Figure 5.2: A Muller automaton.

64 CHAPTER 5. THE WAGNER HIERARCHY

Definition 5.5 (see [10]). Let A = (Q, A, δ, {i}, T) be a complete Muller au-
tomaton, and let n ≥ 0 and l > 0 be two integers. An (ωn · l)-T -chain in A is
a sequence (C1, . . . , Cl) such that

• each Ci is an ωn-T c(i−1)-chain in A,

• each Ci+1 is accessible from Ci, meaning that there exists a path in A
going from some state in Ci to some state in Ci+1.

Example 5.6. Consider the Muller automaton represented in Figure 5.3 whose
table is given by

T = {{q0}, {q2, q3}, {q4}} .

Then ({q0} ⊂ {q0, q1}, {q2} ⊂ {q2, q3}, {q4} ⊂ {q4, q5}) is an (ω1 · 3)-T -chain,
and ({q2} ⊂ {q2, q3}, {q4} ⊂ {q4, q5}) is an (ω1 · 2)-T c-chain.

q0

q1

1 0, 1, 2
0

q2

q3

1 0, 1, 2
0

2 q4

q5

1, 2 0, 1, 2
0

2

Figure 5.3: A Muller automaton.

Definition 5.7 (see [10]). Let A = (Q, A, δ, {i}, T) be a complete Muller au-
tomaton, let (ni)0i=k be a strictly decreasing sequence of positive integers, and
let (li)0i=k be a sequence of strictly positive integers. An (ωnk · lk +ωnk−1 · lk−1 +
. . . + ωn0 · l0)-T -chain in A is a sequence (Di,j)i≤k,j<2i such that

• each Di,j = (Ci,j
1 , Ci,j

2 , . . . , Ci,j
li

) is an (ωni · li)-T c(j)-chain in A,

• each Di+1,2j and Di+1,2j+1 are both accessible from Di,j, meaning that

there exist two paths in A, one going from some state in Ci,j
li

to some

state in Ci+1,2j
1 , and the other one going from some state in Ci,j

li
to some

state in Ci+1,2j+1
1 .

The accessibility relation in a such a chain is illustrated below.

· · ·
↗

D1,0
z }| {

C
1,0
1 → · · · → C

1,0
l1

↘
· · ·

↗
C

0,0
1 → · · · → C

0,0
l0

| {z }

D0,0

↘
· · ·

↗
C

1,1
1 → · · · → C

1,1
l1

| {z }

D1,1

↘
· · ·

5.2. CHAINS IN MULLER AUTOMATA 65

Example 5.8. Consider the Muller automaton represented in Figure 5.4 whose
table is given by

T = {{q0}, {q2}, {q3}, {q5, q6}, {q7}, {q9, q10}, {q11}, {q13, q14}} .

Then (D0,0, D1,0, D1,1) is an (ω1 · 3 + ω0 · 3)-T -chain, where

• D0,0 = ({q0}, {q1}, {q2}),

• D1,0 = ({q3} ⊂ {q3, q4}, {q5} ⊂ {q5, q6}, {q7} ⊂ {q7, q8}),

• D1,1 = ({q9} ⊂ {q9, q10}, {q11} ⊂ {q11, q12}, {q13} ⊂ {q13, q14}).

In addition (D′

0,0, D
′

1,0, D
′

1,1) is an (ω1 · 3 + ω0 · 2)-T c-chain, where

• D′

0,0 = ({q1}, {q2}),

• D′

1,0 = ({q3} ⊂ {q3, q4}, {q5} ⊂ {q5, q6}, {q7} ⊂ {q7, q8}),

• D′

1,1 = ({q9} ⊂ {q9, q10}, {q11} ⊂ {q11, q12}, {q13} ⊂ {q13, q14}).

q3

q4

1

0, 1, 20

q5

q6

1

0, 1, 20

q7

q8

1, 2

0, 1, 20

22

q0

0

q1

0

1, 2
q2

0

1, 2

1

q9

q10

1

0, 1, 20

q11

q12

1

0, 1, 20

2 q13

q14

1, 2

0, 1, 20

2

2

Figure 5.4: A Muller automaton.

In the sequel, an (ωnk · lk +ωnk−1 · lk−1 + . . .+ωn0 · l0)-T -chain will be called
a ξ-T -chain, where ξ denotes the ordinal whose Cantor normal form of base ω
is

ξ = ωnk · lk + ωnk−1 · lk−1 + . . . + ωn0 · l0.

A ξ-T c-chain is defined in a similar way. Definitions 5.3, 5.5, and 5.7 ensure that
ξ-T -chains and ξ-T c-chains are well defined for every ordinal ξ such that 0 <
ξ < ωω. When the automaton involved is supposed to be known, a ξ-T -chain
(a ξ-T c-chain) will be simply called a ξ-chain (a co-ξ-chain), or even a chain
(a co-chain), when no information about the underlying ordinal is mentioned.
Furthermore, given two complete Muller automata A and B, then A is said to

66 CHAPTER 5. THE WAGNER HIERARCHY

contain more chains (co-chains) than B if, for every ordinal ξ, the existence of
an ξ-chain (co-ξ-chains) in B implies the existence of ξ-chain (co-ξ-chains) in
A. The automata A and B contain the same chains (co-chains) if, for every
ordinal ξ, there exists a ξ-chain (co-ξ-chains) in A if and only if there exists
an ξ-chain (co-ξ-chains) in B. Finally, a chain is called maximal in A if it is a
ξ-chain such that there is no other η-chain and co-η-chain satisfying η > ξ. A
co-chain is called maximal in A if the same condition holds. We will further see
that a complete Muller automaton always contains either a maximal chain, or
a maximal co-chain, or both of them.

5.3 Chains as topological invariants

The following theorem shows that the chains and co-chains contained in a given
Muller automaton are topological invariants for the Wagner class of the cor-
responding ω-rational language. In other words, any two ω-rational languages
have the same Wagner degree if and only if their underlying Muller automata
contain the same chains and co-chains.

Theorem 5.9. Let A = (QA, A, δA, {iA}, TA) and B = (QB, B, δB, {iB}, TB) be
two complete Muller automata recognizing the respective ω-languages L(A), and
L(B). Then L(A) ≤W L(B) if and only if B contains more chains and co-chains
than A. In particular, L(A) ≡W L(B) if and only if A and B contain the same
chains and co-chains.

Proof. The left-to-right and right-to-left directions are respectively given by
the forthcoming propositions 5.14 and 5.15. The second part of the theorem is
an immediate consequence of the first part.

The proof of Theorem 5.9 relies on the following preliminary results. First of
all, if there exists a ξ-chain in a Muller automaton A, then for every 0 < η < ξ,
there also exist an η-chain and a co-η-chain. Furthermore, a Muller automaton
always contains either a maximal chain, or a maximal co-chain, or both of them.
Therefore, an automaton B contains more chains (co-chains) than an automaton
A if and only if the existence of a maximal chain (co-chain) in A implies the
existence of a maximal chain (co-chain) in B. Moreover, two automata contain
the same chains (co-chains) if and only if they contain the same maximal chains
(co-chains). This property could lead to an equivalent formulation of Theorem
5.9 in terms of existence of maximal chains and co-chains.

Lemma 5.10. Let A = (Q, A, δ, {i}, T) be a complete Muller automaton. If there
exists a ξ-chain or a co-ξ-chain in A, then for each 0 < η < ξ, there also exist
both an η-chain and a co-η-chain.

Proof. We only consider the case of a ξ-chain, the case of a co-ξ-chain being
symmetric. The proof goes by induction on ξ. It is obviously for ξ = 1, and the
induction step relies mainly on the following argument. By its very definition,
an ωp-chain contains both an ωq-chain and a co-ωq-chain, for each q < p. In
addition, since the accessibility relation always holds inside an ωp-chain, then it
can also give rise to both an (ωq · l)-chain and a co-(ωq · l)-chain, for each q < p
and every l > 0. More generally, every ωp-chain contains both a θ-chain and a

5.3. CHAINS AS TOPOLOGICAL INVARIANTS 67

co-θ-chain, for each 0 < θ < ωp. Hence, let (Di,j)i≤k,j<2i be a ξ-chain, where
the Cantor normal form of ξ is given by

ξ = ωnk · lk + ωnk−1 · lk−1 + . . . + ωn0 · l0.

(1) If k = 0, two cases occur.

(i) If lk = 1, then either ξ = 1, and there is nothing to prove, or
ξ = ωp+1 for some p ≥ 0, and the above argument leads to the
conclusion.

(ii) If lk > 1, then ξ = ωp · (q + 1) for some p, q ≥ 0. By the main
argument, the (ωp · (q +1))-chain contains both an (ωp · q + θ)-chain
and a co-(ωp ·q+θ)-chain, for each θ < ωp. The induction hypothesis
leads to the conclusion.

(2) If k != 0, then again two cases occur.

(i) If n0 = 0, then the ordinal ξ is a successor, and either l0 = 1 or
l0 > 1. If l0 = 1, the sequence (Di,j)0<i≤k,0≤j<2i−1 is a (ξ − 1)-
chain and (Di,j)0<i≤k,2i−1≤j<2i is a co-(ξ − 1)-chain. The induction
hypothesis leads to the conclusion. If l0 > 1, the sequence D0,0 =
(C0,0

1 , . . . , C0,0
l0

) is an (ω0 · l0)-chain. By the main argument, this
chain contains both an (ω0 · (l0 − 1))-chain and a co-(ω0 · (l0 − 1))-
chain. Therefore, by replacing in the ξ-chain the sequence D0,0

by each of these two chains, one obtains a (ξ − 1)-chain and a co-
(ξ − 1)-chain, respectively. The induction hypothesis leads to the
conclusion.

(ii) If n0 > 0, then either l0 = 1 or l0 > 1. If l0 = 1, then D0,0 = (C0,0
1)

where C0,0
1 is an ωn0 -chain. By the main argument, this ωn0 -chain

can give rise to both a θ-chain and a co-θ-chain, for each 0 < θ < ωn0 .
Therefore, by replacing in the ξ-chain the sequence D0,0 by each of
these chains, one finds an (ωnk · lk + . . .+ωn1 · l1 +θ)-chain and a co-
(ωnk · lk + . . .+ωn1 · l1 +θ)-chain, respectively, for each 0 < θ < ωn0 .
The induction hypothesis leads to the conclusion. If l0 > 1, then
D0,0 = (C0,0

1 , . . . , C0,0
l0

) is an (ωn0 · l0)-chain and the root C0,0
1 is an

ωn0-chain. Once again, by the main argument, this chain can give
rise to a θ-chain, for each 0 < θ < ωn0 . Since both (C0,0

1 , . . . , C0,0
l0−1)

and (C0,0
2 , . . . , C0,0

l0
) are accessible from this θ-chain, one can find

an (ωnk · lk + . . . + ωn0 · (l0 − 1) + θ)-chain, for each 0 < θ < ωn0 .
Similarly, one may also find a co-(ωnk · lk + . . . + ωn0 · (l0 − 1) + θ)-
chain, for each 0 < θ < ωn0 . The induction hypothesis leads to the
conclusion.

Lemma 5.11. Let A = (Q, A, δ, {i}, T) be a complete Muller automaton. Then
there exists either a maximal chain, or a maximal co-chain in A. (There may
exist both a maximal chain and a maximal co-chain.)

Proof. First of all, we show that the ordinals associated with the chains and
the co-chains of A are bounded. To this end, notice that an ωn-chain or a co-ωn-
chain involves at least n + 1 different states. Therefore, if we set c = card(Q),
then there is no α-chain and no co-α-chain in the automaton A, for every α ≥ ωc.
Now, consider the least ordinal α such that there is no α-chain and no co-α-chain
in A. If α is a successor, that is α = ξ+1, then the minimality of α ensures that

68 CHAPTER 5. THE WAGNER HIERARCHY

ξ is the largest ordinal such that there exists either a ξ-chain, or a co-ξ-chain,
or even both. In addition, since α obviously stands strictly below ωω, so does
ξ. This concludes the proof in this case. We now show by contradiction that α
cannot be limit. Assume that α is a limit ordinal of Cantor normal form

α = ωnk · lk + ωnk−1 · lk−1 + . . . + ωn0 · l0,

where n0 > 0, and consider the ordinal β = ωnk ·lk+ωnk−1 ·lk−1+. . .+ωn0 ·(l0−1).
By minimality of α, there exists either a (β + ωn0−1 · (c + 1))-chain or a co-
(β + ωn0−1 · (c + 1))-chain denoted by (Di,j)i≤k+1,j<2i . Let us assume, without
loss of generality, that (Di,j)i≤k+1,j<2i is a chain, the case of a co-chain is

symmetric. Then the sequence D0,0 = (C0,0
1 , . . . , C0,0

c+1) is an (ωn0−1 · (c + 1))-

chain, and since card(Q) < c + 1, there exists a state q appearing in both C0,0
i

and C0,0
j , for some i < j. The strictly connected component of q thus contains

the two chains C0,0
i and C0,0

j . In addition, there exist in this strictly connected

component two chains C0,0
k = R0 ⊂ . . . ⊂ Rn0−1 and C0,0

l = S0 ⊂ . . . ⊂ Sn0−1 of
opposite acceptance for some i ≤ k < l ≤ j. In particular, the set Rn0−1∪Sn0−1

is either an accepting or a rejecting loop. Therefore, one of the two chains
R0 ⊂ . . . ⊂ Rn0−1 ⊂ (Rn0−1 ∪ Sn0−1) or S0 ⊂ . . . ⊂ Sn0−1 ⊂ (Rn0−1 ∪ Sn0−1)
is either an ωn0-chain or a co-ωn0-chain related to both D0,1 and D1,0. Finally,
by replacing in the (β +ωn0−1 · (c+1))-chain the sequence D0,0 by this new (co-
)ωn0-chain, one obtains either an α-chain, or a co-α-chain. A contradiction.

Corollary 5.12. Let A = (Q, A, δ, {i}, T) be a complete Muller automaton
such that Q is a loop. Then, for some integer n ≥ 0, there is a maximal ωn-
chain in A if and only if there is no maximal co-ωn-chain in A.

Proof. Lemma 5.11 ensures the existence of a maximal chain or a maximal co-
chain in A. Consider the largest ordinal ξ = ωn such that there exists either an
ωn-chain or a co-ωn-chain in A. Let us assume without loss of generality that it
is an ωn-chain R0 ⊂ R1 ⊂ . . . ⊂ Rn and that Rn is an accepting loop. We first
show that there is no co-ωn-chain in A. We then show that n is indeed the length
of the maximal chains of A. Towards a first contradiction, assume that there also
exists an co-ωn-chain S0 ⊂ S1 ⊂ . . . ⊂ Sn. Since Q is a loop, then so is Rn∪Sn.
In addition, if Rn∪Sn is accepting, then S0 ⊂ . . . ⊂ Sn ⊂ Rn∪Sn is a co-ωn+1-
chain, a contradiction with the maximality of n. If Rn ∪ Sn is rejecting, then
R0 ⊂ . . . ⊂ Rn ⊂ Rn ∪ Sn is an ωn+1-chain, a similar contradiction. Towards
a second contradiction, assume that the ωn-chain is not maximal. Then there
exists an (co-)η-chain, for some η > ωn. Lemma 5.10 thus ensures the existence
of both an ωn-chain and a co-ωn-chain, a contradiction.

The two forthcoming propositions establish the proof of Theorem 5.9. The
left-to-right direction is first proved in the specific case involving automata which
contain a single strictly connected component. This result is then extended to
the general case.

Lemma 5.13. Let A = (QA, A, δA, {iA}, TA) and B = (QB, B, δB, {iB}, TB) be
two complete Muller automata recognizing respectively the ω-languages L(A) and
L(B), and such that QA and QB are loops. If L(A) ≤W L(B), then B contains
more chains and co-chains than A.

5.3. CHAINS AS TOPOLOGICAL INVARIANTS 69

Proof. First of all, since QB is a loop, then q ≡ iB, for all q ∈ QB. Therefore,
the relation u−1L(B) ≡W L(B) holds for all u ∈ B∗, and Proposition 4.8 shows
that L(B) is non-self-dual. In addition, Corollary 5.12 ensures the existence of
a maximal ωn-chain R0 ⊂ R1 ⊂ . . . ⊂ Rn in A, for some integer n, and the
non-existence of a co-ωn-chain in A, or vice versa. Let us assume without loss
of generality that R0 ⊂ R1 ⊂ . . . ⊂ Rn is a chain, the case of a co-chain being
symmetric. By Lemma 5.10, we only need to prove that there also exists an
ωn-chain in B. Towards a contradiction, assume that this is not the case. We
show that Player II has a winning strategy in W (L(B)c, L(A)), which implies
L(B)c ≤W L(A) ≤W L(B), contradicting the fact that L(B) is non-self-dual.
By the hypothesis, since there is no ωn-chain in B, then either ht(QB) < n or
ht(QB) = n and QB ∈ TB if and only if QA !∈ TA. If ht(QB) < n ≤ ht(QA),
then each time Player I runs through a loop Q ⊆ QB, Player II is able to run
through Rht(Q)+1. If QB ∈ TB if and only if QA !∈ TA, then each time Player I
runs through a loop Q ⊆ QB, Player II runs through Rht(Q). In this manner,
the plays produced by players I and II have an opposite acceptance. Player II
wins W (L(B)c, L(A)).

Proposition 5.14. Let A = (QA, A, δA, {iA}, TA) and B = (QB, B, δB, {iB}, TB)
be two complete Muller automata recognizing respectively the ω-languages L(A)
and L(B). If L(A) ≤W L(B), then B contains more chains and co-chains than
A.

Proof. We prove that the existence of a ξ-chain in A implies the existence
of another ξ-chain in B. The proof concerning the co-ξ-chains is dual. We
proceed by induction on ξ. Let (Di,j)i≤k,j<2i be a ξ-chain in A, where ξ =

ωnk · lk + . . .+ωn0 · l0 and D0,0 = (C0,0
1 , . . . , C0,0

l0
). If ξ = ω0 = 1, then a ξ-chain

in A is simply an accepting loop. Since L(A) ≤W L(B), there also exists an
accepting loop in B, which concludes the proof in this case. If ξ > 1, then let
σ be a winning strategy for Player II in W(A, B). Now, consider Player II’s
response to Player I’s run that remains forever in the root C0,0

1 , and let σ(C0,0
1)

denote the states of QB visited by Player II during this response. Let also S
be the <-maximal strictly connected component of B verifying S ∩σ(C0,0

1) != ∅.
Since both C0,0

1 is an ωn0-chain in A and L(A) ≤W L(B), Lemma 5.13 ensures
that there also exists an ωn0 -chain S0,0

1 in S ⊆ QB. Moreover, for every finite
word u and v leading respectively to some states p ∈ C0,0

1 and q ∈ S – that
is δA(iA, u) = p ∈ C0,0

1 and δB(iB, v) = q ∈ S – then u−1L(A) ≤W v−1L(B).
Now, two cases occur:

(1) If l0 > 1, then the ξ-chain (Di,j)i≤k,j<2i with its root C0,0
1 off is a co-

(ωnk · lk + . . . + ωn0 · (l0 − 1))-chain of Ap. By the induction hypothesis,
since ωnk · lk + . . . + ωn0 · (l0 − 1) < ξ and u−1L(A) ≤W v−1L(B), there
also exists a co-(ωnk · lk + . . . + ωn0 · (l0 − 1))-chain in Bq. Therefore, by
joining the ωn0 -chain S0,0

1 and this last co-chain, one finds a ξ-chain in B.

(2) If l0 = 1, then either k = 0 or k > 0. In the case k = 0, Lemma 5.13 leads
to the conclusion. In the case k > 0, by a similar argument and by the
induction hypothesis, there exist an (ωnk · lk + . . . + ωn1 · l1)-chain and a
co-(ωnk · lk + . . .+ωn0 · l1)-chain in B both accessible from S0,0

1 . As before,
this gives rise to a ξ-chain in B.

Proposition 5.15. Let A = (QA, A, δA, {iA}, TA) and B = (QB, B, δB, {iB}, TB)
be two complete Muller automata recognizing respectively the ω-languages L(A)

70 CHAPTER 5. THE WAGNER HIERARCHY

and L(B). If B contains more chains and co-chains than A, then L(A) ≤W

L(B).

Proof. The proof is a formal transcription of the following argument. As al-
ready mentioned, a play of the Wadge game W(L(A), L(B)) can be followed
in the DAG representations of A and B. Hence if B contains more chains and
co-chains than A, then Player II disposes of a DAG representation with a richer
alternation of accepting and rejecting loops. Therefore, Player II will always
be able to follow Player I’s play in order to produce a run of the same accep-
tance and win the corresponding Wadge game. In technical terms, the proof
goes by induction on the ordinal ξ of a maximal ξ-chain or co-ξ-chain of A.
We prove that Player II has a winning strategy in W(L(A), L(B)). Therefore,
L(A) ≤W L(B).

(1) If ξ = ω0 = 1, then all chains and co-chains of A are reduced to single
loops, and by the maximality of ξ, all these loops are pairwise inaccessible.
Two cases may occur. Firstly, the automaton A contains at least an ω0-
chain and no co-ω0-chain (or vice-versa, the other case is symmetric). By
the hypothesis, B also contains at least one ω0-chain. Therefore, Player II
runs indefinitely through this chain and wins W(L(A), L(B)). Secondly,
the automaton A contains at least an ω0-chain and a co-ω0-chain. By the
hypothesis, B also contains both an ω0-chain and a co-ω0-chain. Hence
Player II skips her turn until Player I runs through a loop of A (this
will inevitably occur after a finite amount of time, otherwise there would
be a sequence of two accessible loops). Then the inaccessibility between
the loops of A ensures that Player I gets stuck indefinitely inside this
loop. Therefore, Player II reaches a loop of the same acceptance and wins
W(L(A), L(B)).

(2) If ξ = ωnk · lk + · · · + ωn0 · l0 > 1, then two cases may occur. Firstly, the
automaton A contains a ξ-chain and no co-ξ-chain (or vice versa). Then
by the hypothesis, the automaton B also contains a ξ-chain. Hence, for
every state p reached by Player I, Player II first computes the graph of the
automaton Ap. If Ap still contains a ξ-chain, the position p belongs to a
strictly connected component C which contains or accesses an ωn0-chain
R0 ⊆ . . . ⊆ Rn0 (a root of a ξ-chain). By maximality of ξ, there is no
ωn-chain and no co-ωn-chain in C, for any n > n0 (this would lead to a (co-
)η-chain in A, for some η > ξ). As long as Player I’s play persists in such
a strictly connected component C, Player II plays in the root of a ξ-chain
of B, an ωn0 -chain S0 ⊆ . . . ⊆ Sn0 . Every time Player I runs through a
loop Ri, Player II marks the loop Si of the same height – and thus also the
same acceptance. If this situation persists indefinitely, the largest loops
visited infinitely often by players I and II have the same height and thus
the same acceptance. Therefore, Player II wins the game W(L(A), L(B)).
However, if Player I reaches a state p such that Ap contains no more
ξ-chains, then Player II reaches a position q such that Bq contains the
same chains and co-chains than Ap. The induction hypothesis ensures
that p−1L(A) ≤W q−1L(B). Therefore, Player II has a winning strategy
in W(p−1L(A), q−1L(B)), and thus she also has a winning strategy in
W(L(A), L(B)). Secondly, the automaton A contains both a ξ-chain and
a co-ξ-chain. By the hypothesis, B also contains both a ξ-chain and a
co-ξ-chain. By the maximality of ξ, after a finite amount of time, Player

5.3. CHAINS AS TOPOLOGICAL INVARIANTS 71

I’s play is forced to go through a state p such that Ap contains a maximal
ξ-chain and no co-ξ-chain, or vice versa (otherwise there would exist a
loop accessing both a ξ-chain and a co-ξ-chain, which induces an η-chain
or a co-η-chain for some η > ξ). Hence, Player II first skips her turn until
Player I passes such a state p; then she reaches a state q such that Ap and
Bq contain the same chains and co-chains; she plays as described in the
first case and wins W(L(A), L(B)).

The two previous proposition complete the proof of Theorem 5.9. Finally,
Proposition 5.16 presents a characterization of self-dual and non-self-dual ω-
languages in terms of maximal chains and co-chains. A description of the relative
position of some specific self-dual and non-self-dual sets follows.

Proposition 5.16. Let A = (Q, A, δ, {i}, T be a complete Muller automaton
recognizing the ω-languages L(A). Then L(A) is self-dual if and only if A
contains both a maximal chain and a maximal co-chain.

Proof. The left-to-right direction is a consequence of Proposition 5.14 and
Lemma 5.11. Conversely, we prove that if L(A) is non-self-dual, then A contains
a maximal chain and no maximal co-chain, or vice versa. Since L(A) is non-
self-dual, Proposition 4.8 establishes the existence of an infinite word α ∈ Aω

satisfying (α[0, n])−1L(A) ≡W L(A), for every integer n ≥ 0. This infinite word
induces an infinite path in the graph of A. Since the graph of A is finite, this
infinite path contains at least one loop. Consider then a state q belonging to a
<-maximal such loop. Then the language L(Aq) recognized by the automaton
Aq satisfies L(Aq) ≡W (α[0, n])−1L(A) for some integer n ≥ 0, and therefore
L(Aq) ≡W L(A). Hence, by proposition 5.14, the automata A and Aq contain
the same chains and co-chains. Now, towards a contradiction, assume that the
automaton Aq contains both a maximal ξ-chain and a maximal co-ξ-chain, for
some 0 < ξ < ωω. Then there exist in Aq a ξ-chain and a co-ξ-chain which are
both accessible from the loop of q. But this gives rise to a (co-)(ξ + 1)-chain in
A. A contradiction to the maximality of ξ.

Corollary 5.17. Let A and B be two complete Muller automata recognizing the
ω-languages L(A) and L(B), respectively. The following conditions are equiva-
lent:

(1) A contains a maximal ξ-chain and no maximal co-ξ-chain (or vice-versa),
and B contains both a maximal ξ-chain and a maximal co-ξ-chain, for
some 0 < ξ < ωω;

(2) L(A) is non-self-dual, L(B) is self-dual, L(A) <W L(B), and there is no
ω-rational language Z such that L(A) <W Z <W L(B).

Proof. We first prove (1) implies (2). Proposition 5.16 shows that L(A) is non-
self-dual and L(B) is self-dual. Assume that there exists an ω-rational language
Z such that L(A) <W Z <W L(B). Then Z is the ω-language recognized by a
complete Muller automaton C. Since Z <W L(B), Theorem 5.9 shows that B
contains more chains and co-chains than C. If B and C contain the same chains
and co-chains, then Theorem 5.9 ensures that L(B) ≡W Z, a contradiction.
If B and C do not contain the same chains and co-chains, then C contains a
maximal η-chain or a maximal co-η-chain, for some 0 < η < ξ. Therefore,
Lemma 5.10 and Theorem 5.9 show that Z ≤W L(A), a contradiction. We

72 CHAPTER 5. THE WAGNER HIERARCHY

now prove (2) implies (1). Since L(A) is non-self-dual and L(B) is self-dual,
A contains a maximal ξ-chain and no maximal co-ξ-chain (or vice-versa), for
some 0 < ξ < ωω, and B contains both a maximal η-chain and a maximal co-
η-chain, for some 0 < η < ωω. By Lemma 5.10 and Theorem 5.9, the relation
L(A) <W L(B) implies ξ ≤ η. We prove that ξ < η leads to a contradiction, and
therefore ξ = η. Consider a complete Muller automaton C which contains both
a maximal ξ-chain and a maximal co-ξ-chain. Proposition 5.16 shows that L(C)
is self-dual. Since L(A) is non-self-dual and L(C) contains more chains and co-
chains than L(A), Theorem 5.9 ensures that L(A) <W L(C). In addition, since
ξ < η, Lemma 5.10 and Theorem 5.9 show that L(C) <W L(B), a contradiction.
Therefore, ξ = η.

5.4 Description of the Wagner hierarchy

The Wagner hierarchy is the trace of the Wadge hierarchy on ω-rational sets. It
consists of the collection of every ω-rational sets ordered by the Wadge reduc-
tion. Since every ω-rational language is Borel, the Wagner hierarchy appears as
a restriction of the Borel Wadge hierarchy, so that up to complementation and
Wadge equivalence, the Wagner hierarchy is a well ordering. Therefore, there
exist a unique ordinal, called the height of the Wagner hierarchy, and a mapping
dWAG from the Wagner hierarchy onto its height, called the Wagner degree, such
that dWAG(X) < dWAG(Y) if and only if X <W Y and dWAG(X) = dWAG(Y) if
and only if X ≡W Y or X ≡W Y c, for every ω-rational languages X and Y . As
in the Wadge framework, we consider a modified Wagner degree which attaches
the self-dual sets to the non-self-dual ones located just one level below in the
hierarchy.

dwag(X) =











1 if X = ∅ or X = ∅c,

sup {dwag(Y) + 1 | Y n.s.d. and Y <W X} if X is non-self-dual,

sup {dwag(Y) | Y n.s.d. and Y <W X} if X is self-dual.

The Wagner hierarchy also consists of an alternating succession of non-self-dual
and self-dual sets, as illustrated in Figure 5.5, where circles denote the Wadge
equivalence classes, and arrows stand for the Wadge reduction. This hierarchy
refines the three lower levels of the Borel hierarchy, since every ω-rational set is
a boolean combination of Σ0

2 or Π0
2 sets.

Figure 5.5: The Wagner hierarchy.

5.5. THE WAGNER DEGREE AS A SYNTACTIC INVARIANT 73

We now fulfill the description of the Wagner hierarchy. We prove that the
Wagner degree of an ω-rational language is precisely the ordinal associated with
the maximal chains and/or co-chains contained in the underlying Muller au-
tomaton. Consequently, the Wagner hierarchy has height ωω, and is decidable.

Theorem 5.18. Let A be a complete Muller automaton recognizing the language
L(A), and let ξ be an ordinal such that 0 < ξ < ωω. Then dwag(L(A)) = ξ if
and only if

• either A contains a maximal ξ-chain and no maximal co-ξ-chain,

• or A contains a maximal co-ξ-chain and no maximal ξ-chain,

• or A contains both a maximal ξ-chain and a maximal co-ξ-chain.

Proof. The Wagner degree is defined such that dwag(L(A)) = dwag(L(B)) if
and only if either L(A) ≡W L(B), or L(A) ≡W L(B)c, or L(A) is non-self-
dual and L(B) is a self-dual set just ≤W -above L(A) (in the sense of Corollary
5.17), or symmetrically, L(B) is non-self-dual and L(A) is a self-dual set just
≤W -above L(B). In addition, Theorem 5.9 and Corollary 5.17 show that the
disjunction of these four conditions holds if and only if each of the automata
A and B contains either a maximal ξ-chain, or a maximal co-ξ-chain, or both
of them, for some 0 < ξ < ωω. Thus, dwag(L(A)) = dwag(L(B)) if and only if
each of the automata A and B contains either a maximal ξ-chain, or a maximal
co-ξ-chain, or both of them. Moreover, for any 0 < ξ < ωω, there exists an
automaton A containing a maximal ξ-chain. Therefore, dwag(L(A)) = ξ if and
only if A contains either a maximal ξ-chain, or a maximal co-ξ-chain, or both
of them.

Corollary 5.19. The Wagner hierarchy has height ωω.

Proof. Theorem 5.18 ensures that the Wagner degree is bounded by ωω. In
addition, for any ordinal 0 < ξ < ωω, one can find an ω-rational language whose
Wagner degree is equal to ξ.

Corollary 5.20. The Wagner hierarchy is decidable.

Proof. Since the graph of a Muller automaton is finite, the maximal chains and
co-chains are effectively computable. Theorem 5.18 leads to the conclusion.

The decidability of the Wagner hierarchy, obtained by computing the max-
imal chains and co-chains in Muller automata, is actually a reformulation of
Wagner’s naming procedure, described in [41, 43]. Wilke and Yoo described an
efficient algorithm computing the name – or Wagner degree – of every ω-rational
language [43]. We conclude with the following example.

Example 5.21. Let A be the Muller automaton illustrated in Example 5.8. The
language L(A) that it recognizes satisfies dwag(L(A)) = ω1 · 3 + ω0 · 3, and is
non-self-dual.

5.5 The Wagner degree as a syntactic invariant

This section aims to prove that the Wagner degree is a syntactic invariant : if
two ω-rational languages have the same syntactic pointed ω-semigroups, then
they also have the same Wagner degree. This result is a partial generalization of

74 CHAPTER 5. THE WAGNER HIERARCHY

Proposition 3.31 to the case of ω-semigroups. It ensures that the Wagner degree
of ω-rational languages can be characterized by an algebraic invariant on their
syntactic pointed ω-semigroups. The description of this algebraic invariant will
be presented in the sequel.

Lemma 5.22. Let ϕ = (ϕ+,ϕω) : A∞ −→ B∞ be a morphism of free ω-
semigroups. Then ϕω : Aω −→ Bω is continuous.

Proof. We prove that the inverse image by ϕω of any open set of Bω is an
open set of Aω. Let V ⊆ B∗, and let α = a0a1a2 · · · ∈ Aω , one has

α ∈ ϕ−1(V Bω) ⇔ ϕ(α) ∈ V Bω

⇔ ϕ(a0)ϕ(a1)ϕ(a2) · · · ∈ V Bω

⇔ there exists n ≥ 0 such that ϕ(a0) · · ·ϕ(an) ∈ V

⇔ there exists n ≥ 0 such that ϕ(a0 · · · an) ∈ V

⇔ there exists n ≥ 0 such that a0 · · · an ∈ ϕ−1(V)

⇔ α = a0a1a2 · · · ∈ ϕ−1(V)Aω

Thus ϕ−1
ω (V Bω) = ϕ−1

+ (V)Aω, meaning that the inverse image by ϕω of any
open set of Bω is an open set of Aω. Therefore, ϕω is continuous.

Proposition 5.23. Let K and L be two ω-rational languages of Aω and Bω,
respectively. If Synt(K) divides Synt(L), then K ≤W L.

Proof. Let µ and ν be the syntactic morphisms of K and L, respectively.
If Synt(K) divides Synt(L), then there exist a pointed ω-semigroup (S, P),
an injective morphism ι : (S, P) −→ Synt(L), and a surjective morphism σ :
(S, P) −→ Synt(K), as illustrated below. In particular, since σ and ι are mor-

ι

(A∞, K)

µ

Synt(K) (S, P) Synt(L)

ν

(B∞, L)
g

f

σ

phisms of pointed ω-semigroups, both equalities σ−1(µ(K)) = P = ι−1(ν(L))
hold. Now, since A∞ is free and σ is surjective, Corollary 3.37 ensures that
there exists a morphism of ω-semigroups f : A∞ → S such that σ ◦ f = µ.
Moreover, since µ is the syntactic morphism of K, then

f−1(P) = f−1(σ−1(µ(K))) = µ−1(µ(K)) = K.

Thus f : (A∞, K) −→ (S, P) is a morphism of pointed ω-semigroups. By
composition, the mapping ι ◦ f from (A∞, K) into Synt(L) is a also morphism
of pointed ω-semigroups. Once again, since A∞ is free and ν is surjective, there
exists a morphism of free ω-semigroups g = (g+, gω) : A∞ −→ B∞ such that

5.5. THE WAGNER DEGREE AS A SYNTACTIC INVARIANT 75

ν ◦ g = ι ◦ f . Lemma 5.22 shows that gω is continuous. Moreover, since ν is the
syntactic morphism of L, one has

g−1(L) = g−1(ν−1(ν(L))) = f−1(ι−1(ν(L))) = f−1(P) = K.

Therefore, K ≤W L.

Corollary 5.24. If two ω-rational languages have the same syntactic pointed
ω-semigroup, then they have the same Wagner degree.

Proof. A direct consequence of Proposition 5.23.

76 CHAPTER 5. THE WAGNER HIERARCHY

Chapter 6

The SG-hierarchy

Summary

We define a reduction relation on pointed ω-semigroups by means of an infinite
two-player game inspired by the Wadge game. This reduction induces a hier-
archy of Borel ω-subsets, called the SG-hierarchy. Most of the results of the
Wadge theory presented in Chapter 4 also apply in this framework, and provide
a detailed description of the SG-hierarchy.

6.1 The SG-game

Let S = (S+, Sω) and T = (T+, Tω) be two ω-semigroups, and let X ⊆ Sω
and Y ⊆ Tω be two ω-subsets. The game SG((S, X), (T, Y)) [3] is an infinite
two-player game with perfect information, where Player I is in charge of X ,
Player II is in charge of Y , and players I and II alternately play elements of
S+ and T+ ∪ {−}, respectively. Player I begins. Unlike Player I, Player II
is allowed to skip her turn – denoted by the symbol “−” –, provided she plays
infinitely many moves. After ω turns each, players I and II produced respectively
two infinite sequences (s0, s1, . . .) ∈ Sω

+ and (t0, t1, . . .) ∈ Tω
+ . The winning

condition is given as follows: Player II wins SG ((S, X), (T, Y)) if and only if
πS(s0, s1, . . .) ∈ X ⇔ πT (t0, t1, . . .) ∈ Y . From this point onward, the game
SG ((S, X), (T, Y)) will be denoted by SG(X, Y) and the ω-semigroups involved
will always be known from the context. A play in this game is illustrated below.

(X) I : s0 s1 · · · · · ·
after ω moves
−→ (s0, s1, s2, . . .)

↘ ↗

(Y) II : t0 · · · · · ·
after ω moves

−→ (t0, t1, t2, . . .)

A player is said to be in position s if the product of his/her previous moves
(s1, . . . , sn) is equal to s. A strategy for Player I is a mapping σ : (T+∪{ε})∗ −→
S+. A strategy for Player II is a mapping σ : S+

+ −→ T+ ∪ {ε}. A winning
strategy for a given player is a strategy such that this player always wins when
using it. Notice finally that a player in charge of the set s−1X is exactly as
strong as a player in charge of X , but having already reached position s.

77

78 CHAPTER 6. THE SG-HIERARCHY

Similarly to the Wadge framework, the SG-reduction is defined by X ≤SG Y
if and only if Player II has a winning strategy in SG(X, Y). As usual, we set
X ≡SG Y if and only if X ≤SG Y and Y ≤SG X , and also X <SG Y if and only
if X ≤SG Y and X !≡SG Y . An ω-subset X is called self-dual if X ≤SG Xc, and
non-self-dual otherwise. A straightforward generalization of Lemma 4.1 shows
that the relation ≤SG is reflexive and transitive, and that ≡SG is an equivalence
relation. Lemmas 4.2 and 4.3 also apply in this context.

Lemma 6.1. Let S = (S+, Sω) be an ω-semigroup and let X ⊆ Sω.

(1) If X != Sω, then ∅ ≤SG X.

(2) If X != ∅, then Sω ≤SG X.

(3) ∅ and Sω are incomparable.

Proof.

(1) We describe a winning strategy for Player II in the game SG(∅, X). At the
end of the play, the infinite product of the infinite sequence played by I
does obviously not belong to ∅. Hence, the winning strategy for II consists
in playing an infinite sequence (s0, s1, s2, . . .) such that πS(s0, s1, s2, . . .) !∈
X . This is possible, since X != Sω.

(2) Similarly, we describe a winning strategy for Player II in SG(Sω , X). At
the end of the play, the infinite product of the infinite sequence played by
Player I obviously belongs to Sω. Therefore, Player II wins the game by
playing an infinite sequence (s0, s1, s2, . . .) such that πS(s0, s1, s2, . . .) ∈
X . This is possible, since X != ∅.

(3) We first show that Player II has no winning strategy in the game SG(∅, Sω).
At the end of the play, the infinite product of Player I’s infinite sequence
does not belong to ∅, whereas the infinite product of Player II’s infinite
sequence belongs to Sω. Thus ∅ !≤SG Sω. The same argument shows that
Sω !≤SG ∅.

Lemma 6.2. Let S = (S+, Sω) and T = (S+, Sω) be two ω-semigroups, and let
X ⊆ Sω and Y ⊆ Tω.

(1) X ≤SG Y if and only if Xc ≤SG Y c.

(2) X and Xc are either equivalent, or incomparable.

(3) If X <SG Y , then both Y !≤SG X and Y c !≤SG X.

Proof.

(1) By definition of the winning conditions of the SG-game, a strategy is
winning for Player II in SG(X, Y) if and only if it is also winning for
Player II in SG(Xc, Y c).

(2) Either X ≤SG Xc, or X !≤SG Xc. If X ≤SG Xc, then (1) shows that
Xc ≤SG X , thus X ≡SG Xc. If X !≤SG Xc, then (1) shows that Xc !≤SG

X , hence X and Xc are incomparable.

(3) If X <SG Y , then Y !≤SG X by definition. Now, assume that Y c ≤SG X .
Then Y c ≤SG X and X <SG Y imply Y c <SG Y , a contradiction with
(2).

Example 6.3. The ω-subsets X = {0ω} and Y = {aω} given respectively in
examples 3.56 and 3.57 satisfy X ≤SG Y . Indeed, Player II has a winning
strategy in the game SG(X, Y). First of all, regardless of Player I’s first move,

6.2. THE SG-HIERARCHY 79

Player II answers with the element a. Afterwards, as long as Player I stays in
position 1, Player II plays the element c. If this situation persists until the end
of the play, then players I and II respectively produce the elements 1ω !∈ X and
acω = 0 !∈ Y . Therefore, Player II wins the game. Now, if Player I reaches
position 0, then Player II stays in position a, but answers as follows: when
Player I plays 1, Player II plays c, and when Player I plays 0, Player II plays
ca. Therefore, at the end of the play, two cases may occur: either players I and
II respectively produce 01ω = 1ω !∈ X , and acω = 0 !∈ Y , thus Player II wins
the game, or they respectively produce 00ω = 0ω ∈ X , and a(ca)ω = aω ∈ Y ,
and Player II also wins the game.

6.2 The SG-hierarchy

The collection of Borel ω-subsets ordered by the ≤SG-relation is called the SG-
hierarchy, in order to underline the semigroup approach. Notice that the re-
striction of the SG-hierarchy to Borel ω-subsets of free ω-semigroups is exactly
the Borel Wadge hierarchy. The restriction of the SG-hierarchy to ω-subsets of
finite ω-semigroups will be called the FSG-hierarchy, in order to underline the
finiteness of the ω-semigroups involved. We will further on particularly focus on
this hierarchy. Now, we prove that Borel Wadge determinacy implies the deter-
minacy of SG-games for every Borel winning sets. As in the Wadge framework,
this result induces several consequences on the SG-hierarchy.

Theorem 6.4 (SG-Borel Determinacy). Let S = (S+, Sω) and T = (T+, Tω)
be two ω-semigroups, and let X ⊆ Sω and Y ⊆ Tω be two Borel ω-subsets. The
game SG(X, Y) is determined.

Proof. By definition, since X and Y are Borel, the sets π−1
S (X) and π−1

T (Y)
are respectively Borel subsets of Sω

+ and Tω
+ . In addition, a given player has

a winning strategy in the game SG(X, Y) if and only if this same player has a
winning strategy in the game W(π−1

S (X),π−1
T (Y)). The Borel determinacy of

Wadge games leads to the conclusion.

Propositions 4.6 and 4.7 can be easily reformulated in case of the SG-
reduction: the ≤SG-antichains have length at most two, and the ≤SG-relation
is wellfounded on Borel ω-subsets.

Proposition 6.5. Let S = (S+, Sω) and T = (T+, Tω) be two ω-semigroups,
and let X ⊆ Sω and Y ⊆ Tω be two Borel ω-subsets.

(1) (Wadge’s Lemma) Either X ≤SG Y , or Y ≤SG Xc.

(2) If X and Y are incomparable, then X ≡SG Y c.

(3) The ≤SG-antichains have length at most two.

Proof.

(1) Either X ≤SG Y , or X !≤SG Y . If X !≤SG Y , then Player II has no
winning strategy in SG(X, Y). Hence, by determinacy, Player I has a
winning strategy σ in this game. Therefore, Player II has the following
winning strategy in SG(Y, Xc): she plays σ(ε) on her first move, and then,
she answers to every current position (x0, . . . , xn) of Player I by the move
σ(x0 · · ·xn−1). Thus Y ≤SG Xc.

80 CHAPTER 6. THE SG-HIERARCHY

(2) If X !≤SG Y and Y !≤SG X , then (1) implies that Y ≤SG Xc and X ≤SG

Y c. Therefore, Y ≤SG Xc and Xc ≤SG Y , hence Xc ≡SG Y .

(3) Let X , Y , and Z be three ω-subsets such that X !≤SG Y and Y !≤SG Z.
Then point (1) shows that Y ≤ Xc and Z ≤SG Y c. Therefore, Z ≤SG Y c

and Y c ≤ X , thence Z ≤SG X .

Proposition 6.6 (Martin, Monk). The partial ordering ≤SG is wellfounded
on Borel ω-subsets.

Proof. Towards a contradiction, assume that there exists an infinite sequence
of ω-semigroups (Si = (Si,+, Si,ω))i≥0, and an infinite strictly <SG-descending
sequence of Borel ω-subsets X0 >SG X1 >SG X2 . . ., where Xi ⊆ Si,ω, for all
i ≥ 0. By Lemma 6.2 (3), the relation Xn >SG Xn+1 implies that Xn !≤SG

Xn+1 and Xc
n !≤SG Xn+1, for all n ≥ 0. Therefore, by determinacy, Player I

has the winning strategies σ0
n and σ1

n in the respective games SG(Xn, Xn+1)
and SG(Xc

n, Xn+1), for all n ≥ 0. Now, for any α ∈ {0, 1}ω, consider the

infinite sequence of strategies (σα(n)
n)n≥0, and the infinite sequence of games

(SG(Xc(α(n))
n , Xn+1))n≥0 related as follows: in the game SG(Xc(α(k))

k , Xk+1),

Player I applies his winning strategy σα(k)
k , and Player II copies Player I’s moves

in the next game SG(Xc(α(k+1))
k+1 , Xk+2). Hence, in the first game, Player I

applies his winning strategy σα(0)
0 . Since it is a strategy for Player I, it gives

the first letter a0
0 before Player II has ever played anything. Then Player II

copies Player I’s first move a1
0 of the second game, and Player I answers with his

winning strategy. And so on and so forth, for every move and every game. This
infinite sequence of games is illustrated below. Big arrows denote the action of
playing, and little ones stand for copying.

I
σ

α(0)
0
! II I

σ
α(1)
1
! II I

σ
α(2)
2
! II · · ·

a0
0 a1

0 a2
0

↘ ↙ ↘ ↙ ↘
a1
0 a2

0 a3
0

↙ ↙ ↙
a0
1 a1

1 a2
1

↘ ↙ ↘ ↙

a1
1 a2

1

↙ ↙
a0
2 a1

2

↘ ↙

a1
2

↙
a0
3

Let xα = a0
0a

0
1a

0
2 · · · be the infinite word played by Player I in the first game,

let

ϕ : {0, 1}ω −→ Sω
0,+

be defined by ϕ(α) = xα, and let

ψ = πS0 ◦ ϕ : {0, 1}ω −→ S0,ω

6.2. THE SG-HIERARCHY 81

be defined by ψ(α) = πS0(xα) = πS0(a
0
0, a

0
1, a

0
2, . . .). We show that ϕ is continu-

ous. By definition of these chained games, the k first letters of xα only depend
on the k first letters of α, since we do not need games number k +1, k+2, . . . to
determine xα[0, k]. Thus, for any U ⊆ S∗

0,+, one has ϕ−1(USω
0,+) = V {0, 1}ω,

with V ⊆ {0, 1}∗, and hence the preimage by ϕ of any open set is an open set.
Now, since ϕ and πS0 are continuous, then so is ψ. Consider F = ψ−1(X0). By
construction of these chained games, F is a flip set, because if α and α′ only
differ by one position (meaning if there exists a unique i such that α(i) != α′(i)),
then α ∈ F if and only if α′ !∈ F . On the other hand, the set F is also Borel,
since ψ is continuous. A contradiction.

Propositions 6.5 and 6.6 show that, up to complementation and ≤SG-equi-
valence, the SG-hierarchy is a well ordering. Therefore, there exist a unique
ordinal, called the height of the SG-hierarchy, and a mapping dSG from the
SG-hierarchy onto its height, called the SG-degree, such that dSG(X) < dSG(Y)
if and only if X <SG Y , and dSG(X) = dSG(Y) if and only if X ≡SG Y
or X ≡SG Y c, for every Borel ω-subsets X and Y . The wellfoundness of the
SG-hierarchy ensures that the SG-degree can be defined by induction as follows:

dSG(X) =

{

0 if X = ∅ or X = ∅c,

sup{dSG(B) + 1 : B <SG A} otherwise.

Moreover, the SG-hierarchy has the same familiar “scaling shape” as the Borel
or Wadge hierarchies: an increasing sequence of non-self-dual sets with self-dual
sets in between, as illustrated in Figure 6.1, where circles represent the ≡SG-
equivalence classes of Borel ω-subsets, and arrows stand for the <SG-relation.

...

↖

↗

↖

↖

↗

↖

↗

•

•

•

......

•

•

•

•

•

↗

Figure 6.1: The SG-hierarchy.

From this point onward, we will specially focus on the description of the
FSG-hierarchy. In this context, the following results present a game theoretical
characterization of the self-dual and the non-self-dual ω-subsets of finite ω-
semigroups. We first introduce the following notions.

82 CHAPTER 6. THE SG-HIERARCHY

Given a finite ω-semigroup S = (S+, Sω), an ω-subset X ⊆ Sω, and two
elements s, e ∈ S+: we say that s is a prefix position if s is a prefix of some
linked pair of S2

+; we say that e is a waiting move for the prefix position s if
(s, e) is a linked pair; we say that s is a critical position for X if s−1X <SG X .
We finally also introduce the imposed game SG(,), very similar to SG(,),
except that Player I is allowed to skip his turn, provided he plays infinitely often,
whereas Player II is not allowed to do so, and is forced to play from one prefix
position to another. This infinite game induces the reduction relation ≤SG

defined as usual by X ≤SG Y if and only if Player II has a winning strategy
in SG(X, Y). The following results prove that an SG-player is in charge of a
self-dual ω-subset if and only if he his forced to reach some critical position for
this set. Equivalently, an SG-player is in charge of a non-self-dual ω-subset if
and only if he has the possibility to remain indefinitely as strong as in his initial
position. As a corollary, every self-dual set can be written as a finite union of
<SG-smaller non-self-duals sets.

Lemma 6.7. Let S = (S+, Sω) and T = (T+, Tω) be two finite ω-semigroups, let
X ⊆ Sω and Y ⊆ Tω, and let s be a prefix of a linked pair of T 2

+. Then

X ≤SG s−1Y if and only if X ≤SG s−1Y.

Proof.

(⇐) Notice that Player II is more constrained in the SG-game than in the SG-
game. Hence, if Player II has a winning strategy in SG(X, s−1Y), then
she also has a winning strategy in SG(X, s−1Y).

(⇒) In the game SG(X, s−1Y), we may assume that Player II is in charge of
the subset Y , and is already in the prefix position s in the beginning of
the play. Now, given a winning strategy σ for Player II in SG(X, s−1Y),
we describe a winning strategy for Player II in SG(X, s−1Y). For that
purpose, let a0, a1, a2, . . . denote the subsequence of non-skipping moves
played by Player I in SG(X, s−1Y), and let bi = σ(a0, . . . , ai) be the
answers of Player II in the other game SG(X, s−1Y), for all i ≥ 0. Then,
while I begins to play his very first successive moves, II first waits in her
initial prefix position s by playing an idempotent e such that se = s. As
soon as I’s moves induce an answer b0 · · · bm such that b0 · · · bk−1 = s′,
bk · · · bm = e′, and (s′, e′) is a linked pair, then II either stays in or reaches
position s′. She then waits in this position by playing the idempotent
e′ until I’s moves induce another finite word b0 · · · bn, with n > m, such
that b0 · · · bm+i = s′′, bm+i+1 · · · bn = e′′, i ≥ 0, and (s′′, e′′) is a linked
pair. As before, she either stays in or reaches position s′′ by playing
the element (bm+1 · · · bm+i), when it exists, and waits in this position for
another similar situation by playing the idempotent e′′. And so on and so
forth. Proposition 3.21 shows that this configuration is forced to happen
again and again along the play, so that this strategy is well defined. In
the end, the infinite word played by Player II is a factorization of the
infinite word b0b1b2 Corollary 3.23 shows that these two infinite words
have the same image under the infinite product πT . Therefore, since σ is
winning for Player II in SG(X, s−1Y), the strategy described above is aslo
winning for II in SG(X, s−1Y). Hence X ≤SG s−1Y .

6.2. THE SG-HIERARCHY 83

Proposition 6.8. Let S = (S+, Sω) be a finite ω-semigroup, and let X ⊆ Sω.
The following conditions are equivalent:

(1) X is non-self-dual.

(2) X ≤SG X.

(3) There exists a prefix s of a linked pair of S2
+ such that X ≡SG s−1X.

Proof.

(2)⇒ (1) Given a winning strategy σ for Player II in SG(X, X), we describe
a winning strategy for Player I in SG(X, Xc): Player I first plays σ(−),
and then applies σ to Player II’s moves. He wins.

(1)⇒ (2) Conversely, given a winning strategy σ for Player I in SG(X, Xc), we
describe a winning strategy for Player II in SG(X, X): she first computes
the moves σ(ε),σ(−),σ(−,−),σ(−,−,−) . . ., and plays the first of these
elements which is a prefix position. Notice that such a move always exists,
since S+ is finite. From this prefix position, she then applies σ to Player I’s
moves, but restricts herself to playing from one prefix position to another,
exactly as described in Lemma 6.7. She wins the game.

(3)⇒ (2) Given any element s ∈ S+, the relation s−1X ≤SG X always holds.
Indeed, the winning strategy for Player II consists in first playing s, and
then copying Player I’s moves. The relation X ≡SG s−1X is thus equiv-
alent to X ≤SG s−1X , and Lemma 6.7 ensures that X ≤SG s−1X if and
only if X ≤SG s−1X , for any prefix s. Thus, given a prefix s and a win-
ning strategy σ for II in SG(X, s−1X), we describe a winning strategy for
II in SG(X, X): she plays s and then applies σ.

(2)⇒ (3) Assume that X !≡SG s−1X , for every prefix s of S+. This means
that, for every prefix s, Player I has a winning strategy σs in the game
SG(X, s−1X). We then describe a winning strategy for Player I in the
game SG(X, X): Player I skips his first move; Player II’s answer is forced
to be a prefix position s, by definition of the SG-game; then, Player I
applies σs, and wins.

Corollary 6.9. Let S = (S+, Sω) be a finite ω-semigroup, and let X ⊆ Sω. If
X is self-dual, then X =

⋃

s∈I sYs, for some subset I ⊆ S+, and some family
of non-self-dual ω-subsets (Ys)s∈I satisfying Ys <SG X.

Proof. Let X ⊆ Sω be self-dual, and let I be the set of prefixes of linked pairs
of S2

+. We observe that

X =
⋃

s∈I

s
(

s−1X
)

.

Now, since X is self-dual, Proposition 6.8 ensures that s−1X <SG X , for every
prefix s ∈ I. Moreover, for every prefix s ∈ I, there exists an idempotent e such
that (s, e) is a liked pair. Since se = s, one has s−1X = (se)−1X = e−1(s−1X),
thus in particular s−1X ≡SG e−1(s−1X). Moreover, since e is a prefix of the
linked pair (e, e), Proposition 6.8 shows that the set s−1X is non-self-dual, for
all s ∈ I. This concludes the proof.

By the previous corollary, the self-dual ω-subsets of finite ω-semigroups can
be expressed as finite unions of translations of strictly smaller non-self-dual
sets. Hence, in order to exclusively concentrate on the non-self-dual sets, we

84 CHAPTER 6. THE SG-HIERARCHY

consider another definition of the SG-degree which sticks any self-dual set to
the non-self-dual sets located just one level below it.

dsg(X) =











1 if X = ∅ or X = ∅c,

sup {dsg(Y) + 1 | Y n.s.d. and Y <SG X} if X is non-self-dual,

sup {dsg(Y) | Y n.s.d. and Y <SG X} if X is self-dual.

Example 6.10. Consider the finite ω-semigroup U given in Example 3.41. One
can prove that its ω-subsets have the following SG-degrees:

• dsg(∅) = dsg(Sω) = 1.

• do
sg ({[1, 1]}) = do

sg ({[0, 0], [0, 1]}) = 2.

• do
sg ({[0, 1]}) = do

sg ({[0, 0], [1, 1]}) = ω.

• do
sg ({[0, 0]}) = do

sg ({[0, 1], [1, 1]}) = ω.

Chapter 7

The FSG-hierarchy

Summary

In this chapter, we prove that the FSG-hierarchy is precisely the algebraic coun-
terpart of the Wagner hierarchy. We then present a complete description of the
FSG-hierarchy.

First, we show that the FSG and Wagner hierarchies are isomorphic, so that
the FSG-hierarchy is decidable, and has a height of ωω. The given isomorphism
associates every ω-rational language with its corresponding syntactic pointed ω-
semigroup. Hence, an ω-rational language and its syntactic image always share
the same Wagner degree. This result also induces the two following properties.
First, the SG-reduction on syntactic structures appears as the exact algebraic
counterpart of the Wadge reduction on ω-rational languages. Second, the SG-
degree is invariant under surjective morphism, meaning that syntactic pointed ω-
semigroups are minimal representatives of their SG-equivalence classes, whereas
there is no minimal Büchi or Muller automaton of a given Wagner degree.

Furthermore, we describe an algorithm that computes the SG-degree of every
finite pointed ω-semigroup, without any reference to the corresponding Muller
automaton. This procedure may thus compute the Wagner degree of every
ω-rational language directly on its syntactic structure.

To this end, we first notice that linked pairs provide relevant positions in and
moves of the SG-games. Indeed, prefixes of linked pairs correspond precisely to
stable positions, since playing the corresponding idempotents makes the player
stay in his current position. Idempotents then represent the specific waiting
moves for these stable positions. Therefore, we introduce a graph representation
of finite pointed ω-semigroups according to these particular positions and moves,
and such that every play in the SG-game induces two paths in the corresponding
graphs. These arenas are represented as directed acyclic graphs whose nodes are
flowers. Each heart of a flower corresponds to a class of pairwise accessible stable
positions in the SG-game. Each petal associated with a given stable position
consists of all potential waiting moves in this position. The accessibility relation
between flowers represents the accessibility between stable positions in the SG-
game.

Then, we prove that every SG-player waiting in a given stable position by
playing elements of the corresponding petal can restrict his waiting moves to

85

86 CHAPTER 7. THE FSG-HIERARCHY

some specific idempotents, called the vein of the given petal. Similarly, every
SG-player waiting in a given reachability class of stable positions by playing el-
ements of the whole corresponding flower can restrict his moves to some specific
idempotents, called the main vein of the flower. Therefore, the graph repre-
sentation of finite pointed ω-semigroups can be pruned by deleting all flowers,
but only keeping the main veins of these. The resulting graph reveals the “au-
tomatic” structure of pointed ω-semigroups. Consequently, one can apply (a
reformulation of) Wagner’s naming procedure on these graphs, in order to de-
cide the SG-degree of every ω-subset in the FSG-hierarchy.

Thereafter, we provide two methods for building an ω-subset of any given
SG-degree. The first construction is direct, and the second one is inductive. The
latter construction describes the algebraic counterpart of the ordinal operations.
That is, given two pointed structures of respective SG-degrees d1 and d2, one
can built a third structure with an SG-degree of d1 + d2; one can also build two
other structures of SG-degrees d1 · n, for every integer n, and d1 · ω. Therefore,
starting from the empty set or the full space, one can inductively build an
ω-subset of any given SG-degree.

Aftherwards, we introduce the normal form of any finite pointed ω-semigroup,
and prove that it is an algebraic invariant for the SG-equivalence class of the
given structure. More precisely, any two pointed structures have the same SG-
degree if and only if they have the same normal form. This invariant consists
of a subgraph that encodes the SG-degree of the finite pointed ω-semigroup.

We conclude with additional graphical and algebraic properties.

7.1 The FSG and the Wagner hierarchies

This section shows that the FSG-hierarchy is precisely the algebraic counterpart
of the Wagner hierarchy. Consequently, the FSG-hierarchy has height ωω and
is decidable.

These results rely mainly on the following observation. Let S = (S+, Sω)
be a finite ω-semigroup, and let ϕ : A∞ −→ S be a surjective morphism of
ω-semigroups, for some finite alphabet A. Then every ω-subset X of Sω can
be lifted to an ω-rational language ϕ−1(X) of Aω. The next proposition proves
that this lifting induces an embedding from the FSG-hierarchy into the Wagner
hierarchy.

Proposition 7.1. Let S = (S+, Sω) and T = (T+, Tω) be two finite ω-semi-
groups, let X ⊆ Sω and Y ⊆ Tω, and let ϕ : A∞ −→ S and ψ : B∞ −→ T be
two surjective morphisms of ω-semigroups, where A and B are finite alphabets.
Then

X ≤SG Y if and only if ϕ−1(X) ≤W ψ−1(Y).

Proof.

(⇒) Given a winning strategy σ for Player II in SG(X, Y), we describe a
winning strategy τ for this same player in the game W

(

ϕ−1(X),ψ−1(Y)
)

.
Assume Player I is in position (a0, . . . , an). Then II computes the move
σ(ϕ(a0), . . . ,ϕ(an)). If it is not a skipping move, she chooses a finite word
vn such that ψ(vn) = σ(ϕ(a0), . . . ,ϕ(an)), keeps it in mind while she
finishes to play letter by letter the finite words she had previously chosen,

7.1. THE FSG AND THE WAGNER HIERARCHIES 87

and then plays vn letter by letter. If it is a skipping move, then either she
finishes to play letter by letter the finite words she had previously chosen,
or she skips her turn if it is already done. This strategy is illustrated
below.

SG-game Wadge game

I (X)
σ

" II (Y)
ϕ(a0) σ(ϕ(a0))
ϕ(a1) σ(ϕ(a0), ϕ(a1))

...
...

...
...

...
...

ϕ, ψ
←−−−−

I (ϕ−1(X))
τ

" II (ψ−1(Y))
a0 ...

...

9

>

=

>

;

v0
a1

...

...

...

...

9

>

=

>

;

v1

...
...

It remains to prove that this strategy is winning for Player II. Since ϕ and
ψ are surjective morphisms of ω-semigroups, one obtains

a0a1a2 · · · ∈ ϕ−1(X) ⇔ ϕ(a0a1a2 · · ·) ∈ X

⇔ ϕ(a0)ϕ(a1)ϕ(a2) · · · ∈ X

⇔ σ(ϕ(a0))σ(ϕ(a0),ϕ(a1)) · · · ∈ Y

⇔ ψ(v0)ψ(v1)ψ(v2) · · · ∈ Y

⇔ v0v1v2 · · · ∈ ψ−1(Y).

Consequently, ϕ−1(X) ≤W ψ−1(Y).

(⇐) Given a winning strategy σ for Player II in W
(

ϕ−1(X),ψ−1(Y)
)

, we
describe a winning strategy τ for this same player in SG(X, Y). As-
sume Player I is in position (s0, . . . , sn). Then II chooses a finite word
un = un,0 . . . un,kn of ϕ−1(sn), and computes the successive elements
σ(u0, . . . , un−1, un,0), σ(u0, . . . , un−1, un,0, un,1), and so on, in the game
W(ϕ−1(X),ϕ−1(Y)). After that, she successively plays the images by ψ of
these moves when they are non-skipping, and she skips her turn otherwise.
This strategy is illustrated below.

Wadge game SG-game

I (ϕ−1(X))
σ

" II (ψ−1(Y))

u0

8

>

<

>

:

...

...

σ(u0,0)
σ(u0,0, u0,1)

...

u1

8

>

<

>

:

...

...

...

...
...

ϕ, ψ
−−−−→

I (X)
τ

" II (Y)
s0 ψ ◦ σ(u0,0)
s1 ψ ◦ σ(u0,0, u0,1)
...

...

...
...

...
...

It remains to prove that the strategy τ is winning for Player II. Since ϕ

88 CHAPTER 7. THE FSG-HIERARCHY

and ψ are surjective morphisms of ω-semigroups, one has

s0s1s2 · · · ∈ X ⇔ ϕ(u0)ϕ(u1)ϕ(u2) · · · ∈ X

⇔ u0u1u2 · · · ∈ ϕ−1(X)

⇔ u0,0 · · ·u0,k0u1,0 · · ·u1,k1 · · · ∈ ϕ−1(X)

⇔ σ(u0,0)σ(u0,0, u0,1) · · · ∈ ψ−1(Y)

⇔ ψ (σ(u0,0)σ(u0,0, u0,1) · · ·) ∈ Y

⇔ ψ(σ(u0,0))ψ(σ(u0,0, u0,1)) · · · ∈ Y.

Therefore, X ≤SG Y .

The previous proposition shows that the Wadge reduction on ω-rational lan-
guages and the SG-reduction on ω-subsets recognizing these languages coincide.
This property holds in particular for ω-rational languages and their syntac-
tic images, as mentioned in Corollary 7.2 below. In addition, Corollary 7.2
and Proposition 5.23 show that the SG-relation on subsets of ω-semigroups is
weaker than the division relation, and is the appropriate algebraic character-
ization of the Wadge reduction on ω-rational languages. Corollary 7.2 is the
precise generalization of Proposition 3.31 for the case of ω-rational languages.

Corollary 7.2. Let K and L be two ω-rational languages, and let µ(K) and
ν(L) be their syntactic images. Then K ≤W L if and only if µ(K) ≤SG ν(L).

Proof. Since µ and ν are syntactic morphisms, one has µ−1(µ(K)) = K and
ν−1(ν(L)) = L. Proposition 7.1 leads to the conclusion.

Example 7.3. Consider the ω-subsets X = {0ω} and Y = {aω}, and the ω-
rational languages K = (A∗a)ω and L = (a{b, c}∗ ∪ {b})ω given respectively in
examples 3.56 and 3.57. Example 6.3 shows that X ≤SG Y , and thus K ≤W L.

As another consequence, the SG-degree of an ω-subset is invariant under
surjective morphism, and in particular under syntactic morphism. Therefore,
syntactic finite pointed ω-semigroups are minimal representatives of their ≤SG-
equivalence class.

Corollary 7.4. Let µ : S −→ T be a surjective morphism of finite ω-semi-
groups, let Y ⊆ Tω, and let X = µ−1(Y). Then X ≡SG Y .

Proof. Let ϕ : S∞
+ −→ S be the canonical morphism of ω-semigroups associ-

ated with S, and let ψ = µ ◦ ϕ : S∞
+ −→ T . The mapping ψ is also a surjective

morphism of ω-semigroups. It satisfies ψ−1(Y) = ϕ−1 ◦µ−1(Y) = ϕ−1(X), thus
in particular ϕ−1(X) ≡W ψ−1(Y). Proposition 7.1 shows that X ≡SG Y .

Finally, the following theorem proves that the Wagner hierarchy and the FSG-
hierarchy are isomorphic. The required isomorphism is the mapping which
associates every ω-rational language with its syntactic image. Therefore, the
Wagner degree of an ω-rational language and the SG-degree of its syntactic
image are the same. In order to establish this result, let us denote by WAGH
the class of all ω-rational languages over finite alphabets, and by FSGH the
class of all ω-subsets of finite ω-semigroups.

Theorem 7.5. The partial orderings (WAGH,≤W) and (FSGH,≤SG) are iso-
morphic.

7.2. DESCRIBING FINITE POINTED ω-SEMIGROUPS 89

Proof. Consider the mapping from the Wagner hierarchy into the FSG-hierar-
chy which associates every ω-rational language with its syntactic image. We
prove that this mapping is an embedding. Let K and L be two ω-rational
languages, and let X = µ(K) and Y = ν(L) be their syntactic images. Corollary
7.2 ensures that K ≤W L if and only if X ≤SG Y . We now show that, up to
≡SG-equivalence, this mapping is onto. Let X be any ω-subset of a finite ω-
semigroup S = (S+, Sω), let µ : S −→ S(X) be the syntactic morphism of X ,
and let Y = µ(X) be its syntactic image. Corollary 7.4 ensures that X ≡SG Y .
Now, let also ϕ : S∞

+ −→ S be the canonical morphism associated with S+, and
let L = ϕ−1(X). The morphism of ω-semigroups ψ = µ ◦ ϕ : S∞

+ −→ S(X) is
the syntactic morphism of L [27], and ψ(L) = Y ≡SG X .

As a corollary, we prove that the FSG-hierarchy is decidable: for every ω-
subset X of the hierarchy, one can effectively compute the Cantor normal form
of base ω of the ordinal dsg(X).

Corollary 7.6. The FSG-hierarchy has height ωω, and it is decidable.

Proof. By the previous theorem, the FSG and Wagner hierarchies have the
same height, namely ωω. In addition, given an ω-subset X of a finite ω-semi-
group S = (S+, Sω), its SG-degree can be computed as described hereafter.
Let ϕ : S∞

+ −→ S be the canonical morphism associated with S+, and let
L = ϕ−1(X). Theorem 7.5 shows that the SG-degree of X and the Wagner
degree of L are the same. Furthermore, the Wagner degree of L can effectively be
computed as follows. First, one can effectively compute an ω-rational expression
describing L = ϕ−1(X) [27, Corollary 7.4, p. 110]. Next, one can shift from
this rational expression to some finite Muller automaton recognizing L, see [27,
Chapter I, sections 10.1, 10.3, and 10.4]. Finally, the Wagner degree of the
ω-language recognized by a finite Muller automaton is effectively computable,
as described in Chapter 5.

Example 7.7. Consider the ω-subsets X = {0ω} and Y = {aω} given respec-
tively in examples 3.56 and 3.57. The algorithm presented in the following chap-
ter shows that dsg(X) = ω and dsg(Y) = ω2. In addition, since these sets are
the syntactic images of the ω-languages K = (A∗a)ω and L = (a{b, c}∗ ∪ {b})ω,
Theorem 7.5 shows that this result can also be obtained by computing the
Wagner degrees of K and L. [27, 41, 10].

7.2 Describing finite pointed ω-semigroups

7.2.1 Finite semigroups as graphs

In this section, we describe a graph representation of finite semigroups by focus-
ing on specific positions in, and moves of the SG-game. The notion of a linked
pair is essential to this description. As a consequence, every SG-play induces
a unique path in the graph inherited from the semigroup involved. From this
point forward, the set S+ denotes a fixed finite semigroup. We recall that P
and E respectively denote the sets of prefixes and idempotents of S+.

Linked pairs satisfy the following game theoretical properties. First of all,
Proposition 6.8 shows that any SG-player in charge of a non-self-dual ω-subset

90 CHAPTER 7. THE FSG-HIERARCHY

can restrict himself to only reaching prefix positions. Also, an SG-player can
stay indefinitely in a position s if and only if s is a prefix. He does so by playing
idempotents in E(s). Finally, for every s ∈ P , each idempotent e of E(s)
corresponds to a specific waiting move for the prefix position s. These specific
positions and moves yield two preorders on the sets of prefixes and idempotents
of linked pairs.

Firstly, we consider the restriction of the preorder ≤R to the set of prefixes
P , also denoted by ≤R without ambiguity. By definition, this preorder satisfies
the accessibility relation s ≥R s′ if and only if there exists x ∈ S1

+ such that
sx = s′, for all s, s′ ∈ P . As usual, one has s >R s′ if and only if s ≥R s′ and
s′ !≥R s, and also s R s′ if and only if s ≥R s′ and s′ ≥R s. This preorder can
be naturally extended to the set of R-classes of prefixes P/R by setting s̄ ≥R t̄
if and only if there exist s′ ∈ s̄ and t′ ∈ t̄ such that s′ ≥R t′, for all s̄, t̄ ∈ P/R.
The pair (P/R,≥R) is therefore a partial ordering.

Secondly, we consider the natural order on idempotents, denoted by ≤, and
defined as the restriction of the preorder ≤H to the set E. It satisfies the
absorption relation e ≥ e′ if and only if ee′ = e′e = e′ holds, for all e, e′ ∈ E.
As usual, one has e > e′ if and only if both e ≥ e′ and e′ !≥ e hold. Proposition
3.17 shows that the pair (E,≥) is also a partial ordering [27].

These two relations satisfy the following properties, central in the description
of an SG-play. Firstly, a player can move from the prefix position s to the prefix
position s′ if and only if s ≥R s′. He can go from s to s′ and back to s if and
only if s R s′. Secondly, a player which forever stays in the prefix position s by
playing infinitely many e’s and f ’s in E(s) produces an infinite play α of the form
(s, e, f, f, e, f, e, e, . . .). If e ≥ f , since the f ’s absorb all the e’s, the infinite word
(s, f, f, f, . . .) is a factorization of α, and the properties of the infinite product
ensure that πS(α) = sfω. Therefore, only the ≤-least idempotents that are
played infinitely often in a given prefix position are involved in the acceptance
of the final play.

The graph of the preorder (P,≥R) is a subgraph of the right Cayley graph
of S+, and its strongly connected components are the R-classes of P . The
graph of the partial order (P/R,≥R) is thus a directed acyclic graph (DAG)
where vertices represent the R-classes of prefixes and directed edges stand for
the strict accessibility relation >R, as illustrated in Figure 7.1, where transitive
arrows are not drawn, for reasons of clarity (that is every time there is an edge
from i to j, and from j to k, the induced edge from i to k is not represented).
The successive moves of an SG-player should be traced inside this graph. In-
deed, every SG-play according to elements of S+ induces a sequence of prefix
positions which progresses deeper and deeper inside this structure: any prefix
position s = (a0, a1, . . . , an) only extends to some prefix position of the form
s′ = (a0, . . . , an, an+1, . . . , ak) such that s ≥R s′. Therefore, an infinite SG-play
induces a unique path in this DAG that either remains in an R-class of pre-
fixes, or climbs along the edges, with no chance of going back (this justifies the
consideration of the partial order (P/R,≥R) instead of (P/R,≤R)).

Furthermore, every prefix t can be associated with the partial ordered set
(E(t),≥), called the petal associated with t, and denoted by petal(t). The graph
of this set is also a DAG, and given e, f ∈ petal(t), there is an edge from e to f
if and only if e ≥ f . Hence, this set consists of all the possible waiting moves for

7.2. DESCRIBING FINITE POINTED ω-SEMIGROUPS 91

Figure 7.1: The directed acyclic graph representation of the partial order
(P/R,≥R). A play of an SG-player induces a unique path in this DAG.

the prefix position t ordered by their absorption capacity. Up to making copies
of idempotents, we assume all petals to be disjoint. Then, for every R-class of
prefixes s̄, the set

⋃

t∈s̄ petal(t) is called the flower associated with s̄, denoted
by flower(s̄). This set contains all the possible waiting moves for some prefix
position in s̄. Figure 7.2 illustrates a flower in detail.

Figure 7.2: The set flower(s̄) associated with the R-class of prefixes s̄. Every
prefix si in s̄ is associated with its corresponding petal. The circle describes the
≥R-accessibility relation between the prefixes si of s̄.

Finally, the enriched graph representation of (P/R,≥R) where each R-class
of prefixes is associated with its corresponding flower will be called the DAG
representation of the finite semigroup S+. It can be drawn like a bunch of
flowers, as illustrated in Figure 7.3. This graph represents an arena for an SG-
player moving in S+. It allows to follow the successive prefix positions reached

92 CHAPTER 7. THE FSG-HIERARCHY

along the play, and for every prefix position, it describes all the possible waiting
moves ordered by their absorption capacity.

Figure 7.3: The DAG representation of a finite semigroup S+: every R-class of
prefixes is associated with its corresponding flower. This DAG is an arena for
every SG-player whose moves are inside the semigroup S+.

Example 7.8. Let U2 = {1, a, b} be the finite monoid defined by the relations
aa = ba = a and ab = bb = b. The DAG representation of U2 is illustrated in
Figure 7.4.

Figure 7.4: The DAG representation of the finite semigroup U2.

7.2. DESCRIBING FINITE POINTED ω-SEMIGROUPS 93

7.2.2 Finite pointed ω-semigroups as graphs

The DAG representation of finite semigroups can easily be extended to some
graph representation of finite pointed ω-semigroups. For that purpose, we intro-
duce the signature of a petal. From this point onward, the pair (S, X) denotes
a fixed finite pointed ω-semigroup, where S = (S+, Sω) is a finite ω-semigroup
and X is a subset of Sω.

Definition 7.9. Let s ∈ P . The signature of the set petal(s) according to X is
the mapping signX : petal(s) −→ {+,−} defined by

signX(e) =

{

+ if seω ∈ X,

− if seω !∈ X.

The pair (petal(s), signX) is called the signed petal associated with s, denoted
by petalX(s). The union for t running in s̄ of the sets petalX(t) is called the
signed flower associated with s̄, and is denoted by flowerX(s̄).

The graph of the partial order (P/R,≥R) where each R-class of prefixes s̄ is
associated with its corresponding signed flower flowerX(s̄) is called the signed
DAG representation of the finite pointed ω-semigroup (S, X), and is illustrated
in Figure 7.5. This graph is an arena for an SG-player in charge of X : the
successive prefix positions reached along the play can be traced inside this graph,
just as described in section 7.2.1. But in addition, the signs associated with the
idempotents provide information about the acceptance of an SG-play according
to X : an infinite play belongs to X if and only if it can be factorized into the
form seω, for some positive e ∈ petalX(s). Finally, by finiteness of this DAG,
every infinite play will eventually remain forever in a signed flower, and hit at
least one of the corresponding signed petals infinitely often.

Figure 7.5: The signed DAG representation of a finite pointed ω-semigroup
(S, X): an enriched arena for an SG-player in charge of X .

94 CHAPTER 7. THE FSG-HIERARCHY

Example 7.10. Let S = ({0, 1}, {0ω, 1ω}) be the finite ω-semigroup defined by
the following relations:

0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = 1

00ω = 0ω 10ω = 0ω 01ω = 1ω 11ω = 1ω

Let X = {0ω} ⊆ S. The signed DAG representation of (S, X) is illustrated in
Figure 7.6

Figure 7.6: The signed DAG representation of (S, X).

Example 7.11. Let T = ({a, b, c, ca}, {aω, (ca)ω, 0}) be the finite ω-semigroup
defined by the following relations:

a2 = a ab = a ac = a ba = a

b2 = b bc = c cb = c c2 = c

bω = aω cω = 0 aaω = aω a(ca)ω = aω

baω = aω b(ca)ω = (ca)ω caω = (ca)ω c(ca)ω = (ca)ω

Let Y = {aω} ⊆ T . The signed DAG representation of (T, Y) is illustrated in
Figure 7.7.

Figure 7.7: The signed DAG representation of (T, Y).

7.2. DESCRIBING FINITE POINTED ω-SEMIGROUPS 95

7.2.3 Alternating chains

The following sections describe step by step the game theoretical characteristics
of the signed DAG representation of a finite pointed ω-semigroup. For that
purpose, we introduce the notion of an alternating chain of idempotents in a
signed petal. This definition refines the notion of a chain in finite ω-semigroups,
introduced in [5, Theorem 6].

Definition 7.12. Let s ∈ P . An alternating chain in petalX(s) is a strictly
descending sequence of idempotents of petalX(s) e0 > e1 > . . . > en satisfying
the following properties:

(1) signs alternation: one has signX(ek) != signX(ek+1), for all k < n;

(2) each ek is minimal for its sign: if ek > e and signX(ek) = signX(e), then
there exists f such that ek > f > e and signX(ek) != signX(f).

An alternating chain in a signed flower is simply an alternating chain in a signed
petal of this signed flower.

Let C : e0 > e1 > . . . > en be an alternating chain in petalX(s). The
length of C, denoted by l(C), is n (number of its elements minus one, or
equivalently, the number of signs alternations). The chain C is said to be
maximal in petalX(s) if there is no other alternating chain of strictly larger
length in petalX(s). Maximal alternating chains in signed petals and flow-
ers will play a central role in the sequel. In addition, the chain C is called
positive if signX(e0) = +, and negative otherwise. Two alternating chains
e0 > . . . > en and e′0 > . . . > e′n of the same length are said to have the same
signs if signX(en) = signX(e′n), and opposite signs otherwise. Condition (1)
of Definition 7.12 implies that these chains have the same signs if and only if
signX(ei) = signX(e′i), for all i. Finally, we say that an alternating chain C
captures the idempotent e if e ≥ e0, or if there exist ei and ei+1 such that
ei > e ≥ ei+1. If e ≥ e0, the rank of e in C is defined as rankC(e) = 0, and if
ei > e ≥ ei+1, then rankC(e) = i+1. An alternating chain of length 3 capturing
the elements e and e′ is illustrated below. Every idempotent is associated with
its sign, and arrows represent the >-relation.

(e0, +) −→ (e1,−) → (e,+) → (e2, +) → (e′,−) → (e3,−)

Example 7.13. Consider the finite pointed ω-semigroup (T, Y) given in Exam-
ple 7.11. The sequence b > c > ca is a positive alternating chain of length 2 in
the signed petal petalY (a). Inside the signed petal petalY (ca), the element ca
is a negative alternating chain of length 0 capturing the idempotents b and c.

Alternating chains satisfy the following property.

Lemma 7.14. Let x ∈ petalX(s). Among all the alternating chains capturing x,
any longest two have the same signs, and induce the same rank for x.

Consequently, we simply denote by rank(e) the rank of e in any longest alter-
nating chain capturing e.

Proof. Let C1 : e0 > . . . > en and C2 : f0 > . . . > fn be any two of the longest
alternating chains capturing x. We prove that their ≤-minimal elements en and
fn have the same sign. Consider e = (enfnen)π and f = (fnenfn)π, where π is

96 CHAPTER 7. THE FSG-HIERARCHY

the exponent of S+. Then e and f are idempotent and se = sf = s, hence e
and f both belong to petalX(s). Moreover, ene = een = e, thus en ≥ e. Since
C1 is a longest alternating chain capturing x, and en is minimal in this chain,
the elements e and en have the same sign. Condition (2) of Definition 7.12 then
implies that en = e. Similarly, fn = f . Hence, the properties of the ω-operation
imply

seω = s(enfnen)ω = s(enfnfnen)ω = senfn(fnenenfn)ω = s(fnenfn)ω = sfω.

Therefore, the idempotents e = en and f = fn have the same sign, hence C1

and C2 also have the same signs. We now prove that x has the same rank in
C1 and C2. Let k and l be the respective ranks of x in C1 and C2. We may
assume, without loss of generality, that k ≤ l. Therefore,

e0 > e1 > . . . > ek−1 > f) > . . . > fn,

f0 > f1 > . . . > f)−1 > ek > . . . > en

are two alternating chains of respective lengths (k−1)+(n− l)+1 = k+(n− l)
and (l − 1) + (n − k) + 1 = l + (n − k). The maximality of n implies both
k + (n − l) ≤ n and l + (n − k) ≤ n, thence k = l.

7.2.4 Veins

We now focus on some specific alternating chains of idempotents. We prove
that only those ones influence the SG-degree of our algebraic structures.

Definition 7.15. For every s in P , a maximal alternating chain in petalX(s)
is called a vein of this signed petal.

Example 7.16. Consider the finite pointed ω-semigroup (T, Y) given in Exam-
ple 7.11. The sequence b > c > ca is a vein in petalY (a).

Playing waiting moves inside a given vein instead of potentially being able to
play through all idempotents of a signed petal will show not to be restricting.
We first prove the following property.

Lemma 7.17. Any two veins of a given signed petal share the same signs.

Proof. Let C1 and C2 be two veins inside petalX(s). We prove that their
≤-minimal elements m1 and m2 have the same sign. Consider the elements
e1 = (m1m2m1)π and e2 = (m2m1m2)π , where π is the exponent of S+. Then e1

and e2 are both idempotents satisfying se1 = se2 = s, hence e1, e2 ∈ petalX(s).
Moreover, m1e1 = e1m1 = e1 and m2e2 = e2m2 = e2, thus m1 ≥ e1 and
m2 ≥ e2. Since both C1 is a maximal alternating chain, and m1 is minimal
in this chain, the elements e1 and m1 have the same sign. Definition 7.12 case
(2) then implies that m1 = e1. By a similar argument, m2 = e2. Finally, the
properties of the ω-operation yield

se1
ω = s(m1m2m1)

ω = s(m1m2m2m1)
ω

= sm1m2(m2m1m1m2)
ω = s(m2m1m2)

ω = se2
ω.

Therefore, the idempotents e1 = m1 and e2 = m2 have the same sign, thus C1

and C2 have the same signs too.

7.2. DESCRIBING FINITE POINTED ω-SEMIGROUPS 97

We now define a mapping from any signed petal onto one of its veins. The
choice of the vein may be arbitrary, for Lemma 7.17 shows that all the veins of
a given signed petal are isomorphic. This mapping will determine the strategy
of an SG-player restricting his waiting moves to the sole idempotents of such
veins.

Definition 7.18. Let V be any vein e0 > . . . > en inside petalX(s). We define
the mapping σ : petalX(s) −→ V by

σ(e) =

{

ei if rank(e) = i and signX(e) = signX(ei),

ei+1 if rank(e) = i and signX(e) != signX(ei).

By finiteness of the set petalX(s), this mapping is effectively computable. It is
onto and preserves the order ≤ as well as the signature, as illustrated in Figure
7.8 below.

Figure 7.8: The surjection from a signed petal onto one of its veins.

We finally turn to prove that only one vein of each signed petal is significant
in the description of the SG-degree of (S, X). More precisely, we show that
any SG-player remaining indefinitely in some prefix position s can restrict his
waiting moves to the idempotents of a given vein of petalX(s). To this end, we
consider the imposed game SG′(X, X) where:

• both players are in charge of X , and are not allowed to pass their turns;

• they are both forced to play s on their first move;

• on his next moves, I is forced to play waiting moves inside petalX(s);

• on her next moves, II is forced to play waiting moves belonging exclusively
to a given vein of petalX(s).

We prove that these restricting rules for Player II do actually not weaken her.

98 CHAPTER 7. THE FSG-HIERARCHY

Proposition 7.19. Player II has a winning strategy in the imposed game defined
above.

Proof. Both players are forced to play s on their first move. A winning strategy
for Player II is described by induction as follows.

Player II first associates with each element e in petalX(s) a counter κ(e). After
each move of I, the integer κ(e) will be the largest possible number of e’s oc-
curring in a factorization of I’s current play. More precisely, Player II updates
these counters as follows: let (e0, . . . , ek−1) be the elements of petalX(s) already
played by I, then for each e in petalX(s), the value of κ(e) is set as the largest
integer p such that there exists a sequence of indices

0 ≤ i1 ≤ j1 < i2 ≤ j2 < . . . < ip ≤ jp ≤ k − 1

satisfying e = (ei1 · · · ej1) = (ei2 · · · ej2) = . . . = (eip · · · ejp). After that, Player
II computes the images on the given vein under σ of all the idempotents whose
counters has increased, as described in Definition 7.18. She finally plays the
≤-minimum of these images. Notice that this minimum always exists since the
given vein is well ordered by ≤.

The three following claims prove that this strategy is winning for Player II. We
introduce the following notations. We set inc∞ for the set of idempotents of
petalX(s) whose counters were incremented infinitely often during the play, and
we let INC∞ be the set of ≤-minimal elements of inc∞. Finally, we set

emin = min {σ(e) | e ∈ INC∞} .

Claim 7.20. Let α be I’s infinite play, and let e ∈ INC∞. Then πS(α) = seω.

Proof. Since e belongs to INC∞, its counter was incremented infinitely often
during the play. Consequently, I’s infinite play can be written as

α = sv0ev1ev2ev3ev4e · · · ,

where each vi is a finite word of petalX(s)∗, for all i ≥ 0. By idempotence
of e, the infinite word α is a factorization of β = sv0ev1eev2eev3eev4ee · · · ,
and the infinite word γ = sv0(ev1e)(ev2e)(ev3e) · · · is a factorization of β. By
Proposition 3.21, γ can be associated with a linked pair (s, ẽ), where ẽ = eve,
for some v ∈ petalX(s)∗. Thus πS(γ) = sẽω. Moreover, by the properties of the
infinite product, since γ is a factorization of β, one has πS(γ) = πS(β) = sẽω.
By the same property, since α is a factorization of β, then πS(α) = πS(β) = sẽω.
Besides, notice that the element ẽ also appears infinitely often in a factorization
of α, hence its counter was incremented infinitely often during the play, meaning
that ẽ ∈ inc∞. In addition, one has eẽ = ẽe = ẽ, thus e ≥ ẽ. But then the
minimality of e in inc∞ implies ẽ = e. Finally, one obtains πS(α) = sẽω =
seω.

Claim 7.21. Let β be II’s infinite play. Then πS(β) = semin
ω.

Proof. Let e ∈ INC∞ such that emin = σ(e). The strategy described above
guarantees that II played emin infinitely often. Therefore, II’s infinite play can
be written as

β = su0eminu1eminu2emin · · · ,

7.2. DESCRIBING FINITE POINTED ω-SEMIGROUPS 99

where each ui is a finite word of elements of the given vein, for all i ≥ 0.
Moreover, no element g < emin was played by II infinitely often. Otherwise,
since the set σ−1(g) is finite, there would exist f in inc∞ such that σ(f) = g,
contradicting the minimality of emin. Now, since emin is the ≤-minimal element
of the given vein played infinitely often by II, every product eminui is equal to
emin. Proposition 3.21 then shows that the infinite word β can be associated
with the linked pair (s, emin). Therefore πS(β) = semin

ω.

Claim 7.22. One has πS(α) ∈ X if and only if πS(β) ∈ X.

Proof. Claim 7.21 shows that πS(β) = semin
ω. Now, let e be an idempotent of

INC∞ such that σ(e) = emin. Claim 7.20 proves that πS(α) = seω. Moreover,
since σ preserves the signature, the idempotents e and emin have the same sign.
Therefore, πS(α) = seω ∈ X if and only if πS(β) = semin

ω ∈ X .

7.2.5 Main veins

In this section, we prove that only some specific veins of each flower is relevant
in the computation of the SG-degree. We focus on these main veins.

Definition 7.23. Let s̄ ∈ P/R. A maximal alternating chain in flowerX(s̄) is
called a main vein of this signed flower.

Example 7.24. Consider the finite pointed ω-semigroup (T, Y) given in Exam-
ple 7.11. The sequence b > c > ca is a main vein in flowerY (a).

Main veins satisfy the same property as veins.

Lemma 7.25. Any two main veins of a given signed flower share the same signs.

Proof. Let C1 ⊆ petalX(s1) and C2 ⊆ petalX(s2) be two main veins of
flowerX(s̄). We prove that their ≤-minimal elements m1 and m2 have the same
sign. Since s1, s2 ∈ s̄, there exist a, b ∈ S1

+ such that s1a = s2 and s2b = s1.
Now, consider the elements e1 = (m1am2bm1)π and e2 = (m2bm1am2)π ,
where π is the exponent of S+. Then e1 and e2 are idempotents satisfying
s1e1 = s1 and s2e2 = s2, thence e1 ∈ petalX(s1) and e2 ∈ petalX(s2). More-
over, m1e1 = e1m1 = e1 and m2e2 = e2m2 = e2, thus m1 ≥ e1 and m2 ≥ e2.
Furthermore, since C1 is a maximal alternating chain, and m1 is minimal in this
chain, then e1 and m1 have the same sign. Definition 7.12 case (2) then implies
that m1 = e1. Similarly, one has m2 = e2. Hence, the ω-associativity of the
ω-product yields

s1e1
ω = s1(m1am2bm1)

ω = s1(m1am2m2bm1)
ω

= s1m1am2(m2bm1am2)
ω = s2e2

ω.

Therefore, e1 = m1 and e2 = m2 have the same sign, which proves that C1 and
C2 have the same signs too.

As previously, we define a mapping from every signed petals of a signed flower
onto a given main vein. The choice of the main vein may also be arbitrary, for
Lemma 7.25 proves that mains veins of a given signed flower are all isomorphic.

100 CHAPTER 7. THE FSG-HIERARCHY

We implicitly proceed in two steps: firstly, we map every signed petal onto one
of its veins, as defined in Definition 7.18; secondly, we map every such vein onto
a given main vein.

Definition 7.26. Let V : e0 > . . . > en be a main vein of flowerX(s̄). We
define the mapping σ̄ : flowerX(s̄) −→ V by

σ̄(e) =

{

ei if rank(σ(e)) = i and signX(e) = signX(ei),

ei+1 if rank(σ(e)) = i and signX(e) != signX(ei).

This mapping is onto, and preserves the natural ordering on idempotents, as
well as the signature. It is illustrated in Figure 7.9. This mapping will be
involved in the strategy of an SG-player that restricts his waiting moves to the
sole idempotents of some given main veins.

Figure 7.9: The surjection from a signed flower onto one of its main veins.

We now show that only one main vein of each signed flower matters in the
computation of the SG-degree of (S, X). In other words, any player remaining
indefinitely in some R-class of prefixes s̄ can restrict his waiting moves to the
idempotents of a given main vein inside flowerX(s̄). We thence consider a
given main vein of flowerX(s̄) contained in petalX(t), for some t ∈ s̄, and we
introduce an imposed version of the game SG(X, X) where:

• both players are in charge of X , and cannot skip their turns;

• I is forced to only reach positions in s̄;

• II is forced to play t on her first move, and then restrict her waiting moves
to the idempotents of the given main in petalX(t).

We extend Proposition 7.19 to main veins.

7.2. DESCRIBING FINITE POINTED ω-SEMIGROUPS 101

Proposition 7.27. Player II has a winning strategy in this imposed game.

Proof. Player II fist plays t, then applies the following strategy.

She associates with each element e in flowerX(s̄) a counter κ(e). She updates
these counters after each move of I as follows: let (x0, . . . , xk−1) be the elements
already played by I, then for every t′ ∈ s̄ and every e ∈ petalX(t′), the value
κ(e) is the maximal number of occurrences of e appearing in position t′ in a
factorization of I’s current play. More precisely, the value of κ(e) is set as the
largest integer p such that there exists a sequence of indices

0 ≤ i1 ≤ j1 < i2 ≤ j2 < . . . < ip ≤ jp ≤ k − 1

satisfying

(1) e = (xi1 · · ·xj1) = (xi2 · · ·xj2) = . . . = (xip · · ·xjp),

(2) all the elements xi1 , xi2 , . . . , xip were played in position t.

Then II computes the images on the given main vein under σ̄ of all idempotents
whose counters were incremented, and plays the ≤-minimum of those. If no
element were incremented, II plays the ≤-largest idempotent of the given main
vein. This may happen, for instance, when I passes from one prefix of the
R-class to another, and hence doesn’t play an idempotent of flowerX(s̄).

This strategy ensures that Player II increments the counter an idempotent
e ∈ petalX(t′) if and only if e appears in position t′ in a factorization of I’s play.
The three following claims prove that this strategy is winning for Player II. We
first introduce the following notations: we let inc∞ be the set of elements in
flowerX(s̄) whose counters were incremented infinitely often during the play,
and INC∞ be the set of ≤-minimal elements of inc∞. We also set

emin = min {σ̄(e) | e ∈ INC∞} .

Claim 7.28. Let α be I’s infinite play, let e ∈ INC∞, and let r ∈ s̄ be such that
e ∈ petalX(r). Then πS(α) = reω.

Proof. Since e ∈ INC∞ and e ∈ petalX(r), I’s infinite play is of the form

α = v0ev1ev2ev3ev4e · · · ,

where each vi is a finite word of S∗
+, and each prefix v0e · · · evi is equal to r. By

idempotence of e, the word α is a factorization of β = v0ev1eev2eev3eev4ee · · · ,
and the infinite word γ = v0(ev1e)(ev2e)(ev3e) · · · is also a factorization of β.
By Proposition 3.21, γ can be associated with a linked pair (r, ẽ), where ẽ is an
element of petalX(r) of the form ẽ = eve, for some v ∈ S∗

+. Thus πS(γ) = rẽω .
Since γ is a factorization of β, one has πS(γ) = πS(β) = rẽω. Also, since α is
a factorization of β, one obtains πS(α) = πS(β) = rẽω. Besides, notice that ẽ
also appears infinitely often in position r in a factorization α, hence its counter
was incremented infinitely often during the play, that is ẽ ∈ inc∞. In addition,
one has ẽe = eẽ = ẽ, thus e ≥ ẽ. But then the minimality of e in inc∞ implies
ẽ = e. Finally, one obtains πS(α) = rẽω = reω.

Claim 7.29. Let β be II’s infinite play. Then πS(β) = temin
ω (where t is the

prefix associated with the given main vein).

102 CHAPTER 7. THE FSG-HIERARCHY

Proof. Let e ∈ INC∞ such that emin = σ̄(e). The strategy described above
ensures that II played emin infinitely often while being in position t. Therefore,
II’s infinite play can be written as

β = tu0eminu1eminu2emin · · ·

where each ui is a finite word of elements of the given main vein. Moreover, no
element g < emin was played infinitely often by Player II. Otherwise, since the
set σ̄−1(g) is finite, there would exist an element f ∈ inc∞ such that σ̄(f) = g,
contradicting the minimality of emin. Now, since emin is the ≤-minimal element
of the given main vein which was played infinitely often by II, every product
eminui is equal to emin. Proposition 3.21 then shows that β can be associated
with the linked pair (t, emin). Therefore, πS(β) = temin

ω.

Claim 7.30. One has πS(α) ∈ X if and only if πS(β) ∈ X.

Proof. Claim 7.29 shows that πS(β) = temin
ω. Now, let e ∈ INC∞ such

that emin = σ̄(e), and let r be the prefix such that e ∈ petalX(r). Claim 7.28
proves that πS(α) = reω . Finally, since σ̄ preserves the signature, the elements
e and emin have the same sign. Therefore, πS(α) = reω ∈ X if and only if
πS(β) = temin

ω ∈ X .

7.2.6 DAG of main veins

We now prove that the SG-degree of (S, X) only depends on the structure of
the partial ordered set (P/R,≥R), and on the lengths of the main veins. Con-
sequently, we shall prune the signed DAG representation of (S, X) by focusing
specifically on these two graphical features.

As a direct consequence of Proposition 7.27, we prove that an SG-player can
restrict all his waiting moves to the idempotents of some given main veins. For
this purpose, we consider once again an imposed version of the game SG(X, X)
where:

• both players are in charge of X , and cannot skip their turns;

• I plays without restriction, exactly like in a regular SG-game.

• II is allowed to play without restriction while moving from one prefix
position to another; however, every prefix position s that she reaches must
be such that petalX(s) contains a main vein V (s̄) of flowerX(s̄), and as
long as she remains in such a position s, she is forced to play waiting
moves inside V (s̄).

Proposition 7.31. Player II has a winning strategy in this imposed game.

Proof. Player II follows Player I as described hereafter: every time I reaches
an R-class of prefixes s̄, Player II reaches a prefix si of this same R-class s̄
such that petal(si)X contains a main vein V of flower(s̄)X . Then, as long
as I’s play remains in s̄, II plays idempotents of V as described in Proposition
7.27. Annd so on and so forth. We prove that this strategy is winning for II.
By finiteness of the partial ordering (P/R,≥R), Player I is forced to eventually

7.3. MAIN ALGORITHM 103

reach an R-class of prefixes s̄ inside which he will remain indefinitely. Thence
Player II reaches the prefix sk associated with a given main vein of flowerX(s̄),
and plays until the end of the play as described in Proposition 7.27. She thus
wins the game.

Proposition 7.31 ensures that only one main vein of each signed flower mat-
ters in the computation of the SG-degree. Therefore, the signed DAG repre-
sentation of a finite pointed ω-semigroup can be simplified by deleting all the
signed flowers, but only keeping a single main vein for each, as illustrated in
Figure 7.10. Vertices denote the R-classes of prefixes, directed edges describe
the ≥R-accessibility relation, and every signed stick represents a main vein of
the corresponding signed flower. In this graph representation, the R-classes of
prefixes are called nodes, the main vein associated with a node n is denoted by
V (n), and the length of V (n) by l(V (n)).

Figure 7.10: The pruned signed DAG representation of a finite pointed ω-semi-
group: a labeled DAG, where each node is associated with a signed integer
describing the sign and the length of its corresponding main veins.

7.3 Main algorithm

We now present the main algorithm that computes the SG-degree of every fi-
nite pointed ω-semigroup. This algorithm works on the pruned signed DAG
representation of finite pointed ω-semigroups. It associates every finite pointed
ω-semigroup (S, X) with a signed ordinal [εX]ξX . We will further prove that
dsg(X) = ξX , and that X is self-dual if and only if εX = ±, and X is non-self
dual if and only if εX ∈ {+,−}. This algorithm is a reformulation in terms of
ordinals of Wagner’s naming procedure [41, 27, 43]. We refer to Section 1.1 for
the definitions of ordinals, ordinal arithmetic, and signed ordinals.

104 CHAPTER 7. THE FSG-HIERARCHY

Algorithm 7.32.

INPUT a finite pointed ω-semigroup (S, X).

OUTPUT a signed ordinal [εX]ξX .

(1) Compute the pruned signed DAG representation of (S, X).

(2) Define the function n (−→ [δn]θn which associates to each node n the
signed ordinal [δn]θn given by

δn =

{

+ if the first element of V (n) is positive,

− if the first element of V (n) is negative,
and θn = ωl(V (n))

(3) Then, by backward induction, define the other function n (−→ [εn]ξn which
associates to each node n the signed ordinal [εn]ξn as follows.

(i) If n is a sink, then [εn]ξn = [δn]θn, where [δn]θn is the signed ordinal
associated with n by procedure (2).

(ii) If n is not a sink, and m1, . . . , mk are all the direct succesors of n al-
ready associated with their respective signed ordinals [ε1]ξ1, . . . , [εk]ξk:

• If among [ε1]ξ1, . . . , [εk]ξk, there is only one maximal signed
ordinal [εmj]ξmj , then consider the Cantor Normal Form of
base ω of the ordinal ξmj : ξmj = ωαl · βl + . . . + ωα0 · β0,

– If θn < ωα0 or if both θn = ωα0 and δn = εmj (same
signs), then set [εn]ξn = [εmj]ξmj .

– If θn > ωα0 or if both θn = ωα0 and δn != εmj (opposite
signs), then set [εn]ξn = [δn](ξmj + θn).

• If among [ε1]ξ1, . . . , [εk]ξk, there are two opposite maximal or-
dinals [εmi]ξmi and [εmj]ξmj (i.e. ξmi = ξmj and εmi != εmj),
then set [εn]ξn = [δn](ξmi + θn).

(4) Finally, the finite pointed ω-semigroup (S, X) is associated with the signed
ordinal [εX]ξX as follows: let [ε1]ξ1, . . . , [εp]ξp be the signed ordinals as-
sociated by procedure (3) with all the respective sources s1, . . . , sp:

• If among [ε1]ξ1, . . . , [εp]ξp, there is only one maximal signed ordinal
[εmax]ξmax, then [εX]ξX = [εmax]ξmax.

• On the other hand, if among [ε1]ξ1, . . . , [εp]ξp, there are two opposite
maximal ordinals [+]ξmax and [−]ξmax, then [εX]ξX = [±]ξmax.

The following examples present several applications of this algorithm.

Example 7.33. We consider the finite ω-semigroup S = (S+, Sω) induced by the
finite semigroup S+ = ({0, 1, 2, 3, 4, 5}, max). It follows that Sω = {[i, j] | 0 ≤
j ≤ i ≤ 5}. We then consider the ω-subset X = {[3, 0], [3, 2]} ⊆ Sω. The signed
DAG representation of (S, X) is illustrated in Figure 7.11. The computation of
Algorithm 7.32 is described by the signed ordinals associated with each node.
The top one are assigned by procedure (2), and the below ones are computed by
procedure (3). At the end, Algorithm 7.32 gives [εX]ξX = [+]ω3 = [+](1, 0, 0, 0).

Example 7.34. Same finite ω-semigroup S as in Example 7.33, but we consider
the ω-subset Y = {[2, 0], [2, 2], [3, 1], [4, 0], [4, 2], [4, 3], [4, 4]} ⊆ Sω. The signed
DAG representation of (S, Y) is illustrated in Figure 7.12. Algorithm 7.32 gives
[εY]ξY = [+]ω2 · 3 = [+](3, 0, 0).

7.3. MAIN ALGORITHM 105

Figure 7.11: The signed DAG representation of (S, X), where each node is
associated with the signed ordinals computed by procedures (2) (first line) and
(3) (second line). The signed ordinal [εX]ξX is the second one associated with
the root, namely [+]ω3.

Figure 7.12: The signed DAG representation of (S, Y), where each node is
associated with the signed ordinals computed by procedures (2) (first line) and
(3) (second line). Algorithm 7.32 gives [εY]ξY = [+]ω2 · 3.

Example 7.35. We consider the finite ω-semigroup T = (T+, Tω) induced by
the finite monoid T+ = {1, a, b} defined by the relations aa = ab = a and
ba = bb = b. Thence Tω = {[1, 1], [a, 1], [a, a], [a, b], [b, 1], [b, a], [b, b]}. We then
consider the ω-subset

Z = {[1, 1], [a, 1], [b, a], [b, b]} .

106 CHAPTER 7. THE FSG-HIERARCHY

The signed DAG representation of (T, Z) is illustrated in Figure 7.13. Algorithm
7.32 gives [εZ]ξZ = [+](ω1 + ω0) = [+](ω + 1) = [+](1, 1).

Figure 7.13: The signed DAG representation of (T, Z), where each node is
associated with the signed ordinals computed by procedures (2) (first line) and
(3) (second line). Algorithm 7.32 finally gives [εZ]ξZ = [+](ω1 + ω0).

Example 7.36. Figure 7.14 illustrates the DAG representation of a finite pointed
semigroup (S, X). Two signed ordinals are associated with each node. The top
ones are given by the procedure (2). The below ones are then computed by
procedure (3). The final signed ordinal associated with X is the second signed
ordinal associated with the root, namely [+](ω9 + ω4 · 2).

Figure 7.14: Example of a computation of Algorithm 7.32.

7.3. MAIN ALGORITHM 107

Example 7.37. Figure 7.15 illustrates the DAG representation of a finite pointed
semigroup (T, Y). The final signed ordinal associated with Y is the second
signed ordinal associated with the root, namely [±](ω9 + ω4 · 2).

Figure 7.15: Another example of a computation of Algorithm 7.32.

Next theorem states that Algorithm 7.32 computes the precise SG-degree of
any ω-subset. The whole following section is devoted to proving this result.

Theorem 7.38. Let (S, X) be a finite pointed ω-semigroup, and let [εX]ξX be
the signed ordinal asoociated with X by the main algorithm. Then dsg(X) = ξX ,
and X is self-dual if and only if [εX] = ±.

Example 7.39. Let A = {a, b}, and let K = (A∗a)ω. The finite pointed ω-
semigroup (S, X) given in Example 7.10 is the syntactic pointed ω-semigroup
of K (see Example 3.56). Its signed DAG representation is illustrated in Figure
7.16 below. The main algorithm applied to the signed DAG representation of
(S, X) gives [εX]ξX = [−]ω. Therefore, X is non-self-dual and dsg(X) = ω. The
ω-language K is thus also non-self-dual with Wagner degree equal to ω.

Example 7.40. Let B = {a, b, c} and let L = (a{b, c}∗∪{b})ω be an ω-language
over B. The finite pointed ω-semigroup (T, Y) given in Example 7.11 is the
syntactic pointed ω-semigroup of L (see Example 3.56). Its signed DAG rep-
resentation is illustrated in Figure 7.17. The main algorithm applied to the
signed DAG representation of (T, Y) gives [εY]ξY = [+]ω2. Therefore, Y is
non-self-dual and dsg(Y) = ω2. The ω-language L is thence also non-self-dual
with Wagner degree precisely ω2.

108 CHAPTER 7. THE FSG-HIERARCHY

Figure 7.16: The signed DAG representation of (S, X).

Figure 7.17: The signed DAG representation of (T, Y).

7.4 Correctness of the main algorithm

This section is entirely devoted to proving Theorem 7.38. For this purpose,
we introduce three infinite two-player games involving signed ordinals and finite
pointed ω-semigroups. The first one provides a game theoretical reformulation of
the ordering on signed ordinals. The two other ones define two useful reductions
on finite pointed ω-semigroups and signed ordinals. From this point onward,
every signed ordinal is assumed to be of the form [ε]ξ, with ε ∈ {+,−} and
0 < ξ < ωω. Signed ordinals of the form [±]ξ will be considered separately at
the end of the section.

7.4. CORRECTNESS OF THE MAIN ALGORITHM 109

The following preliminary results involve the notions of playground and cut
defined in Section 1.1, as well as the notations of Algorithm 7.32. Hence, if
(S, X) is a finite pointed ω-semigroup, then [εX]ξX denotes the signed ordinal
associated with X after computation of Algorithm 7.32, and if n is a node of
the signed DAG representation of (S, X), then [δn]θn and [εn]ξn are the signed
ordinals associated with n by procedures (2) and (3), respectively. The first
results relates the playgrounds of [δn]θn and [εn]ξn, and proves that the signed
ordinals [εn]ξn are decreasing along the ≥R-accessibility relation between the
nodes.

Lemma 7.41. Let (S, X) be a finite pointed ω-semigroup, and let n and n′ be
two nodes of the signed DAG representation of X.

(1) Either pg(ξn) > pg(θn), or both pg(ξn) = pg(θn) and εn = δn.

(2) If n ≥R n′, then [εn]ξn ≥ [εn′]ξn′ .

Proof. We use the notations of the main Algorithm.

(1) We consider all possible values of [εn]ξn computed by Algorithm 7.32. If
n is a sink, then [εn]ξn = [δn]θn. Thus obviously both pg(ξn) = pg(θn)
and εn = δn hold. Otherwise, if [εn]ξn = [εmj]ξmj , then pg(ξn) = α0.
Therefore, either pg(ξn) > pg(θn), or both pg(ξn) = pg(θn) and εn = δn.
Finally, if [εn]ξn = [δn](ξmj + θn), then pg(ξn) = pg(θn), by definition of
the ordinal sum.

(2) The signed ordinals [εn]ξn are assigned recursively from the sinks to the
sources of the signed DAG representation of (S, X). In both cases, if
[εn]ξn = [εmj]ξmj or if [εn]ξn = [δn](ξmj + θn), then [εn]ξn is larger than
the signed ordinals assigned to all its direct successors. Therefore, [εn]ξn

is larger than the signed ordinals assigned to all its successors.

Next result shows that, for every node n, all the cuts of [εn]ξn are reachable
from n. More precisely, for every node n and every cut c of [εn]ξn, there exists
a node n′ such that both n >R n′ and [εn′]ξn′ = c. This accessibility relation
between cuts is illustrated in Figure 7.18 below. This property will be used to
describe the strategy of an SG-player moving from cut to cut.

Figure 7.18: In the signed DAG representation of a finite pointed ω-semigroup,
for each node n, every cut of [εn]ξn is accessible from n.

110 CHAPTER 7. THE FSG-HIERARCHY

Lemma 7.42. Let n be a node associated with the signed ordinal [εn]ξn, and let
[ε]ξ be a cut of [εn]ξn. Then there exists a node n′ such that both n >R n′ and
[εn′]ξn′ = [ε]ξ.

Proof. The proof goes by induction on ξn. If ξn is of the form ωnk , then there
is no possible cut of [εn]ξn, thence nothing to prove in this case. Otherwise, two
cases may occur.

(1) Assume that [εn]ξn = [εn](ωnk · pk + · · · + ωn0 · (p0 + 1)), for some k ≥ 0
and p0 ≥ 0. Procedure (3) of Algorithm 7.32 ensures that there exists a
successor n′ of n (possibly n′ = n) such that [εn′]ξn′ = [εn]ξn, [δn′]θn′ =
[εn]ωn0 , and [εn′]ξn′ was updated as follows:

[εn′]ξn′ = [δn′]((ωnk · pk + · · · + ωn0 · p0 + ωml · ql + · · · + ωm0 · q0) + ωn0)

= [δn′](ωnk · pk + · · · + ωn0 · (p0 + 1)) = [εn]ξn,

for some n0 > ml > . . . > m0 ≥ 0, or possibly ωml · ql + · · ·+ ωm0 · q0 = 0.
By definition of the main algorithm, there exists a successor m of n′ such
that

[εm]ξm = [εm](ωnk · pk + · · · + ωn0 · p0 + ωml · ql + · · · + ωm0 · q0),

where εm = + if and only if εn = −. By the induction hypothesis, since
ξm < ξn, the node m can access a node associated with each cut of [εm]ξm.
Therefore, m can also access a node associated with each cut of [εn]ξn,
and so does n.

(2) Assume that [εn]ξn = [εn](ωnk · pk + · · ·+ ωn1 · p1 + ωn0), for some k ≥ 0.
The updating procedure (3) ensures that there exists a successor n′ of
n (possibly n′ = n) such that [εn′]ξn′ = [εn]ξn, [δn′]θn′ = [εn]ωn0 , and
[εn′]ξn′ was updated as follows:

[εn′]ξn′ = [δn′]((ωnk · pk + · · · + ωn1 · p1 + ωml · ql + · · · + ωm0 · q0) + ωn0)

= [δn′](ωnk · pk + · · · + ωn1 · p1 + ωn0) = [εn]ξn,

for some n1 > n0 > ml > . . . > m0 ≥ 0, or also possibly ωml · ql + · · · +
ωm0 · q0 = 0.

• If ωml · ql + · · ·+ωm0 · q0 != 0, the main algorithm ensures that there
exists a successor m of n′ such that

[εm]ξm = [εm](ωnk · pk + · · · + ωn1 · p1 + ωml · ql + · · · + ωm0 · q0).

By the induction hypothesis, since ξm < ξn, the node m can access
a node associated with each cut of [εm]ξm. Therefore, m can also
access a node associated with each cut of [εn]ξn, and so does n.

• If ωml · ql + · · ·+ωm0 · q0 = 0, the main algorithm ensures that there
exist two successors m and m′ of n′ such that

[εm]ξm = [+](ωnk · pk + · · · + ωn1 · p1),

[εm′]ξm′ = [−](ωnk · pk + · · · + ωn1 · p1).

By the induction hypothesis, since ξm < ξn, both nodes m and m′

can access a node associated with each cut of [εm]ξm. Finally, since
[εm]ξm and [εm′]ξm′ are the two largest cuts of n, and n can access
m and m′, then n can access a node associated with each cut of
[εn]ξn.

7.4. CORRECTNESS OF THE MAIN ALGORITHM 111

We now introduce three infinite two-player games. The first one provides a
game theoretical characterization of the ordering on signed ordinals. The two
others involve finite pointed ω-semigroups and signed ordinals.

Let [εI]ξI and [εII]ξII be two signed ordinals with εI , εII ∈ {+,−}. The
infinite two-player game O([εI]ξI , [εII]ξII) is defined as follows. First of all,
Player I chooses a non-zero signed ordinal which is either [εI]ξI , or a cut of
[εI]ξI , and Player II chooses a non-zero signed ordinal which is either [εII]ξII ,
or a cut of [εII]ξII . Then, the possible moves of players I and II are given as
follows:

• Let [ε]ξ be the last signed ordinal played by Player I. Then I can either
choose a cut of [ε]ξ, or he can play a positive integer from his current
playground: that is an integer q such that 0 ≤ q ≤ pg(ξ).

• Similarly, let [δ]η be the last signed ordinal played by Player II. Then II
can either choose a cut of [δ]η, or she can play a positive integer from her
current playground.

In other terms, each player decreases his signed ordinal cut by cut, and plays in-
tegers of his current playground in between. Player I begins. Player II is allowed
to skip her turn, provided she plays infinitely often, whereas Player I is not al-
lowed to do so. At the end of the play, the infinite sequences respectively played
by I and II consist of two finite strictly decreasing sequences of signed ordinals
[εI,0]ξI,0 > . . . > [εI,m]ξI,m and [εII,0]ξII,0 > . . . > [εII,n]ξII,n, and two infinite
sequences of integers. Let iI and iII be the largest integers played infinitely of-
ten by I and II, respectively. We consider the following parity condition: Player
I’s play (resp. Player II’s play) is said to be accepted if εI,m = + ⇔ iI is even
(resp. εII,n = + ⇔ iII is even); it is called rejected otherwise. Then, the win-
ning condition is given as follows: Player II wins O([εI]ξI , [εII]ξII) if and only
if I and II’s plays are both accepted or both rejected. This game is illustrated
in Figure 7.19.

Figure 7.19: The infinite game O([εI]ξI , [εII]ξII): players I and II first choose
the respective signed ordinals [εI,0]ξI,0 and [εII,0]ξII,0, and then play either
integers from their current playgrounds, or some cut of their previous signed
ordinal.

112 CHAPTER 7. THE FSG-HIERARCHY

This game induces the following reduction on signed ordinals:

[εI]ξI ≤O [εII]ξII iff Player II has a winning strategy in O([εI]ξI , [εII]ξII).

As usual, we set [εI] ξI <O [εII] ξII if and only if both [εI] ξI ≤O [εII] ξII and
[εII] ξII !≤O [εI] ξI hold, and also [εI] ξI ≡O [εII] ξII if and only if [εI] ξI ≤O

[εII] ξII and [εII] ξII ≤O [εI] ξI .
Furthermore, the infinite two-player game SGO(X, [ε]ξ) is defined as follows.

Player I plays exactly the same way as in a game SG(X,), and Player II plays
as in a game O(, [ε]ξ). Player II is allowed to skip her turn, but must play
infinitely often, whereas Player I is not allowed to do so. Along the play, Player
I builds an infinite sequence of elements (s0, s1, . . .), and Player II builds a
finite sequence of signed ordinals [εII,0]ξII,0 > . . . > [εII,n]ξII,n, and an infinite
sequence of integers. The winning condition is the following: Player II wins
SGO(X, [ε]ξ) if and only if πS(s0, s1, . . .) ∈ X ⇔ her play is accepted. Once
again, this game induces the following reduction relation:

X ≤OSG [ε]ξ if and only if Player II has a winning strategy in SGO(X, [ε]ξ).

Finally, the infinite two-player game OSG([ε]ξ, X) is defined in a similar
way. I plays exactly as in O([ε]ξ,), and II plays as in SG(, X). Player I begins
and cannot skip his turn. Player II is allowed to skip her turn, provided she
plays infinitely often. Along the play, Player I builds a finite sequence of signed
ordinals [εI,0]ξI,0 > . . . > [εI,n]ξI,n, and an infinite sequence of integers, and
Player II builds an infinite sequence (s0, s1, . . .) of elements of the semigroup
involved. The winning condition is: Player II wins OSG([ε]ξ, X) if and only if
Player I’s play is accepted ⇔ πS(s0, s1, . . .) ∈ X . One more time, we define a
reduction relation as follows:

[ε]ξ ≤OSG X if and only if Player II has a winning strategy in OSG([ε]ξ, X).

We prove that the determinacy of these three specific games follows from
the Borel Wadge determinacy.

Proposition 7.43. For every signed ordinals [ε]ξ and [ε′]ξ′, and every Borel
ω-subset X, the games O([ε]ξ, [ε′]ξ′), SGO(X, [ε]ξ), and OSG([ε]ξ, X) are de-
termined.

Proof. We reduce each of these games to an equivalent Wadge game with Borel
winning condition. We conclude by Borel determinacy of Wadge games. More
precisely, according to the rules of the O-game, we let L be the set of infinite
words of the form

([ε0]ξ0)u0([ε1]ξ1)u1 · · · ([εn]ξn)αn,

where ([ε1]ξ1, . . . , [εn]ξn) is a strictly descending sequence of signed ordinals
such that each [εi+1]ξi+1 is a cut of [εi]ξi, each ui is a finite sequence of integers
bounded by pg(ξi), and αn is an infinite sequence of integers bounded by pg(ξn).
We then equip L with the usual topology over infinite words. Now, for every
signed ordinal [ε]ξ, we let L[ε]ξ ⊆ L be the set of infinite words of the form
([ε]ξ)u0([ε1]ξ1)u1 · · · ([εk]ξk)αk such that the largest integer appearing infinitely
often in αk is even if and only if [εk] = +. Then L[ε]ξ can be written as the
conjunction of an open condition (Σ0

1) and a parity condition (BC(Σ0
2)), hence

7.4. CORRECTNESS OF THE MAIN ALGORITHM 113

it is Borel. In addition, a given player has a winning strategy in O([ε]ξ, [δ]η) if
and only if this same player has a winning strategy in W(L[ε]ξ, L[δ]η). Therefore,
Borel Wadge determinacy implies the determinacy of O-games. Similary, a given
player has a winning strategy in the game SGO(X, [ε]ξ) if and only if the same
player has a winning strategy in W(π−1

S (X), L[ε]ξ), where πS is the infinite
product of the ω-semigroup involved. Once again, Borel Wadge determinacy
proves that SGO-games are determined. The last case is proved in a symmetric
way.

Example 7.44. Let (S, X) be the finite pointed ω-semigroup defined in Example
7.10. We show that [−]ω ≤OSG X and X ≤SGO [−]ω. We will further prove
that these two relations imply dsg(X) = ω. We first describe a winning strategy
for Player II in OSG([−]ω, X). On his first move, Player I is forced to choose
the signed ordinal [−]ω, thence players I and II are forced to play elements 0 or
1. When Player I plays 1, Player II plays 0, and when Player I plays 0, Player
II plays 1. Therefore, if I plays infinitely many 1’s, then II plays infinitely many
0’s, thus both plays are accepted. If I plays finitely many 1’s, thus infinitely
many 0’s, then II plays finitely many 0’s, thus infinitely many 1’s, and hence
both plays are rejected. Therefore, II wins the game, thus [−]ω ≤OSG X . The
very same strategy is winning for Player II in the game SGO(X, [−]ω), which
shows that X ≤SGO [−]ω.

Example 7.45. Let (T, Y) be the finite pointed ω-semigroup defined in Example
7.11. We show that [+]ω2 ≤OSG Y and Y ≤SGO [+]ω2 both hold. We will
further prove that these two relations imply dsg(Y) = ω2. First, we describe a
winning strategy for Player II in OSG([+]ω2, Y). On his first move, Player I is
forced to choose the signed ordinal [+]ω2. He can then play 0, 1, or 2 on his
next moves. Player II can play the elements a, b, c, or ca. Hence, regardless
I’ first move, Player II plays a on her first move. Then, Payer II answers to
the moves 0, 1, and 2 of Player I by the respective elements b, c, and ca. The
signed DAG representation of (T, Y) illustrated in Figure 7.7 ensures that this
strategy is winning for Player II, thus [+]ω2 ≤OSG Y . Conversely, the following
strategy is winning for Player II in SGO(Y, [+]ω2). II is forced to choose the
signed ordinal [+]ω2 on her first move. Then, she follows I’s moves in his
signed DAG representation as described hereafter: every time I hits a negative
idempotent of the signed DAG representation of (T, Y), II plays a 1; when I
plays a positive idempotent of rank 0 or 2 in the main vein of flowerY (ā), II
answers with the respective elements 0 or 2. The signed DAG representation of
(T, Y), illustrated in Figure 7.7, shows that this strategy is winning for Player
II. Therefore Y ≤SGO [+]ω2.

We now present the technical results involved in the proof of Theorem 7.38.
First, we show that the O-reduction and the classical ordering on signed ordinals
coincide. Second, given a finite pointed ω-semigroup (S, X), the forthcoming
lemmas 7.48, 7.49, and 7.50 prove that both relations X ≤SGO [εX]ξX and
[εX]ξX ≤OSG X hold.

Lemma 7.46. Let [ε]ξ and [ε′]ξ′ be two signed ordinals. Then [ε]ξ ≤O [ε′]ξ′ if
and only if [ε]ξ ≤ [ε′]ξ′ (where ≤ is the natural ordering on signed ordinals
defined in Section 1.1).

114 CHAPTER 7. THE FSG-HIERARCHY

Proof.

(⇐) Assume that [ε]ξ ≤ [ε′]ξ′. We prove that Player II has a winning strategy
in O([ε]ξ, [ε′]ξ′). II is in charge of a larger signed ordinal than I in the game
O([ε]ξ, [ε′]ξ′). Therefore, along the play, she can choose her successive
signed ordinals in order that her current playground is always larger than
I’s. More precisely, if I lately chose [εI]ξI , then she can always choose a
signed ordinal [εII]ξII such that either pg(ξII) > pg(ξI), or both pg(ξII) =
pg(ξI) and εII = εI . In both cases, she can suitably answer to I’s integers
in order to produce a play of the same acceptance. She wins the game,
thus [ε]ξ ≤O [ε′]ξ′.

(⇒) Assume that [ε]ξ !≤ [ε′]ξ′. We prove that Player I has a winning strategy
in O([ε]ξ, [ε′]ξ′). First of all, every time II skips her turn, I answers by
playing 0, which does not influence the acceptance of his current play. In
addition, if II lately chose the signed ordinal [εII]ξII , then I can always
choose a signed ordinal [εI]ξI such that either pg(ξI) > pg(ξII), or both
pg(ξI) = pg(ξII) and εII != εI . In both cases, he can suitably answer to
II’s integers in order to produce a play of the opposite acceptance. He
wins the game, thus [ε]ξ !≤O [ε′]ξ′.

Remark 7.47. In particular, given 0 < ξ < ωω, Player I has two winning
strategies in the respective games O([+]ξ, [−]ξ) and O([−]ξ, [+]ξ). He always
chooses a signed ordinal of the opposite sign as II’s current one, copies every
integer played by II, and plays 0 when II skips her turn. Therefore, both relations
[+]ξ !≤O [−]ξ and [−]ξ !≤O [+]ξ hold.

Lemma 7.48. Let (S, X) be a finite pointed ω semigroup, let n be a node of X,
and let Xn = {x ∈ X | x = seω for some s ∈ n}. Then

(1) Xn ≤SGO [δn]θn,

(2) [δn]θn ≤OSG Xn.

Proof. Let V (n) be a main vein associated with n, and s be the prefix such
that V (n) ⊆ petalX(s).

(1) We describe a winning strategy for player II in the game SGO(Xn, [δn]θn).
As long as I’s successive positions never reaches n, then II builds a rejecting
play and wins. Otherwise, by Proposition 7.27, we may assume, without
loss of generality, that I first plays the element s, and then restricts himself
to playing only elements of V (n). Hence, II chooses the signed ordinal
[δn]θn on her first move. Afterwards, for every idempotent e played by
I, she answers by playing the rank of e in V (n). The definition of [δn]θn

ensures that her current playground is large enough to do so. Moreover,
again by definition of [δn]θn, I’s play belongs to Xn if and only if II’s play
is accepted. Therefore, Player II wins the game, hence Xn ≤SGO [δn]θn.

(2) We describe a winning strategy for player II in OSG([δn]θn, Xn). Since
θn is of the form ωk, it has no cut, hence I is forced to choose the signed
ordinal [δn]θn on his first move. Then II plays the prefix s on her first move.
Afterwards, for each integer 0 ≤ n ≤ pg(θn) played by I, she answers by
the idempotent of V (n) whose rank is precisely n. By definition of [δn]θn,
I’s play is accepted if and only if II’s play belongs to Xn. Consequently,
Player II wins the game, thus [δn]θn ≤OSG Xn.

7.4. CORRECTNESS OF THE MAIN ALGORITHM 115

Lemma 7.49. Let (S, X) be a finite pointed ω-semigroup associated with the
signed ordinal [εX]ξX , with εX ∈ {+,−}. Then X ≤SGO [εX]ξX .

Proof. We show that Player II has a winning strategy in SGO(X, [εX]ξX). By
Proposition 7.31, we may assume that I restricts himself to only playing elements
of V (n) while his successive positions remain in a given node n. Hence, II first
chooses the signed ordinal [εX]ξX , and then plays as follows. Every time I’s
play reaches a node n, two cases may occur.

(1) The signed ordinal [εn]ξn is a cut of [εX]ξX . Then Player II chooses
the signed ordinal [εn]ξn, and plays her integers as described in Lemma
7.48 (1). Lemma 7.41 (1) guarantees that her current playground is large
enough to play this way.

(2) The signed ordinal [εn]ξn is not a cut of [εX]ξX . Then [εn]ξn can be
written as [εn](α + β), where [εn]α is the largest cut of [εX]ξX strictly
below [εn]ξn. Hence, II chooses the signed ordinal [εn]α. By Lemma
7.41 (2), since the signed ordinals associated to each node are decreasing
along the accessibility relation, the ordinal [εn]α is indeed smaller than or
equal to the previous ordinal chosen by II. In addition, this choice ensures
that II’s playground is larger than pg(ξn). Thence, player II can play her
integers as described in Lemma 7.48 (1).

By finiteness and acyclicity of the signed DAG representation of (S, X), I’s play
will eventually become confined to a certain node n′′ after a finite amount of
time. Then, II plays according to the corresponding signed ordinal, as described
in cases (1) or (2). In both cases, Lemma 7.48 (1) ensures that she wins the
game. Therefore, X ≤SGO [εX]ξX .

Lemma 7.50. Let (S, X) be a finite pointed ω-semigroup associated with the
signed ordinal [εX]ξX , with εX ∈ {+,−}. Then [εX]ξX ≤OSG X.

Proof. We describe a winning strategy for Player II in OSG([εX]ξX , X). Every
time I chooses a signed ordinal [ε]ξ, II reaches one of the accessible ≤R-largest
node n such that [εn]ξn = [ε]ξ. Lemma 7.42 ensures the existence of such a node.
When I plays some integer, II answers exactly as described in Lemma 7.48 (2).
By finiteness of strictly descending sequences of signed ordinals, I is forced to
choose a final cut of [εX]ξX . Then, II reaches the suitable corresponding node,
and plays as described in Lemma 7.48 (2). She thus wins the game, proving
that [εX]ξX ≤OSG X .

The forthcoming Proposition 7.51 shows that the ≤O-relation on signed ordi-
nals coincides with the ≤SG-relation on ω-subsets. Moreover, we prove that an
ω-subset X is self-dual if and only if εX = ±, and non-self-dual if and only if
εX ∈ {+,−}. We also show that a self-dual ω-subsets and a non-self-dual one
located just one level below it in the SG-hierarchy are always associated with
the same ordinals by Algorithm 7.32. Finally, the full proof of Theorem 7.38
follows from these statements.

Proposition 7.51. Let (S, X) and (T, Y) be two finite pointed ω-semigroups
associated with the respective signed ordinals [εX]ξX and [εY]ξY , and such that
εX , εX ∈ {+,−}. Then X ≤SG Y if and only if [εX]ξX ≤ [εY]ξY .

Proof. If X ≤SG Y , then lemmas 7.49 and 7.50 show that [εX]ξX ≤OSG

X ≤SG Y ≤SGO [εY]ξY . By composition of strategies, one obtains [εX]ξX ≤O

116 CHAPTER 7. THE FSG-HIERARCHY

[εY]ξY . Therefore, Lemma 7.46 implies [εX]ξX ≤ [εY]ξY . Conversely, if [εX]ξX ≤
[εY]ξY , then Lemma 7.46 shows that [εX]ξX ≤O [εY]ξY . Hence, lemmas 7.49
and 7.50 imply X ≤SGO [εX]ξX ≤O [εY]ξY ≤OSG Y . By composition of strate-
gies, it follows that X ≤SG Y .

Proposition 7.52. Let (S, X) be a finite pointed ω-semigroup, and let [εX]ξX

be the signed ordinal associated with X by the main algorithm.

(1) X is non-self-dual if and only if εX ∈ {+,−},

(2) X is self-dual if and only if εX = ±.

Proof. We prove that if εX ∈ {+,−} then X is non-self-dual, and if εX = ±,
then X is self-dual. The two converse directions follow from contrapositives of
these statements.

(1) If εX ∈ {+,−}, Procedure (4) of Algorithm 7.32 shows that there ex-
ists a source s̄ of the signed DAG representation of (S, X), such that
[εs̄]ξs̄ = [εX]ξX . Now, let s be a prefix of the R-class s̄, and consider
the set s−1X . The main algorithm applied on (S, s−1X) shows that
[εs−1X]ξs−1X = [εs̄]ξs̄ = [εX]ξX . Therefore, Proposition 7.51 shows that
s−1X ≡SG X . By Proposition 6.8, the set X is non-self-dual.

(2) If [εX]ξX = [±]ξX , Procedure (4) shoes that there exist two sources s̄
and t̄ of the signed DAG representation of (S, X), such that [εs̄]ξs̄ =
[+]ξX and [εt̄]ξt̄ = [−]ξX . Since the signed DAG representations of (S, X)
and (S, Xc) have opposite signs, there also exist two sources s̄′ and t̄′ of
the signed DAG representation of (S, Xc) such that [εs̄′]ξs̄′ = [+]ξX and
[εt̄′]ξt̄′ = [−]ξX . Now, let s ∈ s̄, t ∈ t̄, s′ ∈ s̄′, and t′ ∈ t̄′, and consider the
sets s−1X , t−1X , s′−1Xc, and t′−1Xc. One has

[εs−1X]ξs−1X = [εs̄]ξs̄ = [+]ξX = [εs̄′]ξs̄′ = [εs′−1Xc]ξs′−1Xc ,

[εt−1X]ξt−1X = [εt̄]ξt̄ = [−]ξX = [εt̄′]ξt̄′ = [εt′−1Xc]ξt′−1Xc

We now prove that Player II has a winning strategy in SG(X, Xc). Since
S is finite, after finitely many moves, I is forced to reach a prefix position
u belonging to some R-class of prefixes ū. Hence, he becomes in charge of
the set u−1X . The maximality properties of s̄ and t̄ ensure that either

[εu−1X]ξu−1X = [εū]ξū ≤ [εs̄]ξs̄ = [εs′−1Xc]ξs′−1Xc or

[εu−1X]ξu−1X = [εū]ξū ≤ [εt̄]ξt̄ = [εt′−1Xc]ξt′−1Xc ,

thus Proposition 7.51 shows that either u−1X ≤SG s′−1Xc, or u−1X ≤SG

t′−1Xc. Thence, for every u ∈ P (S+), there exists v ∈ {s′, t′} such that
II has a winning strategy σu in SG(u−1X, v−1Xc). Therefore, II first
skips her turn until I reaches a prefix position u, then plays the required
v, and finally applies the corresponding strategy σu. She wins the game
SG(X, Xc). Therefore, X ≤SG Xc, and X is self-dual.

Proposition 7.53. Let (S, X) and (T, Y) be two finite pointed ω-semigroups
such that [εX]ξX = [+]ξ and [εY]ξY = [±]ξ, for some 0 < ξ < ωω. Then X <SG

Y , and there is no pointed ω-semigroup (U, Z) satisfying X <SG Z <SG Y .

Proof. We first prove that X <SG Y . Since [εY]ξY = [±]ξ, there exist two
sources s̄ and t̄ of the signed DAG representation of (T, Y) such that [εs̄]ξs̄ =

7.5. BUILDING AN ω-SUBSET OF ANY SG-DEGREE 117

[+]ξ and [εt̄]ξt̄ = [−]ξ. Now, let s ∈ s̄ and t ∈ t̄, and consider the sets s−1Y and
t−1Y . One has

[εs−1Y]ξs−1Y = [εs̄]ξs̄ = [+]ξ = [εX]ξX ,

[εt−1Y]ξt−1Y = [εt̄]ξt̄ = [−]ξ = [εXc]ξXc ,

thus Proposition 7.51 shows that s−1Y ≡SG X and t−1Y ≡SG Xc. In particular,
X ≤SG s−1Y ≤SG Y , hence X ≤SG Y . Moreover, Proposition 7.52 shows that
X is non-self-dual and Y is self-dual. Therefore X <SG Y . We now prove the
second part of the proposition. Let Z >SG X . Then X ≡SG s−1Y <SG Z, and
also Xc ≡SG t−1Y <SG Z. We prove that Y ≤SG Z, by describing a winning
strategy for Player II in SG(Y, Z). Since T is finite, after finitely many moves,
I is forced to reach a prefix position u belonging to some R-class of prefixes ū.
Then, he finds himself in charge of the set u−1Y . The maximality properties of
s̄ and t̄ ensure that either

[εu−1Y]ξu−1Y = [εū]ξū ≤ [εs̄]ξs̄ = [εs−1Y]ξs−1Y or

[εu−1Y]ξu−1Y = [εū]ξū ≤ [εt̄]ξt̄ = [εt−1Y]ξt−1Y ,

and thus Proposition 7.51 shows that either u−1Y ≤SG s−1Y <SG Z, or
u−1Y ≤SG t−1Y <SG Z. Hence, for every u ∈ P (U+), II has a winning strategy
σu in the game SG(u−1Y, Z). Therefore, II skips her turn until I reaches such a
position u, and then applies σu. She wins SG(Y, Z), therefore Y ≤SG Z.

Theorem 7.54. Let (S, X) be finite pointed ω-semigroup, and let [εX]ξX be the
signed ordinal associated with X by Algorithm 7.32. Then dsg(X) = ξX .

Proof. First, consider the mapping which associates every non-self-dual ω-
subset X with its corresponding signed ordinal [εX]ξX (with εX ∈ {+,−}).
Propositions 7.52 (1) and 7.51 prove that this mapping is an embedding from the
FSG-hierarchy of non-self-dual ω-subsets into the hierarchy of signed ordinals of
the form [+]ξ or [−]ξ. The following section carries the proof that this mapping
is onto. Therefore, dsg(X) = ξX holds, for every non-self-dual ω-subset. In
addition, propositions 7.52 and 7.53 prove that self-dual ω-subsets and the non-
self-dual ones located right below in the FSG-hierarchy are associated with the
same ordinal by the main algorithm. Therefore, dsg(X) = ξX holds, for every
self-dual ω-subset.

7.5 Building an ω-subset of any SG-degree

Given any ordinal 0 < ξ < ωω, we present two methods for building a finite
pointed ω-semigroup (S, X) such that dsg(X) = ξ, and X is non-self-dual. The
first construction is direct. The second construction describes the algebraic
counterpart of the ordinal operations: that is, given two pointed structures
(S, X) and (T, Y), and an integer n, we successively introduce:

(1) a new finite pointed ω-semigroup (S⊕ T, X ⊕ Y) such that dsg(X ⊕Y) =
dsg(X) + dsg(Y).

(2) a new finite pointed ω-semigroup (S - n, X - n) such that dsg(X - n) =
dsg(X) · n.

118 CHAPTER 7. THE FSG-HIERARCHY

(3) a new finite pointed ω-semigroup (S - ω, X - ω) such that dsg(X - ω) =
dsg(X) · ω.

These algebraic operations are inspired by the set theoretical operations de-
scribed by Jacques Duparc in [7, 9]. Consequentlly, starting from the empty
set or the whole space, one can inductively build an ω-subset of any given SG-
degree.

7.5.1 Direct construction

We proceed in two steps. For a start, we describe ω-subsets covering all SG-
degrees strictly below ω. Thereafter, we present ω-subsets covering all the re-
maining SG-degrees, namely those larger than ω and strictly below ωω.

SG-degrees strictly below ω. Given any integer n ≥ 0, we consider the finite
semigroup Sn,+ = {0, 1, . . . , n} equipped with the max operation. Every element
is idempotent, each pair (i, j) is linked if and only if i ≥ j, for all i, j ∈ Sn,+, and
all the linked pairs are pairwise non-conjugate. As described in Section 3.3.2,
this finite semigroup induces the finite ω-semigroup Sn = (Sn,+, Sn,ω), where

Sn,ω = {[i, j] | 0 ≤ j ≤ i ≤ n} .

Proposition 7.55. Given any integer n ≥ 0, let X be the ω-subset of Sn defined
by X = {[i, j] ∈ Sn,ω | i is even}. Then X is non-self-dual, and dsg(X) = (n +
1).

Proof. The signed DAG representation of (Sn, X) contains n+1 signed flowers
flowerX(0̄), . . . , f lowerX(n̄), where ī denotes the R-class of prefixes of i, for all
i ≤ n. By definition of X , the set flowerX (̄i) contains only positive idempotents
if i is even, and only negative idempotents if i is odd. The R-classes of prefixes
satisfy ī ≥R j̄ whenever i ≤ j. The signed DAG representation of the structure
(Sn, X) is illustrated in Figure 7.20 below. Hence, the main algorithm gives
[εX]ξX = [+](n + 1). Therefore, X is non-self-dual, and dsg(X) = n + 1.

Figure 7.20: The finite pointed ω-semigroup (S5, X).

7.5. BUILDING AN ω-SUBSET OF ANY SG-DEGREE 119

SG-degrees larger than ω and strictly below ωω. Given any signed or-
dinal [ε]ξ such that ω ≤ ξ < ωω, and ε ∈ {+,−}, we describe a corresponding
finite ω-semigroup, such that playing in an SG-game with respect to this semi-
group simulates the fact of playing in an O-game with respect to [ε]ξ.

More precisely, we consider the set S[ε]ξ,+ consisting of the element ∅, as well
as every triples of the form ([ε1]ξ1, [ε2]ξ2, k), where [ε1]ξ1 and [ε2]ξ2 are cuts of
[ε]ξ satisfying the relations [ε2]ξ2 ≤ [ε1]ξ1 and k ≤ pg(ξ2). We equip S[ε]ξ,+

with the following operation:

(a, b, c) · (a′, b′, c′) =











∅ if b !≥ a′,

(a, b′, c′) if b ≥ a′ > b′,

(a, b′, max(c, c′)) if b = a′ = b′,

and ∅ · x = x · ∅ = ∅, for all x ∈ S[ε]ξ,+. This operation is well defined in all
cases, since the relations b ≥ a′ and a′ !> b′ imply either b = a′ = b′, or a′ !≥ b′,
which is forbidden by the definition of the elements of S[ε]ξ,+. For a better
comprehension of this product, any triple (a, b, c) of S[ε]ξ,+ can be regarded as
a decreasing interval]a, b[. Hence, the expression (a, b, c) · (a′, b′, c′) involves
the two decreasing intervals]a, b[and]a′, b′[. The definition of the operation
actually states that if b !≥ a′, meaning if]a, b[is not strictly “above”]a′, b′[, then
the product reduces to the empty set, whereas if]a, b[is strictly “above”]a′, b′[,
then the product is the new decreasing interval]a, b′[. The third composant is
equal to c′ if the interval]a′, b′[is nonempty, and to max(c, c′) otherwise.

Lemma 7.56. The structure S[ε]ξ,+ equipped with this operation is a finite semi-
group.

Proof. The structure S[ε]ξ,+ is finite since there are only finitely many cuts of
[ε]ξ. We prove that the operation defined above is associative. Let x = (a, b, c),
x′ = (a′, b′, c′), and x′′ = (a′′, b′′, c′′) be elements of S[ε]ξ,+.

• If b !≥ a′ or b′ !≥ a′′ holds, then (x · x′) · x′′ = x · (x′ · x′′) = ∅.

• If both b ≥ a′ and b′ ≥ a′′ hold, then (x · x′) · x′′ = x · (x′ · x′′), since the
max operation is associative.

This finite semigroup S[ε]ξ,+ is build in such that any play in the SG-game
with respect to S[ε]ξ,+ simulates a play in the O-game with respect to [ε]ξ.
Indeed, playing the element ([ε1]ξ1, [ε2]ξ2, k) in the SG-game refers to the fol-
lowing facts in the O-game: the maximal signed ordinal previously played is
[ε1]ξ1; we are now in charge of [ε2]ξ2; we play the integer k. Thus, in order
to respect the rules of the O-game, we require that [ε1]ξ1 and [ε2]ξ2 are cuts
of [ε]ξ, and that both relations [ε2]ξ2 ≤ [ε1]ξ1 and k ≤ pg(ξ2) hold. Moreover,
since playing a non-descending sequence of signed ordinals is forbidden in the
O-game, we set a trash ∅ ∈ S[ε]ξ,+ in order to collect the products of elements
referring to these illegal plays. These unfortunate products are of the precise
form ([ε1]ξ1, [ε2]ξ2, k) · ([ε′1]ξ

′
1, [ε

′
2]ξ

′
2, k

′), with [ε2]ξ2 !≥ [ε′1]ξ
′
1, for they refer to

the following interpretation in the O-game: the last signed ordinal played in
the left sequence is not bigger than the maximal signed ordinal played in the
right sequence, so that the concatenated sequence of the signed ordinals already
played is not descending, as requested. An SG-player moving in S[ε]ξ,+ is said
to play legally (with respect to the rules of the O-game) if he never reaches the

120 CHAPTER 7. THE FSG-HIERARCHY

position ∅. He plays illegally otherwise. Notice that any illegal play yields a
final factorization of the form [∅, e], for some e ∈ E(S[ε]ξ,+).

The idempotent of S[ε]ξ,+ are precisely the element ∅, and the triples the
form (a, a, c). Linked pairs are either of the form ((a, b, c), (b, b, c′)), or of the
form (∅, (a, a, c)). All of them are pairwise non conjugate. As usual, the finite
semigroup S[ε]ξ,+ induces the finite ω-semigroup S[ε]ξ =

(

S[ε]ξ,+, S[ε]ξ,ω

)

, as
described in Section 3.3.2.

Proposition 7.57. Let [ε]ξ be a signed ordinal such that ω ≤ ξ < ωω and
ε ∈ {+,−}, and let X ⊆ S[ε]ξ,ω be defined by

X = {[s, e] | s != ∅ and e = ([ε1]ξ1, [ε1]ξ1, k) such that parity(k) = ε1} .

Then dsg(X) = ξ, and X is non-self-dual.

Proof. We both show that X ≤SGO [ε]ξ and [ε]ξ ≤OSG X , meaning, by lem-
mas 7.49 and 7.50, that [εX]ξX = [ε]ξ (where [εX]ξX is the signed ordinal
associated with X by Algorithm 7.32). Proposition 7.52 and Theorem 7.54 lead
to the conclusion.

• We describe a winning strategy for Player II in the game SGO(X, [ε]ξ). As
long as I plays legally, then II copies I in the following sense: when I plays
(a, b, c), II plays the signed ordinal b and the integer c. By definitions of
the semigroup S[ε]ξ,+ and the ω-subset X , she wins if this legal situation
persists until the end of the play. However, if I plays illegally, he will
produce an infinite play which factorizes into the form [∅, e], for some
e ∈ E(S[ε]ξ,+), hence which does not belong to X . Then, since ξ is larger
than ω, II can always choose (or stays with) the smallest cut [ε′]ξ′ of [ε]ξ
offering her a playground strictly larger than 0. She then plays 0’s until
the end of the game if ε′ = −, and 1’s if ε′ = +. She produces a rejecting
play, and wins. Thence X ≤SGO [ε]ξ.

• We describe a winning strategy for Player II in OSG([ε]ξ, X). II copies I
as follows: when I plays the signed ordinal [ε]ξ and the integer k, then II
plays ([ε]ξ, [ε]ξ, k). She wins the game, which means [ε]ξ ≤OSG X .

7.5.2 The algebraic counterpart of the ordinal operations

First of all, given two finite pointed ω-semigroups (S, X) and (T, Y), we describe
another finite pointed ω-semigroup (S ⊕ T, X ⊕ Y), such that dsg(X ⊕ Y) =
dsg(X) + dsg(Y). Furthermore, given an integer n > 0, we describe a finite
pointed structure (S9n, X9n), such that dsg(X9n) = dsg(X) ·n. Finally, we
describe another finite pointed ω-semigroup (S 9 ω, X 9 ω), such that dsg(X 9
ω) = dsg(X) · ω. Consequently, starting from either the empty or the full ω-
subset of SG-degree 1, one can build by induction an ω-subset of any given
SG-degree (strictly between 0 and ωω).

Let S = ((S+, ∗), Sω) and T = ((T+, !), Tω) be two finite ω-semigroups, and
let X ⊆ Sω and Y ⊆ Tω be two non-self-dual ω-subsets. Let also (S′

+, ∗′) be a
disjoint copy of the semigroup (S+, ∗) (i.e. a′ ∈ S′

+ if and only if a ∈ S+, and
a′ ∗′ b′ = c′ if and only if a ∗ b = c). We consider the set

(S ⊕ T)+ = T 1
+ ∪ S1

+ ∪ S
′1
+ ∪ {0}

7.5. BUILDING AN ω-SUBSET OF ANY SG-DEGREE 121

equipped with the following operation

a · b =



































































0 if a = 0 or b = 0,
0 if a ∈ S1

+ and b ∈ S
′1
+ ,

0 if a ∈ S
′1
+ and b ∈ S1

+,
a if a ∈ S1

+ and b ∈ T 1
+,

b if b ∈ S1
+ and a ∈ T 1

+,
a if a ∈ S

′1
+ and b ∈ T 1

+,
b if b ∈ S

′1
+ and a ∈ T 1

+,
a ! b if a and b belong to T 1

+,
a ∗ b if a and b belong to S1

+,
a ∗′ b if a and b belong to S

′1
+ .

The element 0 is a zero; the product of any element of S1
+ with any element of

S
′1
+ is 0, and vice versa; the product of any two elements of either T 1

+, or S1
+,

or S
′1
+ , coincides with the products of the respective monoids (T 1

+, !), (S1
+, ∗)

or (S
′1
+ , ∗); elements of S1

+ and S
′1
+ absorb the elements of T 1

+ from the left and
the right, as illustrated by the following tabular:

·↗ T 1
+ S1

+ S
′1
+ 0

T 1
+ table of T 1

+ table of abs. by S1
+ table of abs. by S

′1
+ 0

S1
+ table of abs. by S1

+ table of S1
+ 0 0

S
′1
+ table of abs. by S

′1
+ 0 table of S

′1
+ 0

0 0 0 0 0

Lemma 7.58. The structure ((S ⊕ T)+, ·) is a semigroup.

Proof. The respective operations of S1
+, S

′1
+ , and T 1

+, and the absorption rela-
tions from the left and the right are associative. Adding a zero does not affect
the associativity. Therefore, the operation defined on (S⊕T)+ is associative.

The DAG representation of (S ⊕T)+, consists of four sub-DAGs G1, G2, G3,
and G4, induced by the respective elements of T 1

+, S1
+, S

′1
+ , and by 0. These

DAGs satisfy the following properties:

• G1 is the DAG representation of T 1
+, therefore it contains the DAG repre-

sentation of T+.

• G2 is the DAG representation of S1
+, possibly enriched by some new linked

pairs induced by the products of the form x · y, for x ∈ S1
+ and y ∈ T 1

+.
Hence, it contains the DAG representation of S+.

• Similarly, G3 contains the DAG representation of S′
+.

• G4 is the single-petal flower flower(0̄) associated with the R-class of pre-
fixes 0̄ = {0}. This petal contains all idempotents of (S ⊕ T)+.

These DAGs are related as follows: G1 is not ≥R-accessible from any other
Gi; G2 and G3 are both ≥R-accessible from G1, but there is no ≥R-accessibility
relation between them; G4 is ≥R-accessible from G1, G2, and G3. The DAG
representation of (S ⊕ T)+ is illustrated in Figure 7.21.

As described in Section 3.3.2, the finite semigroup (S⊕T)+ can be extended
to the finite ω-semigroup

S ⊕ T = ((S ⊕ T)+, (S ⊕ T)ω),

122 CHAPTER 7. THE FSG-HIERARCHY

Figure 7.21: The DAG representation of (S ⊕ T)+. The accessibility relation
between two DAGs Gi and Gj means that each node of Gj is ≥R-accessible from
each node of Gi.

where (S ⊕ T)ω = {[s, e] | (s, e) is a linked pair of (S ⊕ T)+}. Moreover, since
the DAG representation of T+ is contained in G1, there exists a signature of
G1 corresponding to an ω-subset Ȳ ⊆ (S ⊕ T)ω, such that dsg(Ȳ) = dsg(Y)
and Ȳ ≡SG Y . Since the DAG representation of S+ is contained in G2, there
also exists a signature of G2 corresponding to an ω-subset X̄ ⊆ (S ⊕ T)ω, such
that dsg(X̄) = dsg(X), and X̄ ≡SG X . By the same argument again, there
exists a signature of G3 corresponding to an ω-subset X̄ ′ ⊆ (S ⊕ T)ω, such that
dsg(X̄ ′) = dsg(X), but X̄ ′ ≡SG Xc. Using all these notations, one obtains the
following result.

Proposition 7.59.

• If dsg(X) > 1 or dsg(Y) > 1, by setting X ⊕Y = X̄ ∪ X̄ ′ ∪ Ȳ ⊆ (S⊕T)ω,
one has dsg(X ⊕ Y) = dsg(X) + dsg(Y).

• If dsg(X) = dsg(Y) = 1, by setting X ⊕ Y = {[0, e] | e ∈ E((S ⊕ T)+)} ⊆
(S ⊕ T)ω, one has dsg(X ⊕ Y) = dsg(X) + dsg(Y) = 2.

Proof. For the first case, let r1, r2, r3 be the respective roots of G1, G2,
and G3. The main algorithm applied separately to the sub-DAGs G1, G2,
G3 assigned according to Ȳ , X̄, X̄ ′ respectively gives [εr1]ξr1 = [+]dsg(Y),
[εr2]ξr2 = [+]dsg(X), and [εr3]ξr3 = [−]dsg(X). Then, the accessibility rela-
tions between these DAGs imply that dsg(X ⊕ Y) = dsg(X) + dsg(Y). In the
second case, the set flowerX(0̄) contains only positive idempotents, and every
other signed flower contains only negative idempotents. Therefore, the main
algorithm gives dsg(X ⊕ Y) = ω0 · 2 = 2 = dsg(X) + dsg(Y).

We now describe the algebraic counterpart of the ordinal finite multiplication.
Let (S, X) be a finite pointed ω-semigroup. For any integer n > 0, we define
the finite pointed ω-semigroup (S - n, X - n) by induction on n as follows:

7.5. BUILDING AN ω-SUBSET OF ANY SG-DEGREE 123

• (S - 1, X - 1) = (S, X),

• S - (n + 1) = (S - n)⊕ S, and X - (n + 1) = (X - n)⊕X .

Proposition 7.60. Let n > 0, then dsg(X - n) = dsg(X) · n.

Proof. A direct consequence of Proposition 7.59.

We finally focus on the algebraic counterpart of the ordinal multiplication by
ω. We recall that, given any ordinal ξ with Cantor normal form ξ = ωnk · pk +
· · · + ωn0 · p0, the equality ξ · ω = ωnk+1 holds.

Let S = (S+, Sω) be a finite ω-semigroup, and X ⊆ Sω, such that dsg(X) =

ξ =
∑0

i=k ωni · pi. We then consider the finite monoid

(S - ω)+ = (S+ ∪ {1}, ·)

equipped with the operation of S+ completed as follows: a · 1 = 1 ·a = a, for all
a ∈ (S-ω)+. The DAG representation of (S-ω)+, illutrated in figures 7.22 and
7.23, corresponds to the following transformation of the DAG representation of
S+:

• The flower flower(1̄) associated with the R-class of prefixes 1̄ = {1}
appears. It simply consists of the single-petal petal(1) = {1}. The R-
class 1̄ can ≥R-access any other R-class of prefixes s̄.

• The idempotent 1, strictly ≤-larger than any other, appears in each petal
of each flower of S+. Therefore, the length of every chain of idempotents
of S+ is increased by 1.

Figure 7.22: The tranformation of the DAG representation of S+ into the one
of (S -ω)+: the new flower flower(1̄) associated with the R-class of prefixes 1̄
appears.

Figure 7.23: The transformation of a petal of S+ into a petal of (S - ω)+: the
new idempotent 1, strictly ≤-larger than any other, appears.

124 CHAPTER 7. THE FSG-HIERARCHY

Moreover, since dsg(X) = ξ =
∑0

i=k ωni · pi, there exists at least one chain of
idempotents e0 > · · · > enk

in some petal of the DAG representation of S+.
Consequently, one can find the chain of idempotents 1 > e0 > · · · > enk

in some
petal of the DAG representation of (S-ω)+. Finally, the monoid (S-ω)+ can
be extended to the finite ω-semigroup

S - ω = ((S - ω)+, (S - ω)ω),

where (S - ω)ω) = {[s, e] | (s, e) is a linked pair of (S - ω)+}. Using all these
notations, one obtains the following proposition.

Proposition 7.61. Let s be a prefix of (S - ω)+ such that the chain of idem-
potents 1 > e0 > . . . > enk

belongs to petal(s). Let us also set

X - ω = {[s, e2i] | 0 ≤ 2i ≤ nk} ⊆ (S - ω)ω,

then dsg(X - ω) = dsg(X) · ω = ωnk+1.

Proof. The signature according to X-ω yields the unique maximal alternating
chain 1 > e0 > . . . > enk

of length nk + 1 in the signed DAG representation of
(S - ω, X - ω). By Algorithm 7.32 and Theorem 7.54, one has dsg(X - ω) =
ωnk+1 = dsg(X) · ω.

7.6 Normal forms

We now describe the algebraic invariants of the FSG-hierarchy. As in [41, 34, 10],
we prove that the SG-degree of (S, X) is completely characterized by some kind
of maximal alternating tree(s) contained in the signed DAG representation of
(S, X) – called the normal form of (S, X). Then any two finite pointed ω-
semigroups share the same SG-degree if and only if they have the same normal
form, up to some relation of bisimilarity. The normal form of (S, X) is a re-
formulation in this algebraic context of the notions of ξ-chain presented in [10],
or µα-alternating tree described in [34], or also binary tree-like sequences of
superchains described in [41].

In the sequel, the signed DAG representation of finite pointed ω-semigroups
are regarded as labeled DAGs of the form G = (V, E, p), where p : V −→
{+,−}× N+ is a priority function which associates with every node n the sign
and length of the main vein V (n). Throughout this section, we first introduce a
notion of bisimulation on these DAGs. We then define a tree representation of
signed ordinals, and use this notion in order to define the normal form of any
finite pointed ω-semigroup. We conclude by proving the invariance properties
of normal forms.

Let G = (V, E, p) and G′ = (V ′, E′, p′) be two finite DAGs, where p : V −→
{+,−}×N+ and p′ : V ′ −→ {+,−}×N+ are priority functions. A bisimulation
over G and G′ is a left-and-right-total binary relation B ⊆ V × V ′ such that
(n, n′) ∈ B if and only if

• when n and n′ are sinks, then p(n) = p′(n′);

• when n or n′ are not sinks, then p(n) = p′(n′), and for every edge
(n, m) ∈ E, there exists an edge (n′, m′) ∈ E′ such that (m, m′) ∈ B, and
conversely, for every edge (n′, m′) ∈ E′, there exists an edge (n, m) ∈ E
such that (m, m′) ∈ B.

7.6. NORMAL FORMS 125

When there exists a bisimultation relation over G and G′, we say that G and
G′ are bisimilar, and we denote it by G ≈ G′. As a matter of fact, the DAGs
G and G′ are bisimilar if and only if they contain the same paths, i.e. for every
path in G, there exists a path in G′ visiting exactly the same priorities, and
conversely, for every path in G′, one can also find a path in G visiting the same
priorities.

The definition of bisimultation can be apprehended by means of games.
To this end, we define the finite two-player game with perfect information
BIS(G, G′), where Player II tries to show that G and G′ are bisimilar, whereas
Player I tries to show the opposite. The rules are the following:

• On his first move, I chooses a source of either G or G′. If he chooses a
source s of G, II must answer by choosing a source s′ of G′ such that
p(s) = p′(s′). If he chooses a source s′ of G′, II must answer by choosing
a source s of G such that p(s) = p′(s′).

• After every move of II, let n ∈ V and n′ ∈ V ′ be the two nodes previously
chosen respectively by I and II. Then, if it still exists, I chooses either a
successor of n, or a successor of n′. If he chooses a successor m of n, then
II must answer by choosing a successor m′ of n′ such that p(m) = p′(m′).
If he chooses a successor m′ of n′, then II must answer by choosing a
successor m of n such that p(m) = p′(m′).

If II is not able to answer correctly to I’s move, she looses. If both players
cannot choose a further successor node, II wins. Otherwise, the player which
cannot choose a successor node whereas his opponent can do so looses the game.

Proposition 7.62. Let G = (V, E, p) and G′ = (V ′, E′, p′) be two finite DAGs.
Then G ≈ G′ if and only if Player II has a winning strategy in BIS(G, G′).

Proof. If G ≈ G′, there exists a bisimulation relation B over G and G′ which
induces the following winning strategy for Player II in BIS(G, G′): every time
I chooses a node x ∈ V , II answers by an appropriate node x′ ∈ V ′ such that
(x, x′) ∈ B, and every time I chooses a node x′ ∈ V ′, II answers by a node
x ∈ V such that (x, x′) ∈ B. Conversely, assume that Player II has a winning
strategy in BIS(G, G′). Then for every path (x0, . . . , xn) in G, there exists a
path (x′

0, . . . , x
′
n) in G′ such that p(xi) = p′(x′

i), for all i; and conversely, for
every path (y′

0, . . . , y
′
n) in G′, there exists a path (y0, . . . , yn) in G′, such that

p(yi) = p′(y′
i), for all i. The set B of such pairs (xi, x′

i) and (yi, y′
i) obtained by

considering II’s answer to every possible paths (x0, . . . , xn) in G and (y0, . . . , yn)
in G′ is a bisimulation over G and G′. Therefore, G ≈ G′.

Example 7.63. Figure 7.24 illustrates two bisimilar labeled DAGs G and G′.
The forest G′ is called the unfolding of G: it contains exactly the same paths,
but has no more vertices with more than one incoming edge. A DAG and its
unfolding are always bisimilar.

We now define the tree representation of any signed ordinals [ε]ξ by induction
on the Cantor normal form of ξ. This representation is inspired by the notion
of a ξ-chain introduced in Chapter 5.

(1) If [ε]ξ is of the form [+]ωn · p (respectively [−]ωn · p), for some integers
n ≥ 0 and p > 0, its tree representation consists of a “linear” sequence
of p accessible nodes alternately labeled by +n and −n (respectively −n
and +n), as illustrated in Figure 7.25.

126 CHAPTER 7. THE FSG-HIERARCHY

Figure 7.24: Two bisimilar labeled DAGs.

(2) If [ε]ξ is of the form [±]ωn · p, for some integers n ≥ 0 and p > 0, its tree
representation consists of the two disjoint tree representations of [+]ωn · p
and [−]ωn · p, as illustrated in Figure 7.25.

(3) If the Cantor normal form of [ε]ξ is of the form [+](η+ωn ·p) (respectively
[−](η + ωn · p)), for some 0 < η < ωω, and some integers n ≥ 0 and
p > 0, its tree representation consists of the tree representation of [+]ωn ·p
(respectively [−]ωn · p) related to the two disjoint tree representations of
[+]η and [−]η, as illustrated in Figure 7.26.

(4) If the Cantor normal form of [ε]ξ is of the form [±](η + ωn · p), for some
0 < η < ωω, and some integers n ≥ 0 and p > 0, its tree representation
consists of the two disjoint tree representations of [+](η + ωn · p) and
[−](η + ωn · p).

Figure 7.25: Tree representations of the signed ordinals [+]ωn · p and [−]ωn · p.
The union of these two graphs is the tree representation of [±]ωn ·p. Every time
there is an edge from i to j, and from j to k, there is also an edge from i to k,
but these transitive edges are not represented, for reasons of clarity.

7.6. NORMAL FORMS 127

Figure 7.26: The tree representation of the signed ordinal [+](η + ωn · p). The
tree representation of [−](η + ωn · p) consists of the same DAG, but with an
initial sequence of nodes with opposite signs.

Example 7.64. Figure 7.27 illustrates the tree representations of the respective
signed ordinals [−](ω5 · 4 + ω3 · 3 + ω2 · 5) and [±](ω3 · 3 + ω2 · 5).

Figure 7.27: Tree representations of [−](ω5·4+ω3 ·3+ω2·5) and [±](ω3 ·3+ω2·5).

128 CHAPTER 7. THE FSG-HIERARCHY

The tree representation of [ε]ξ is an encoding of the Cantor normal form of
ξ, with some additional property according to the sign ε. Hence, it is uniquely
determined, for each signed ordinal [ε]ξ. It has been defined in order to satisfy
the following properties.

Lemma 7.65. The main algorithm applied on the tree representation of [ε]ξ out-
puts precisely [ε]ξ.

Proof. The proof goes by induction on the Cantor normal form of [ε]ξ. We
prove the result for the case ε ∈ {+,−}. The case ε = ± is a direct conse-
quence. If [ε]ξ is of the form [ε]ωn · p, for some n ≥ 0 and p > 0, the result is
true. If the Cantor normal form of [ε]ξ is of the form [ε](η + ωn · p), its tree
representation consists of the tree representation of [ε]ωn · p related to the two
disjoint tree representations of [+]η and [−]η. By the induction hypothesis, the
two disjoint subtree representations of [+]η and [−]η are associated with the
respective signed ordinals [+]η and [−]η. By definition of the Cantor normal
form, ωn is strictly below the every factor ωi appearing in η. Therefore, the
main algorithm associates the signed ordinal [ε](η + ωn · p) = [ε]ξ with the root
of the tree representation of [ε]ξ.

Lemma 7.66. The tree representations of [ε]ξ and [ε′]ξ′ are bisimilar if and only
if [ε]ξ = [ε′]ξ′.

Proof. Let T and T ′ be the respective tree representations of [ε]ξ and [ε′]ξ′.
If [ε]ξ = [ε′]ξ′, then T = T ′, thus obviously T ≈ T ′. Conversely, assume that
[ε]ξ != [ε′]ξ′. Then two cases may occur. Firstly, if ξ = ξ′ but ε != ε′, then T
and T are the very same trees, but with opposite priorities. Therefore, T and
T ′ do not contain the same paths, hence they are not bisimilar. Secondly, if
ξ > ξ′, then T is a tree representation containing strictly more nodes than T ′,
or strictly larger priorities then T ′. Hence, T and T ′ do not contain the same
paths, and they are not bisimilar. The case ξ′ > ξ is symmetric.

Given a finite pointed ω-semigroup (S, X), a normal form of (S, X) is a sub-
graph G of the signed DAG representation of (S, X) containing a minimal num-
ber of nodes and edges, and such that an SG-player restricting his moves inside
G is exactly as strong as if he were in charge of the whole DAG of (S, X).
We prove that the normal form of (S, X) is precisely the tree representation
of [εX]dsg(X) (up to bisimilarity), and hence it is unique, up to bisimilarity.
Therefore, any two finite pointed ω-semigroups have the same SG-degree if and
only if they have the same normal form.

Proposition 7.67. Let (S, X) be a finite pointed ω-semigroup associated by the
main algorithm with the signed ordinal [εX]ξX . Any normal form of (S, X) is
bisimilar to the tree representation of [εX]ξX .

Proof. We use the notation of Algorithm 7.32 again. Let G be a normal form
of (S, X), and G′ be the tree representation of [εX]ξX . After computation of
the main algorithm, the roots r and r′ of G and G′ are both associated with the
signed ordinal [εX]ξX . Moreover, Lemma 7.42 shows that both graphs G and G′

satisfy the following properties: First, for every cut [ε]ξ of [εX]ξX , there exists a
node n such that [εn]ξn = [ε]ξ. Second, any two nodes n and n′ satisfy n ≥R n′

if and only [εn]ξn ≥ [εn′]ξn′ . In addition, by minimality of G and by definition

7.6. NORMAL FORMS 129

of G′, every path in G or in G′ never visits a node associated with a non-cut of
[εX]ξX ; also, every path in G or in G′ never visits two nodes associated with the
same cut of [εX]ξX . All these properties ensure the existence of the following
winning strategy for Player II in BIS(G, G′): every time I moves to a successor
node n, II moves to a successor node n′ such that [εn]ξn = [εn′]ξn′ . Therefore,
G ≈ G′.

Theorem 7.68. Let (S, X) be a finite pointed ω-semigroup, and NX be a normal
form of (S, X).

(1) dsg(X) = ξ and X is non-self-dual if and only if NX is bisimilar to the
tree representation of [+]ξ or [−]ξ.

(2) dsg(X) = ξ and X is self-dual if and only if NX is bisimilar to the tree
representation of [±]ξ.

Proof. If dsg(X) = ξ and X is non-self-dual, then [εX]ξX is equal to [+]ξ or
[−]ξ. Hence, by Proposition 7.67, NX is bisimilar to the tree representation of
[+]ξ or [−]ξ. Conversely, assume that NX is bisimilar to the tree representation
of [ε]ξ, with ε ∈ {+,−}. Proposition 7.67 shows that NX is also bisimilar to the
tree representation of [εX]ξX . Hence, the tree representations of [εX]ξX and [ε]ξ
are bisimilar, and Lemma 7.66 proves that [εX]ξX = [ε]ξ, where ε ∈ {+,−}.
Therefore, dsg(X) = ξ, and X is non-self-dual. The second case is proved
analogously.

Theorem 7.69. Let (S, X) and (T, Y) be two finite pointed ω-semigroups with
normal forms NX and NY , respectively. Then X ≡SG Y if and only if NX ≈
NY .

Proof. If X ≡SG Y , then [εX]ξX = [εY]ξY . Hence, the tree representations
TX and TY of [εX]ξX and [εY]ξY are equal. Proposition 7.67 then implies
NX ≈ TX = TY ≈ NY . Conversely, by Proposition 7.67 again, one has TX ≈
NX ≈ NY ≈ TY . Thus TX ≈ TY , and Lemma 7.66 shows that [εX]ξX = [εY]ξY .
Therefore, X ≡SG Y .

Corollary 7.70. Let K and L be two ω-rational languages, let synt(K) and
synt(L) be their syntactic images, and let NK and NL be the normal forms of
synt(K) and synt(L). Then K ≡W L if and only if NX ≈ NY .

Proof. One has K ≡W L if and only if synt(K) ≡SG synt(L). Theorem 7.69
leads to the conclusion.

Example 7.71. Figure 7.28 (top) illustrates the signed DAG representation of
a finite pointed ω-semigroup (S, X). The two signed ordinals associated with
each node are the outcomes of procedures (2) (top) and (3) (bottom) of the
main algorithm. One has [εX]ξX = [+](ω9 + ω4 · 2). Figure 7.28 (bottom)
illustrates the normal form of (S, X), which is bisimilar to the tree representation
of [+](ω9 + ω4 · 2). One has dsg(X) = ω9 + ω4 · 2, and X is non-self-dual.

Example 7.72. Again, Figure 7.29 (top) illustrates the signed DAG representa-
tion of a finite pointed ω-semigroup (T, Y). One has [εY]ξY = [±](ω9 + ω4 · 2).
Figure 7.29 (bottom) illustrates the normal form of (T, Y), which is bisimilar
to the tree representation of [±](ω9 + ω4 · 2). In this case, one has dsg(Y) =
ω9 + ω4 · 2, and X is self-dual.

130 CHAPTER 7. THE FSG-HIERARCHY

Figure 7.28: The signed DAG representation of a finite pointed ω-semigroup
(S, X), and its normal form.

7.6. NORMAL FORMS 131

Figure 7.29: The signed DAG representation of a finite pointed ω-semigroup
(T, Y), and its normal form.

Example 7.73. Consider the finite pointed ω-semigroup

(S, X) = (({0, 1}, {0ω, 1ω}), {0ω})

given in Example 7.10. The signed DAG representation and the normal form
of (S, X) are illustrated in Figure 7.30. The normal form of (S, X) and the
tree representation of [−]ω are bisimilar. Therefore, dsg(X) = ω, and X is
non-self-dual.

Figure 7.30: The signed DAG representation and the normal form of (S, X).
The normal form is reduced to the single node 1 labeled by −1.

Example 7.74. Consider the finite pointed ω-semigroup

(T, Y) = (({a, b, c, ca}, {aω, (ca)ω, 0}), {aω})

given in Example 7.11. The signed DAG representation and the normal form of
(T, Y) is illustrated in Figure 7.31. The normal form of (T, Y) is bisimilar to the
tree representation of [+]ω2. Therefore, dsg(X) = ω2, and X is non-self-dual.

132 CHAPTER 7. THE FSG-HIERARCHY

Figure 7.31: The signed DAG representation and the normal form of (T, Y).
The normal form is reduced to a single node a labeled by +2.

Chapter 8

Computational complexity

Summary

This chapter describes an upper bound for the time complexity required in the
decidability of the FSG-hierarchy. Given a finite pointed ω-semigroup (S, X),
we show that the SG-degree of X can be performed in polynomial time. We
keep on using the notations introduced in the previous chapters.

The decision algorithm. Algorithm 7.32 was proved to be the decision al-
gorithm of the FSG-hierarchy. Given any finite pointed ω-semigroup (S, X), it
computes the signed ordinal [εX]ξX , such that dsg(X) = ξX , and X is non-
self-dual if and only if εX ∈ {+,−}. This algorithm can be reformulated as
follows:

Algorithm 8.1. INPUT: a finite pointed ω-semigroup (S, X). OUTPUT: the
signed ordinal [εX]ξX .

(1) construct the graph of the partial ordering (P/R,≥R);

(2) for each node n of this graph, compute the signed length of the corre-
sponding main vein V (n);

(3) run procedures (3) and (4) of Algorithm 7.32.

The input of Algorithm 8.1 consists of the finite pointed ω-semigroup (S, X),
where S = (S+, Sω). It can be formally given by:

• the list of the n elements of S+,

• the table of size n× n describing the operation of S+,

• the list of pairs (s, t) ∈ S2
+ satisfying stω ∈ X .

Hence, the input has size O(n2), where n is the cardinality of S+.
For each step of this algorithm, we give a pseudocode that performs it, and

then analyze its time complexity. We keep on using the usual notations, and
recall that P denotes the set of prefixes of S+, P/R is the set of R-classes of
prefixes, and E denotes the set of idempotents of S+. If the semigroup S+ has
cardinality n, the time complexities for building the respective sets E and P are
O(n) and O(n2).

133

134 CHAPTER 8. COMPUTATIONAL COMPLEXITY

Step (1). Firstly, we construct the right Cayley graph of S+. Secondly, we
extract the subgraph induced by the prefix nodes. Thirdly, we compute the
strongly connected components of this subgraph using Tarjan’s algorithm [36].

Input: the semigroup S+.
Output: the graph G of the partial ordering (P/R,≥R)

(1) // compute C the right Cayley graph of S+.

For all s ∈ S+

For all t ∈ S+

draw an edge C[s, st] from s to st
End For

End For
Return C

(2) // compute C′ the subgraph of C induced by the prefix nodes

For all node n in C
If n ∈ P , then keep it
Else, delete n, and draw edges C′[p, s] between

each predecessor p and successor s of n
End for
Return C′

(3) // compute G the graph of the strongly connected components of C′.

Compute G = Tarjan(C′)
Return G

Both the first and second steps of this procedure run in time O(n2). Con-
cerning the third step, Tarjan’s algorithm runs in time O(|V |+ |E|) – where V
and E are respectively the sets of vertices and edges of C′, that is in time O(n2)
in our case. Consequently, the first step of Algorithm 8.1 runs in time O(n2).

Step (2). We first construct the graph of the partial order (E,≥), and then
compute the signed length of a main vein associated with each R-class of pre-
fixes.

Input: the pointed ω-semigroup (S, X), and the graph G.
Output: for each node n ∈ G, the signed integer [δn]ln associated with any main
vein V (n).

(1) // construct the graph H of of the partial order (E,≥), and for each
idempotent ei ∈ petalX(sk), compute its sign σi,k according to X.

For all ei ∈ E
For all ej ∈ E \ {ei}

If eiej = ejei = ej , then
draw an edge H [ei, ej] from ei to ej

End If
End For
For all k ∈ K //prefix index set

if (sk, ei) is a linked pair, then σi,k := signX(ei), //see Definition 7.9
otherwise, σi,k := ∗

End For
End For
Return H

135

(2) // for each node n of G, compute the signed integer [δn]ln associated with
a given main vein V (n) of n

Topological sorting of the graph H
For all ei ∈ E in topological order

For all k ∈ K //prefix index set
ranki,k := max

{j|ej>ei}
f(σi,k,σj,k, rankj,k) // signed rank of ei in petalX(sk)

End For
For all n ∈ G

[δn]ln := max
{sp∈n}

ranki,p // signed length of a main vein of flowerX(n)

End For
End For

Since the cardinality of E and K is bounded by n, and the signature pro-
cedure consists of two tests (see Definition 7.9), step (1) is performed in time
O(n2). Concerning step (2), the function f involved in the computation of the
rank is defined by induction as follows:

f(σi,k,σj,k, rankj,k) =



















[+]0 if ei is a positive source of petalX(sk),

[−]0 if ei is a negative source of petalX(sk),

rankj,k if ei is not a source and σi,k = σj,k,

rankj,k + 1 if ei is not a source and σi,k != σj,k,

where [ε]n + 1 = [ε](n + 1), for some n ≥ 0 and ε ∈ {+,−}. The topological
sorting of the graph can be performed in O(n2), the maximal cardinality of E
and K is n, the number of predecessors of a node is also bounded by n, and the
function f is performed in constant time. Hence, this procedure runs in time
O(n3), and the whole step (2) of Algorithm 8.1 is performed in time O(n3).

Step (3). It remains to apply Algorithm 7.32.

Input: the DAG representation G of (S, X), and the signed integers [δn]ln,
corresponding to the sign and length of the main vein associated with n, for
every node n of G
Output : the signed ordinal [εX]ξX revealing the SG-degree X .

(1) Topological sorting of the graph G

For all node n ∈ G in inverse topological order
[εn]ξn := g({[εm]ξm | n >R m}) // updating procedure (3) of Algorithm 7.32

End For

(2) [εX]ξX := h({[εs]ξs | s is a source of G}) // updating procedure (4) of
Algorithm 7.32

Since G has at most cardinality n, the topological sorting of this graph
can be performed in O(n2). Moreover, the functions g and h correspond to
the respective procedures (3) and (4) of Algorithm 7.32. Since the number of
successors of a node is bounded by n, the function g is performed in time O(n),
for each node. Since the number of sources is bounded by n, the function h
is performed in time O(n). Therefore, step (3) of Algorithm 8.1 runs in time
O(n2).

136 CHAPTER 8. COMPUTATIONAL COMPLEXITY

Final complexity. This analysis shows that the computational complexity of
the decidability of the FSG-hierarchy is in polynomial time in the cardinality of
the finite semigroup involved.

Theorem 8.2. Let S = (S+, Sω) be a finite ω-semigroup, X ⊆ Sω, and let n be
the cardinal of S+. Then the SG-degree of X is computable in time O(n3).

This analysis has to be compared with Thomas Wilke and Haiseung Yoo’s
result, which states that the Wagner degree of an ω-rational language can be
computed in time O(f2qb + k log k), if the language is recognized by a deter-
ministic Muller automaton over an alphabet of cardinality b, with f accepting
states, q states, and k strongly connected components [43]. In this case too, the
decidability procedure runs in polynomial time.

Chapter 9

Additional results

Summary

In this chapter, we first present properties clarifying the DAG representation of
finite semigroups. In particular, we show that a chain of idempotents of length n
in a finite semigroup guarantees the existence of a linear sequence of n accessible
flowers in its DAG representation.

Then, we prove that there is no family of finite ω-semigroups whose ω-subsets
cover exclusively the finite SG-degrees. Similarly, there is no family of finite ω-
semigroups whose ω-subsets cover exclusively the SG-degrees of the form ωn, for
all n ≥ 0. However, there exists a family of finite ω-semigroups whose ω-subsets
cover precisely all the SG-degrees of the form ωn · p, for all n ≥ 0, p > 0.

Finally, we prove that non-self-dual ω-subsets are exactly the subsets of
finite ω-semigroups built on monoids (up to SG-equivalence). We also show
that subsets of finite ω-semigroups built on left-cancelable semigroups, groups,
and cyclic semigroups always have an SG-degree of 1. As opposed to subset of
finite commutative ω-semigroups, which may be of every possible SG-degree.

9.1 The DAG representation of finite semigroups

The following results describe properties of conjugate linked pairs in the DAG
representation of finite semigroups. We show that all prefixes of conjugate linked
pairs always belong to the sameR-class, and moreover, idempotents of conjugate
linked pairs can never form a chain. A detailed description of conjugate linked
pairs in terms of Green properties can be found in Section II - 2.4 of [27].

Lemma 9.1. Let S be a finite semigroup, and let (s, e) and (s′, e′) be two conju-
gate linked pairs of S2. Then s R s′ and e D e′.

Proof. Since (s, e) and (s′, e′) are conjugate, there exist x, y ∈ S1 such that
s′ = sx, s = s′y, e = xy, and e′ = yx. Therefore, s ≤R s′ and s′ ≤R s,
hence s R s′. In addition, e = e2 = (xy)(xy) ≤L yxy ≤R yx = e′ and
e′ = e′2 = (yx)(yx) ≤L xyx ≤R xy = e, thus e D e′.

Lemma 9.2. Let S be a finite semigroup, and let (s, e) and (s, f) be two conjugate
linked pairs of S2. Then e !> f and f !> e.

137

138 CHAPTER 9. ADDITIONAL RESULTS

Proof. We show that e ≥ f or f ≥ e implies e = f . First of all, the relation
e ≥ f stands by definition for f ≤L e and f ≤R e. Besides, since (s, e) and
(s, f) are conjugate, then Lemma 9.1 shows that f D e, and Proposition 3.18
shows that f J e. Hence, by Proposition 3.19, the relations f J e, f ≤R e,
and f ≤L e imply both f R e and f L e, that is f H e. The class H(e) thus
contains the two idempotents e and f , and Proposition 3.16 ensures that it is a
group. Finally, since every group contains only one single idempotent, namely
the identity of the group, one has e = f .

We now present some properties concerning the disposition of petals and
flowers in the DAG representation of finite semigroups. The first result shows
that petals are closed under the ≥ relation, as illustrates in Figure 9.1. The
second one claims that a chain of idempotents of length n ensures the existence
of n distinct flowers. In particular, the length of a maximal chain of idempotents
is a lower bound for the number of flowers appearing in the DAG representation
of a finite semigroup. Some observations follow.

Lemma 9.3. Let S be a finite semigroup. If (s, e) is a linked pair, then for every
e′ ≥ e, the pair (s.e′) is also linked.

Proof. Let (s, e) be a linked pair and let e′ ≥ e. Then se′ = (se)e′ = s(ee′) =
se = s. It follows that (s, e′) is also a linked pair.

petal(s)

(E,≥)

Figure 9.1: The set petal(s) is a ≥-closed subset of the lattice of idempotents
(E,≥): e ∈ petal(s) and e′ ≥ e implies e′ ∈ petal(s).

Proposition 9.4. Let S be a finite semigroup, and let e0 > e1 > . . . > en be a
chain of idempotents in S. Then the DAG representation of S contains at least
n + 1 flowers flower(ē0), f lower(ē1), . . . , f lower(ēn) such that:

• ēi is the R-class of prefixes of ei, for all i ≤ n,

• ēi >R ēj whenever i < j,

• flower(ēi) contains the chain of idempotents e0 > . . . > ei, for all i ≤ n,

as illustrated in Figure 9.2.

Proof. For each idempotent e, the pair (e, e) is obviously linked, hence every
idempotent e is also a prefix. Therefore, the DAG representation of S contains
the following n + 1 flowers

flower(ē0), f lower(ē1), . . . , f lower(ēn),

9.1. THE DAG REPRESENTATION OF FINITE SEMIGROUPS 139

where each ēi denotes the R-class of ei. Moreover, the relation ei > ej implies
ei >R ej, for every i < j. Finally, Lemma 9.3 shows that the chain e0 > . . . > ei

is contained in flower(ēi), for all i ≤ n.

Figure 9.2: A chain of idempotents of length n + 1 guarantees the existence of
a linear sequence of n + 1 distinct growing flowers.

The following observations conclude these complementary results.

(1) The DAG representation of a finite semigroup may contain as many flow-
ers as elements, although all chains of idempotents have a length of only
1. Indeed, consider the semigroup S1 = ({0, 1, . . . , n}, ·) equipped with
the left absorption operation, that is a · b = a, for every a, b ∈ S1. Every
element is idempotent, but they are all pairwise ≤-incomparable. There-
fore, every chain of idempotents has length 1, but the DAG representation
of S1 contains the n + 1 inaccessible flowers flower(0̄), . . . , f lower(n̄), as
illustrated in Figure 9.3.

Figure 9.3: The DAG representation of S1.

140 CHAPTER 9. ADDITIONAL RESULTS

(2) The petals are not always growing along the≥R-accessibility between flow-
ers. For instance, consider the finite semigroup S2 = ({0, 1, a, b, c, d, e}, ·)
equipped with the following operation

· 0 1 a b c d e
0 0 0 0 0 0 0 0
1 0 1 a b c d e
a 0 a 0 d a 0 d
b 0 b 0 0 0 0 0
c 0 c 0 e c 0 e
d 0 d 0 0 0 0 0
e 0 e 0 0 0 0 0

The DAG representation of S2, illustrated in Figure 9.4, shows that the
petals are either growing, or decreasing, or also remaining stable along the
≥R-accessibility relation between flowers.

Figure 9.4: The DAG representation of S2.

(3) A same flower may contain petals of different heights. Indeed, consider the
finite semigroup S3 = ({1, a, b, c}, ·) equipped with the following operation

· 1 a b c
1 1 a b c
a a a b c
b b b b c
c c b b c

The DAG representation of S3, illustrated in Figure 9.5, shows that the
last flower contains two petals of different heights.

9.2. TWO NEGATIVE AND ONE POSITIVE RESULTS 141

Figure 9.5: The DAG representation of S3.

9.2 Two negative and one positive results

This section studies the existence of some specific families of ω-semigroups. If
D is a set of ordinals, we say that D is SG-definable if there exists a family FD

of finite ω-semigroups such that, up to SG-equivalence, the ω-subsets extracted
from FD are exactly the ones with SG-degrees in D. More precisely, D is SG-
definable if and only if there exists a family FD of finite ω-semigroups such
that:

• for any ω-subset X with dsg(X) ∈ D, there exist a pointed ω-semigroup
(S, Y), such that S ∈ FD and X ≡SG Y ;

• every ω-subset X of every ω-semigroup in FD satisfies dsg(X) ∈ D.

We prove that the subset of finite SG-degrees is not SG-definable. The SG-
degrees of the form ωn, for n ≥ 0, are also not SG-definable. On the opposite,
the SG-degrees of the form ωn · p, for n ≥ 0 and p > 0, are SG-definable.

Proposition 9.5. N∗ is not SG-definable.

Proof. First, the main algorithm shows that an ω-subset has a finite SG-degree
if and only if all its alternating chains have length 0. Now, towards a contradic-
tion, assume that there exists a family of ω-semigroups F which defines all finite
SG-degrees, and let S = (S+, Sω) ∈ F . Then S satisfies: for every e, f ∈ E(S+),
the relation e ≥ f implies e = f (otherwise there could be an alternating chain
of strictly positive length in S+). We prove that the DAG representation of S+

contains either a single flower, or several inaccessible flowers. In both cases, for
every X ⊆ Sω, since the alternating chains of (S, X) have lenght 0, the main
algorithm implies that dsg(X) = 1. Hence, the family F only defines the SG-
degree 1, a contradiction. To this end, we first prove that E(S+) is contained in
the minimal ideal of S+. Since S+ is finite, Proposition 3.11 shows that it has
indeed a minimal ideal I. Then, let x ∈ I. The element e = xπ is an idempotent
of I, where π is the exponent of S+. Now, let f be another idempotent, and
assume that f !∈ I. Then, both (fef)π ∈ I and f ≥ (fef)π hold. Therefore,
f > (fef)π, contradicting the required condition on S+. Hence, f ∈ I, which
proves that E(S+) ⊆ I. We finally prove that the DAG representation of S+

contains either a single flower, or several inaccessible flowers. Let (s, e) and (t, f)

142 CHAPTER 9. ADDITIONAL RESULTS

be two linked pairs of S2
+. Since E(S+) ⊆ I, then e, f ∈ I, hence s = see ∈ I

and t = tff ∈ I. Therefore, s J t J e J f . Finally, either s ≥R t, but then
Proposition 3.19 ensures that s R t; or t ≥R s, and the same argument shows
that s R t; or s !≥R t and t !≥R s, meaning that all the flowers of S+ are pairwise
inaccessible.

Proposition 9.6. {ωn | n < ω} is not SG-definable.

Proof. Towards a contradiction, assume that there exists a family of finite
ω-semigroups F which defines these SG-degrees. Let S = (S+, Sω) ∈ F and
X ⊆ Sω such that dsg(X) = ωn, for some n > 0. By the main algorithm, there
exists an alternating chain of idempotents of length n in (S, X). Proposition
9.4 thus ensures that the DAG representation of S contains a linear sequence of
n + 1 distinct flowers. Therefore, Sω contains an ω-subset with an SG-degree
of the form ωp · q, for some p < n and q > 0. A contradiction to the required
properties of the family F .

Proposition 9.7. {ωn · p | n < ω and 0 < p < ω} is SG-definable.

Proof. Consider the family of finite ω-semigroups F = {Sn}n∈ω, where Sn =
(Sn,+, Sn,ω) is the ω-semigroup induced by the finite semigroup

Sn,+ = ({0, 1, . . . , n}, max).

Every element of Sn,+ is idempotent, hence also prefix. The linked pairs are of
the form (i, j) with i ≥ j, and are all pairwise non-conjugate. Moreover, both
relations i ≥ j and i ≥R j hold whenever i ≤ j, and every class of prefixes ī is
reduced the singleton {i}. Hence, the DAG representation of Sn,+ is a linear
sequence of single petal flowers growing along the ≥R-accessibility relation, as
illustrated in Figure 9.6. The main algorithm ensures that every ω-subset X
of Sn,ω satisfies dsg(X) = ωk · p, for some 0 ≤ k ≤ n and p > 0. Conversely,
let X be an ω-subset such that dsg(X) = ωn · p, with n ≥ 0 and p > 0. Then,
by taking 3 large enough, one can obviously find a finite pointed ω-semigroup
(S!, Y), with S! ∈ F , such that X ≡SG Y .

Figure 9.6: The DAG representation of the semigroup S+,n.

9.3. REVISITING SOME BASIC ALGEBRAIC CONCEPTS 143

9.3 Revisiting some basic algebraic concepts

This section explores some properties of finite ω-semigroups built on some spe-
cific semigroups, such as monoids, left-cancelable semigroups, groups, cyclic
semigroups, and commutative semigroups.

9.3.1 Finite ω-monoids

An ω-semigroup whose first component is a monoid will be called an ω-monoid.
We show that, up to SG-equivalence, the non-self-dual ω-subsets are exactly the
subsets of finite ω-monoids.

Theorem 9.8. Let S = (S+, Sω) be a finite ω-semigroup, and let X ⊆ Sω. The
following conditions are equivalent:

(1) X is non-self-dual,

(2) there exist a finite ω-monoid M = (M+, Mω), and an ω-subset Y ⊆ Mω

such that X ≡SG Y .

Proof. (1) ⇒ (2). Let X be a non-self-dual ω-subset of the finite ω-semigroup
S = (S+, Sω). If S+ is a monoid, there is nothing to prove. Assume that
S+ is not a monoid, and consider the monoid S1

+. The linked pairs of S1
+

consist of every linked pairs of S+, as well as the pairs (1, 1) and (s, 1),
for every s ∈ S+. The set of idempotents of S1

+ is given by E(S1
+) =

E(S+) ∪ {1}, and 1 > e, for every e ∈ E(S+). The set of prefixes of S1
+

is given by P (S1
+) = P (S+) ∪ {1}, and the R-class of prefixes 1̄ = {1}

satisfies 1̄ >R s̄, for every s ∈ P (S+). Therefore, the DAG representation
of S1

+ corresponds to the DAG representation of S+, enriched by the new
flower flower(1̄), and where the idempotent 1 has been added in every
petal of S+, as illustrated in figures 9.7 and 9.8.

Figure 9.7: From the DAG representation of S+ to the one of S1
+: appearance

of the “initial” flower flower(1̄).

Figure 9.8: The ≤-largest idempotent 1 appears in every petal of S1
+.

144 CHAPTER 9. ADDITIONAL RESULTS

Now, let [εX]ξX be the signed ordinal associated with X by the main
algorithm. Since X is non-self-dual, one has εX ∈ {+,−}. Hence, we let
M = (S1

+, S1
ω) be the ω-semigroup induced by S1

+, and

Y =

{

X ∪ {[s, 1] | the main veins of flower(s̄) are positive} ∪ {[1, 1]} , if εX = +

X ∪ {[s, 1] | the main veins of flower(s̄) are positive} , if εX = −.

Finally, the main algorithm ensures that [εX]ξX = [εY]ξY , thus X ≡SG Y .

(2)⇒ (1). Let M = (M+, Mω) be a finite ω-monoid, and let Y ⊆ Mω, such
that X ≡SG Y . We describe a winning strategy for Player I in SG(Y, Y c):
he first plays 1 (the identity of M+); then he copies II when she does not
skip her turn, and plays 1 when II skips her turn. The two infinite words
respectively produced by players I and II are identical, hence Player I wins
the game. Therefore, Y is non-self-dual, and so is X .

9.3.2 Finite left-cancelable ω-semigroups

We first recall the definition of a left-cancelable semigroup. An ω-semigroup
whose first component is a left-cancelable semigroup will naturally be called a
left-cancelable ω-semigroup. We prove that the family of finite left-cancelable
ω-semigroups contains only trivial ω-subsets.

Definition 9.9. A semigroup S is left-cancelable if, for every s, t, x ∈ S, the
relation xs = xt implies s = t.

Lemma 9.10. Let S be a finite semigroup. Then S is left-cancelable if and only
if the left multiplication by x is a bijection on S, for every x ∈ S.

Proof. The left multiplication ϕx : S −→ S is given by ϕx(s) = xs. Let S
be a left-cancelable finite semigroup and let x ∈ S. The left-cancelability of
S ensures that ϕx is injective, for every x ∈ S. In addition, since S is finite,
the mapping ϕx is also onto, for every x ∈ S. Conversely, assume that ϕx is
bijective, for every x ∈ S. Then the mapping ϕx is injective for every x ∈ S,
meaning precisely that S is left-cancelable.

Hence, a finite semigroup S is left-cancelable if and only if every element of
S appears only once in each row of its operation table. Therefore, from a game
theoretical perspective, an SG-player in charge a left-cancelable semigroup has a
unique way to reach any further position. This constraint is actually a maximal
weakening, as proved below.

Proposition 9.11. Let S = (S+, Sω) be a finite left cancelable ω-semigroup and
let X ⊆ Sω. Then dsg(X) = 1.

Proof. We prove that the DAG representation of S+ contains a unique flower
and a unique idempotent in every petal. Let s, s′ ∈ P . Lemma 9.10 shows
that the left multiplications by s and s′ are onto. Hence there exist x, y ∈ S+

such that sx = s′ and s′y = s, and thus s R s′. In addition, let s ∈ P and
e, e′ ∈ petal(s). The relation se = se′ implies e = e′. Therefore, the main
algorithm gives dsg(X) = ω0 = 1.

9.3. REVISITING SOME BASIC ALGEBRAIC CONCEPTS 145

9.3.3 Finite ω-groups

An ω-group denotes an ω-semigroup whose first component is a group. As
a particular case of finite left-cancelable ω-semigroups, the family of finite ω-
groups also contains only trivial ω-subsets.

Definition 9.12. A semigroup S is a group if it contains an identity 1, and if
for every x ∈ S, there exists y ∈ S such that xy = yx = 1.

Proposition 9.13. Let S = (S+, Sω) be an ω-group and let X ⊆ Sω. Then
dsg(X) = 1.

Proof. We prove that S+ is left-cancelable, and conclude by Proposition 9.11.
Let s, t, x ∈ S+ such that xs = xt, then s = x−1xs = x−1xt = t.

9.3.4 Finite cyclic ω-semigroups

A cyclic ω-semigroup denotes an ω-semigroup whose first component is a cyclic
semigroup. Once again, the family of finite cyclic ω-semigroups contains only
trivial ω-subsets.

Definition 9.14. Let S be a semigroup, and R ⊆ S. Then S is generated by
R, or equivalently, R is a generator of S, denoted by S = [R], if S =

⋃

n∈N
Rn.

The set R is an irreducible generator if there is no R′ # R such that S = [R′].
The semigroup S is cyclic if it is generated by a single element.

Lemma 9.15. Let S be a finite cyclic semigroup generated by x. Then there exist
two integers i, p > 0 such that:

(1) the relation xi+p = xi holds,

(2) S = {x, x2, . . . , xi+p−1},

(3) no element of {x, x2, . . . , xi−1} has a right unit,

(4) the set Si = {xi, xi+1, . . . , xi+p−1} is a subgroup of S.

Proof.

(1) By Lemma 3.5, since S is finite, there exist two minimal integers i, p > 0,
called the index and the period of S, such that xi+p = xi.

(2) The relations S = [{x}] and xi+p = xi imply that S = {x, x2, . . . , xi+p−1}.
Notice that S is commutative.

(3) Towards a contradiction, assume that there exists an element xk which
has a right unit, for some 1 ≤ k < i. Then there exists l > 0 such that
xkxl = xk+l = xk, contradicting the minimality of the index i.

(4) By (1), for every a, b ∈ Si, there exist x, y ∈ Si such that ax = b and
by = a, meaning that Si is a group.

From a game theoretical perspective, an irreducible generator of S, when it
exists, represents the minimal set of positions from which any other position
is reachable. Cyclic semigroups have the poorest nonempty set of irreducible
generators. They induce ω-semigroups with trivial ω-subsets, as proved below.

Proposition 9.16. Let S = (S+, Sω) be a finite cyclic ω-semigroup, and let
X ⊆ Sω. Then dsg(X) = 1.

146 CHAPTER 9. ADDITIONAL RESULTS

Proof. Lemma 9.15 ensures that S+ = {x, x2, . . . , xi+p−1}, for some generator
x of S+, and some integers i, p > 0, and also that Si = {xi, xi+1, . . . , xi+p−1} is a
subgroup of S. By Lemma 9.15 again, since no element of S\Si has a right unit,
then every element of S\Si is neither a prefix of a linked pair, nor an idempotent.
Therefore, the DAG representation of S consists of the unique flower induced
by the group Si. The main algorithm thus gives dsg(X) = ω0 = 1.

9.3.5 Finite commutative ω-semigroups

An ω-semigroups whose first component is a commutative semigroups is called
a commutative ω-semigroup. We prove that the family of finite commutative
ω-semigroups contains ω-subsets of every possible SG-degrees. Furthermore,
the DAG representation of finite commutative semigroups present the following
properties: every flower contains a unique petal; two distinct conjugate linked
pairs never appear in a same petal; the petals are always increasing along the
≥R-accessibility between flowers; there is a unique terminal flower.

Lemma 9.17. Let S be a finite commutative semigroup, let s ∈ P (S), and let
s1, s2 ∈ s̄. Then petal(s1) = petal(s2).

Proof. Since s1, s2 ∈ s̄, there exist x, y ∈ S1 such that s1x = s2 and s2y =
s1. Now, let e ∈ petal(s1), then s2e = s2yxe = s2yex = s1ex = s1x = s2,
hence e ∈ petal(s2). Symmetrically, one has petal(s2) ⊆ petal(s1). Therefore,
petal(s1) = petal(s2).

Lemma 9.18. Let S be a finite commutative semigroup, let s ∈ P (S), and let
e, e′ ∈ petal(s). Then [s, e] = [s, e′] if and only if (s, e) = (s, e′).

Proof. If (s, e) = (s, e′), then obviously [s, e] = [s, e′]. Conversely, if [s, e] =
[s, e′], there exist x, y ∈ S1 such that e = xy, e′ = yx, and sx = s. Therefore,
e = xy = yx = e′, that is (s, e) = (s, e′).

Lemma 9.19. Let S be a finite commutative semigroup, and let s1, s2 ∈ P (S)
such that s1 ≥R s2. Then petal(s1) ⊆ petal(s2).

Proof. Since s1 ≥R s2, there exists x ∈ S1 such that s1x = s2. Let e ∈
petal(s1), one has s2e = s1xe = s1ex = s1x = s2, thence e ∈ petal(s2). There-
fore, petal(s1) ⊆ petal(s2).

Lemma 9.20. Let S be a finite commutative semigroup, and let s̄1, s̄2 be two
≥R-minimal R-classes of prefixes of S. Then s̄1 = s̄2.

Proof. Let x = (s1s2)π = (s2s1)π, where π is the exponent of S. Then x is
idempotent, and hence it is also a prefix. One has s1 ≥R x and s2 ≥R x, and
thus s̄1 = s̄2, by ≥R-minimality of s̄1 and s̄2.

Besides these properties, we prove that the family of finite commutative
ω-semigroups contains ω-subsets of every possible SG-degree.

Proposition 9.21. Let ξ be an ordinal such that 0 < ξ < ωω. Then there exist
a finite commutative ω-semigroup S = (S+, Sω) and an ω-subset X ⊆ Sω such
that dsg(X) = ξ.

9.3. REVISITING SOME BASIC ALGEBRAIC CONCEPTS 147

Proof. For each n ≥ 0, consider the finite powerset ω-semigroup Pn = (Pn+, Pnω)
induced by the finite semigroup

Pn+ = (P({0, 1, . . . n}),∪) .

The semigroup Pn+ is commutative and every element is idempotent. In addi-
tion, every R-class of prefixes is trivial: for every s, t ∈ P (Pn+), the relations
s ≥R t and t ≥R s imply s ⊆ t and t ⊆ s, thus s = t. In addition, every
prefix s is associated with the unique petal petal(s) = {e ∈ Pn+ | e ⊆ s}. The
DAG representation of Pn+ is illustrated in Figure 9.9. Its description ensures
that, for any 0 < ξ < ωω, there exist an integer n large enough and an ω-subset
X ⊆ Pnω such that dsg(X) = ξ.

Figure 9.9: the DAG representation of the finite semigroup Pn+.

Finally, the different properties of the specific ω-semigroups described in
this section are summarized in the following table. Each specific kind of ω-
semigroups appears in front of the ω-subsets it generates.

Finite ω-monoids non-self-dual ω-subsets
Finite left-cancelable ω-semigroups ω-subsets of SG-degree 1
Finite ω-groups ω-subsets of SG-degree 1
Finite cyclic ω-semigroups ω-subsets of SG-degree 1
Finite commutative ω-semigroups ω-subsets of every SG-degrees

148 CHAPTER 9. ADDITIONAL RESULTS

Conclusion

We hope this work provides a convincing description of the algebraic counter-
part of the Wagner hierarchy. In summary, based on the equivalence between ω-
rational languages and finite pointed ω-semigroups, we initially proved that the
Wagner degree of an ω-rational language is indeed a syntactic invariant. We then
defined a Wadge-like reduction on finite pointed ω-semigroups, and proved that
the resulting algebraic hierarchy is isomorphic to the Wagner hierarchy. This
hierarchy has therefore a height of ωω, is decidable, and provides an algebraic
representative of the Wagner hierarchy. In particular, an ω-rational language
and its syntactic image are proven to share the same Wagner degree, and syntac-
tic pointed ω-semigroups appeared as minimal representatives of their Wagner
classes, whereas there is no convincing notion of minimal Muller automata of a
given Wagner degree. Furthermore, we described a decision procedure of this
hierarchy based on a graph representation of finite pointed ω-semigroups. This
algorithm may thus compute the Wagner degree of any ω-rational language di-
rectly on its syntactic image. It consists of a reformulation in this algebraic
context of Wagner’s naming procedure [41]. Finally, we presented two methods
for building a finite pointed ω-semigroups of any given degree. We also de-
scribed the algebraic invariant characterizing the Wagner degree of every finite
pointed ω-semigroup. These invariants are also a reformulation in this context
of the notions of maximal ξ-chains presented in [10], or maximal µα-alternating
trees described in [34], or also maximal binary tree-like sequences of superchains
described in [41].

We notice by the way that the graph representation of finite pointed ω-
semigroups seems more complex than the graph of Muller automata: the set of
loops of a given strictly connected component in a Muller automata is a semi-
lattice for inclusion, whereas the set of idempotents of a given R-class of prefixes
is not, since it contains several petals. The question of the existence of a DAG
decomposition of finite ω-semigroups looking exactly as complex as the graphs
of Muller automata is still open.

This work can be extended in several directions. On the one hand, we hope to
widen this analysis to more sophisticated ω-languages, like the ones recognized
by deterministic counters, or even deterministic pushdown automata (PDA).
This would require a description of the corresponding infinite ω-semigroups,
since the Wadge hierarchies of deterministic ω-languages accepted by counter
automata or PDA are strictly finer than the Wagner hierarchy [8, 13]. However,
an extension of this work to languages recognized by nondeterministic PDA
would be very ambitious, since the Wadge hierarchy of ω-context-free languages

149

150 CONCLUSION

(those recognized by nondeterministic PDA) was proven to be as complicated
as the Wadge hierarchy of ω-languages accepted by nondeterministic Turing
machines [14].

On the other hand, since the SG-hierarchy restricted to free ω-semigroups
coincides with the Wadge hierarchy, this work could also enlighten the Borel
Wadge hierarchy itself, by characterizing Borel sets by precise algebraic proper-
ties. Many properties of the SG-hierarchy should then be examined in the case
of free ω-semigroups. For instance, we proved that a finite Borel ω-subset A is
non-self-dual if and only if it is SG-equivalent to some set B extracted from some
finite ω-monoid (Theorem 9.8). This property still holds in the case of infinite ω-
semigroups. In particular, when reformulated in the case of free ω-semigroups,
this result states that a Borel ω-language A is non-self-dual if and only if it is
SG-equivalent to some set B extracted from some ω-monoid. Also, Proposition
9.13 shows that finite ω-groups only provide trivial ω-subsets. But this result
does obviously not hold anymore in the case of infinite ω-semigroups. In the
case of free ω-semigroups, one can actually prove that a Borel set A has a Wadge
degree of the form ω1

α, with cof(α) != ω, if and only if it is SG-equivalent to
some set B extracted from some ω-group (this result involves more sophisticated
considerations about initializability, as shown in [7, 9]). Extending such results
would require to provide, for any given Borel ω-language A, an SG-equivalent
set B extracted from a particular ω-semigroup which algebraically characterizes
the Wadge class generated by A.

Finally, in an even more general context, one may be interested at describing
the whole SG-hierarchy, or its restriction to some specific ω-semigroups. For in-
stance, we already mentioned that the SG-hierarchy of pointed ω-monoids coin-
cides with the restriction of the SG-hierarchy to the non-self-dual ω-subsets. An
extension of this kind of results to ω-groups, or other particular ω-semigroups,
could be interesting.

Bibliography

[1] Alessandro Andretta. Equivalence between Wadge and Lipschitz determi-
nacy. Ann. Pure Appl. Logic, 123(1-3):163–192, 2003.

[2] Julius R. Büchi. Weak second-order arithmetic and finite automata. Z.
Math. Logik Grundlagen Math., 6:66–92, 1960.

[3] Jérémie Cabessa and Jacques Duparc. An infinite game over ω-semigroups.
In Stefan Bold Benedikt Löwe Thoralf Räsch Johan van Benthem, editor,
Foundations of the Formal Sciences V, Infinite Games, volume 11 of Studies
in Logic, pages 63–78, London, 2007. College Publications.

[4] Olivier Carton and Dominique Perrin. Chains and superchains in ω-
semigroups. Almeida, Jorge (ed.) et al., Semigroups, automata and lan-
guages. Papers from the conference, Porto, Portugal, June 20–24, 1994.
Singapore: World Scientific. 17-28 (1996)., 1996.

[5] Olivier Carton and Dominique Perrin. Chains and superchains for ω-
rational sets, automata and semigroups. Int. J. Algebra Comput., 7(6):673–
695, 1997.

[6] Olivier Carton and Dominique Perrin. The Wagner hierarchy. Int. J.
Algebra Comput., 9(5):597–620, 1999.

[7] Jacques Duparc. Wadge hierarchy and Veblen hierarchy. Part I: Borel sets
of finite rank. J. Symb. Log., 66(1):56–86, 2001.

[8] Jacques Duparc. A hierarchy of deterministic context-free ω-languages.
Theoret. Comput. Sci., 290(3):1253–1300, 2003.

[9] Jacques Duparc. Wadge hierarchy and Veblen hierarchy. Part II: Borel sets
of infinite rank. J. Symbolic Logic, ap. To appear.

[10] Jacques Duparc and Mariane Riss. The missing link for ω-rational sets,
automata, and semigroups. Int. J. Algebra Comput., 16(1):161–185, 2006.

[11] Samuel Eilenberg. Automata, languages, and machines. Vol. A. Pure and
Applied Mathematics, 58. New York-London: Academic Press, a subsidiary
of Harcourt Brace Jovanovich, Publishers , 1974.

[12] Samuel Eilenberg. Automata, languages, and machines. Vol. B. With two
chapters by Bret Tilson. Pure and Applied Mathematics, 59. New York-
San Francisco-London: Academic Press, a subsidiary of Harcourt Brace
Jovanovich, Publishers , 1976.

151

152 BIBLIOGRAPHY

[13] Olivier Finkel. An effective extension of the Wagner hierarchy to blind
counter automata. In Computer science logic (Paris, 2001), volume 2142
of Lecture Notes in Comput. Sci., pages 369–383. Springer, Berlin, 2001.

[14] Olivier Finkel. Borel ranks and Wadge degrees of context free omega
languages. In New Computational Paradigms, First Conference on Com-
putability in Europe, CiE, volume 2142 of Lecture Notes in Comput. Sci.,
pages 129–138, Berlin, 2005. Springer.

[15] David Gale and Frank M. Stewart. Infinite games with perfect information.
In Contributions to the theory of games, vol. 2, Annals of Mathematics
Studies, no. 28, pages 245–266. Princeton University Press, Princeton, N.
J., 1953.

[16] James A. Green. On the structure of semigroups. Annals of Mathematics,
54(1):163–172, 1951.

[17] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1995.

[18] Samuel C. Kleene. Representation of events in nerve nets and finite au-
tomata. In Automata Studies, Annals of Mathematics Studies, no. 34, pages
3–42. Princeton University Press, Princeton, N. J., 1956.

[19] Kenneth Kunen. Set theory. An introduction to independence proofs.
2nd print. Studies in Logic and the Foundations of Mathematics, 102.
Amsterdam-New York-Oxford: North-Holland. XVI, 313 p. , 1983.

[20] Richard E. Ladner. Application of model theoretic games to discrete linear
orders and finite automata. Information and Control, 33(4):281–303, 1977.

[21] Donald A. Martin. Borel determinacy. Ann. of Math. (2), 102(2):363–371,
1975.

[22] Yiannis N. Moschovakis. Descriptive set theory. Studies in Logic and the
Foundations of Mathematics, Vol. 100. Amsterdam, New York, Oxford:
North-Holland Publishing Company. XII, 637 p. , 1980.

[23] Yiannis N. Moschovakis. Notes on set theory. Undergraduate Texts in
Mathematics. New York, NY: Springer-Verlag. 286 p., 1994.

[24] David E. Muller. Infinite sequences and finite machines. In FOCS, pages
3–16. IEEE, 1963.

[25] Dominique Perrin and Jean-Eric Pin. First-order logic and star-free sets.
J. Comput. System Sci., 32(3):393–406, 1986.

[26] Dominique Perrin and Jean-Éric Pin. Semigroups and automata on infinite
words. In Semigroups, formal languages and groups (York, 1993), pages
49–72. Kluwer Acad. Publ., Dordrecht, 1995.

[27] Dominique Perrin and Jean-Éric Pin. Infinite words, volume 141 of Pure
and Applied Mathematics. Elsevier, 2004.

[28] Jean-Éric Pin. Variétés de langages formels. Masson, Paris, 1984.

BIBLIOGRAPHY 153

[29] Jean-Éric Pin. Varieties of formal languages. North Oxford, London et
Plenum, New-York, 1986. (Traduction de Variétés de langages formels).

[30] Jean-Éric Pin. Logic, semigroups and automata on words. Annals of Math-
ematics and Artificial Intelligence, 16:343–384, 1996.

[31] Jean-Eric Pin. Positive varieties and infinite words. In C.L. Lucchesi and
A.V. Moura, editors, Latin’98, volume 1380 of Lecture Notes in Comput.
Sci., pages 76–87. Springer Verlag, Berlin, Heidelberg, New York, 1998.

[32] Joseph G. Rosenstein. Linear orderings. Pure and Applied Mathemat-
ics, 98. New York etc.: Academic Press, a Subsidiary of Harcourt Brace
Jovanovich, Publishers. XVII, 487 p. , 1982.

[33] Jacques Sakarovitch. Monoides pointés. Semigroup Forum, 18(3):235–264,
1979.

[34] Victor Selivanov. Fine hierarchy of regular ω-languages. Theor. Comput.
Sci., 191(1-2):37–59, 1998.

[35] Michael Sipser. Introduction to the theory of computation. SIGACT News,
27(1):27–29, 1996.

[36] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[37] Wolfgang Thomas. Star-free regular sets of ω-sequences. Inform. and Con-
trol, 42(2):148–156, 1979.

[38] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proc. Lond. Math. Soc., II. Ser., 42:230–265, 1936.

[39] William W. Wadge. Degrees of complexity of subsets of the Baire space.
Notice A.M.S., pages A714–A715, 1972.

[40] William W. Wadge. Reducibility and determinateness on the Baire space.
PhD thesis, University of California, Berkeley, 1983.

[41] Klaus Wagner. On ω-regular sets. Inform. and Control, 43(2):123–177,
1979.

[42] Thomas Wilke. An Eilenberg theorem for ∞-languages. In Automata,
languages and programming (Madrid, 1991), volume 510 of Lecture Notes
in Comput. Sci., pages 588–599. Springer, Berlin, 1991.

[43] Thomas Wilke and Haiseung Yoo. Computing the Wadge degree, the Lif-
shitz degree, and the Rabin index of a regular language of infinite words
in polynomial time. In Peter D. Mosses, Mogens Nielsen, and Michael I.
Schwartzbach, editors, TAPSOFT ’95: Theory and Practive of Software
Development, volume 915 of Lecture Notes in Computer Science, pages
288–302, Aarhus, Denmark, 1995. Springer.

