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CleanEx: a database of heterogeneous gene expression data based on a 

consistent gene nomenclature and linked to an improved annotation 

system.
  

Viviane Praz,

Swiss Institute for Experimental Cancer Research and Swiss Institute of Bioinformatics

 

The  automatic  genome  sequencing  and  annotation,  as  well  as  the  large-scale  gene  expression 

measurements methods, generate a massive amount of data for model organisms. Searching for gene-

specific  or  organism-specific  information  througout  all  the  different  databases  has  become a  very 

difficult task, and often results in fragmented and unrelated answers.  The generation of a database 

which will federate and integrate genomic and transcriptomic data together will greatly improve the 

search speed as well as the quality of the results by allowing a direct comparison of expression results 

obtained by different techniques. 

The main goal of this project, called the CleanEx database, is thus to provide access to public gene 

expression data via unique gene names and to represent heterogeneous expression data produced by 

different   technologies   in   a   way   that   facilitates   joint   analysis   and   cross­dataset   comparisons.   A 

consistent and up­to­date gene nomenclature is achieved by associating each single gene expression 

experiment with a permanent target identifier consisting of a physical description of the targeted RNA 

population or the hybridization reagent used. These targets are then mapped at regular intervals to the 

growing and evolving catalogues of genes from model organisms, such as human and mouse. The 

completely automatic mapping procedure relies partly on external genome information resources such 

as UniGene and RefSeq. The central part of CleanEx is a weekly built gene index containing cross­

references   to   all   public   expression   data   already   incorporated   into   the   system.   In   addition,   the 

expression target  database of CleanEx provides gene mapping and quality  control   information for 

various   types   of   experimental   resources,   such   as   cDNA   clones   or   Affymetrix   probe   sets.   The 

Affymetrix mapping files are accessible as text files, for further use in external applications, and as 

individual entries, via the web­based interfaces . The CleanEx web­based query interfaces offer access 

to individual entries via text string searches or quantitative expression criteria, as well as cross­dataset 

analysis   tools,   and   cross­chip  gene   comparison.  These   tools   have  proven   to   be  very   efficient   in 

expression data comparison and even, to a certain extent, in detection of differentially expressed splice 

variants. 

The CleanEx flat files and tools are  available online at: http://www.cleanex.isb­sib.ch/.
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CleanEx: une base de données fédérant des expériences hétérogènes de 

mesure d'expression de gènes grâce à une nomenclature cohérente et à un 

système d'annotation efficace.
     

Viviane Praz,

Insitut Suisse de Recherche Expérimentale sur le Cancer, Institut Suisse de Bioinformatique
 

L'automatisation du séquençage et de l'annotation des génomes, ainsi que l'application à large échelle 

de méthodes de mesure de l'expression génique, génèrent une quantité phénoménale de données pour 

des organismes modèles tels que l'homme ou la souris.  Dans ce déluge de données, il  devient très 

difficile d'obtenir des informations spécifiques à un organisme ou à un gène, et une telle recherche 

aboutit fréquemment à des réponses fragmentées, voir incomplètes. La création d'une base de données 

capable de gérer et d'intégrer aussi bien les données génomiques que les données transcriptomiques 

peut  grandement  améliorer  la  vitesse  de  recherche  ainsi  que  la  qualité  des  résultats  obtenus,  en 

permettant  une  comparaison  directe  de  mesures  d'expression  des  gènes  provenant  d'expériences 

réalisées grâce à des techniques différentes.

L'objectif  principal  de  ce  projet,  appelé  CleanEx,  est  de  fournir  un  accès  direct  aux  données 

d'expression  publiques  par  le  biais  de  noms  de  gènes  officiels,  et  de  représenter  des  données 

d'expression produites selon des protocoles différents de manière à faciliter une analyse générale et une 

comparaison  entre  plusieurs  jeux  de  données.  Une  mise  à  jour  cohérente  et  régulière  de  la 

nomenclature  des  gènes  est  assurée  en  associant  chaque  expérience  d'expression  de  gène  à  un 

identificateur  permanent  de  la  séquence-cible,  donnant  une  description  physique  de  la  population 

d'ARN visée  par  l'expérience.  Ces  identificateurs  sont  ensuite  associés  à  intervalles  réguliers  aux 

catalogues, en constante évolution, des gènes d'organismes modèles. Cette procédure automatique de 

traçage se fonde en partie sur des ressources externes d'information génomique, telles que UniGene et 

RefSeq. La partie centrale de CleanEx consiste en un index de gènes établi de manière hebdomadaire 

et qui contient les liens à toutes les données publiques d'expression déjà incorporées au système.  En 

outre, la base de données des séquences-cible fournit un lien sur  le gène  correspondant ainsi qu'un 

contrôle de qualité de ce lien pour différents types de ressources expérimentales, telles que des clones 

ou des sondes Affymetrix. Le système de  recherche en ligne de CleanEx offre un accès aux entrées 

individuelles ainsi qu'à des outils d'analyse croisée de jeux de donnnées. Ces outils se sont avérés très 

efficaces dans le cadre de la comparaison de l'expression de gènes, ainsi que, dans une certaine mesure, 

dans la détection d'une variation de cette expression liée au phénomène d'épissage alternatif.

Les fichiers et les outils de CleanEx sont accessibles en ligne (http://www.cleanex.isb-sib.ch/).
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1. INTRODUCTION

1.1. From sequence to gene expression : how static information becomes dynamic

The recent  emergence of very efficient and high-throughput techniques for either DNA sequencing, 

gene  expression  measurements,  and protein  structure  determination  or  quantitation  is  producing  an 

amount of data that is about to reach unexpected levels. The organization and retrieval of these data for 

the research community is a challenge that biologists, informaticians and bioinformaticians have to face 

together. The large volume of data generated is usually stored in specialized databases for each data 

type.  For  example,  GenBank  ( http://www.ncbi.nlm.nih.gov/Genbank/),  EMBL 

(http://www.ebi.ac.uk/embl/), and DDBJ  (http://www.ddbj.nig.ac.jp/)  are the three common resources 

for nucleotide sequence storage and access. Uniprot (http://www.expasy.uniprot.org/) is the universal 

protein  sequence  database.  The large-scale  sequencing  projects,  as  well  as  the  recent  use  of  high-

throughput expression measurements methods, have also generated specialized sequence or expression 

databases.  Nowadays,  more  than  five  hundred  different  biological  type-specific  publicly  accessible 

databases have officially been reported [1].  Amongst these, nearly half are of the genomic or gene 

expression type.

The   “genomic”   data   type,   as   produced   by   the   various   genome   projects,   is   a   linear  DNA 

(deoxyribonucleic   acid)   polymer   consisting   of   four   basic   nucleotides   (A,   C,   G,   T)   repeated   non­

randomly in strings of up to several hundreds of millions (the length of a chromosome). This linear 

genomic sequence information encodes, in smaller unit called genes, the range of responses that an 

organism  can  deploy   to   cope  with   its   environment   but   is   itself   largely   static.   Indeed,   apart   from 

localized DNA mutations, the organism­specific genome itself does not change, but the information 

derived from it  does.  Each gene can be  transcribed,  or  expressed,   to  produce  mRNA (messenger 

ribonucleic  acid).  Regulation  of  gene  transcription  occurs  through  a  complex  feedback mechanism 

involving a number of pathways, ultimately being mediated by transcription factors, protein complexes 

that bind to short regulatory sequences of DNA near the start of transcription. The correct annotation of 

genomic sequences, for example the compilation of the genes positions together with their respective 
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regulatory elements along the linear DNA information, is the first step to ensure a correct analysis of 

gene expression measurements.

In contrast to the static genomic DNA, gene expression is the dynamic response of the genome to the 

cells'  environment or specificity. In single-cell organisms, the function of gene control is mainly to 

adjust  the  enzymatic  machinery  of  the  cell  in  response  to  its  immediate  nutritional  and  physical 

environment. 

For a multicellular organism, the morphological characteristics, as well as the different tissue functions, 

are mainly determined by the control of gene expression. Indeed, as the cells face a much more stable 

environment, the genes influenced by environmental changes represent a much smaller proportion than 

in single-cell organisms. Genes whose expression is controlled to take place at a precise time during the 

life cycle of an organism are said to be under temporal control, whereas genes expressed in a specific 

tissue or cell type are under spatial control (tissue­specific genes). Many genes are both temporally and 

spatially  controlled,   meaning   that   they   are   expressed   in   a   specific   tissue   at   a   precise   stage   of 

development of the tissue. The organism's answer to different environmental signals, such as exposure 

to a chemical substance or physiological stress, also  consists manly of changes in gene expression.

Measurement of the  gene expression level involves mainly two different steps. First, one has to isolate 

a unique mRNA in a complex sample that is harvested under specific biological conditions. Then, the 

respective quantity of each unique mRNA is measured and the behavior of the corresponding gene 

under these specific conditions can be evaluated. The techniques to measure quantities of  mRNA are 

many,  and  range  from the  single-gene measurement  (Northern  blot  [2])  to  the  large-scale  analysis 

(microarrays [3], SAGE [4], MPSS [5], EST counts [6], Affymetrix GeneChips [7], and so on), capable 

of quantifying the expression level of all the genes present in one sample at once. One expression data 

experiment can thus be described as a biological sample' s “screenshot”, at a certain time, for a certain 

state, generated via one certain experimental protocol.

The  storage  of  all  these  biological  and  experimental  conditions,  together  with  the  numerical  data 

engendered, is absolutely necessary for further comprehension and analysis. As such, gene expression 

data require more descriptive information (meta-data) to characterize it accurately, and this adds a new 
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dimension to the analysis. The resulting data are applicable to a very wide range of biological domains, 

according to the chosen protocol and the selected sample, such as biological network description, tissue 

or cancer type classification, effects of different treatments on gene expression, developmental gene 

expression, or even clinical prognosis based on differential expression patterns. 

By combining gene expression measurements with genome annotation, one will reach the point where 

the whole genome of a certain organism is separated into functional units, namely genes,   associated 

with their respective regulatory elements. For each of these units, the exact location on the genome, the 

structure, the function, as well as the precise expression level under different conditions will be defined. 

Merging all these data together in a gene­oriented way will then lead to a holistic view of the genetic 

mechanisms implied in the organism's response to different environmental changes, or in the organism's 

development. All these reflexions prompted us to generate the CleanEx [8] model database, as a way to 

solve this ambitious data integration and analysis problem.

The remaining part of this document is organized as follows. Chapter two gives a general description of 

the raw data which constitute the basis of the CleanEx system, namely genomic and gene expression 

data. In chapter three, a brief historical review of existing databases is presented, with the main concepts 

underlying such databases and the main points which distinguish them  from CleanEx. Chapter four 

explains in detail  the CleanEx database system and organization.  This leads to chapter  five,  which 

describes the steps needed to build the CleanEx database. The source databases used in the procedure 

are  detailed  in  this  section.  Chapter  six  presents  the  final  version  of  the  database  format  and  the 

different tools which have been associated to CleanEx. A short tutorial gives some examples on how to 

use the information contained in this database via the web interfaces. The next chapter is a discussion 

about the advantages and drawbacks of the database, and the steps that could be taken to try to solve 

them. The last  chapter  gives some hints  and new development  ideas for  the database format,  data 

retrieval, and data representation.
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2. UNDERSTANDING RAW DATA

2.1. Genomic data : storage and annotation

The nucleotide sequences which are stored in nucleotide databases differ mainly in the way they have 

been  produced  and can be  roughly  divided into  three  categories.  First,  one  finds  sequences  which 

correspond  to  well-characterized  genes,  which  have  been  individually  sequenced  and  annotated 

according to the results of biological experiments. These sequences are of very good quality, but are 

usually  short,  and each one generally  corresponds to  a  maximum of  one gene,  with or  without  its 

promoter region. The second sequence category (HTG and HTC, that is High Throughput Genome and 

High-Throughput cDNAs sequence respectively) contains pieces of DNA coming from high-throughput 

sequencing methods.  These include long DNA sequences,  like BAC or  PAC clones.  Most  of these 

clones  come  from  genome  sequencing  projects  and  are  thus  of  very  high  quality,  but  they  lack 

biological  annotations.  The  last  category  represents  the  ESTs  (Expressed  Sequence  Tags)  or  GSS 

(Genome Survey Sequences) which are generated by single pass sequencing of clones extracted from 

cDNA libraries  prepared  from specific  cell  samples,  or  genomic sequences,  respectively.  The EST 

sequences  deposited in  the databases  come from a single-read  sequencing procedure  which mainly 

keeps the 3' or 5' ends of the transcript having a high reading quality score. This sequence type is thus 

usually short, and contains a sequencing error rate of about one percent. Nevertheless, these are now the 

most abundant sequences in the nucleotide databases. 

The evolution of the ratio between these different sequence categories reflects the turn that has been 

taken these past decades in the genomic field. Indeed, the automation of the sequencing technique has 

allowed the release of complete genome sequences, from viral and bacterial genomes to the genome of 

higher eukaryote model organisms, like Drosophila, mouse, or even human [9]. With the release of 

whole genomes the new challenge is now to extract useful information from these raw DNA sequences 

by generating automatic sequence annotations. 
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The growing number of EST sequences in the databases and the multiple uses that these data can be put 

to have pushed forward new ways to annotate the genome, for example by using sequence clustering 

methods so as to determine the exact position of the genes on the genome sequence [10]. 

2.1.1. Genome annotation

The non-trivial task of finding the exact position of the genes on a genome can be based on two main 

principles [11]. 

First, one can make use of known sequence signals which occur at a certain distance from the gene to 

determine potential gene location. These signals could for example correspond to promoters,  polyA 

sites, translation initiation, coding regions predicted on the basis of hexamer frequencies, codon usage, 

and for eukaryotic organisms, splice donors and acceptors. This represents the so-called ab-initio gene 

finding.

The second method is based on sequence similarity. One can find coding regions by aligning the raw 

sequence  with  for  example  known  mRNAs,  EST  data,  or  protein  sequences.  A  similarity  search 

between different species can also be used to find orthologous genes.

Of course, each of these methods has its pitfalls, but the most important ones are common to both. The 

genes are not always absolutely linearly separated from each other on the DNA sequence. Genes are 

found on both strands in the same region, and even worse, some genes overlap. This problem occurs in 

prokaryotic organisms as well as in eukaryotic ones. Nevertheless, it is easier to deal with prokaryotes, 

as the gene density in these genomes is much higher than in eukaryotes and,  as they have no splicing 

mechanism,  the  noise  due  to  elements  other  than  genes  found in  higher  organisms,  like  repetitive 

elements,  microsatellites,  and  so  on,  is  reduced.  The  eukaryote-specific  problem  of  splicing  and 

alternative  splicing  mechanisms,  which  consists  of  cutting  the  pre-mRNA  in  introns  which  are 

discarded and joining exons together for further translation, can generate multiple transcripts from one 

single gene,  sometimes in a tissue-specific way. This of course creates variable alignments for the 

second prediction method, and could also generate wrongly assigned exons to a specific transcript for 

the first method. The result is the same for small genes which are located in introns of longer genes, and 

23



which could be missed, or interpreted as a part of the longer gene. For all these reasons, and because 

the genomic annotation tools as well as the gene prediction methods are far from being perfect, it is still 

quite difficult to estimate the number of genes for one organism. For example, since the release of the 

draft version of the human genome until now, the total number of human genes has been re-estimated 

from more than 100'000 genes to between 20 to 25'000 [12].  Of course, according to the method used, 

the gene number is different; the ab-initio methods usually overestimate the number of genes, while 

methods based on similarity  tend to underestimate  this  number,  as  they use sequences which have 

already been annotated to identify genes. 

Once the genes have been positioned correctly on the genome, one can then annotate the raw sequence 

with  this  information.  Supplementary  information  integrated  in  the  sequence  typically  include  the 

presence  of  repetitive  elements,  low-complexity  regions,  specific  protein-binding  regions,  polyA-

signals, origin of replication, origin of transcription, tRNAs rRNAs,  scRNAs snRNAs, snoRNAs,  as 

well as regions with similarity to known proteins, and so on. For the sequences deposited in the EMBL 

database,  a  complete  list  of  annotation  features  is  available  at 

http://www.ebi.ac.uk/embl/Documentation/FT_definitions/feature_table.html. Genome  sequences  and 

annotations are easily retrieved via web interfaces from different genome projects, such as  Ensembl ( 

http://www.ensembl.org ), the common project between EMBL and the Sanger Institute, which provides 

a  genome browser  for  sequenced and automatically  annotated genomes of selected organisms.  The 

UCSC genome browser (  http://genome.ucsc.edu/ ) compiles annotation from different sources in one 

single viewer. The latest UCSC human assembly versions used for display are the RefSeq sequences, 

which  represent  the  NCBI assemblies  of  genomic  sequence  data  and  the  corresponding  RNA and 

protein  sequences.  The NCBI displays  all  assembled sequences  for  selected  organisms  in  the  Map 

Viewer ( http://www.ncbi.nlm.nih.gov/mapview/).

2.1.2. Sequence clustering 

Though traditional nucleotide sequence repositories contain one entry per uploaded sequence, one could 

consider how useful it would be to determine which of these sequences actually belong to the same 

genes,  or  even  to  the  same transcript  variant.  The process  used  to  establish  this  link  is  sequence 

clustering. Usually based first on ESTs, the goal is to group sequences belonging to a same genomic 
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region together by aligning them on known mRNAs or on genomic data. Once these groups have been 

determined,  the smaller  groups are  put  together  in  gene clusters,  and then mapped on gene exons, 

meaning the coding region of the gene. Again, this is not such an easy task. The fact that ESTs are 

enriched in 3' ends  influences the results, as it happens that some genes are represented in the EST 

database only by their 3'UTR (UnTranslated Region). Some genes are thus not completely covered by 

EST sequences. Even worse, some weakly expressed genes are not covered at all by EST sequences. 

This  particular  problem  can  sometimes  be  solved  by  generating  normalized  libraries,  where  the 

sequence pool is enriched in weakly expressed genes, usually by using self-hybridization mechanism. 

The  alternative  splicing  mechanism,  which  generates  different  transcripts  represented  by  different 

ESTs, can also lead to fake transcripts builds, in particular in cases where sequences have been obtained 

from partially spliced RNAs. In the existing databases of clusters, these problems are treated in different 

ways. In Unigene (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene) [13]  for example, no 

attempt at generating consensus sequences is made, and all the sequences from different splice variants 

are  put  together.  Unigene  is  nevertheless  tightly  associated  to  RefSeq 

(http://www.ncbi.nlm.nih.gov/RefSeq/)  [14],  a  reference  sequence  database  which  contains 

representative  mRNAs  and  splice  variants.  The  DoTS  (http://www.allgenes.org/),  Database  of 

Transcribed  Sequences,  tries  to  first  build  different  transcripts  from  the  available  sequences,  and 

clusters  them after  to form a putative gene to  which an identifier  is  given.  The SIB transcriptome 

project, trome [15], is an attempt to map transcribed RNA from different sources to the current genome 

assemblies, and especially to RefSeq (NCBI genome assembly) sequences. The Unigene and RefSeq 

databases will be described in detail later, in the “source databases” chapter. For trome, the mapping of 

the transcribed RNA sources to the genome is a three-step process. One first builds pairwise alignments 

using megablast between all transcripts and the genomic data. Then local alignments are generated for 

each pair of matching RNA with sim4. Finally, alignments with too low e percentage of identity are 

removed. Trome also gives access to graphs representing all the putative splice variants for each gene.

These gene clusters are actually of great use for explaining and analyzing gene expression data, as it 

allows researchers  to  establish a  correspondence  between the measurement  which is  done on their 

support and the gene which has been transcribed. The last step needed to make this link is to find a 

unique name for each of the annotated genes. This step is taken care of by different  groups,   each 
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dedicazed to a specific organism. For human genes, for example, the official group which deals with 

gene  nomenclature  is  called  HGNC  (HUGO  Gene  Nomenclature  Committee  at 

http://www.gene.ucl.ac.uk/nomenclature/aboutHGNC.html).  The  mouse  gene  nomenclature  is  taken 

care  by  the  MGI  (Mouse  Genome  Informatics  at  http://www.informatics.jax.org/ ).  These  groups 

maintain a list of official symbols to be used for each known gene. Of course, these gene names catalogs 

are constantly evolving, even for fully sequenced genomes. First , from the nomenclature point of view, 

it happens that two different genes have been named with the same symbol, or that a gene name does 

not correspond anymore to its newly discovered function, and thus the nomenclature committee takes 

the decision to change the gene symbol, to maintain name uniqueness and coherence in the gene list. 

Then, even if the gene symbol lists were static, as fully sequenced genomes are at the present far from 

being  fully  annotated,  and  as  the  clustering  and gene  prediction  procedures  do  not  give  definitive 

answers, the link between gene symbols and clusters evolve with the progress achieved in the genomes 

annotation process.  The more precise the annotation, the more stable this link. In the meantime, all 

databases which try to make a link between gene symbols, gene clusters and sequences have to maintain 

a highly dynamic procedure with frequent updates to keep an accurate annotation. 

2.2.  Gene expression data generation

Gene expression for specific transcripts was traditionally analyzed using the Northern blot method. In 

this technique,  sample RNA is separated by denaturing agarose gel electrophoresis,  transferred to a 

solid support and immobilized. A radiolabeled RNA or DNA probe is then used to detect the molecule 

of  interest.  This is  quite  a  straightforward  procedure,  but  when one wants to  study more  than one 

molecule at a time, the process becomes time consuming and problematic. Since 1999, different new 

techniques have been setup which enable the simultaneous quantitative analysis of all the transcribed 

sequences in one sample. Some of them make use of the same principle as the Northern blot, meaning 

the ability of nucleotide sequences to hybridize with their complementary strand. Usually, the known 

complementary molecules are attached on a solid support, like glass-slides for microarrays  and oligo-

arrays, or nylon membranes. Some other new techniques are based on the direct sequencing of mRNA 

tags from the sample,  like SAGE, MPSS, or  even EST sequencing.  Though very different  in their 

conceptual aspects, all these methods have the same goal : determining at once the expression level of 
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as many genes as possible for one sample in one certain tissue, under precise biological conditions. By 

giving access to a global gene-centered information retrieval mechanism for all these different results 

and being able to compare them, a database will thus allow comparisons between these states regardless 

of the technique used for the data generation, and will thus avoid that researchers duplicate experiments 

which have already been done just because they are using a different technique. To generate such a 

database, one has to know how the different data are generated and what are the output formats which 

are  accessible  for  analysis  and  integration.  A  short  explanation  for  the  major  high-throughput 

expression techniques and their output formats is given below.

2.2.1. Microarrays

The first glass slide arrays were produced in Pat Brown's laboratory at Stanford [3]. There are three 

fundamental types of operations required in a cDNA microarray experiment. The first operation consists 

of printing the cDNA microarray itself. For Stanford-like microarrays, PCR products are purified and 

spotted onto poly-L-lysine coated microscope slides. The spotted sequence length can vary between 500 

to 5000 nucleotides. For oligo-arrays,  oligonucleotides can either be synthesized and spotted on the 

slides as it is done for cDNAs, or can be synthesized in situ directly on the glass surface. The expression 

level  measurement  with microarrays  always takes  place  in  the  form of  a  comparison  between two 

samples (see Figure 1). The messenger RNA from the two samples (the reference sample, usually the 

same  one  is  used  for  all  the  experiments,  and  the  sample  to  analyze),  is  extracted  and   reverse 

transcribed using two distinguishable fluorescent dyes to label the nucleotides. The two samples are 

then  mixed  and  hybridized  on  a  single  chip.  The  chip  is  read  with  a  scanner  which  measures 

fluorescence at two wavelengths, one for each sample. After image analysis, background substraction 

and normalization, levels of transcripts in the two samples can be compared. The resulting transcript 

measurements for the reference and experiment sample are often called, channel one (or green channel) 

and channel two (or red channel) expression levels respectively.
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Microarray datasets are found in different flavours from different web sites. For example, data from 

Stanford can usually be obtained either via SMD, the microarrays specialized database from Stanford 

[16], or through specific project-based web pages. 

In both cases, each experiment/chip of the dataset represents one file, most of the time Excel files, or 

tab-delimited text files. This file begins with a short description of the experiment and the expression 

data then follows . The first line of the data, called the header line, is the description of the output from 

the software used to read the chip (in most cases, Scanalyze software). It lists the different fields of the 

next lines. Common fields in all Stanford datasets are: Spot identifier, Sequence spotted (image clone or 

RNA from EMBL), description of the target gene, both channels intensities, backgrounds, background-

substracted intensities, ratio and log2(ratio) of the two channels, and a flag (0/1) for spots considered as 

good/bad. The numerical  data which is used for  further  analysis is the log2(ratio)  between the two 

channels.
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Figure 1 : Dual­channel experiment (from 
http://www.ncbi.nlm.nih.gov/Class/NAWBIS/Modules/Expression/)



After the header line, each following line contains all the described information for one spot on the chip. 

So the number of lines in the file, discarding the description lines, equals the number of spots on the 

chip.

Additional experiment description, clinical information, sample or biopsies names, treatments given, are 

provided in another file, usually a text file, or html page.

2.2.2. Affymetrix

Affymetrix [7] technology is a combination of photolithographic technology adapted from microchip 

production and of a chemical “protection­deprotection” nucleotide synthesis method that is somewhat 

analogous to the Merrifield solid­state peptide synthesis method. The process begins with a quartz wafer 

coated with  linker  molecules.  The  linker  molecules are protected by a  chemical  group  that  can be 

removed using UV light. Masks such as those used in microchip synthesis allow spatial selection of the 

regions where the linker is to be illuminated with UV light and hence deprotected. Next, a species of 

nucleotide  (A,  C,  G or  T)   that   is   itself  protected with  the same group  is  chemically  bound  to   the 

unprotected   linkers.   The   illumination   and   binding   steps   are   repeated   for   each   of   the   remaining 

nucleotides.   The deprotection and binding cycles can now be continued so as to extend the single 

nucleotides into oligonucleotide chains of up to length 25. The resulted probe array consists of a number 

of cells, each containing many copies of a unique probe. Probes are tiled in probe pairs consisting of a 

perfect match (PM) and a mismatch (MM). The sequence of PM and MM are the same, except for a 

base substitution in the middle of the MM probe sequence. A probe set includes a series of probe pairs 

and represents an expressed transcript (see Figure 2).

An mRNA sample is then reverse­transcribed and labeled as for Stanford microarrays. Only one sample 

is hybridized per chip. The scanner software returns values for all the individual probes of the sample. 

To   measure   the   relative   transcript   concentrations,   one   takes   into   account   the   PM/MM   intensity 

discrepancy. One would expect a given transcript to bind to its matching probes and no signal at all for 

the mismatch probes.   In  reality,   the mismatch probes  give an  indication of   the  level  of  unspecific 

binding that takes place. The mismatch signal is subtracted from the match signal and an average is then 

taken over the set of probes in a given block. This “average­difference”, called “Signal”, is generally 

used as the indicator of transcript concentration. Other calculation methods have been proposed but are 
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not  widespread,  probably  largely due to  the fact   that  the software provided by Affymetrix has not 

implemented them.  Affymetrix datasets give relative concentrations of transcripts in a single mRNA 

sample, and not a comparison between two samples (Figure 3).
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Figure 2 : GeneChip technology (from : http://www.affymetrix.com)

Figure 3 : Single channel experiment



Two very different output formats are available for Affymetrix-based experiments. The first one gives 

access to the direct output from the scanner.  The resulting files are  called CEL files. They contain 

expression  values  for  each  spot,  meaning  each  separated  tag  of  all  probe  sets.  They need  a  quite 

extensive reformatting procedure. Though any Affymetrix-based experiment has to go through this step, 

the Affymetrix  CEL files are  not  the most  common format  for  publicly available datasets.  Indeed, 

mainly due to space constraints, authors often prefer to give public access to data which have already 

been processed via a specific software in files which contain results per probe set, and not per tag. 

This other format corresponds to the second chip analysis level. Once the chips have been read, CEL 

files are processed to create probe set-oriented information. Different softwares can be used to analyze 

CEL files. Amongst the published datasets that are in CleanEx, the most commonly used softwares are 

MAS4, MAS5 [17, 18], and RMA [19]. Some people also use in-house procedures. The usual output of 

these softwares is very basic, and consists mainly of two values :

– The “Signal”. Its measurement  involves a comparison of all sequence-specific perfect match (PM) 

probe cells with their corresponding mismatch (MM) probe cells (see Figure 4) for each probe set 

using  an  estimate  method that  yields  a  robust  weighted  mean which  is  relatively insensitive  to 

outliers. This Signal is calculated for each probe set and represents the relative level of expression of 

the transcripts. One important point to remember is that the given value in Affymetrix experiments is 

the intensity of one experiment, and not a ratio between a reference and the actual experiment (as in 

dual-channel experiments). 

– The “detection call” value. The call value is a tag for assessing the reliability of the probe set'  s 

intensity detection. To make the call, a first “discrimination value” is calculated by taking the median 

of ((PM-MM)*(PM+MM)) for all the tags of one probe set, where PM and MM are respectively the 

“Perfect Match” tag and the “MisMatch” tag. A p-value is then calculated by applying a one-sided 

Wilcoxon's signed rank test  to the discrimination value (note that this  test  is used in the MAS5 

program. Other programs use a different statistical test to assess the call' s p-value). The call tag is 

then assigned according to  two user-definable thresholds,  which separate  the probe sets in three 
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different categories :  A, P or M, respectively for “Absent”, “Present” or “Marginal” call. A fourth 

tag (NC for “no call” is applied when all tags from one probe set are excluded from the analysis. This 

occurs for example when the MM tag is saturated.

Depending on the software which is used by the  dataset' s authors, the calculation of the Signal and the 

call  can  differ.  For  example,  the  RMA software  uses  background  substraction  instead  of  PM-MM 

discrepancy, and thus does not return the call value. To eliminate negative Signal values, the MAS5 

software uses an adjusted MM value if this value is larger that the PM value.

This kind of data is usually provided as a single flat file containing all the experiments for all the probe 

sets on the chip.  There is one line per probe set, which contains in the different columns the intensity 

and the call for all experiments. Metadata like experimentation protocols and descriptions are provided 

in a separate file, as for Stanford data.

2.2.3. SAGE

This  technique  was  first  developed  by  Velculescu  in  1995  [4].  It's  the  first  large-scale  transcript 

abundance measurement method, and is based mainly on standard sequencing methods. First, mRNAs 

from the selected sample, or library, are extracted and reverse transcribed.

Double stranded cDNAs, bound to beads by the polyA tail,  are  then cut with a specific restriction 

enzyme called “anchoring enzyme”. Commonly used enzymes for SAGE are NlaIII or Sau3AI. The 

selected enzymes have a restriction site which leaves a “sticky end” on the cDNA. After the enzymatic 

step, each bead is left with one small specific fragment for each cDNA type. These fragments are then 

separated in two pools A and B and sequences from the two pools each receive one special linker (A or 

B).  These linkers  contain one sticky end which adapts  to the anchoring  enzyme site,  as  well  as  a 
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recognition site for a “tagging enzyme”, usually BsmF1. The particularity of the tagging enzyme is that 

it cuts a few bases in the 3' direction from its recognition site (10 to 14 for SAGE, and 25 for Long-

SAGE),  thus  adding  the  "Tag"  sequence  to  the  linkers.  This  tag  can  be  considered  as  a  specific 

signature for one transcript.

After PCR, the linkers are removed to create “ditags” which are then concatenated in longer strands, 

cloned and sequenced. After the sequencing step, one is left with a total tag count per sample, as well as 

an  individual  tag count,  allowing for  the  measure  of  the  individual  transcript  concentration  in  the 

original sample (Figure 5). The next step is to attribute to each tag its specific gene. In CleanEx, this is 

done in the “target step”, explained later on.

The  format  resulting  from  this  experiment  type  consists  of  a  list  of  tags  associated  with  their 

corresponding  tag  count.  Often,  added to  the  usual  tag  and  tag-count  information,  the  tag-to-gene 

correspondence that the authors used for data analysis is provided in each file.
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Figure 5 : SAGE technique (from 
http://www.ncbi.nlm.nih.gov/Class/NAWBIS/Modules/Expression)



2.2.4. MPSS

MPSS [5] is  a relatively new technique developed at  the Lynx Therapeutics  Inc.  One of its major 

technical advantages is that it eliminates the need for individual sequencing reactions and the physical 

separation of DNA fragments required by conventional sequencing methods. The procedure applied is 

as follows. From the sample, mRNAs are extracted and reverse transcribed in cDNAs which are then 

attached to unique 32-nucleotide long tags.  The total number of possibilities with 32-nucleotide long 

tags means that each different cDNA receives one specific tag. Simultaneously, this combination tag-

cDNA is amplified by PCR.

The tag-cDNA molecule population is then mixed with 5 micron micro-beads which are all coated with 

many copies  of  one  unique  anti-tag sequence,  complementary  to  one  unique  tag of  the  tag-cDNA 

molecule. After hybridization, each micro-bead carries one type of cDNA found in the original sample.

The attached molecules are then cut with a restriction enzyme to create a 17- to 20-nucleotides long 

signature sequence for each cDNA (or micro-bead).

The micro-beads are fixed as a single layer array in a flow cell, solvents and reagents can be washed 

over the micro-beads in each cycle of the process. The protocol elicits sequence-dependent fluorescent 

responses from the micro-beads, which are recorded by a camera after each cycle. The 17- to 20-base-

pair signature sequences are constructed through this process without requiring any separate sequencing 

reactions. A software is used to automate the delivery of reagents and solutions used in this sequencing 

process and to compile, from the images obtained at each cycle, the signature sequences that result from 

each experiment (Figure 6).

Once  the  process  is  done,  the  information  obtained  is  the  same  as  that  obtained  with  the  SAGE 

technique : individual signature count, and total sequence count, which will give the relative transcript 

abundance. The next step is to make a correspondence between the short signatures and the transcripts. 

The output format resembles that of the SAGE experiment.
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2.2.5. ESTs

Large-scale single-pass sequencing of cDNAs has been performed for approximately a decade in the 

form  of  expressed  sequence  tag  (EST)  projects.  Though  the  original  goals  were  to  sample  the 

transcriptome (transcribed portion of the genome) in order to discover new genes and to study exon-

intron structures and to group together those ESTs that come from the same gene, today ESTs are used 

for a variety of other purposes. The actual clones can be spotted onto microarrays, and the sequences 

can be used to identify SAGE and MPSS tags. For the case when the generated cDNA libraries used are 

native  (meaning  neither  normalized  nor  subtracted)  and  the  actual  sequences  that  are  read  can  be 

considered a random sample from an mRNA population, the size of the clusters gives an indication of 

the transcript  concentration in the respective sample [6].  Since libraries  are  usually generated from 

specific  tissues,  the  data  from EST frequency  counts  can  be  used  to  compare  expression  between 

tissues.  This  EST count  is  for  example  exploited  with  tools  like  DGED (Digital  Gene Expression 

Displayer,  http://cgap.nci.nih.gov/Tissues/GXS) or xProfiler (http://cgap.nci.nih.gov/Tissues/xProfiler) 
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Figure 6 : MPSS technique (from http://www.lynxgen.com)

http://cgap.nci.nih.gov/Tissues/xProfiler
http://cgap.nci.nih.gov/Tissues/GXS


by the CGAP group. 

In conclusion, the huge volume of data produced by all these expression experiments has dictated the 

use of computerized data structures to store all of the information. Typically, authors who generate such 

a  dataset  also create  an in-house very  simple  data  management  system to allow data  retrieval  and 

visualization. As high-throughput expression measurement experiments became a standard method used 

by an increasing number of laboratories, the need for more generalized repositories, capable of storage, 

retrieval comparison and analysis of heterogeneous expression data, became a priority [20]. The first 

problem to face when setting up such a repository, as several techniques can be used to generate this 

data type, is to coordinate standard and controlled procedures for the data integration, as well as the data 

retrieval.   The  definition  of  such  procedures  has  been  achieved  by  the  MGED (Microarray  Gene 

Expression  Data)  [21,22]  (http://www.mged.org)  Society  via  the  acceptance of  MIAME (Minimum 

Information About  a  Microarray  Experiment)  [23]  rules  by the scientific  community.  Such a well-

defined format for expression experiments generated a burst of public data repositories [24], going from 

the single data-type repository  to the complex automatic  upload repository   where  authors  of very 

different datasets could directly import their results in a standardized format. Amongst all databases 

created at that time, few appeared to be based on a strong enough architecture design to support the 

massive amount of data generated all over the world and to become a universal gene expression data 

repository and retrieval. Three of them, which we will describe in the next chapter, have been selected 

as official expression data repositories by the members of the MGED committee.

Expression data storage  is  one thing,  but it  is  useless if  there  is  no way to interpret  the data.  The 

meaning of the expression data comes from the link between the numerical results of the expression 

measurement and the biological data (namely the transcript which will be translated into a protein and 

the  protein  which  will  have  an  influence  on  the  organism's  behavior),   corresponding  to  this 

measurement.  This  part  of  the  analysis  is  of  course  strongly  influenced  by  the  evolution  of  the 

corresponding  organism-specific  genomic  data  annotation  and  gene  discovery  procedures.  Though 

expression experiments are done once, the genome annotation evolves, and old data would need to be 

refreshed to keep some usefulness. For example, sequences which were undefined at the time when the 

expression measurements have been realized can be later classified in a gene cluster and thus become an 
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important piece of information. In other cases, some sequences were wrongly attributed to a known 

cluster, but then appear to be part of another newly discovered gene. The lack of a mechanism which 

will allow frequent re-annotation of expression data with up-to-date gene information has been one of 

the major reasons which prompted us to develop the CleanEx database.
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3. EXPRESSION DATABASES : HISTORY AND EVOLUTION

3.1. Historical context : setup of MIAME standards

Already in November 1999, many of the major microarray users and developers, including Affymetrix 

(http://www.affymetrix.com),  Stanford  University  (http://genome-www5.stanford.edu/)  and  the 

European Bioinformatics Institute (,http://www.ebi.ac.uk/), founded the MGED Society, as a way to 

facilitate the sharing of microarray data generated by functional genomics and proteomics experiments. 

The two major outcomes which are now widely accepted as microarray database standards are MIAME 

and  MAGE,  which  could  be  respectively  considered  as  the  data  repository  standard,  and  the  data 

exchange standard.

MIAME stands for Minimum Information About a Microarray experiment. Its purpose is to make sure 

that the data published or submitted to a database are made publicly available in a format that enables 

unambiguous  interpretation  of  the  data  and  potential  verification  of  the  conclusions.  The  MIAME 

standards have now been accepted and followed by the three main expression data repositories. Since 

2002, the major scientific journals require that data should be MIAME compliant to get published.

The MAGE (http://www.mged.org/Workgroups/MAGE/mage.html) group of MGED has now released 

a universally accepted language for expression data exchange. This language, called MAGE-ML, is 

based  on  XML  (eXtensible  Markup  Language)  and  can  describe  microarray  designs,  microarray 

manufacturing information, microarray experiment setup and execution information, gene expression 

data and data analysis results. MAGE-ML is derived from MAGE-OM (Microarray Gene Expression 

Object Model). MAGE-OM describes the structure and the links of all the entities which are to be stored 

in a database via MAGE-ML.
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The use of the MGED standards thus allows easy and comprehensive data retrieval from any publicly 

accessible database.

3.2. Emergence of expression databases

Even before  the MGED standards were set  up,  many solutions   attempted  to  concatenate different 

datasets in one single database. These trials were sometimes directly linked to the efforts of one single 

laboratory which was producing a certain  amount of expression data,   like the Stanford Microarray 

Database [16] or ExpressDB [25]. Others were more related to  the database management scientific 

community, like ArrayExpress [26], GEO [27, 28] or GeneX (http://sourceforge.net/projects/genex/). 

Some other repositories emerged from the needs of a specialized  scientific community. These can be 

qualified as organism specific, tissue specific, disease specific, or even treatment specific databases. 

Amongst all these databases, some have now been generally accepted as official data repositories [29]. 

New databases appear rapidly, and each has it's own specifications. The databases can either be a single 

repository, or they can be linked to a plethora of analysis or format processing tools. An important 

characteristic   which   is   not   shared   by   all   these   databases   is   the   acceptance   of   automatic   upload 

procedures. Table 1 provides general information and the URL for some of the most used expression 

databases [1, 30]. It is not intended to give an exhaustive list of all expression databases, but points out 

the diversity existing amongst them, and the problem complexity when dealing with data coming from 

different sources. A very good description and comparison of gene expression databases can be found at 

:  http://ihome.cuhk.edu.hk/~b400559/array.html. 

Human databases

GeneNote Human genes expression profiles in healthy tissues http://genecards.weizmann.ac.il/genenote 

HugeIndex Expression levels of human genes in normal tissues http://hugeindex.org/ 

RefExA Reference database for human gene expression analysis http://www.lsbm.org/db/index_e.html  

H-ANGEL Human anatomic gene expression library http://www.jbirc.aist.go.jp/hinv/index.jsp 

BGED Brain gene expression database http://love2.aist-nara.ac.jp/BGED 
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emap Atlas Edinburgh  mouse  atlas:  an  atlas  of  mouse  embryo 

development and spatially mapped gene expression

http://genex.hgu.mrc.ac.uk/  

EPConDB Endocrine pancreas consortium database http://www.cbil.upenn.edu/EPConDB 

HemBase Genes expressed in differentiating human erythroid cells http://hembase.niddk.nih.gov/ 

PEDB Prostate expression database: ESTs from prostate tissue and 

cell type-specific cDNA libraries

http://www.pedb.org/ 

Kidney DB Kidney development and gene expression http://golgi.ana.ed.ac.uk/kidhome.html 

EpoDB Genes  expressed  during  human  erythropoiesis 

http://www.cbil.upenn.edu/EpoDB/ 

http://www.genome.ad.jp/magest  

Osteo-

Promoter DB

Genes in osteogenic proliferation and differentiation http://www.opd.tau.ac.il  

Tooth 

Development 

Gene expression in dental tissue http://bite-it.helsinki.fi/ 

Mouse databases

GXD Mouse gene expression database http://www.informatics.jax.org/menus/expression_menu.shtml

GenePaint Gene expression patterns in the mouse http://www.genepaint.org/Frameset.html

Mouse 

SAGE

SAGE  libraries  from  various  mouse 

tissues and cell lines

http://mouse.biomed.cas.cz/sage 

MAMEP Gene expression data on mouse embryos http://mamep.molgen.mpg.de/ 

Other organisms

rOGED Rat ovarian gene expression database http://web5.mccs.uky.edu/kolab/rogedendo.aspx

Axeldb Gene expression in Xenopus laevis http://www.dkfz-heidelberg.de/abt0135/axeldb.htm

FlyView Drosophila development and genetics http://pbio07.uni-muenster.de/ 
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MAGEST Ascidian  (Halocynthia  roretzi)  gene  expression 

patterns

http://www.genome.ad.jp/magest 

MEPD Medaka  (freshwater  fish  Oryzias  latipes)  gene 

expression pattern database

http://www.embl.de/mepd/

GermOnline Gene expression in mitotic and meiotic cell cycle http://www.germonline.org/

NASCarrays Nottingham Arabidopsis  Stock  Centre  microarray 

database

http://affymetrix.arabidopsis.info 

ExpressDB Yeast and E. coli expression database from SAGE, 

microarrays and Affymetrix chips

http://salt2.med.harvard.edu/ExpressDB/ 

Data type specific databases

5'SAGE 5'-end serial analysis of gene expression http://5sage.gi.k.u-tokyo.ac.jp/

SAGEmap NCBI's resource for SAGE data from various organisms http://www.ncbi.nlm.nih.gov/SAGE

SMD Raw and normalized data from microarray experiments http://genome-www.stanford.edu/microarray

GeneTrap Expression patterns in an embryonic stem library of gene 

trap insertions

http://www.cmhd.ca/sub/genetrap.asp 

TissueInfo EST-based tissue expression profiles mapped on Ensembl 

transcripts

http://icb.med.cornell.edu/crt/tissueinfowebser

vice.xml 

CGAP EST and SAGE-based expression profiling of normal, pre-

cancer and cancer human or mouse tissues

http://cgap.nci.nih.gov/ 

BodyMap Human and mouse EST based gene expression data http://bodymap.ims.u-tokyo.ac.jp/

All-purpose expression databases

ArrayExpress Public collection of microarray gene expression data http://www.ebi.ac.uk/arrayexpress

CIBEX Center  for  Information  Biology  gene  EXpression 

database

http://cibex.nig.ac.jp/index.jsp 

GEO Gene expression omnibus: gene expression profiles http://www.ncbi.nlm.nih.gov/geo/ 
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RAD RNA  Abundance  Database  :  will  allow  cross-data 

comparison, spot-to gene mapping is done via DoTS

http://www.cbil.upenn.edu/RAD/php/index.php 

Annotation and gene oriented databases

NetAffx Public Affymetrix probesets and annotations http://www.affymetrix.com/

GeneAnnot Revised annotation of Affymetrix human gene probe sets http://genecards.weizmann.ac.il/geneannot/

GeneTide A transcriptome-focused member of the GeneCards suite http://genecards.weizmann.ac.il/genetide/

CleanEx Expression  reference  database,  linking  heterogeneous 

expression data for cross-dataset comparisons

http://www.cleanex.isb-sib.ch/

LOLA List  of  lists  annotated:  a  comparison  of  gene  sets 

identified in different microarray experiments

http://www.lola.gwu.edu/

Table 1 : List of existing expression databases

We will now describe in detail the emergence, development and major specificities of some of the most 

important gene expression databases. We will focus on historically important databases and on general 

purpose ones with heterogeneous data, as well as on MGED approved databases. We will then spend 

more time on describing the expression databases linked to gene annotation and cross-dataset analysis 

tools.

3.3.  Main expression data repositories

3.3.1. SMD : the Stanford Microarray Database

Initiated in 1999, the Stanford MicroArray Database [16] is one of the first academic databases to be 

used on an institutional scale. Formerly developed as a research tool for Stanford scientists and  their 

collaborators,   it   was   restricted   to   dual­channel   microarray   data   obtained   via   GenePix 

(http://www.axon.com/GN_GenePixSoftware.html)   or   Scanalyze   ( 

http://graphics.stanford.edu/software/scanalyze/) image analysis softwares until 2003 . The SMD now 
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also supports data generated with  Custom arrays and Affymetrix chips [31]. The SMD, with the help of 

the   MAGE­stk (MAGE software toolkit) has implemented a data translator which generates MAGE­

ML expression   files   from  the  SMD format.  These  data  can   thus  be  directly  uploaded  in  MIAME 

compliant data repositories. The SMD software can be downloaded and installed locally, but is only 

compatible with an ORACLE relational database on Solaris machines. To provide a database structure 

based on a fully open source system, a new version compatible with Linux and PostgreSQL, called the 

Longhorn Array Database [32], has been developed.

Though the majority of the analysis tools and the upload system are restricted to registered users (as for 

example upload and analysis of external data), the SMD also provides an impressive number of public 

search and analysis interfaces, as well as the possibility to generate on line plots with the selected public 

data. One can also select spots to be used for further analysis via filters as diverse as gene symbol or 

intensity of the spot. The possible analysis methods on these filtered data are SOM (Self­Organizing 

Maps), or hierarchical clustering. Another very interesting tool implemented in SMD is the spot history, 

which stores expression data for all the spots corresponding to the same feature and displays it in a 

histogram. This gives a nice general view of the spotted clone's behavior.

On May 2005, with  a total of 54618 experiments, the SMD represents one of the largest collection of 

expression data. Amongst these experiments, 8979 are publicly accessible, the others come either from 

private datasets or from data which has not yet been published.

3.3.2. CGAP and SAGEmap

The  Cancer  Genome  Anatomy  Project  (CGAP,  http://cgap.nci.nih.gov/)  [33]  began  in  1996.  This 

program of the National Cancer Institute (NCI) is studying the molecular changes that occur when a 

normal cell is transformed into a cancer cell. It provides an impressive number of tools, from clone 

annotation or SNPs  discovery, to library selection and annotation. The CGAP also consists of a huge 

collection of human or mouse ESTs classified according to their tissue origin and their disease state, 

either  normal,  pre-cancer,  or  cancer.  From these different  pools,  CGAP provides  digital  expression 

analysis between tissues and disease states. After the achievement of the CGAP SAGE project, which 

allowed the assembly of over 5 million transcript tags from more than 100 human cell types, the ESTs 

digital analysis tools have been adapted to also accept SAGE data. These two data sources, namely the 
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ESTs and the SAGE tags, can not be used together; however, the digital display gives a fairly precise 

idea of the expression level in different tissues.

SAGEmap (http://www.ncbi.nlm.nih.gov/projects/SAGE/) [34] is a SAGE dedicated public expression 

repository.  Initially  designed  to  archive  SAGE  data  from  the  CGAP,  it  now  accepts  SAGE  type 

expression data from any source, via a tool called SAGEmap Submission Tool (SST).  This tool not 

only allows a facilitated library annotation, but it is also designed to process the primary data product of 

the SAGE technique,  which represents the concatenated tags, in pairs  (ditags), separated by four base 

punctuation signals (e.g., NlaIII sites). Once processed by SST, the data are represented by a list of tags 

with their corresponding count values, and is thus a digital representation of cellular gene expression. 

The SAGEmap also provides a SAGE to gene assignment tool based on the sequences available in the 

Unigene  (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene) clusters. Moreover, each SAGE 

to gene assignment is associated with a so-called “class”, representing the reliabiliy of the tag mapping. 

The classes depend on the sequence type which is associated to the tag. Basically, The best quality class 

is attributed when the mapping occurs on a well-characterized mRNA sequence. If the mapping is done 

on an EST, the class varies according to the presence or absence of a polyA tail or signal, as well as the 

3' or 5' annotation of the EST. Combining these two criteria gives four more classes, for a total of five 

different classes (including the mapping on well-known mRNAs). At the end, the tags are definitely 

mapped to the gene which gives the highest mapping quality, and real ambiguity (like tags which really 

map to more than one gene) is not taken into account for further analysis. This mapping tool is available 

on line so that any user can annotate his own SAGE tag collection.

SAGEmap also provides the “tag-” and “gene display” tools. The first one shows in shades of grey the 

relative abundance of the selected tag in all the currently hosted SAGE libraries. The gene display tool 

shows the gene's reliable tag assignments. 

SAGEmap is, apart from CleanEx, the only repository which offers a quality control for the tag to gene 

annotation. 

3.3.3. ExpressDB

ExpressDB (http://salt2.med.harvard.edu/ExpressDB/) [25] contains published and in-house expression 
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studies on Yeast and  E. coli. Created in 1999, before the emergence of expression data standards or 

universal data repositories, ExpressDB has immediately been loaded with data from eleven yeast studies 

using three different kinds of high-throughput RNA level assays,  namely SAGE, DNA microarray, and 

Affymetrix oligonucleotide array data. It is one of the first attempts to represent and manage data not 

only from multiple studies but also from multiple kinds of expression data types. The whole comparison 

process  is  built  on the  computation  of  so-called  ERAs (Estimated  Relative  Abundances).  An ORF 

(Open Reading Frame) ERA represents the fractional abundance of the ORF's RNA with respect to the 

total population of ORF RNAs in cells in a particular experimental condition. The computation of these 

ERAs is quite straightforward for Affymetrix or SAGE data types, which measure RNA abundance in 

one  single  sample.  However,  computing  ERAs  becomes  much  more  problematic  for  dual-channel 

experiments, which give as output a ratio between two experiments. For this kind of experiments, the 

decision was thus taken to use the single so-called “red” channel,  background substracted, as a basis to 

calculate ERAs. This method, though, did not give as good results as for the other data types. Once all 

ERAs are computed, common ORFs were selected. Final ERAs for each experiment were calculated for 

each  ORF by dividing  each  individual  ORF ERA by the  total  sum of  ERAs for  all  ORFs in  that 

experiment. The ERAs produced can be used via a query interface instead of  raw expression values for 

cross-dataset comparisons.

3.3.4.  MGED recommended expression data repositories

As for nucleotide sequences repositories, the set up of common standards has prompted the MGED 

Society to recommend a few databases as official expression data repositories. These three selected 

databases are hosted by the same organizations than the three official nucleotide sequences databases, 

namely the EBI for ArrayExpress [26], the NCBI (http://www.ncbi.nlm.nih.gov/) for GEO [27], and the 

DDBJ for CIBEX [35]. There is anyway a huge difference in the management of sequence databases 

and expression databases. Indeed, if the three versions of the nucleotide repositories (EMBL,   GenBank 

and DDBJ) are fully synchronized and contain the same entries in a slightly different format, the three 

expression databases are so far completely independent. They do not host the same data, and though 

they all follow the MGED standards, their design and implementation differ a lot.

3.3.4.1.  GEO and other data repositories
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The  Gene  Expression Omnibus  (GEO)  [27]  at   the  National  Center   for  Biotechnology   Information 

(NCBI) is the largest fully public repository for high­throughput molecular abundance data, as well as a 

curated,  on  line  resource  for  gene  expression  data  browsing,  query  and  retrieval.  GEO  became 

operational in July 2000. It has been populated with very heterogenous microarray­based experiments, 

done for very different purposes, like gene expression analysis by mRNA abundance measurements, 

genomic DNA arrays for  linkage analysis,  gene copy number studies,  or protein arrays to monitor 

expression at the protein level. GEO also stores non­array­based technologies such as serial analysis of 

gene expression   (SAGE) and mass  spectrometry proteomic  technology.  Data  can  be submitted via 

interactive web­based forms. Bulk submissions in GEO SOFT specific format or MAGE_ML format 

are also accepted.  The database is, as ArrayExpress, organized on the basis of three different levels, 

namely Platforms, Samples, and Series.

An instance of a  platform is,  essentially, a list of probes that define what set  of molecules may be 

detected in any experiment utilizing that platform. For example, the platform data table may contain 

GEO-defined columns identifying the position and corresponding feature of each probe (spot) such as a 

GenBank accession number, open reading frame (ORF) name and clone identifier, as well as submitter-

defined columns. It  corresponds to the ArrayExpress “array” organization level.  Platform accession 

numbers have a ‘GPL’ prefix. 

An instance of a sample describes the gene expression level determined for a biological  sample under 

one condition. It corresponds to the experiment level in ArrayExpress, or for example to the numerical 

output of one chip. A sample utilizes a specific platform to generate molecular abundance data. Each 

sample has only one parent platform which must be previously defined. For example, a sample data 

table  could  contain  the  output  of  Scanalyze  realized  with  a  specific  dual-channel  chip,  as  well  as 

measurements for one experiment based on an Affymetrix chip (like absent/present call and intensity), 

or SAGE tags count for one specific sample. Each line of the table corresponds to the measured values 

for one spot or tag. Sample accession numbers have a ‘GSM’ prefix. 

An instance of a series organizes samples into meaningful data sets which make up an experiment, and 

are bound together by a common attribute. Each series usually corresponds to one publication. Series 

accession numbers have a ‘GSE’ prefix, and could be compared to the “protocol” level in ArrayExpress 
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and to a dataset in CleanEx.

These three levels are accessible through web query interfaces. 

A  recently  setup  query  system,  linked  to  the  NCBI  Entrez  database   system 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=geo),   allows   either   so­called 

datasets or profiles retrieval. Interestingly, the profiles retrieval system provides a ‘gene­centric’ view 

of GEO data.  The profiles output represents a histogram of expression measurements for one gene 

across each sample in a single GEO dataset. Other newly implemented features include the possibility 

of calculating an average rank or value differences between experimental subsets within a single dataset.

The ArrayExpress [26] public repository, hosted at the European Bioinformatics Institute, accepts any 

expression array data type, including Affymetrix GeneChips, but no SAGE data. In a way to facilitate 

the  authors'  submission  procedure,  data  can  be  mainly  submitted  via  the  MIAMExpress 

(http://www.ebi.ac.uk/miamexpress/) on line data submission tool, which consists of a series of simple 

web forms to describe their experiment and upload the data files. Furthermore, each submitted dataset is 

then manually curated to ensure that data are MIAME compliant and well formatted. ArrayExpress also 

provides dedicated pipelines for specific users, like for example the SMD from Stanford.  The query 

retrieval system gives access to three organization levels, the Array,  Experiment, and Protocol, which 

correspond to the GEO Platform, Sample and Series respectively. ArrayExpress is linked to an on line 

data retrieval system as well as to an integrated on line visualization and analysis tool called Expression 

Profiler.

CIBEX [35] is a very new expression data repository which so far contains very few data, but as it has 

been recommended by the MGED Society as an official expression database, it will probably grow quite 

fast. For now, the CIBEX database allows only raw data retrieval and does not provide any analysis or 

visualizer tools. An on line submission system is now under development. 

3.4.  Genes oriented databases

The databases that are here called “gene oriented expression databases” have a very different objective 

compared to expression data repositories. They in fact aim at giving access to any available expression 
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measurement corresponding to one gene under one single identifier. They are usually not made for raw 

expression  data  bulk  retrieval,  and  for  that  reason  they  don't  need  to  be  MIAME compliant.  The 

emergence  of  standards  for  expression  data  publication  has  anyway  been  of  great  use  for  these 

databases as it greatly facilitates the expression data integration in their system. The most well-known 

databases of this type are GeneCards [36], at http://bioinfo1.weizmann.ac.il/genecards/index.shtml, and 

SOURCE [37] ,  at http://source.stanford.edu/cgi-bin/source/sourceSearch. To a certain extent, with the 

new gene search that has recently been implemented, GEO can also be considered as a  gene oriented 

database.

3.4.1. GeneCards

The GeneCards project [36], from the Weizmann Institute, began in 1997 and was first  designed to 

integrate information about genes, proteins and diseases extracted from heterogeneous public databases. 

Over the years, it  has evolved into a multi­purpose human­centered database, separated in different 

parts, according to their center of interests. 

GeneLoc and GeneTide are transcript annotation databases. GeneLoc compares the genomic locations 

of  different  genome annotation  sets  to  generate  a  unified   location   for   each  gene,  while  GeneTide 

integrates   data   from   other   resources,   like   Unigene   [13],   DoTS   (http://allgenes.org/),   AceView 

(http://www.ncbi.nih.gov/IEB/Research/Acembly/), and GeneAnnot.

GeneAnnot is a new revised annotation of three human Affymetrix chips, namely the  HG-U95, HG-

U133  and HG-U133 Plus2.0 chips. The mapping is done on full-length transcripts as well as on ESTs 

(Expressed  Sequence  Tags),  via  the  BLAT [38]  program.  Transcripts  to  gene  mapping  was  done 

directly to GeneCards entities whenever possible, and to Unigene as a second instance. To evaluate each 

probe set, two quality scores are provided, the sensitivity score which corresponds to  the number of 

matching probes in the given probe set to a certain gene, and the specificity score, which lowers if some 

probes of one probe set match additional genes. The final display shows the two scores as well as the 

number of genes which had a hit for the individual probes. Access to the individual positions of each 

probe on the mapping sequences is not provided.

GeneNote compiles expression experiments of human healthy tissues performed on the Affymetrix HG­
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U95 chips set from A to E at the Weizmann Institute.

The GeneCards part of the database system integrates all the data generated by the other members of 

the GeneCards Suite. It is also cross-referenced to a great number of external databases such as Unigene 

[13],  Genew  [39],  Swissprot  [40],  OMIM  [41],  Ensembl  and   others.  For  our  purpose,  the  most 

interesting viewers offered in one GeneCards gene entry are :

– A direct view and link to GeneAnnot and the mapping result for human chips

– An expression viewer, including the GeneNote healthy tissues expression profiles for each gene.

– A digital northern viewer generated from the Unigene ESTs, as well as another one created from the 

CGAP SAGE tags for the studied gene. The two additional viewers use the same tissue classification 

than the samples analyzed in GeneNote.

Access to other expression data is not provided yet.

3.4.2. SOURCE

SOURCE [37] is actually the database which resembles the most the CleanEx database ones. This gene 

oriented  database,  hosted  by  the  Stanford  University,  links  external  resources  like  Unigene, 

chromosome location, Gene Ontology, Swissprot and many other universal databases to expression data 

from different datasets. It is structured on a backbone including two files types, the GeneReports and the 

CloneReports. 

The  GeneReports  contain  cross-links  to  features  attributable  to  a  single  gene.  The  entry  name is, 

whenever possible, built from the HUGO [42] official gene symbol, otherwise the associated Unigene 

cluster number is used. 

The CloneReports  store all  annotation corresponding to the ESTs found in dbEST [43]. The whole 

structure of SOURCE consists of a series of links between these two files.

SOURCE stores and displays only expression data produced via cDNA or Affymetrix microarrays, but 

no SAGE data. In addition to these, it also provides, as CleanEx, the relative expression level of a gene 
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in different tissues based on the ESTs integrated in Unigene (the CleanEx method will be described 

later).

Both GeneReport or CloneReport can be accessed via common identifiers, like Unigene ID, clone ID, 

gene symbol or GenBank/EMBL accession numbers. A batch search allows retrieval of   data for a 

whole  gene   list.  This   batch  mode   exists   for  both  Genes   and  Clones.  The   single  GeneReport   also 

provides a link to all the clones associated to this entry, but not to SAGE tags or Affymetrix probe sets 

which also correspond to this gene symbol. SOURCE, as CleanEx, is updated on a very regular basis to 

ensure access to the most up-to-date information. 

 3.4.3. CleanEx

When the CleanEx [8] project began, none of the previously cited expression databases in the gene 

oriented category existed, and this appeared as an important problem to study for the general use and 

comprehension of expression data. Now that more databases have also chosen this way, CleanEx 

nevertheless still shows some unique and very useful features.

First of all, amongst all these databases, CleanEx is the only one which provides individual mapping 

and position of Affymetrix probes, and not probesets. Second, this feature has been extended to give 

SAGE tags positions on sequences. Moreover, the CleanEx  system is able to retrieve not only all the 

clones common to one gene, but can show, for the selected gene, clones, potential SAGE tags, and 

Affymetrix  probe sets altogether.  Another  feature which is very important in CleanEx is the cross-

dataset comparison system which can deal with any data type. Lastly, though SOURCE also provides a 

direct link to a promoter sequence download system, in CleanEx, whenever possible, this link is done 

via the transcription start site position given in EPD, which gives much more reliability to the promoter 

elements' position. 

The CleanEx expression database will now be described in detail. The first part will give an overview of 

the data organization in the database. The building processes will then be explained for each data type. 

The results part will explain the database content and the different possibilities of using CleanEx in a 

way to make heterogeneous gene expression results comprehensible in a gene-oriented way.
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4. THE CleanEx DATABASE : CONCEPT AND DATA ORGANIZATION

The CleanEx (formerly called EPDEX) project began in 2001 as a companion database for EPD, the 

Eukaryotic Promoter Database [44, 45]. Its first aim was to map EPD promoters and Swissprot entries 

via  genes  symbols  to  expression  profiles.  As  the  companion  database  has  grown  and  earned  its 

independence, its main goal has also evolved and is now to provide access to public gene expression 

data via unique gene names. A second objective is to represent heterogeneous expression data produced 

by different  technologies  in  a  way that  facilitates  joint  analysis  and cross-data set  comparisons.  A 

consistent and up-to-date gene nomenclature is achieved by associating each single experiment with a 

permanent target identifier consisting of a physical description of the targeted RNA population or the 

hybridization  reagent  used.  These  targets  are  then  mapped at  regular  intervals  to  the  growing and 

evolving catalogs of human genes and genes from model organisms. The completely automatic mapping 

procedure relies partly on external genome information resources such as UniGene [13] and RefSeq 

[14]. The central part of CleanEx is a gene index containing cross-references to all public expression 

data already incorporated into the system which is built on a weekly basis. In addition, the expression 

target database of CleanEx provides gene mapping and quality control information for various types of 

experimental resources, such as cDNA clones, Affymetrix probe sets and SAGE tags. The web-based 

query interfaces offer access to individual entries via text string searches or  quantitative expression 

criteria.

So  far,  CleanEx  contains  human  and  mouse  genes  for  which  the  symbol  is  approved  by  the 

representative organism nomenclature committee. For human genes, we use the approved Genew [39] 

gene  symbols.  The  mouse  gene  index  is  based  on  the  MGD  (Mouse  Genome  Database)  [46] 

nomenclature. There is one entry per gene name for each organism.

CleanEx is a flat file formatted database consisting of three different file types. Each of these files is 
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linked to the other through a defined accession number. The three file types are :

– CleanEx_exp

– CleanEx_trg

– CleanEx

4.1. CleanEx_exp

CleanEx_exp files contain public gene expression data in a slightly reorganized text file format and, if 

possible, equivalent to the original sources in terms of the information content. They are formatted as a 

hierarchically structured file which consists of so-called meta-entries, which in turn contain entries. 

A  meta-entry  contains  a  matrix  of  measured  expression  levels  for  a  set  of  target  sequences  and 

conditions, which is typically published and analyzed at once, and referred to by a common name. Each 

meta-entry  consists  of  a  documentation  entry  plus  one  data  entry  for  each  expression  target.  The 

documentation  entry,  which  could  be  compared  to  the  GEO  series  instance, provides  general 

information about the data set  including the number  of spotted features,  the number  and the list of 

tissues or experiments for which expression values are provided, the organism, the associated published 

paper, and the type of associated reference sequences. A data entry contains expression values for a 

particular feature over all conditions. By feature we mean any molecule that is used to retrieve a certain 

transcript's abundance in an experiment, such as a clone or oligonucleotide spotted on a certain position 

of a dual-channel chip, an Affymetrix probe set, or a SAGE or MPSS tag. Note that this one feature/all 

experiments concept is very different from the one chosen in GEO, where each sample corresponds to 

the measurements of all features in one experiment. Each CleanEx_exp data entry's header line contains 

the  CleanEx_target  identifier  linking  the  analyzed  sequence  to  its  target  expressed  sequence  (and 

usually to the associated gene name). The word “target” stands for the transcript which is “targetted” by 

the so-called feature.

The first step in generating a new meta-entry consists of downloading a public data set from an external 

FTP or website. The source files are archived in a local repository but are not considered to be part of 
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the CleanEx system. The data are then first  analyzed by the curator  and subjected to a number  of 

consistency and quality  checks.  A decision has to be made at  this  stage as to what  kind of  target 

identifier and expression data format will be used. As mentioned above, CleanEx supports a number of 

different formats for representing gene expression data, from simple sequence tag counts to the rich 

numerical  representation  of  microarray  images  produced  by  programs  like  ScanAlyze 

(http://rana.lbl.gov/EisenSoftware.htm) or GenePix (http://www.axon.com). The new meta-entry is then 

usually generated by an ad hoc written perl script, as described below. If needed, new expression target 

entries are generated as well and will be added to cleanex_trg.

The CleanEx_exp meta-entries are in principle static, meaning that the original data are downloaded 

once and reformatted once.  Exceptions to this  rule  occur  when the authors  modify their  own data. 

Another exception to this rule is the meta-entry that contains the tissue distribution of public ESTs, 

which is derived from Unigene and regenerated from scratch whenever the original source is updated.

CleanEx_exp meta-entries have short alpha-numeric strings as identifiers. Expression data entries have 

composite identifiers consisting of the meta-entry ID followed by an underscore character and a second 

identifier. The second identifier is often identical to the corresponding target entry ID. Exceptions occur 

when the same target has been analyzed more than once in a gene expression profiling experiment (for 

instance if  the same cDNA clone has been spotted twice on a microarray),  or  when different  chip 

batches have been used for the same dataset,  as sometimes the clones are not spotted on the same 

location across two different chip batches. This last case will be explained in the data integration part.

4.2. CleanEx_trg

The entries of this file type contain a physical description of the expression targets, linked to genes and 

quality control information. The CleanEx_trg does not correspond to the platform instance in GEO, in 

the sense that, to avoid redundancy, one entry could give information on more than one experiment set. 

For example, if two different datasets have used the same cDNA as a feature, there will only be one 

corresponding entry in CleanEx_trg for these two spots. Each spot will then be referenced in this entry. 

Nevertheless, for Affymetrix chips, or for custom arrays with specifically designed oligonucleotides, the 

GEO platform and CleanEx_trg concepts become similar, as these kinds of targets appear only once in 
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CleanEx_trg as well as in GEO platforms. The Affymetrix case could be discussed, in the sense that 

probe sets are quite often re-used in different arrays for the same organism. But in fact, even if the 

probe set identifier does not change, the number of tags corresponding to one probe set tends to lower, 

as the bad tags (the tags which match to  more than one gene or which do not match any sequence) are 

eliminated in the most recent chips. So the decision has been made to create one CleanEx_trg entry per 

probe set AND per Affymetrix chip, even if this implies a certain redundancy in the annotation of 

individual tags.

As explained before, a CleanEx “target” stands for the sequence to which any nucleotide element which 

is spotted or  sequenced for  an expression experiment,  corresponds.  These elements can be either  a 

spotted cDNA or oligo, an Affymetrix probeset, a SAGE or MPSS tag, and will be later on mentioned 

as a whole under the name “feature”. In short, a target entry in CleanEx_trg is an annotated feature with 

its  corresponding  gene  name and possibly  its  position  on  the  gene  nucleotide  sequence  reference. 

Targets and features are tightly linked by an annotation procedure explained later.

The exact content of a target entry depends on the feature type. Currently we distinguish between: (i) 

public cDNA clone names included in UniGene, (ii) cDNA clones from private suppliers, e.g. Incyte, 

(iii)  Affymetrix  probe  sets,  (iv)  SAGE or  MPSS tags,  (v)  gene names and (vi)  sequence  database 

accession numbers. The latter two are not true physical descriptions of spotted features and serve as 

substitutes when more precise information is lacking. For instance for some data sets generated with 

commercial oligonucleotide microarrays, we were unable to access the corresponding oligonucleotide 

sequences and therefore used the sequence accession numbers provided by the authors instead.

The CleanEx_trg entries consist of a stable part and a weekly updated dynamic part. The stable part is 

imported from external sources, such as the original feature names given by the experiment authors, or 

the  probe  set  documentation  files  posted  by  Affymetrix  ( 

http://www.affymetrix.com/analysis/download_center.affx ), and is used to generate the dynamic parts 

of CleanEx_trg via a weekly updating procedure. The primary purpose of the weekly update is to link 

targets to genes. This linking procedure also depends on the feature type. For public cDNA clones, 

sequence accession numbers and gene symbols, these links are established directly on the basis of the 

last available Unigene release. This is possible, because Unigene entries contain references to cDNA 
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clones, sequence accession numbers and gene names. This procedure is thus quite trivial, and consists of 

associating the Unigene accession number and its corresponding gene symbol, if exists, to each given 

clone number or accession number. For all feature types for which we have access to the sequence and 

whose  relationship  with  Unigene  is  not  direct,  the  procedure  follows  a  different  path,  where  the 

sequences given in the feature description are first mapped to mRNA sequences, for example RefSeq by 

Blast [47] or by in-house developed tag-matching software. Then the mRNA sequence identifiers are 

used to map the target via Unigene to the gene name. This indirect mapping procedure depends mainly 

on the type of sequence that we want to map, and individual methods for SAGE, MPSS, Affymetrix and 

Incyte clones (http://www.incyte.com/) will be developed later on in the CleanEx_trg building process 

part.

Of course, the link between features and their annotated part, the targets, is far from being a one-to-one 

relationship. Two main types of multiple relationships can be found. The first type is represented by the 

case when one target in CleanEx_trg represents multiple features in CleanEx_exp, either in the same 

dataset, or in different ones. For example, the same cDNA clone could correspond to more than one 

spot on the same chip. This kind of duplicate is quite frequent for the most important genes, as it serves 

as an internal control for the gene behavior according to the feature position on the chip, or to the 

feature  position  on  the  gene  reference  sequence.  The  second  typical  case  of  discrepancy  between 

features and targets is found when one target in CleanEx_trg corresponds to more than one gene, or 

entry, in CleanEx. In this category, one can think of a wrongly designed Affymetrix probe, when the 

probe set matches different gene sequences. This also happens for shorter feature sequences, like SAGE 

tags. The multiple target match also occurs if the feature corresponds to a chimeric clone, a clone issued 

from the fusion of two pieces of ESTs coming from different genes, for example. In such cases, the 

cleanex_trg entry lists all corresponding genes found but adds a quality-control flag to indicate that the 

mapping is ambiguous. The weekly target-to-gene mapping procedure thus also serves to add quality-

control information to the target entry. Typically, the quality tag significance and precision differs a bit 

according to the source of the target. It can thus take different values, according to the corresponding 

entry type or to the mapping protocol. Note that this quality tag reflects mainly hits on different genes, 

and does not take into account the splice variants problem. The  significance of the quality tag will be 

explained  and  detailed  for  each  mapping  procedure.  The  target  quality,  as  well  as  the  alternative 
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splicing  phenomena,  greatly  influence  the  results  of  the  experiments.  For  example,  two  probesets 

designed for the same gene but for different splice variants could show a differential expression in two 

tissues or conditions. An example of a signal dilution due to the differential positions of two probesets 

on the gene sequence will be given in the results part.

Target  entries  are  typically identified by the names of the corresponding  reagents,  e.g.  an IMAGE 

(integrated molecular analysis of genomes and their expression) [48] clone number, a RefSeq accession 

number, or an Affymetrix chip and probe set name.

4.3. CleanEx

Cleanex is the catalog of officially approved genes from model organisms (for now : human and mouse) 

with cross-references to entries in cleanex_trg and cleanex_exp, and links to external databases. There 

is one entry per gene, regardless of whether there are corresponding expression data in cleanex_exp. 

This file is completely rebuilt from scratch every week synchronously with the remapping of expression 

targets  to genes. The process starts  with a compilation of officially approved gene names from the 

reference gene catalogs, Genew [39]  for human and MGD [46] for mouse. These names are then used 

to establish cross-references to cleanex_trg entries and from there to expression data in cleanex_exp via 

the  target  unique  identifier.  The link between sequences  and gene  names  is  done via  the  Unigene 

database. To have a complete view of the transcript and its product, we also link each entry to the 

corresponding protein. We also provide the genomic position of the transcription start site from EPD 

[45], when available; otherwise we give the annotated start site position in Ensembl. 
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5. BUILDING CleanEx

The  building  procedure   for   the  CleanEx   system consists  of   regenerating   from  scratch   the  weekly 

updated   files,   namely   CleanEx_trg,   adding   the   dataset   information   contained   in   the   stable   files 

(CleanEx_exp) to this new version, and concatenating all the cross­references together in CleanEx. The 

following part will describe the building process of the stable part (CleanEx_exp), which occurs only 

once, and the updating procedures for the two other file types will then be described.

5.1. CleanEx_exp files : integrating expression datasets in the CleanEx database

The different platforms which have been integrated in the CleanEx system so far are :

– Dual channel chips from the Stanford Microarray Database (SMD)

– 60-mer oligoarray from the Rosetta institute (http://www.rii.com/).

– Nylon array fron ClonTech (http://www.clontech.com/)

– Affymetrix  experiments  done  with  any  commercially  available  Human  or  Mouse  chip 

(http://www.affymetrix.com)

– EST counts

– SAGE tag counts

– The next  experiment  type  which will  be integrated  soon is  MPSS (Massively Parallel  Signature 

Sequencing)
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Though some features are similar between some datasets (for example the three first methods give as 

main output a ratio between a reference experiment and the tested condition, and the EST, SAGE, and 

MPSS methods  all  give  a  basic  count  of  transcripts  found),  each  type  of  dataset  needs  a  specific 

protocol to be integrated in CleanEx, according to the kind of information which is provided by the 

dataset's authors. 

Typically,  the  metadata  for  each  dataset,  which  contains  information  like  the  type  of  experiment 

realized,  organism,  methods applied,  paper  reference  and so on,  give rise  to  the first  entry  of one 

dataset,  namely  the  documentation  file  (DOC).  This  is  the  first  part  to  generate  for  each  dataset, 

regardless  of  its  origin.  This  DOC entry  is  usually  built  by  hand from the  additional  information 

provided by the authors and processed separately from the experiment files.

The next paragraphs are a detailed description of the procedures used to integrate expression data for all 

the different dataset types.

5.1.1. Stanford­like microarrays

The individual Stanford-like microarray experiment files (one file per experiment, as explained before), 

are processed via a perl script following this procedure (Figure 7) :

1) Check for  the  number  of  spots  on all  chips,  check if  the  spotted  clones  come from the  correct 

organism, and eliminate control or empty spots.

2) For  each chip,  extract  the clone identifier  and the spot  number.  During  that  step,  we check the 

coordinates  of  the  clones  on  each  chip.  The  next  process  then  depends  on  this  check.  If  all 

experiments  have  been  realized  using  the  same  chip  batch,  meaning  having  the  same  clone 

disposition for all the chips, there is no need to modify the files, and the procedure goes on with the 

extraction of the experiments'number (following step 3). 

If there is any discrepancy between the chips, one needs to know which spot on one chip corresponds 

to the spots on the other chip, to be able to concatenate all the results for one feature under one entry 

in  CleanEx_exp.  To  do  so,  the  new  CleanEx  dataset  needs  to  be  adapted,  each  data  entry, 

corresponding to one spot, will receive a new virtual number. This number will be the same across 
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all the chips, regardless of the spot's position on the chips. The position of this spot on each chip is 

kept in the new file, so that it will be possible to track this identifier on any chip.  This is done by the 

following steps :

a) Extract spot number and clone/sequence name from each chip.

b) Create an intermediate file with the following information : each line consists of well separated 

fields. The first field contains the clone identifier. The following ones correspond to its position or 

numerical identifier on all the chips. If the clone is spotted more than once on one chip, the line 

field corresponding to that chip will contain all the clone's position.

c) Consider duplicated spots, and create one line per spot. If the clone is not duplicated on all the 

chips, the second clone's spot will be considered as empty for the chips missing the duplicate.

d) Add the new spot number in each expression data file, and then proceed to the steps described 

below. Keep the old spot number for tracking reasons.

3) From the newly generated DOC, extract the experiment numbers.

4) Add the experiment number to the corresponding data file.

5) Put all expression data together, with the experiment number and, if needed, the new virtual spot 

number.

6) Sort the file according to the spot number, and then sort each spot data according to the experiment 

number. In this manner one obtains so a complete file where all data corresponding to one spot are 

put together and ordered by experiment. We keep all the information given by the authors, to be able 

to generate statistical procedures on different fields (for example if one wants to work only with the 

RED channel, or if one makes use of the FLAG quality control tag).

7) Last step : separate data per spot and add the entry header for each spot. 
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Note that, in principle, this procedure is applicable for any dual channel experiments, not only for      the 

Stanford ones, as far as the authors give access to the output of the image analysis software, and to the 

experiment description.

5.1.2.  Nylon membrane arrays

So far, there is only one nylon-membrane based dataset in CleanEx. Its format is very similar to the 

classical  dual-channel  chips.  The  reference  to  the  “spotted  feature”  is  usually  an  EMBL/GenBank 

nucleotide sequence accession number. If we have access to the sequences, we verify the annotation by 

applying the sequence-to-gene method used for INCYTE clones. This method will be explained later. If 
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the sequence is  not  provided  by the authors,  we rely  on the authors'  files,  and just  check that  the 

accession  numbers  still  exist  in  the  reference  database,  and  that  they  really  correspond  to  human 

sequences. Otherwise, the method is the same as that described above for Stanford data.

The  nylon-membrane  cDNA array  datasets  are  considered  in  CleanEx  as  “basic  ratio”.  This  term 

designates experiments which are not based on the classical Stanford cDNA chips system, but which 

nevertheless measure the expression level as a ratio between a reference experiment and an analyzed 

sample. We provide the log2 of the ratio in the final file as well.

5.1.3. Oligo­arrays

All the oligoarrays that are in CleanEx so far come from the Rosetta Inpharmatics Lab. They provide 

arrays which are spotted in-situ with 60-mer nucleotide sequences.

Usually, raw data files represent the results for each spotted oligonucleotide on one line. The line begins 

with  the  oligonucleotide  identifier.  It  is  followed  by  the  gene  name  if  existing,  and  then  by  the 

expression data. For each expression results, at least three values are given : 

– Log10(intensity) :  The geometrical mean intensity for both red and green channels for the given 

probe.

– Log10(ratio) : The mean ratio of the intensities of the red and green channels.

– P-value:  The confidence level that a gene's mean ratio is significantly different from 1, or no change.

Unlike the other datasets, which use the log2 ratio (so that a value of ±1 corresponds to two-fold over- 

or under-expression), these oligoarrays give the ratio as a log10. To facilitate the comparison between 

datasets, and also because the visualizer pages use the intensity instead of the ratio value, we  extract the 

basic intensities of the two channels by applying the following formula (Figure 8):
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In  CleanEx,  we  thus  keep  the  so-called  “green  channel  intensity”,  or  ChB,  and  the  “red  channel 

intensity”, or ChA, as well as the original p-value given by the authors. The format of oligo-array based 

experiments is also defined as  “basic ratio”.

The main  issue  for  this  dataset  type  remains  the  correlation  between the  original  oligonucleotides 

identifiers and their corresponding EMBL or RefSeq accession number. This again is usually provided 

in a separate table, and needs to be checked for consistency before integration. Oligonucleotides for 

which the description does not correspond to the one given in the associated reference sequence, as well 

as those which have no associated reference sequence or which correspond to a sequence from another 

organism, are considered as “bad” oligonucleotides and are eliminated in this step. For the two oligo-

array datasets which are in CleanEx from now on, nine oligos have been tagged as bad and eliminated 

from the files. If we once  have access to the oligonucleotide sequences and not only to the identifiers, 

we will  be able to run a procedure  to retrieve the references  by ourselves and maybe increase the 

annotation quality of these data.

5.1.4. Affymetrix dataset

From the two very different formats available for Affymetrix-based experiments, and since the CEL 

files are not always accessible for download, the effort has been concentrated on integrating the already 

processed Affymetrix data format type (earlier called second step chip analysis) which usually contains 

the raw intensity and the absent/present call per probe set, in CleanEx.

Incorporation into CleanEx of these datasets is facilitated because the Affymetrix chips are standards 

and the whole set is done with the same chip. As explained later, we provide anyway a gene-to-probe 
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set target file for all the available Affymetrix chips, so there is no need to check for the individual probe 

sets quality (as is done for dual-channel chips regarding the accession numbers), because this control 

will be managed in the TRG files. The integration procedure is as follows  (Figure 9) :

1) Create the DOC file using the additional file containing experimentation protocols and descriptions, 

as for Stanford data. 

2) For each line of the experiment results file, create one entry.

3) Create the entry header, containing the entry number, probe set identifier as the TRG reference, and 

the old name provided by Affymetrix.

4) For each experiment result, keep intensity and A/P call

5) For each entry, calculate the log-norm value. Log-norm value is the base 2 log of the intensity, mean-

centered along the experiments, for each probe set. We use this individual probe set normalization 

procedure mainly because this log-norm value will then be the source value for the individual gene 

viewer web pages in CleanEx.
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5.1.5. ESTs

At the ISREC (Swiss Institute for Experimental Cancer Research,  http://www.isrec.ch), most people 

working with expression data on human or mouse are often first trying to compare tumor versus healthy 

tissues. This prompted us to generate a new in silico expression dataset generated from a basic per-

tissue split of ESTs from UniGene clusters according to the library from which they've been extracted 

(Figure 10). This will allow EST counts in healthy and tumor specific tissues to be compared with 

results obtained via other expression experiment protocols.

The tissue split is based on the library classification from CGAP (Cancer Genome Anatomy Project, 

http://cgap.nci.nih.gov/) at the NCBI. The decision use the CGAP classification came from the fact that 

it  contains  a  precise  description  of  tissue-specific  libraries  from the  CGAP,  MGC and  ORESTES 

projects which are deposited in dbEST (http://www.ncbi.nlm.nih.gov/projects/dbEST/) and which can 

be  classified as normal, precancer, or cancer. This type of classification is perfectly adapted to our 

need.  The  CGAP  library  classification  contains  fifty-five  different  tissue  classes  divided  in  three 

different histology classes. If one wants to make use of all the different sections, one obtains a very low 

count for some tissues. For that reason, and to be able to generate some statistically valuable data, we 

tried to keep a small number of tissue classes and to pool together subclasses in a way to obtain a 

reasonable amount of ETSs per class. We also eliminate the data coming from normalized libraries. 

Indeed,  as  these  libraries  are  enriched  in  weakly  expressed  transcripts,  they  are  not  suitable  for 

expression level comparison  and will induce a bias in the analysis. Amongst the fifty-five tissue types, 

the different chosen classes which appear to contain a reasonable amount of ESTs are the following :

Colon, cancer

Colon, normal

Kidney, cancer

Kidney, normal

Lung, cancer

Lung, normal

Mammary Gland,  cancer
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Colon, cancer

Mammary gland, normal

Skin, cancer

Skin, normal

Cell­line, cancer

Cell­line, normal

Other tissues, cancer

Other tissues, normal

These classes have been retained according to  the number  of EST contents of their  two respective 

histology types, but also according to the research interests at the ISREC.

At the update level, this dataset is a bit different from the other experiment datasets. Indeed, as it is 

primarily based on the UniGene database, it  has to be re-generated for every CleanEx release.  The 

procedure is fully automated and  is described hereafter :

1) Refresh CGAP library classification from their web site : extract library identifier and full name, 

tissue type, tissue condition (tumor, normal).

2) From the Unigene Library info, extract the Unigene identifier and full name for each library found at 

the CGAP site.

3) From the Unigene clusters,  classify ESTs according to their  original library.  Count all ESTs per 

tissue class, and then all ESTs per tissue class and per Unigene cluster.

4) Create entries : for each gene having an official gene symbol corresponding to a Unigene cluster, 

split cluster-related ESTs per category.

5) generate the EXP file. There is one entry per Unigene cluster. Each line in the entry corresponds to 

one experiment, meaning to one of the selected classes (tissue and condition). On each result line, 

three values are given :
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1. The number of ESTs per class for this particular cluster.

2. The total EST count for all genes for this class. 

3. The calculated relative amount of ESTs for this gene. This value is given as TPMs (Tags per 

Million).

6) Do all steps for both human and mouse data.

5.1.6. SAGE and MPSS

As for the EST dataset, these expression data are also based on tag counts. The integration in CleanEx 

of this data type is facilitated by the fact that, as explained later, we provide anyway our own tag-to-

gene correspondence for all SAGE tags in the CleanEx_trg file. The SAGE entries in CleanEx_trg have 

an identifier which is constructed by putting together the anchoring enzyme name and the tag itself. For 
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that reason, we can use this convention directly to automatically generate the link to the target file in the 

header  line for  each tag.  The following operations  consist  only of  the concatenation of  all  files  to 

generate  one entry per  tag,  as explained already in the Stanford-like chips part.  As for  the spotted 

arrays, it often happens that more than one entry in the EXP file corresponds to the same target in the 

TRG file. It will be shown later that the most difficult and time-consuming part of integrating these 

datasets in CleanEx is the construction of the TRG files, not of the EXP files.

5.1.7. Data from GEO : semi­automatic method

The number of publicly available data is growing quite fast, so a semi-automatic procedure has been 

created,  which  allows  the  direct  creation  of  new  CleanEx  datasets  from  GEO  (Gene  Expression 

Omnibus), one of the three officially approved gene expression data repositories. As explained before, 

GEO has a very specific and well-designed format, including these three formerly described files types :

1) the platform used (the chip itself, like for example Affy HG_U133_PLUS)

2) the series made (all the experiments corresponding to one dataset, or in other words one publication). 

It corresponds to a “meta-entry” in CleanEx.

3) the sample used, in independent formatted text files. 

Each of these three components are attributed a unique identifier which allows data retrieval through the 

web via an in-house retrieval system for web-based documents called netfetch. As the GEO in-house 

format is MAGE-ML compatible, all the metadata can easily be retrieved and parsed automatically from 

the main  series file. The datasets from GEO are thus the only ones for which the DOC file is also 

generated automatically.

This procedure appears to be especially efficient for SAGE and to a certain extent for Affymetrix data. 

The main reason is that for both of these data types, one does not need to make a spot-to-clone mapping, 

and the only information you need to extract from the platform file are, respectively, the chip name for 

Affymetrix data and the so-called anchoring enzyme for the SAGE data. Once these details are known, 

the link to the target file can easily be generated.
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The procedure consists of six main steps :

1) Extraction of all the series ID corresponding to one platform

2) If necessary,  extract from the platform the correspondence between spots and sequences (spot to 

clone file).

3) For each series ID, create an automatic documentation file from the information contained in the 

GSE file. Extract also from this file the accession numbers of the corresponding samples.

4) For each sample, download the data. One now has the same format type as that of the Stanford data : 

one file for each experiment.

5) Apply a slightly modified version of the Stanford procedure to recreate a CleanEx EXP meta-entry.

6) Add the sequence number and value scales in the DOC file.

This  new procedure  ended  up  with  the  generation  of  more  than  one  hundred  new entries  for  the 

CleanEx_exp files.

5.2. CleanEx_trg

Amongst the two procedures used for annotation of features and integration of CleanEx_trg (TRG) 

entries, the indirect mapping method is by far the trickier, but it is also the one which gives the most 

precise and useful results. The indirect mapping method varies according to the feature type. The main 

difference betweeen the data types is the length of the feature's nucleotide sequence. INCYTE clones 

are very long sequences compared to Affymetrix individual probes or SAGE and MPSS tags. For these 

clones, using a program which is taking into account possible mismatches and gaps between the clone 

and   the   reference   sequence   is   indispensable.   On   the   other   hand,   with   shorter   tags,   introducing 

mismatches will only add noise into the results. For that reason, the mapping on INCYTE clones is 

done using MegaBLAST [47], an algorithm for the DNA sequence gapped alignment search, while the 
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shorter tags are mapped via a program called “tagger” which generates a list of perfect matches on the 

reference sequence database.  The two different techniques for indirect mapping are detailed below.

5.2.1. INCYTE clones

So far, no datasets using INCYTE clones have been incorporated in CleanEx_exp. Nevertheless, some 

people at the ISREC were using these clones and were very interested in comparing the annotation of 

chips based on INCYTE clones with other chips. For that reason, a first remapping has been generated 

in­house, and the data were then incorporated in CleanEx despite the fact that there is no experiment 

linked to these targets.

For INCYTE clones, both 3' and 5' clone sequences are available. The mapping takes place in four 

steps.  First,  using  megablast,  the  two  sequences  for  each  clone  is  compared  against  the  Unigene 

consensus sequence database. Once the alignement on the reference database has been performed, the 

resulting output is parsed. The matches are kept only if they fill these two criteria : 

– The matching similarity must be more than 95%

– The total alignment length should be as long as, or a maximum of 15 bases shorter than the original 

clone. 

The Incyte clones are then annotated using the Unigene clusters description. Finally, the quality score is 

assigned to each of the clones. For INCYTE clones, the quality score depends on how many Unigene 

clusters the clones match.

The attribution of the quality criteria follows these rules :

1 : Both 3' and 5' ends of the clone are available and match the same Unigene cluster.

2 : Either 3' or 5' ends of the clone are available and give a statistically significant result.

3 : Both 3' and 5' ends of the clone are available, but only one is statistically significant.

4 : No statistically significant results have been found.
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5 : Both ends of the clone match different genes.

6 : The sequence is not yet available.

It is interesting to note that this procedure is easily adaptable to any kind of nucleotide sequence. It 

could be used for example to re-annotate oligonucleotide-based arrays, as far as the access to the raw 

sequences is given.

5.2.2. Affymetrix probe sets

For  each  chip,  Affymetrix  releases  annotation  files,  which  link  the  probe  set  sequence  to  their 

corresponding transcript. Though renewed on a regular basis, there are anyway two interesting issues 

about Affymetrix annotations. 

First,  as  we update CleanEx at  the same time as its  main resource,  meaning Unigene,  we have to 

perform a weekly control on the annotation. Affymetrix does not provide with such a regular update.

Second, the annotation files are given for so-called “consensus sequences”, which correspond to the 

whole sequence spanned by the individual probes of one probe set. The spotted features on the chip are 

25 nucleotide long oligonucleotides, not a consensus sequence. As a consequence, the behavior of the 

hybridization process depends more on the probes than on the consensus sequence. For example, if one 

probe is found to share its sequence with two or more genes, its corresponding signal will be shared by 

all the target genes. Also, if one probe does not match the real targeted transcript, the total signal for this 

transcript will be diluted, even though outliers are minimized by the analysis softwares. 

Thus, knowing the precise position of the probes allows experimenters to give a different weight to their 

results, depending on the real accuracy of the annotation (genes sharing probes, probes without matches, 

etc...), and even, to a certain extent to distinguish between differentially regulated splice variants of the 

same transcript.

Based on these considerations, we decided that using the Affymetrix annotation file might lower the 

accuracy of our target annotation quality. We thus introduced a new procedure to remap the individual 

tags on organism-based transcript databases, following the steps described below ( see Figure 11) :
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The whole process is built around a program developed at the SIB (Swiss Institute of Bioinformatics) by 

Christian Iseli, and maintained for the SIB by Giovanna Ambrosini. This open source program is called 

“tagger”,  and it  reports  the complete list  of  perfect  matches for  a given list  of  short  tags.  For  this 

particular problem of finding perfect matches for short tags of the same length, the tagger program is 

much more adapted than for example the BLAST program, and is much faster. The tagger source code 

is available via sourceforge ( http://sourceforge.net/projects/tagger ). It works as follows :

- Given a text file containing all the tags to test, one tag per line, and the sequence reference database to 

search (here we use as reference RefSeq, as well as  mRNAs, HTCs, and ESTs from EMBL), tagger 

finds all occurrences of all tags within the specified list of reference sequences (the so-called reference 

database).  To do so,  it  generates  all  the possible  tags of the given length with the input  reference 

database sequences, stores the sequence identifier as well as the positions of each tag generated with 

this sequence as an index, and then finds common features between the list of tags generated with the 

reference sequence database and the input tag list. By applying this technique, no match is missed, each 

tag to tag correspondence is stored, as well as the reference sequence(s) name(s) and the position of the 

match on the sequence(s).

- The following line is an example of the tagger' s output format :

GCCTCCCAAAGTGCTGGGATTACAG      NM_000367  +  NA    1423 

CTGGGATTACAGGCGTGAGCCACTGCACCTGGCCTGACATTCTTTATGAA   2742

– There is one match report per line. The first field is the tag given as input. It is followed by the 

reference sequence identifier where the match occurs, the match orientation, the chromosome name 

(if available), the match start position, the target sequence directly following the 13 first nucleotides 

of the input tag, and the total length of the reference sequence.

From  the  tagger  output,  the  extracted  information  (sequence  and  position)  of  all  the  matches  are 

reintegrated in the primary tag file. If one tag has more that one match, these are concatenated and 

checked  for  discrepancies.   Discrepancies,  in  this  case,  mean  that  one  tag  matches  two  different 

sequences,  and that these two sequences correspond to  two different  genes.  At that  level,  only the 
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individual probe discrepancy is taken into account.

After this check, all probes corresponding to one probe set are put together. At this point, a second 

verification  step  occurs,  which  checks  for  the  whole  probe  set  quality,  by  comparing  the  target 

sequences of all the corresponding probes.

In the provided file, each entry corresponds to one probe set. This entry also gives access to the position 

of each individual probe in the probe set, and includes a quality criteria based on the two integrity check 

steps. There are four different quality tags : High, Medium, Low and Unknown, attributed according to 

the matching procedure result.

The definition of the quality criteria follows these rules :

– A “High” quality probe set has a maximum of 2 Unigene identifiers that matched to it. All probes 

have to match all Unigene identifiers. 
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– A “Medium” quality probe set matches a maximum of 4 Unigene identifiers. In addition, a maximum 

of 3 “errors” were permitted. Errors were defined as probes that matched nothing, probes that failed 

to match a Unigene identifier or probes that matched an additional Unigene identifier.

– Anything below these criteria was considered to be of “Low” quality. 

– The “Unknown” tag is given to probe sets for which absolutely no match on the selected mRNA 

databases was found.

A few comments on the criteria selection :

– The reason why we decided to take these criteria,  and to allow for  example a matching on two 

clusters instead of one for the “high” quality, is linked to the development stage of Unigene when we 

began this process.  Indeed, three years ago, it often happened that probes matched two Unigene 

clusters which corresponded to the same gene, but had not yet been clustered together. Given these 

conditions, one of the clusters usually lacked the gene name, which was found in the other cluster. As 

the Unigene database has improved, these criteria could be oriented in a different way, by putting the 

probe set quality to “high” if a maximum of one tag does not match the same cluster. The quality 

threshold would be now more related to the output of the analysis software, which tend to lower the 

outliers influence on the result, and thus allows some flexibility in the annotation quality threshold.

– Several  probe  sets  of  the  Low quality  were  found  to  match  in  excess  of  700 different  mRNA 

sequences, which in turn corresponded to several hundred Unigene identifiers. It was clear that the 

individual identifiers were of little relevance for these entries. Therefore, a limit as to the number of 

identifiers to be listed in CleanEx-trg final entries was set. A maximum of 4 Unigene identifiers is 

listed along with the corresponding RefSeq matches. All listed Unigene identifiers were required to 

match at  least  half  of the probes  in a probe  set.  The number  of matches not explicitly  listed is 

displayed in parentheses at the end of the list, as well as the number of corresponding gene symbols. 

A detailed description of this format, as well as an example of an entry (see Figure 17), is given in 

the results section.

Until  quite  recently,  the  CleanEx target  files  for  Affymetrix  were  only  based  on  the  RefSeq  [14] 
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database. Though growing quite fast, RefSeq is actually quite incomplete, and mapping the tags on 

RefSeq only creates a high number of losses from the quality point of view for CleanEx.

On the other hand, we were asked to also provide tag mappings on other mRNA databases. The same 

system has then been used to map all the Affymetrix chips on the following databases :

– RefSeq

– HTC subdivision of EMBL

– mRNA subdivision of EMBL

– dbEST, the EST subdivision of EMBL

The mapping on the first three databases does not cause orientation problems, as these databases contain 

sequences which have the same orientation as the original transcript, so the corresponding Affymetrix 

probe sets should also match on the same orientation. It is quite different regarding the EST database. 

An EST can be sequenced from both ends, and is then entered as is in the database. Sometimes the 

sequencing  orientation  is  available  in  the  EST  description  line,  but  this  is  not  always  the  case. 

Moreover,  the Unigene database keeps track of this orientation information, when present. So to be 

really consequent, we decided to apply an orientation filter on the tagger result coming from ESTs. We 

keep only results matching the same orientation as the one described for the corresponding EST. For 

example, if an EST is described as being “3' sequenced” in Unigene, we keep only tagger results which 

match the complementary strand of this EST.

We  then  realized  that  Unigene  annotations  concerning  the  mapping  orientation  of  ESTs  (usually 

described as 3' or 5') sometimes happen to be wrong, and then applied a new control step in our method. 

This  step  is  based  on the  in-house  transcriptome project  called  “trome”  which  has  been described 

previously. 

From  trome,  we  extract  the  EST  orientation  regarding  the  mRNA  reference  sequence  of  the 

corresponding gene. We then compare this orientation with the Unigene tag, and correct it if necessary. 

We next apply this new orientation annotation instead of the Unigene one if it exists, otherwise we keep 

74



the Unigene orientation description. 

We provide  annotation  for  all  the  main  Affymetrix  chips  and organisms  on  all  the formerly  cited 

databases, as far as these databases exist. If there is no specialized database for this organism, we try to 

extract  the organism's  specific sequences from the upper  taxonomy level in the sequence files. For 

example, for the bovine chip we extract the cow sequences from the mammalian division of EMBL 

mRNAs.

The  updated  annotation  files  are  available  on  the  SIB  ftp  server  (ftp://ftp.isrec.isb-

sib.ch/pub/databases/CleanEx/Affy_mapping/).  Each  subdirectory  in  this  site  contains  organism-

specific chip annotation files corresponding to the mapping on the four databases. For the EST database 

matches, ESTs with tags 5' or 3'  are accessible in two different files, respectively flanked with the 

extension “_PLUS” or “_MINUS”.

These mapping files are formatted as follows : 

Each  line  contains  one  match  for  one  individual  probe.  Supplementary  information  included  are  : 

UniGene  accession  number,  gene  symbol  and  LocusLink  (now  Entrez  GeneID, 

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=handbook.chapter.ch19)  [49]  accession  number,  if  it 

exists.

By comparing the mapping results with these different databases, we realized that introducing these 

mappings in CleanEx will indeed increase the number of probe sets with a high quality tag. After having 

checked the contribution of these different databases in the quality tag improvement, we found out that 

the two most useful databases, apart from RefSeq, are indeed mRNAs and HTCs division from EMBL. 

The ESTs did not increase the quality that much. Moreover, using the ESTs as a first reference might 

induce errors, for example because EST sequencing produces a high error  rate and that tagger only 

deals with perfect matches. So we decided to integrate the mRNAs and HTCs mappings in CleanEx. 

Supplementary Tables 3 and 4 show the quality gain for  each human and mouse chip at  each new 

database integration step. The gain obtained with the matches on the EST database was considered 

insufficient, and hence these were not integrated.
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As we wanted to keep the RefSeq high quality entries anyway, we used a step-by-step procedure which 

compares  the other  mappings to the RefSeq ones,  and which integrates in the final file the entries 

having the highest quality tag, but only if these new entries give a better quality information than the 

RefSeq ones.  

5.2.3. SAGE tags

The traditional SAGE protocol makes use of 10 nucleotide long tags. Adding the anchoring enzyme 

sequence gives a final tag length of 14 nucleotides.  To be able to extract the corresponding possible 

gene from this tag, one has to take into account the fact that the usual size of the sequence which is cut 

by the enzyme is not longer than 500 nucleotides. One then has to search for a tag occurrence in the last 

500 nucleotides of the 3' end of the predicted genes for the organism. Though, to allow alternative 

splicing or if the enzyme has more than one restriction site on the sequence, the search length is often 

extended to 1000 nucleotides.

To complete the SIB trome project, this mapping has already been done by Christian Iseli for SAGE 

tags,  LongSAGE tags,  as  well  as  for  MPSS tags.  The mapping result  is  given in flat  files  for  the 

predicted  SAGE  tags  for  the  NlaIII,  long  NlaIII,  Sau3AI,  and  Sau3AI  through  MPSS  enzymes 

respectively.  The format of the files is a tab-delimited list with the following elements:

 1 - stable identifier

 2 - tag sequence

 3 - tag ordinal number (from 1, for the 3'-most tag, to 3)

 4 - gene symbol (can have multiple, separated by "; ")

 5 - Swissprot AC (can have multiple, separated by "|")

 6 - descriptions (can have multiple, separated by "; ")

 7 - associated 3'tag (can have multiple, separated by "|")
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 8 - 3'tag ordinal number (same order as column 7) number 1 is 5' most

 9 - PolyA signal flag (1 if present, 0 if not)

10 - mRNA sequences used as evidence (separated by "|")

11 - minimal observed distance from end of sequence

12 - maximal observed distance from end of sequence

13 - D for genomic based, R for RNA only based

14 - genomic contig where the tag is located

15 - strand of the genomic contig where the tag is located

16 - position of the genomic contig where the tag is located. The position is the first nucleotide of the 

restriction site

17 - N for normal, S when the tag spans a splice junction. 

For the CleanEx_trg files, there is one more piece of information that we need to extract from the 

tag/reference sequence alignment  which is not  in trome files :  the exact  position of the tag on the 

corresponding expressed sequence. We obtain this position by using tagger on the SAGE tags.

As a way to gain a considerable amount of time during the CleanEx release, the SAGE tags mapping is 

done  on  a  trome-based  pre-filtered  reference  sequence  database.  The  filter  consists  in  creating  a 

temporary reference database by selecting only the sequences which are considered to contain a SAGE 

tag in trome. This reduces the search space for the tagger program and thus makes the release much 

faster and much more accurate, as we keep only matches which correspond to a restriction enzyme site 

close to the 3' end of the gene (Figure 12). Note that as the mapping procedure occurs on the RefSeq 

sequences as well as on mRNAs or ESTs from EMBL, this allows the retrieval of tags corresponding to 

different variants of the expressed gene.
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The tagger program is then used on this temporary database as for Affymetrix individual probes. In the 

second part of the procedure, the integration of these data in CleanEx_trg, we use a slightly modified 

version of the Affymetrix probe set quality control for CleanEx. Indeed, for SAGE tags, there is only 

one control step which is necessary, as one single tag is meant to represent one transcript. Of course, 

ambigous tags exist. For example in the last CleanEx_trg version, 1'160 SAGE tags, NlaIII- or Sau3AI-

based, have a Low quality criteria, meaning that they match on more than three Unigene clusters, 38'491 

have a Medium quality criteria (they match on three Unigene clusters), and 192'267 have a High quality 

criteria (they match on a maximum of two Unigene clusters). Here are a few examples of the genes 

which are related to NlaIII SAGE tags with  different quality annotation results.

Gene name High tags Medium tags Low tags

TP53 10 2 0

EGFR 17 10 0

ABCB1 1 3 0

ERBB2 11 1 1

TNF 3 1 0

FN1 22 11 0

WNT 1 2 0

Considering this, one may well ask whether tags matching more than one gene should be eliminated 

from the analysis. This will obviously result in a bias in the analysis, as all the tags, including the ones 

with medium or low quality, could very well come from the studied gene, and eliminating them will 

lower the real gene expression measurement. On the other hand, getting rid of the bad tags will have a 

smaller influence on the comparison of same tags across different experiments, as this resembles the 

traditional dual-channel “ratio” procedure and measures a relative change of expression. The solution 

chosen by the people who generated SAGEmap is to choose for each tag only the gene giving the 

highest score according to the criteria explained previously. In CleanEx, all of the information is given 

to the users. The quality criteria applied for SAGE tags is the same as the one used for Affymetrix. As 
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the CleanEx database not only contains the most 3' end tags, the tag position on the reference sequence 

is given, and might also help deciding whether to keep or to discard the suspicious tag.

5.3. CleanEx link file between external databases and the CleanEx system

To begin the description of the CleanEx building process, a short presentation of the databases which 

are used during this procedure, and which represent the source material used for each CleanEx release, 

will first be provided. The next part will focus on the different steps which allow to combine the useful 

information in all these databases into CleanEx, together with gene expression information stored in 

CleanEx_exp, via the link files CleanEx_trg.

5.3.1. Material : source databases

5.3.1.1. Genew

Genew [39], the Human Gene Nomenclature Database, is the primary resource that provides data for all 

human  genes  which  have  approved  symbols  based  on  specific  nomenclature  guidelines 

(http://www.gene.ucl.ac.uk/nomenclature/guidelines.html).  It  is  managed  by  the  HUGO  Gene 
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Nomenclature Committee (HGNC) [42], and contains a rapidly growing number of records. The data in 

Genew are highly curated by HGNC editors. Data are integrated with other human gene databases, e.g. 

GDB, LocusLink and SWISS-PROT, and approved gene symbols are carefully co-ordinated with the 

Mouse Genome Database (MGD).

The different fields in Genew which are used by CleanEx are the following ones :

- HGNC ID - A unique numeric ID provided by the HGNC. 

- Approved Symbol - The official gene symbol that has been approved by the HGNC and is publicly 

available. This will be used as the CleanEx unique entry identifier for human data.

- Status - Indicates whether the gene is classified as:

• Approved ­ these genes have HGNC­approved gene symbols 

• Approved non­human  ­ these entries have been approved in order to maintain the orthologous 
gene symbol in the human gene family series. It is quite likely that most of these genes will 
ultimately be found in the human genome

• Entry withdrawn ­ these previously approved genes symbols no longer exist

In CleanEx, only entries with the “Approved” tag are integrated.

­ Previous Symbols ­ Symbols previously approved by the HGNC for this gene.

­ UniProt ID ­ The UniProt identifier, provided by the EBI (  http://www.ebi.ac.uk/   )  . 

The UniProt ID is derived from external sources and as such are not subject to HGNC strict 

checking and curation procedures. We will use this information only in cases where we can not 

link the gene symbol to the Swissprot database.

5.3.1.2. MGD

MGD  is   the   mouse  official   gene  database   from   the   Jackson   laboratory.   It   includes  data   on  gene 

characterization,   nomenclature,   mapping,   gene   homologies   among   mammals,   sequence   links, 

phenotypes, allelic variants and mutants, and strain data.
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The different fields in MGD which are used by CleanEx are the following :

-  MGI Marker  Accession  ID -  A unique  numeric  ID provided  by  the  Mouse  Genome Informatix 

database.

- Marker Symbol - The official mouse gene symbol. This will be used as the CleanEx unique entry 

identifier for mouse data. We exclude the withdrawn entries from integration in CleanEx

- Status - Indicates whether the gene is classified as:

• 0 ­ these genes have MGD­approved gene symbols

• W – withdrawn. These previously approved gene symbols no longer exist

­ Secondary Accession IDs – MGI Accessions previously used by MGD for this gene.

­ SWISS­PROT Protein Accession IDs ­ The Swissprot identifier. 

­ RefSeq ID – The Reference Sequence accession number

- Entrez GeneID – Locus number from the NCBI

As for the UniProt ID in Genew, the three last fields are not internally curated by MGD, so they will be 

used only in cases where we do not have access to the original information.

5.3.1.3. Unigene

UniGene [13] is an experimental system for automatically partitioning GenBank sequences into a non-

redundant  set  of  gene-oriented  clusters.  Each  UniGene  cluster  contains  sequences  that  represent  a 

unique  gene,  as  well  as  related  information  such  as  the  tissue  types  in  which  the  gene  has  been 

expressed and map location.

The Unigene clustering process is done in several stages, with each stage adding less reliable data to the 

results of the preceding stage. Builds are either genome-based or transcript-based. The main transcript-

based clustering steps include :

• Elimination of contaminants
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• Alignment and clustering of mRNA sequences

• Alignment and clustering of ESTs

• Removal of bad clustered sequences and of low quality clusters, like clusters without polyA tail.

For the genome-based clustering, the process begins with the identification of transcript boundaries on 

the  genomic  sequence,  and  makes  use  of  the  intron-exon  boundaries  to  segregate,  for  example, 

overlapping genes on opposite strands, or genes located within introns of other genes.

Currently,  sequences from the animals human, rat,  mouse, cow, zebrafish,  clawed frog, fruitfly and 

mosquito,  as  well  as  from  plant  organisms  like  wheat,  rice,  barley,  maize  and  cress  have  been 

processed.

Each Unigene release includes amongst others, the following files, for each organism :

- lib.info file - Additional information regarding the LID (Library ID) field. This file is used to generate 
the EST dataset

– data file – Unigene clusters. Each cluster entry contains links to the following features, which are 
reported in CleanEx :

• Unigene accession number

• Gene Symbol, if it exists, as well as the gene description.

• Cytological band

• Entrez GeneID (formerly called LocusLink)

• Concatenation of all the mRNA sequences which cluster together, including RefSeq sequences, 
mRNAs from GenBank/EMBL, as well as the list of all the clustered  ESTs. The EST description 
includes the clone identifier and the clone insert read.

The EST list is used to create the per-gene split EST count dataset. From the EST description, we also 

keep the insert read for the mapping of Affymetrix chips on ESTs procedure.

The clone identifier is used to generate the direct clone-to-Unigene mapping procedure, and the list of 

clustered mRNAs to map the tags on the other databases (HTC, RefSeq and mRNA from EMBL).
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The Unigene database is a work in progress, and is updated weekly. As this is the main information 

source to link CleanEx expression data with the official gene symbols, we try to keep the same update 

timing for CleanEx.

5.3.1.4. RefSeq

RefSeq [14] is the NCBI curated Reference Sequence collection. It aims to provide a comprehensive, 

integrated,  non-redundant  set  of sequences,  including genomic DNA, transcript  (RNA), and protein 

products, for major research organisms. 

The main features of the RefSeq collection include: 

• non-redundancy

• explicitly linked nucleic acid and amino acid sequences

• updates to reflect current knowledge of sequence data and biology

• data validation and format consistency

• distinct accession series

• ongoing curation by NCBI staff and collaborators, with reviewed records indicated

The RefSeq mRNA entries serve as the major source for tag mapping. They are also used as target 

identifiers, when more precise information is missing.

5.3.1.5. Swissprot

Swissprot [40] is a curated protein sequence database which provides a high level of annotation (such as 

the  description  of  the  function  of  a  protein,  its  domains  structure,  post-translational  modifications, 

variants, etc.) and a minimal level of redundancy.  To provide a good integration with other databases 

(nucleic acid sequences, protein sequences and protein tertiary structures), SwissProt is currently cross-

referenced with about 60 different databases. Amongst all these databases, Swissprot provides a link to 

genew (for human entries) and to MGI  (for mouse entries) accession numbers. We use this reference to 

link Swissprot to CleanEx. Note that this link is reciprocal, as the Swissprot database uses the same 

system to link human and mouse entries to CleanEx.
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5.3.1.6. EPD

The  Eukaryotic  Promoter  Database (EPD)  [44,  45]  is  an  annotated  non-redundant  collection  of 

eukaryotic POL II promoters, for which the transcription start site has been determined experimentally. 

Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The 

annotation part of an entry includes a description of the initiation site mapping data, cross-references to 

other  databases,  and bibliographic  references.  Cross-referenced databases include Swissprot  and the 

genomic position of the transcription start site, when available.

In CleanEx, we link EPD via its Swissprot cross-reference. We also include the transcription start site 

determined in EPD.

5.3.2. CleanEx: data integration method

For each new Unigene release, the CleanEx files to be updated are rebuilt from scratch (Figure 13). As 

explained before, in the CleanEx_exp file type, only the meta-entry extracted from the EST count needs 

updating. 

The   CleanEx_trg   file   type   is   rebuilt   as   well   for   each   target   type   (clones,   Affymetrix,   SAGE..). 

Concerning the TAGs type targets, as their mapping includes a sequence comparison part, the procedure 

depends on the updating rhythm of the mapping database. RefSeq is updated every week, whereas the 

EMBL release occurs every three months. Between EMBL releases, we keep the sequence matches 

positions already found for RNAs, ESTs, and HTCs sections, and redo only the sequence accession 

number mapping on Unigene clusters. For the RefSeq database, we use the complete procedure, with 

the tagger part, for every CleanEx release. Once these updates are ready, the _trg files are formatted for 

CleanEx : 

1- From the previously updated Affymetrix and SAGE annotation files, format the CleanEx Affymetrix 

and SAGE target database, and include links to the individual experimental data.

2- From the Unigene new release,  extract  clones and their  corresponding cluster  number  and gene 

symbol (if exists). This will lead to the generation of the CleanEx_target database for clones-based 
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experiments. Links to individual experimental data are also included.

Once the CleanEx_trg files are ready, the following part concerns the update of the CleanEx file itself. 

This update is a step-by-step integration process,  going from the Unigene database and the official 

organism gene symbol database, extracting the information from all the different cross-linked databases, 

and putting all the information, expression data included, in gene-oriented entries. All the integration 

steps are described below. They consist in integrating first  all the references linked to Unigene and 

sequence clusters, and then all references linked to the approved gene symbols database.

5.3.2.1. Unigene­related steps

1- From the new Unigene release, extract the following fields, and store them in a temporary file  :

• Unigene cluster accession numbers (line ID)

• Gene description (line TITLE)

• Gene symbol (line GENE)

• Entrez GeneID (line LOCUSLINK)

• Locus position (line CYTOBAND)

• RefSeq associated sequences (in the lines SEQUENCE, only the RefSeq entries)

The temporary file now contains one Unigene cluster per line. Each extracted field is separated by a 

common field separator (we use “|”, as this symbol is absent from all the extracted lines).

If  there  is  more  than one  information  per  field,  for  example  if  the  gene's  position is  not  yet  well 

determined, or if it is duplicated, each sub-field is then separated via a new separator.

2- From the EMBL database, extract the mRNAs list, search in Unigene for their corresponding cluster, 

and add this RNA list to each corresponding line in the former temporary file.

3- Sort this file via gene symbols, and concatenate all the references corresponding to Unigene clusters 

which have the same gene symbol. Having two Unigene entries for the same gene happens sometimes 

when the clustering procedure is unable to generate one single cluster for one gene, due to the lack of a 
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total  gene sequence coverage by ESTs. In this case, one single gene is usually represented by two 

clusters, one in the 3' and one in the 5' region of that gene. It could also be that two clusters correspond 

to the same gene, but have not been merged yet in the database.

5.3.2.2. Gene nomenclature­related steps

4- From the Swissprot database, extract the Swissprot accession number and identifier, as well as the 

corresponding gene symbol. 

5-  From the  EPD database,  extract  the  EPD accession  number,  the  EPD identifier,  as  well  as  the 

corresponding Swissprot accession number. Merge the EPD information to the Swissprot file. Sort this 

file via gene symbols again, and merge this new information (Swissprot and EPD) to the former file. 

6- From the newly generated CleanEx_trg files, extract the target unique identifier as well as all the 

references to individual expression experiments, per target entry. Put together all the information related 

to one single gene symbol, and again add these expression references to the former file.

7- From the officially approved list of gene symbols, extract the database accession number. For human, 

this number corresponds to the Genew unique identifier. From Genew, the MIM accession number is 

also extracted. For the mouse, the identifier is the MGI accession number. Make a table between these 

identifiers and the corresponding gene symbols. Eliminate all the old or withdrawn entries, but keep 

track of the old gene names, if they exist.

8- Concatenate the Unigene-related construction file and the symbol-related construction file. Keep only 

lines having an official symbol.

9- Additional step : adding the genomic position of the gene's transcription start site, if known. As the 

CleanEx online tools  allow retrieval  of a  pool  of genes  which share  some expression features,  we 

thought that it could be useful to provide a new link to the genomic position of the transcripts. Having 

this reference in CleanEx means a huge gain of time in the promoter sequence retrieval for further 5' 

sequence analysis. To give access to a relatively precise transcription start site position, we extract this 

information  from the  Eukaryotic  Promoter  Database whenever  possible.  Otherwise,  we rely on the 

position given by the NCBI through the Entrez GeneID genomic annotation file. However, to keep track 
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of the origin of the given position, the line is tagged with the word “EPD” or “ANNOTATION” for 

EPD-based position or NCBI-based annotation respectively. 
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6. RESULTS

6.1. Survey of the most recent release

The content of the last CleanEx database is given in a table showing all the references to other databases 

and to specific expression datasets. Datasets are pooled together according to their type.

References from UniGene Build #183 Homo sapiens 

Number of entries 18792

Number of RNA cross­references 84602

Number of Entrez GeneID cross­references 15622

Number of Unigene cross­references 14485

Number of Genew cross­references 18778

Number of RefSeq cross­references 19055

Number of EPD cross­references 1389

Number of SWISS­PROT cross­references 10052

Number of cross­references to EST counts 13606

Number of cross­references to dual channel experiments 79290

Number of cross­references to Affymetrix experiments 742012

Number of cross­references to SAGE experiments 124554

References from UniGene Build #146 Mus musculus 
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Number of entries 32982

Number of RNA cross­references 34639

Number of Entrez GeneID cross­references 25293

Number of Unigene cross­references 18834

Number of MGD cross­references 32421

Number of RefSeq cross­references 19305

Number of EPD cross­references 94

Number of SWISS­PROT cross­references 8468

Number of cross­references to EST counts 13173

Number of cross­references to Affymetrix experiments 6993

Number of cross­references to SAGE experiments 6832

6.2.Database format

6.2.1. CleanEx

CleanEx entries are presented in a similar format as EMBL, SWISS-PROT, or EPD entries. Each line 

starts with a two or three letters line code identifying the type of information presented. The current line 

types and line code are shown below:

ID  - IDentification.

DE  - DEscription.

ON  - Old gene Name.

RNA - RNA sequence in EMBL.
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DR  - Databases cross-links.

EXP - EXPression cross-references.

//  - Termination line.

Spacer lines (XX) are inserted in order to make the database easier to read by eye. Some line types 

occur many times in a single entry. Each entry must begin with an identification line (ID) and end with 

a terminator line (//).  An example of a CleanEx text entry is given in Figure 14.

A detailed  description of each line type follows.

The ID line

The identification line is always the first line of an entry. The general form of the ID line is: 

ID    GENE_NAME     genetic_locus.

GENE_NAME is the species code followed by the gene identifier which obeys the organism-specific 

nomenclature rules.
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The genetic_locus  field  is  the  cytogenetic  location  of  the  gene.  It  is  cross-linked with  the  NCBI's 

genome map viewer.

The DE line 

DE    Fibronectin 1.

The description lines contain general descriptive information about the gene. It is extracted from the 

corresponding Unigene entry. The description is in English and is free-format. In some cases, more than 

one DE line is required; in this case, the text is divided only between words.

The ON line 

ON    STGD1, ABCR, RP19, STGD.

The ON line describes the history of the gene nomenclature. It lists all the previous gene symbols which 

have been attributed to the specific gene.

The RNA line 

It contains cross-references to the mRNA entries for this gene. These mRNAs are found in the EMBL 

<http://www.ebi.ac.uk/embl/index.html> database.  The RNA lines  can refer  to  partial  mRNAs.  The 

format is a three-field line separated by “;”:

RNA   EMBL; EMBL_SV; EMBL_ID.

• The first field is the target database code

• EMBL_SV is the EMBL sequence version number.

• EMBL_ID is a secondary identifier or name for the EMBL entry.

The DR lines

The DR lines contain cross-references to entries from other databases. So far, we have incorporated 

links to SWISS-PROT, LocusLink, RefSeq, Unigene, GeneCards and EPD. The precise format of these 

lines depends on the target database. The format of the DR line is shown by the following examples :

• DR    GENOME; NT_005403; -(2); 66510206; ANNOTATION

• DR    Unigene; Hs.339722.

• DR    Genew; HGNC:3778; FN1.

• DR    SWISSPROT; P02751; FINC_HUMAN.
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The first item on the DR line is the abbreviated name of the data collection to which reference is made. 

The currently defined databank identifiers are the following:

GENOME  Genomic contigs from RefSeq.

Entrez GeneID 
A single query interface to curated sequence and descriptive 

information about genetic loci.
Unigene NCBI RNA clusters

MIM 
The Mendelian Inheritance in Man Database, a catalog of human genes 

and genetic disorders (only for human).
Genew and MGI The respective gene symbol catalogs
RefSeq  The NCBI Reference Sequence project.
SWISSPROT  Protein sequence database.
EPD  The eukaryotic promoter database.

The second item is the primary accession number (or an equivalent unique identifier of another data 

bank) of the entry to which reference is made.

The meaning of  the  third  item (if  present)  is  database-dependent.  In  most  cases,  it  is  a  secondary 

identifier or name for the cross-referenced database entry. For Genew, this number is the HGNC (Hugo 

Gene Nomenclature Committee) unique identifier of the gene. A very special case is the GENOME line. 

Fields after the first unique identifier are the orientation of the gene on the given genomic sequence, 

followed by the chromosome number. The next field is the position of the transcription start site. The 

last field gives the origin of the data (EPD or ANNOTATION).

The EXP line

The  EXP line  contains  cross-references  to  the  publicly  available  data  on  human  gene  expression. 

Currently, 122 published data sets are integrated in CleanEx. An exhaustive list of these datasets as well 

a  a  short  description  of  the  experiments  realized  is  accessible  through  the  CleanEx  web  pages  ( 

http://www.cleanex.isb-sib.ch/datasets.html ).

The format of the EXP line is a period-delimited fields line shown by the following example.

• EXP   AFFY001; AFFY001_1575_at; AFFY_HC-G110_1575_at; High.
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The first field of the EXP line is the abbreviated in-house name of the data collection to which reference 

is made.

The second field is the local identifier of the corresponding expression entry. It is cross-referenced with 

the CleanEx_exp entries.

The third field is the reference to the CleanEx_trg corresponding entry.

The  last  field  gives  the  quality  tag  associated  with  this  CleanEx_trg  entry.  This  allows  a  direct 

evaluation of the experiment results for that CleanEx entry.

The // (terminator) line designates the end of an entry.

6.2.2. CleanEx_exp

The  CleanEx_exp  files  contain  two differently  formatted  parts  :  the  documentation  entry,  and  the 

expression entries. 

6.2.2.1. Documentation entry

The  DATASET_DOC entry  itself  contains  two  kinds  of  information.  The  first  one  is  the  content 

description of the experiments performed by the authors. The second consists in precise and highly-

formatted values and tags about the expression measurements of the dataset which are then extracted 

and used by the CleanEx web interfaces. Its general format is as follows :

The first line is the documentation entry identifier. It begins with a “>”, and is followed by the dataset's 

code and the extension “_DOC”. The documentation entry for a dual channel experiment is shown in 

Figure 15.

The ID line contains the code name of the dataset, followed by the number of experiments and the total 

features per experiment.

The OS line stands for the organism

The TI line is a short description of the dataset's contents

The DE lines are a detailed description of this dataset
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The FM lines stand for ForMat. They are used by the web interfaces. They differ according to the 

dataset's type, as described below :

• Minimum and maximum log ratio, as well as individual (red and green) channel scales for dual 

channel chips. The same information is provided for Basic_Ratio datasets.

• Minimum and maximum log ratio for Counts, that is for SAGE data or EST counts.

• Minimum and maximum log intensities for Affymetrix data. 

The RN (Reference Number), RX (Electronic reference), MA (Authors), RT (Title) and RL (Journal 

reference) lines describe the paper published about this dataset.

The HP line give the main URL provided by the authors. Usually this leads to a local search page for 

the dataset.

FM lines are also used by the web interfaces. The first FM line contains a code for the data type. So far, 

the data type codes are :  Stanford_Scanalyze for Stanford-like dual channel chips read with ScanAlyze, 

Intensity  for  cases  where  we could  only obtain the  raw intensity  for  each  spot,  Affy_probeset  for 

Affymetrix data, Basic_Ratio for the oligonucleotides datasets, and Counts for the SAGE datasets. The 

second FM line  gives   indications on  the  threshold  that  should be used  to   flag spots considered as 

unreliable.

The   FD   line   describes   the   target   types   of   the   spotted   features,   as   well   as   the   identifier   used   in 

CleanEx_trg for the mapping on genes. Target types are :

• Probebeset for Affymetrix experiments

• EST, IMAGE,  for clone­based experiments

• X­mer oligonucleotides for oligo arrays, where X represents the length of the spotted oligos. 

Usual reference identifiers are RefSeq (code “RefSeq”) or EMBL accession number (code “AC”). 

The EX lines are the experiment description lines. Each of these represents one experiment. Each field 

on   the   line   is   separated   by   a   semi­colon.   The   first   field   gives   the   experiment   number,   which   is 

reproduced later on in each expression entry. The second field is the short chip name usually given by 
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the authors. It is completed by a short experiment description in the third field.

If possible, the experiments are ordered in a way so as to reproduce the cluster or the associations found 

in the paper figures.

The documentation entry ends with a “//” termination line.

6.2.2.2. Expression data entries

The entries format varies according to the type of dataset, as described earlier. The only line which is 

standardized  throughout  all  the  different  experiment  types  is  the  header  line  of  each  “feature”,or 

sequence for which an expression measure has been done. This line always begins with a “>”, and is 
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then  followed by  four  different  fields.  The  first  field  is  the  “feature”  identifier,  which  is  built  by 

concatenating the dataset' s identifier and the feature's identifier itself. The second field indicates the 

type of the corresponding target for this feature. The third field is the target identifier, and the last field 

gives the original name, given by the authors, of that feature, if provided. Figure 16 shows examples of 

headers for different data types. 

Following the header line, each entry contains the former header provided in the raw data files, as for 

example  the  ScanAlyze  output  header.  This  will  be  the  guide  for  further  specific  expression 

measurements  extraction.  If no header is  provided for  the dataset,  one creates such a line with the 

different measurement fields indicated. All the other lines of one entry correspond to the measurements 

results for that spot and for each experiment.

6.2.3. CleanEx_trg

Each CleanEx_trg entry corresponds to one "target" (or "expression feature") used in an expression 

measurement experiment. Identifiers are composed of a code which describes the target type followed 

by  an  underscore  and  the  target  accession  number.  Types  could  be,  for  example,  IMAGE  clone 

(IMAGE), Affymetrix  probe set  (AFFY), SAGE tags (SAGE), or  EMBL RNA or  DNA sequences 

(RNA,DNA).

The format of CleanEx_trg resembles that of CleanEx. Each CleanEx_trg entry contains the following 

information :

    * ID CleanEx_trg ID

    * OS Organism Species
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    * GC Gene Count

    * GN Official Gene Symbol from the organism catalog

    * OA Original Annotation (if existing)

    * QU Quality tag

    * SR Sequence Reference

    * FN Feature Number

    * UG UniGene release

    * F[1-25] Feature

    * DR CleanEx_exp ID

    * // 

Description of the line formats :

The ID line

ID   TRG_ID     Type

The identification line is always the first line of an entry. 

TRG_ID is the internal identifier for the entry. The first part of the ID is a target type identifier. The 

second part is built with the original target name (image clone identifier, Affymetrix chip and probeset 

name,...)

The Type field is a description of the target's provenance. Type could be for example "Seq_Ref" (for a 

sequence in EMBL or in RefSeq), "cDNA_clone", "Affy_Tag", "SAGE_Tag" or “MPSS_Tag”.

The OA line

This line contains either the target's Original Annotation found in the corresponding description files, 

for  example  the  Affymetrix  chips  annotation,  or  the  description  of  the  sequence  given  in  the 

corresponding EMBL entry. It exists only for CleanEx_trg entries corresponding to Affymetrix tags.

The GN line

GN   TIE

The GN line lists the official gene symbols which correspond to that entry. For the Affymetrix entries 

type,  if  more than four  genes match the target,  only the first  four   are  listed.  The total  number  of 

matched genes is mentioned in parentheses.
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The GC line

GC   1

The GC line gives the total count of genes having an approved symbol which match that target entry

The QU line

QU   High

The QU line is the quality tag based on the precision of the mapping of the target. As explained in the 

part describing the construction of the target files, this tag can take different values, according to the 

corresponding entry type or to the mapping protocol.

The SR line

SR   Unigene=Hs.21330;

The SR line stands for Sequence Reference and gives the associated Unigene Cluster for the whole 

target.

The FM line

FM   Tag;

This line describes the format of the features for the target.

The FN line

FN   16

The FN line gives the number of features belonging to that target. For cDNA clones, this number is 

typically one. For Affymetrix probe sets, it can vary between eleven to twenty-five.

The UG line

UG   UniGene Build #160

The UG line  shows the  Unigene Release  which has  been  used to  map the  target  sequences  to  its 

corresponding cluster.

The F1-F25 lines

F1  TGTCCAGGCTGGAACAAAGCGCCAG:283-105; Refseq=NM_000927(+); 

These lines show the individual mapping for all the features of the corresponding target.  Fields are 
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separated by a ";". The first field is the name of the feature. The second fields contains the RefSeq or 

EMBL accession number of the sequences which map the feature. If the F line corresponds to a tag and 

has been mapped via the two-steps procedure, the second field contains more detailed information.  The 

sign  in  parenthesis  indicates  if  the  tag  mapped  to  the  positive  or  to  the  negative  strand  of  the 

corresponding sequence. The numbers in square brackets show the exact position of the tag on this 

sequence, and the last number after  the square brackets indicate the total length of the sequence on 

which the tag has been mapped. If more that one sequence had a match for this tag, the sequences are 

listed in that same format,  and are separated with a “|”. For Affymetrix,  we write down up to four 

sequences, then the total number of sequences with a match is indicated in parentheses at the end of the 

line.

The DR line

DR   AFFY001_1575_at;

DR lines in CleanEx_trg are cross-links to the expression data found in CleanEx under the line type 

"EXP". The link is done via the expression data local identifier found in the CleanEx_exp files.

In  Figure 17, target entry examples for Affymetrix, SAGE and clones are shown.
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6.2.4. Additional format : XML version of CleanEx for Integr8 

Integr8 (http://www.ebi.ac.uk/integr8/) [50] is a European project which aims to develop an integrative 

layer  in  database  services  to  facilitate  the  synthesis  of  related  information.  Integr8  will  be  an 

automatically populated database which will : 

•    Maintain stable identifiers for biological entities
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Figure 17: Examples of CleanEx_trg entries for Affymetrix, SAGE, and IMAGE 
clone data types

http://www.ebi.ac.uk/integr8/


•    Describe their relationships with each other

•    Store equivalences between identified entities in the source databases

Typically, the goal of Integr8 is not to mirror all the European databases, but more to provide a stable 

link  between these.  For  that  reason,  only  core  data  (database  unique  identifiers,  links  to  Unigene, 

Swissprot, Ensembl, RefSeq) are stored. The full entry information is retrieved via web links to the 

source database.

To integrate CleanEx in this European project, we created a minimized XML version of CleanEx, which 

contains only the core data. This file is also available via our ftp server.

6.2.5. Specific formats for web applications

As a way to increase the speed of online expression data retrieval and analysis, the CleanEx system also 

includes a few specific internal formats which are generated at the same time as the original three file 

types.  For  example,  the  cross  dataset  tool  makes  use  of  a  matrix  type  file  containing  expression 

measurements by experiments, and not by gene. By reformatting the expression files in an “experiment-

centered” way, the retrieval speed is nearly five-fold faster. Indeed, in this new very specific file, only 

the expression measurements values are kept. One line is created for each experiment, which contains 

the values for all the spots on that chip. The first field of that line is the experiment identifier, created by 

concatenating  the  dataset's  code  and  the  experiment  number  found  in  the  documentation  file  of 

CleanEx_exp. This file is then indexed via this first field.

Another  analysis  specific  file  which is  provided  for  the  web interface  is  the so-called “classes  for 

experiments” file. In this file, the first field is the same as in the special file described above, and allows 

experiment-centered data retrieval. Each field corresponds to a description of the different classes to 

which this experiment belongs. By class, we mean for example : organism, cell type, tissue, disease, 

treatment, and so on. All the main class divisions found in CleanEx are listed in a separate file, and a 

number is attributed to each of these. Then, in the classes per experiment file, a Boolean number is 

attributed to each class number for each experiment line, indicating if this specific experiment belongs 

to this class or not. For example, the class “human” has the class number 1. If the experiment has been 
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done with human material, the human field for this line will be “1:1”. If not, the human field will then 

be “1:0”. This system allows a very fast parsing mechanism and specific expression values retrieval for 

further analysis of experiments belonging to the same classes, but not to the same dataset. It is the basis 

for a real cross-dataset comparison system.

The last web specific file provided is a direct link between the datasets features (tags, probe sets, or 

spotted clones, for example) and their corresponding gene symbols. Let's call this file Dataset_to_gene. 

The format resembles the two others in the sense that each line contains the relative information for all 

the so-called features of one dataset. The first  field is the dataset's code. It is followed by the gene 

symbol for each of the chip's feature. There is one line per dataset already included in CleanEx. The 

position of the gene symbol on the line corresponds to the position of the corresponding feature in the 

dataset. 

6.3. Indexes and retrieval system

All the CleanEx files are indexed and retrieved by the fetch system, which allows fast and easy one-by-

one entry retrieval, given a specific identifier. The fetch system is an in-house utility which is used only 

on our site and which works on the basis of an index file which contains three features per line. The first 

feature is the accession key for the entry. It is typically the entry unique identifier. The second feature is 

the start position of the corresponding entry, and the third one is the length of the entry.

The  CleanEx  entries  can  be  retrieved  via  :  CleanEx  identifier,  EXP  line  (the  corresponding 

experiments), gene symbols, and Genew accession number. The CleanEx_exp  entries are retrieved via 

the CleanEx_exp identifier. The targets can be retrieved via CleanEx_trg identifier,  Unigene cluster, 

reference sequence accession number, gene symbols, or corresponding CleanEx_exp entries.

Fetch also allows multiple entry retrieval. This could be really useful, for example, to retrieve all the 

target entries corresponding to the same gene.

The fetch system is also used for all the data retrieval which occur via the web-based interfaces.
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6.4. Web­based interfaces

6.4.1. Entry search engines and viewers

6.4.1.1. Single entry search engines

The CleanEx and CleanEx_trg files are accessible either as flat files on the ftp server (ftp://ftp.isrec.isb-

sib.ch/pub/databases/CleanEx/),  or  via  a  web-based  entry  search  and  retrieval  system  at  : 

http://www.cleanex.isb-sib.ch.

There are two ways to extract single CleanEx entries via the web interfaces. The first one implies that 

one already knows the entry identifier. For the CleanEx part, this is made much easier by the fact that 

CleanEx identifiers  are  built  with the organism abbreviation followed by the official  gene symbol. 

Though having a little bit  more complex identifiers,  target  data can also be retrieved via the quick 

search interface (Figure 18). A detailed explanation of the target identifier format is provided on the 

same page. The advantage of this query is speed, as there is no need to search in the whole file. The 

fetch system will retrieve the queried entry at once. 

The second search method is used when one does not know the exact entry identifier. This query form 

can  be  filled  with  information  as  diverse  as  gene  name,  description,  Unigene  accession  number, 

organism, RefSeq sequence, Swissprot or EPD identifiers, or even the clone accession numbers, or the 

expression experiment's identifiers. As the search is done on the whole file, this takes a bit longer than 

the quick search system. It works as follows :

From the selected fields in the query page, it extracts the lines to search in the corresponding database. 

This process is facilitated by the fact that each line type begins with a specific two or three letter code. 

Then the different words and conditions given for search are transformed in a perl regular expression. 

The program then reads the CleanEx file entry by entry and tries to match this expression to the entries. 

For every entry which corresponds to the given criteria, the CleanEx identifier is stored in an array. 

Once the whole file has been read, the entries selected are shown, and one can then select the data to 

retrieve.

Again, this search engine works for CleanEx as well as for CleanEx_trg data.
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6.4.1.2. CleanEx viewer

All the previously cited external databases which are cross-linked in the CleanEx entries are accessible 

via the specific database identifier.  Besides these cross-references,  the CleanEx entry also provides 

access  to :

1- The list of all potentially spotted features, meaning for example, clones, RNAs, probe sets or tags, 

which correspond to this gene. As for the creation of the target file, sequences like clone sequences, or 

RNAs  are  directly  extracted  from  the  corresponding  Unigene  cluster(s).  The  tags  and  probe  sets 

information  come from the CleanEx_trg  file.  The final  list  includes the gene symbol,  the Unigene 
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cluster, the sequence accession number (if it exists) the target identifier (if it exists), and the type of the 

sequence. This sequence type corresponds to the one which is attributed to the target entries in CleanEx.

2- The possibility to extract the sequence region around the determined transcription start site (TSS) for 

further promoter sequence analysis. The 5' and 3' distance from the TSS can be chosen by the user. The 

output  of  this  query  is  a  FASTA formatted  text  file.  The FASTA header  contains  different  fields 

separated by a “|”. The first field is the gene symbol. It is followed by the genomic contig accession 

number. The third field shows the genomic region which has been extracted, and the last one is a tag to 

determine the origin of the information (either EPD or ANNOTATION, as mentioned in the CleanEx 

construction paragraph).

3-  The  most  important  part  of  a  CleanEx  entry  is,  of  course,  the  link  between  the  gene  and  the 

heterogeneous expression data. The list of all the datasets which have a target corresponding to this 

gene entry is provided in the “Expression Data References” sub-table. Data can then be explored in very 

different ways :

The first field, called Dataset's name in this sub-table, links to the local CleanEx_exp documentation file 

for the corresponding dataset. The Target ID column is the direct link to the CleanEx_trg entry. The last 

part, named “Expression Data”, links to the CleanEx_exp entry. There, access is given to the  text entry, 

or to a local expression viewer which will be explained in the following part. Note that if the dataset 

possesses  more  than  one  feature  for  this  particular  gene,  this  local  expression  viewer  is  called  to 

visualize all the features at the same time using the button “View all dataset experiment”.

6.4.1.3. CleanEx_Exp : expression viewer

The local  expression  viewer  is  a  color  representation  of  the  gene's  expression  across  the  different 

experiments of one dataset. The first part of the viewer remains the same across all the data types. It 

describes the origin of the data, and gives a direct link to the target entry. A short description of each 

experiments in this dataset is also provided. The second part of the viewer provides the color-based 

display of the expression data. According to the dataset type, the color display can vary in the format as 

well as in the color scale. This is also a way to distinguish between the different origins of the datasets 

included. The different color codes are detailed in the next paragraph. Figure 19 shows the viewers for 
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different experiment types.

   1. Counts type datasets  

For all the datasets based on counts, namely the EST counts, SAGE or MPSS datasets, the local viewer 

is based on the estimated TPM (Tags Per Million). For each experiment, the number of tags for the 

represented gene is divided by the total number of tags for that experiment. This ratio is then converted 

into the TPM value. To lower the impact of cases where no tags or ESTs are found, pseudo-counts are 

added to both values before obtaining the ratio. The fraction is represented by a scale from white (low 

expression level) to black (high expression level). 

   2. Dual channel (Stanford_like) and Basic_Ratio datasets

If the original dataset contained enough information, the viewer shows two different representations of 

the data. In the first  column, the color represents the log in base two of the ratio between the two 

channels  (green  and  red).  The  color  display  goes  from  light  green  (underexpressed)  to  light  red 

(overexpressed). This is the traditional expression representation given by programs used to analyze 

dual-channel chip (for example Michael Eisen's Treeview software). The second column displays the 

superposition  of  both channels.  This  typically  gives  an idea of  the intensity  level  of  the  spot,  and 

corresponds to the reconstructed image of the chip with both scanned values shown together. When the 

original  data  provides  only the  final  ratio,  this  second column is  omitted.  The color  scale  is  built 

according to the ratio and channels extreme values stored in the documentation file of the corresponding 

dataset under the PM (ParaMeter) lines.

The ratio color range goes from 1 to 256 and the value is scaled according to the following formula :

((logratio-logmin)/(logmax-logmin/256)), where logratio is the log in base two of the ratio, logmin is 

the minimum log ratio found in the dataset and logmax is its maximum. The color which is displayed is 

the selected according to the common representation of over-expression (red) and under-expression 

(green).

For the display showing the sum of both channels, the color is obtained by superposing the intensity of 
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both channels. The color value for each channel is scaled in the same way as for the color ratio value :

((logchannel-logminchannel)/(logmaxchannel-logminchannel/256))  where  “logchannel”  is  the  log  in 

base two of the channel intensity, logminchannel is the minimum value of the log in base two of the 

channel intensity, and logmaxchannel is its maximum.

For some Basic_ratio datasets, the authors also provide a P-value, indicating if the spot is reliable or 

not. They give the usual threshold defined for that dataset as being the highest acceptable p-value for a 

spot. As this information is also stored in the CleanEx_ref documentation file, the viewer considers 

spots with a bigger p-value as flagged, and shows them with a grey color. The p-value is also shown. 

The same grey flag is applied for Stanford data, according to the “FLAG” tag given for each spot in the 

raw expression file.

3. Affymetrix datasets

The  colors  chosen  to  represent  Affymetrix  datasets  varies  a  bit  compared  to  the  usual  expression 

displays. From the expression entry, it makes use of the LOG_NORM value, in other words the log in 

base two of the intensity for that probe set, but with the mean centered over the experiments. Values 

below zero are shown in a blue scale, and values greater than zero are shown in a pink scale. Darker 

colors  in both scales indicate the most under-  or overexpressed cases. Again,  the colors are scaled 

according to the maximum and minimum log values stored in the documentation file, as described 

earlier.  If  provided,  each color  spot contains also the Absent/Present  call  generated by the analysis 

software. This replaces the flag defined for dual-channel datasets.

For all these data types, the multiple expression viewer which is accessible via the CleanEx entry page 

is based on the same criteria. For space reasons, though, this view shows only the ratio column, and not 

the sum column. This gives a more compact and readable view of the different features. Having all the 

features corresponding to one single gene on the same view is a good way to have a first fast control on 

the internal  chip  reproducibility.  To some extent,  it  could give  also a  first  clue on the differential 

expression  pattern  of transcript  variants  along the different  experiments  realized  in the dataset.  An 

example will be shown in the CleanEx tutorial.
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6.4.1.4. CleanEx_trg

6.4.1.4.1. Single entry retrieval

The CleanEx target  entries  can be retrieved individually with the same search engine that retrieves 

CleanEx entries. The CleanEx_trg entry viewer resembles the CleanEx one. It also gives access to the 

original cross-references URLs via sequence accession number, and it also provides a direct link to the 

expression data targeted by the corresponding entry. In the case of a target which has been determined 

via the two-steps procedure, meaning a target for which the sequence was known and which has been 

mapped to RNAs via the tagger program, the exact position of all the tags on the reference sequence is 

provided. This information could be useful in two ways. First of all, for SAGE tags, one can verify the 

distance between the site where the restriction enzyme has cut the sequence and the 3' end of the gene 

sequence. For Affymetrix, this position could be even more useful. According to the constraints which 

limit the number of choices regarding the 25 nucleotides tags choice per probe set, it  is sometimes 
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Figure 19: Two examples of the expression single viewer. A : EST count representation. B : Dual­
channel representation



impossible  to  have eleven tags which do not  overlap.  Knowing the position of each individual tag 

allows to know the real portion of the transcript which is spanned by the probe set. Moreover, if one 

gene is represented by more than one probe set, it might be worth  checking, if the different probe sets 

span  the  same region  of  the  gene,  or  for  example  if  they  could  represent  two  different  transcript 

variants.

6.4.1.4.2.  Batch search for CleanEx_trg (http://www.cleanex.isb­sib.ch/trg_batch_search.html)

Though the single data retrieval can be quite useful if you just need information on one specific target, 

as for example one Affymetrix probe set, researchers are more interested in the correspondence between 

the features coming from different platforms. Moreover, they often want to have access to a pool of 

features and their corresponding genes, instead of retrieving this information one gene at a time.  This 

practical problem prompted us to generate a so-called “batch search” service for the target files (Figure 

20).  The system will retrieve all the CleanEx Target entries corresponding to the given input identifier 

list and the given organism. One can obtain targets correspondence via a choice of different identifiers, 

like Unigene, RefSeq, EMBL accession numbers, as well as gene symbol or even the CleanEx target 

identifier. A link to a detailed description of the possible input formats is given on the query page. One 

can also select  the  organism for  which one wants  to  retrieve  targets.  A combination of  sequences 

coming from the two organisms presently in CleanEx is also possible. The data output is then classified 

according to the user's choice, either by gene symbol, Unigene cluster, sequence identifier, or targets 

identifier. One can also select the type of features to be kept in the result page, for example if one just 

wants to compare different Affymetrix chips and is not interested in ESTs or other RNAs. The result 

can be retrieved in HTML or in text format. The HTML format has the advantage of providing direct 

links  to the other  databases,  and to  give a nice human-readable view. It  consists  of a  table  which 

contains one type of information per column. The table header gives the column content type as well as 

the total number of features found in the database. The information provided is : CleanEx target, Gene 

symbol, Refseq, Unigene, Sequence accession numbers, and experiments found in CleanEs. The text 

format is an easy-to-parse file, which contains well-separated entries having one type of information per 

line (gene, Unigene, RefSeq, target, experiment found in CleanEx), with space-separated features on 

each line.

109

http://www.cleanex.isb-sib.ch/trg_batch_search.html


6.4.2. Cross dataset analysis

In  the  beginning,  the  possibility  of  analyzing  data  coming  from  different  platforms  was  the  first 

objective for CleanEx. This task is not that easy, due to major differences between the data sources. The 

most critical difference is that some data are the result of a comparison between two experiments, and 

give en expression  value which is  a  ratio.  These are  typically  the  dual-channel  chips.  Other  ones, 

namely Affymetrix, EST counts, SAGE and MPSS are done with only one experiment, and shence yield 

the relative  abundance of transcripts  in  one sample.  To bypass this problem, the first  cross-dataset 

comparison system which has been created is a step-by-step procedure, which treats one dataset at a 

time. Later on, a second version has been implemented, which is able to directly compare chips coming 

from different sources. The two models are explained below.

6.4.2.1. Step­by­step expression pattern search (http://www.cleanex.isb­sib.ch/step_by_step_analysis.html)

This procedure allows the search results in one dataset to be combined with a new search step in another 
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Figure 20: The CleanEx_trg batch search web interface

http://www.cleanex.isb-sib.ch/step_by_step_analysis.html


dataset. The principle is as follows. One first selects a first dataset where one wants to extract genes 

having a common behavior. In this dataset, a selection of two experiments pools is done. One can select 

the experiments to put in each pool, and  the analysis which has to occur between these two pools. 

Comparison can be over-expression in either the first or the second pool compared to the other one, or 

co-expression levels in the two pools.  Once ready, one can choose the number or percentage of genes 

to keep. Currently, the comparison is based on a general mean difference ranking process. The mean 

expression is calculated for each gene and for each experiment pool. Then the difference between the 

first pool mean and the second pool mean is calculated, again for each gene. The result is then ranked, 

and it's this rank which is taken into account to display the genes. The results page  shows the two 

groups to compare, and the list of features which satisfy the given criteria. Below the features list, a 

table gives the number of common genes, amongst the retrieved features, in other datasets. To go to the 

next level, one just selects the dataset in which one wants the new comparison to occur. The next page 

then provides the dataset-specific page, as the first one, and experiment selection can be done again. 

The  main  difference  is  that  for  the  second  step,  the  analysis  will  be  done  only  on  the  features 

corresponding to the common genes' list, and not on the whole new datasets. The output is the list of 

features  which  share  the  given  criteria  in  the  two  datasets  explored.  A  practical  example  will  be 

developed in the CleanEx tutorial part.

6.4.2.2. Common genes retrieval (http://www.cleanex.isb­sib.ch/compare_dataset_genes.html)

One way for researchers to make sense of their data is often to compare the results they obtained with 

previously published corresponding experiments.  The problem is that datasets to compare are often 

issued from different techniques and platforms. In that case, knowing to which gene corresponds each 

feature in the two datasets to compare is the first step. To facilitate such an analysis, CleanEx provides a 

direct  common  genes  retrieval  system,  which  works  on  all  the  datasets  already  integrated  in  the 

database. The principle is to make use of the special formats cited before, meaning the Dataset_to_gene 

file, which contains the gene symbol for each feature of one dataset on one line. Once the datasets to 

compare  are  selected,  the  system extracts  the  corresponding  lines  in  this  file,  as  well  as  the  line 

containing the list of the datasets' features. The features and their corresponding genes are indexed, then 

the  genes  in  both  datasets  are  compared,  and  common genes  extracted  in  both datasets.  The gene 

symbol position on the line is then traced back and gives access to the original features on the two 
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compared chips.

6.4.2.3. By class expression pattern search

This feature is quite recent on CleanEx. It has been possible to set up such a process only since the 

database contains a sufficient number of data to analyze. The main goal of this method is to be able to 

compare two chip pools coming from different datasets which have been generated by very different 

methods. By using data from different sources, one will be able to generate much wider comparisons 

between  different  classes.  Indeed,  published  datasets  are  often  very  specific  and  relate  to  a  single 

question, like gene expression in normal tissues, or the effect of a drug on one tissue type, or cancer 

classification in one tissue. If one wants to compare gene expression between normal and cancer tissues, 

for example, it will be of great use to be able to use data from more than one dataset, as it will increase 

the number of experiments as well as the range of possible comparisons. This will lead to the discovery 

of discriminant genes between classes, or even to a more accurate class prediction basis. 

To facilitate the use of such a tool, the way that has been chosen is to compare two class pools, instead 

of two chips pools. The generation of the file which maps experiments on the different classes has been 

described before. The process begins with the selection of the two classes to compare (Figure 21). One 

could for example select in the first pool all experiments done with normal mammary gland tissue, and 

in the second pool all experiments done with tumor mammary gland biopsies. The program, will then, 

via the “classes for experiment” file, generate two lists of experiments which correspond to the asked 

conditions.  At  the  next  level,  these  experiments  are  shown  to  the  user  accompanied  with  a  brief 

description, so that one can reselect the desired experiments. Once this is done, the real comparison 

takes place. Of course, to be able to compare expression values in different datasets, the first step is to 

find common features in all the datasets included in the search. This part is controlled by the former 

described  Common  Genes  Retrieval  system.  Once  the  common  genes  have  been  extracted,  the 

correspondent expression values for all the chosen experiments are extracted. The method and fields 

used as raw values are so far the same than for the ExpressDB ERAs (Estimated Relative Abundances). 

According to the data type, the value extracted is : red channel background substracted for dual-channel 

type experiments, intensity for Affymetrix data, and counts for Counts type data. The normalization is 

then done as in ExpressDB. The analysis can be performed using the mean difference ranking already 
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used for the step-by-step analysis procedure.
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Figure 21: Class selection page model. The page has been shortened for clarity



6.5. Using CleanEx : examples and applications, a CleanEx tutorial

6.5.1. CleanEx single entries and multiviewer

Fibronectins bind cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and 

actin. Fibronectins are involved in cell adhesion, cell motility, wound healing, and maintenance of cell 

shape. Interaction with TNR mediates inhibition of cell adhesion and neurite outgrowth. They consist 

mostly of heterodimers or multimers of alternatively spliced variants, connected by 2 disulfide bonds 

near the carboxyl ends. This gene is submitted to a high degree of alternative splicing, and there are 

nowadays twelve different known fibronectin isoforms. This high number of transcript variants makes 

fibronectin  a  very  good  case  study  for  CleanEx.  Let's  look  at  the  HS_FN1  fibronectin  CleanEx 

entry(http://www.cleanex.isb-sib.ch/cgi-bin/get_doc?db=cleanex&format=nice&entry=HS_FN1, 

Figure 22).

On the top of the page, direct access to the corresponding list of clones, tags, of Affymetrix probe sets 

for this gene is provided (Figure 23). On the same line, one can also extract the promoter sequence for 

this gene (Figure 24).
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Figure 22 :  Nice view representation model of the CleanEx entry for the human 
fibronectin 1. The real HS_FN1entry has been shortened.



The first point to mention about this gene is that it has seven different RefSeq references. This is an 
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Figure 23 : Clones and Tags list output for the human fibronectin. This table shows all the  
SAGE tags, Affymetrix probe sets, or clones from the corresponding Unigene cluster which  
have a match with the FN1 sequence. For SAGE and Affymetrix, a link to the CleanEx_trg  
entry gives access to the position of the tags on the sequence. The entry has been shortened  

Figure 24: Sequence retrieval query box. This box allows users to select the length of the sequence to retrieve by  
changing the 5' and 3' distance from the Transcription Start Site.



evidence for alternative splicing.  While looking down in the Expression Data Reference, one can see 

that this gene corresponds to more than one feature in most of the datasets. By clicking on the “View all 

DATASET experiments” one has access to all the features corresponding to the fibronectin 1 on that 

specific dataset. While selecting the PEROU1 dataset, one can see that, on the viewer page, one of the 

clones spotted (clone number 4, namely the IMAGE clone number 296556 , see Figure 25) does not 

behave in exactly the same way as the others.  Selecting the multiple viewer for the T0001 dataset, 

which is a DNA microarray survey of gene expression in normal tissues, gives even more hints. The 

previous clone also shows a different expression pattern , together with the clone number 502201. This 

could push the user to go further and compare the positions of these respective clones on the genomic or 

RefSeq sequences. Doing this leads to the following conclusion : compared to the four other ones, these 

two clones map to a different place on the genomic sequence for fibronectin.

Now let's  have  a  look  at  another  dataset's  results,  namely  the  GDS505  (Figure  26).  This  dataset 

compares cell carcinoma samples with their  corresponding adjacent normal tissue samples from the 

same patient. By comparing the expression patterns of the six first probe sets, on the multiviewer,  it is 

evident that two probe sets (in column 4 and 5) have a different expression pattern. Looking at the 

corresponding  targets  shows that  these two probe sets  match a different  set  of RefSeq sequences, 

though each of them has a high quality tag. Moreover, there is a “gradient pattern” between the probes 

sharing some, but not all, the RefSeq reference sequences.

By  using  the  multiviewer  for  determining  alternatively  spliced  transcripts  which  are  differentially 

expressed, one always has to keep in mind that the results for all the targets, regardless their quality tag, 

are shown. This means that it's always very wise to check for the real mapping of each target before 

going on with a deeper sequence analysis of the different targets. For example, in the Affymetrix dataset 

shown before, the two last probe sets also show a slightly different behavior. Going from there to the 

respective target page, one will mention that this probe set has a low quality tag, and that only a single 

tag out of all the tags compiled for this probe set matches  a sequence. This obviously means that the 

expression data for this probe set should not be taken into account for further analysis. 
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Figure 25: Expression representation for P0001 (A) and T0001 (B) datasets. All spots  
corresponding to fibronectin 1 are shows on the same image for each dataset.



Back to the T0001 multiviewer page for the fibronectin, one can mention that the same clone (IMAGE 

number 139009, corresponding to columns seven and eight on the viewer)  has been spotted twice for 

this dataset. Looking at the two columns together, it is quite reassuring to see that the two spots behave 

exactly  the  same  way  along  all  the  experiments.  This  viewer  can  thus  also  provide  a  visual 

approximation of the data quality.

Another nice example of  good internal dataset quick control is given with the entry HS_KLK3. This 

protein is highly specific to prostate tissue. The T0001 dataset, again, shows a higher expression level in 

prostate tissue. By then selecting the multiview for the GDS181 dataset, which is an Affymetrix-based 

survey of expression in normal tissues, one can see a very good correlation between the three probe sets 

pertaining to the same gene, as well as a high difference in the expression level between prostate tissues 

and other tissues. Interestingly, when opening the corresponding targets pages, one can mention that one 

of the three targets matches on EMBL sequences, but not on the RefSeq which is the reference for the 

two other targets. This is due to a minor discrepancy (deletion of two nucleotides in the EMBL RNA 

sequence)  between  the  EMBL  RNA  and  the  RefSeq.  The  Affymetrix  probe  sets  must  have  been 
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Figure 26 :Multiviewer representation of the Affymetrix dataset GDS505. Experiment results can be influenced  
by the individual probe position on the gene sequence, as well as by the number of individual probes matching  
this sequence.



designed by using the two types of sequences. The fact that CleanEx now takes also into account  the 

tags which match on the EMBL RNAs thus allows one to retrieve this target as a high quality one, 

quality which would have been lost otherwise.

Looking at these two datasets showing expression in normal tissues (Figure 27), one can see an obvious 

correlation.  For  example,  though prostate-specific, this  gene also seems to be expressed in salivary 

gland in both datasets. Nevertheless, the Affymetrix data appears to be more precise. This could be due 

to the fact that the three Affymetrix probe sets come from the very same region of the gene, and thus 

will exhibit a very similar expression pattern.  If one considers the alignment of the genomic sequence 

for KLK3 with the clones from T0001 and the individual tags from the Affymetrix dataset shown in 

Figure 28, one can easily see that the clones span a much extended region of the gene compared to the 

Affymetrix tags, and the relative fuzziness in the microarray dataset could be attributed to this.
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Figure 27: Expression level for KLK3 in two different dataset types.  Each dataset compares expression in  
normal human tissues. KLK3 is over expressed in salivary gland and in prostate in the two datasets.



6.5.2.  Finding common expression patterns in different datasets

To show the accuracy of the step-by-step cross-dataset analysis procedure, we will present two different 

examples of analysis. The first one will focus on the two datasets previously cited, namely the T0001 

and GDS181, which are two experiments done with normal tissue, one with microarray, and one with 

Affymetrix  chips.  The second case  study will  show the  comparison  of  expression  patterns  in  two 

datasets comparing expression in astrocytic gliomas and astrocytomas. The first one, C0001, has been 

realized  with  nylon-membrane  arrays,  the  second  dataset,  AFFY002,  is  an  Affymetrix-based 

experiment.
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Figure 28: Representation of the alignment of the KLK3 genomic sequence (horizontal) against the  
clones from experiment T0001 (wide rows), and individual tags from the two GDS181 dataset's probe  
sets (narrow rows). Clones span a much wider region of the transcript.



6.5.2.1. Normal tissues : comparison of two dataset types

With the example of the Kallikrein 3 gene, we have seen that this gene is highly prostate-specific. We 

will now try to find genes which share the same criteria. By selecting as first pool all other normal 

tissues, and as second pool prostate tissues in the GDS181 query form, we extract the first 500 genes 

showing over-expression in prostate (Figure 29A). On the results page, it is reassuring to see that the 

kallikrein 3 probe sets are all amongst the first ones listed (Figure 29B). Including the prostate cancer 

tissues in the second pool introduces a very small bias towards cancer-specific genes. Now we can push 

onto the second step. On the results  page, the table below the feature's  list  contains the number of 

common features, among the list reported, in other datasets. By choosing to go on with the analysis in 

the T0001 dataset, we want to confirm the results found in GDS181. This will extract the genes which 

show the same expression characteristics in both datasets. And the result page confirms that kallikrein 3 

is indeed overexpressed in prostate,  along with other genes like KLK2, ACPP (Figure 29C). These 

results  are  confirmed  by  going  back  to  the  CleanEx  entry  and  checking  the  respective  datasets 

multiviewers. Interestingly, among all the top genes of the list, most of them also show over-expression 

in salivary gland.
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Figure  29A:   GDS181   dataset   selection   form.   The   two  
experiments pools will be compared according to the user's  
criteria.   Here,   we   search   for   genes   over   expressed   in  
prostate compared to other tissues.



124

Figure29B : Results of the first step. These are genes over expressed in prostate in the GDS181 dataset. 1170 
sequences, corresponding to 365 different genes are also found in the T0001 dataset. We will then go on in analyzing  
the 100 most over expressed genes in prostate in T0001 for this new sequence pool.



6.5.2.2. Astrocytomas and astrocytic gliomas comparison

Two other  datasets generated with different  platforms but  including relatively close studies are the 

AFFY002, which compares low-grade and high-grade astrocytomas, and C0001, which classifies three 

groups of astrocytic gliomas according to gene expression. 

Beginning with the Affymetrix-based dataset, we first extract genes which are overexpressed in high-

grade astrocytomas compared with the low-grades (Figure 30A). As before, we continue the analysis by 

using the resulting gene list as input for the second step. Though separated in three categories by the 

authors, to keep as close as possible to the first dataset, we will use a two classes separation based on 

the WHO classification for tumors of the nervous system. This includes WHO grade II for the low-

grade astrocytomas, consisting of our first  pool, and WHO grade IV for the second pool, including 
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Figure 29C : Result of the re­analysis of the sequence pool in T0001. The first part is the header of the T0001 query  
form. The gene list includes the KLK3 gene, as well as other genes known to be over expressed in prostate tissue, like  
KLK2, ACPP, or ANGPT1.



primary and secondary glioblastomas. The result from Figure 30B shows a great correlation with the 

papers describing expression changes in these two tumor categories.
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Figure 30A : Low­grade versus high­grade astrocytomas comparison, first step. Analysis of genes in  
AFFY002 dataset.
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Figure 30B : Genes showing over expression in the two examined datasets (AFFY002 and C0001).



6.5.3. Single dataset and sequence extraction : using SSA

The next example will show how to extract common sequence features in a set of co-expressed genes. 

As source dataset, we will use the in-house built per-tissue breakdown of EST counts. From the human 

EST dataset, we select as first pool the normal tissues, and as second pool the cancer tissues. As cell 

lines sometimes show an extreme behavior, the experiments based on cell-lines will be discarded. The 

first result extracts genes which are overexpressed in cancer tissues compared to normal tissues. Once 

the gene list is provided, instead of going on with the expression analysis, we can extract the promoter 

region of each gene from the given list. This sequence list will be in FASTA format. Another option is 

to use this sequence set in further promoter  sequence analysis via SSA, the Signal Search Analysis 

server (http://www.isrec.isb-sib.ch/ssa/) [51]. This on-line tool has been created on the basis of former 

sequence  analysis  tools  developed  at  the  SIB  by  Philipp  Bucher  [52]  and  is  now  maintained  by 

Giovanna Ambrosini. This server provides different search tools, amongst which one finds the Oprof, or 

Signal Occurrence Profile generation. Oprof  scans a set of fixed­length DNA sequences aligned with 

respect to a functional site, for example the transcription start site, in a sliding window in order to 

determine the frequency with which a particular sequence motif (signal) defined by a particular signal 

occurs. With the sequence set extracted from the previous expression analysis, one can for example 

search for the frequency of TATA­boxes, or also of CpG islands, in the promoter region. repeating this 

analysis with genes overexpressed in cancer tissues or with genes underexpressed in cancer tissues will 

lead to a striking conclusion. In general, TATA­boxes are  more frequent in cancer­specific genes than 

in other genes.

6.5.4.  By class expression pattern search

The by­class expression analysis tool is currently being developed. The principle is as follows :

The  first   step   in   the  by­class  web  interface  allows  the  extraction  of  experiments  corresponding   to 

specific biological conditions. These data are separated in two pool which will then be compared. The 

set of extracted experiments as well as a short experiment description is then displayed. At this point, 

one can decide to get rid of some chips which appear not to be relevant for  the case under study. 

Searching for gene names in the remaining experiments leaves us with a certain number of common 

genes. Once expression values for each gene and for each selected experiment in the two pools have 
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been extracted, one can compare the expression level between the two selected pools. The comparison 

criteria has to be determined at that level. The normalization step is then performed on the extracted 

expression data, and the analysis of genes showing a different expression level in the two selected pools 

goes on. 

Here is a practical example of application for this tool. Suppose that we want to find genes which are 

overexpressed in metastatic samples but not in non­metastatic samples. After having selected the non­

metastatic   class   as   our   first   pool   and   the   metastatic   class   as   our   second   pool,   the   corresponding 

experiments are extracted. Figure 31A shows the experiments pools retrieval. This step leaves us with a 

set  of 1199 common genes (see Figure 31B) across  the different selected experiments.  If   then one 

choses to classify these genes so that the first ones on the list will show overexpression in the metastatic 

pool, one obtains the result shown in Figure 31. It is striking to see, for example, that the first and third 

candidates in that list are the MUC2 (Mucin 2, whose expression is associated with aggressive tumor 

behavior [53]) and the MTA1 (Metastasis associated 1) genes. The matrix metalloproteinases, which are 

also involved in tumor invasion, are also high in this gene list. This first trial for real cross­dataset 

comparison via biological classes is thus quite promising. 
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Figure 31A : The Chips Selector Module. The two pools have been extracted from two different datasets.



6.6. CleanEx external applications 

As mentioned above,  all  the  CleanEx_trg  and CleanEx files  are  available via  our  ftp  server.  This, 

together with the fact that the files are renewed on a regular basis, prompted some people to make use 
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Figure 31B : Gene extraction in the two pools of experiments. A total of 1199 common genes have  
been found.

Figure 31C : The top genes found to be overexpressed in metastatic samples  
compared with non­metastatic samples.



of CleanEx for external applications. The files which are usually of interest for other applications are 

the mapping files, especially the ones generated for Affymetrix probe sets. The main reason for using 

these files is that it is an easy way to retrieve, or concatenate, very precise matches of independent tags 

on  sequences  available  in  general  databases,  like  EMBL or  GenBank.  Moreover,  the  exact  match 

positions on the reference sequences are given, together with the orientation of the match. This allows 

one to have a nice and complete view of each probe set, tag-by-tag, and to have a more precise control 

on the annotation of the probes. The CleanEx mapping files have been so far successfully used in two 

independent projects : The ISREC Ontologizer, and the DNA Chip Splice Machine.

6.6.1. IO

IO (ISREC ontologizer :  http://www.io.isb-sib.ch/ ) [54, 55] is a program for classifying microarray 

results in the Gene Ontology. The strong point of the program is that it allows a fine evaluation of the 

results  based on various  quality  thresholds,  in  particular  on annotation quality.  For  a  given list  of 

differentially  regulated  probe  sets,  IO  shows  their  distribution  over  all  GO  (Gene  Ontology, 

http://www.geneontology.org/) [56] classes subdivided by classes of probe set quality and evaluates the 

statistical significance of over-representation of a GO class. The advantage of IO compared to most GO 

classification programs, such as MappFinder or OntoExpress, is that this evaluation can be done not 

only with the probe sets as individual entities but also by pooling in groups those that represent the same 

Unigene cluster.  This allows one to study the degree of agreement between probe sets of the same 

cluster. Moreover, IO provides a confidence assessment regarding the significantly regulated functional 

classes.

IO is actually delivered with a reevaluated set of annotation files for the Affymetrix mouse and human 

chips. The reevaluation is based on the CleanEx Affymetrix mapping files. The confidence assessment 

is based on the quality tag given in the CleanEx_trg file.

IO is developed by Thierry Sengstag in collaboration with Pascale Anderle.

6.6.2. DNA Chip Splice Machine

The DNA Chip Splice Machine (http://bio.ifom-firc.it/AffyDB/) is a tool which has been developed by 

Alessandro  Guffanti  and Davide Rambaldi  at  the IFOM (Italy).  It's  main goal  is  to allow users  to 
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visualize, in a gene-structure orientation, the Affymetrix individual probes of one probe set. The tool 

makes use of the CleanEx_trg file for Affymetrix. It then links the tags positions on the RefSeq to the 

mapping of the RefSeq on the genome. It then concatenates the results on a viewer which shows the 

Affymetrix independent tags mapped on gene's exons. It so far considers only matches on RefSeq, but a 

new version will be available soon which will include the matches on EMBL RNA sequences, also 

extracted  from  the  CleanEx  database.  The  authors  are   in   the  process   of   applying   this   tool   to   the 

interpretation   of   experimental   results   and   linking   it   directly   to   GeneSpring,   a   statistical   analysis 

software for DNA chips. 
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7. DISCUSSION

7.1.General considerations

7.1.1. CleanEx development decisions

While building an expression database like CleanEx, a few important  points  have to be taken into 

account, that could bring major changes to the usability of the database. For example, one needs a 

reliable  system to link data  to gene names.  When CleanEx began, only a  few databases  contained 

sufficiently reliable information about gene names, gene localization, and corresponding sequences. The 

most famous one at that time was the Unigene database. Another possibility would have been to use the 

in-house built version of the human transcriptome, called Trome. The final decision to use Unigene was 

based on the following major points. First, Unigene was very well known all over the world. Having as 

first  reference  a universally used database allows users to hang on known information while using 

CleanEx. Second, the Trome database was built only for human at that time, which would have been 

problematic for the expansion of CleanEx to other organisms. Nowadays, Trome exists also for other 

major model organisms. Third, the first goal of CleanEx was not to deal with alternative splicing. Using 

Unigene was thus easier, as each entry corresponds to one gene, and not to one transcript. In Trome, all 

the possible transcripts are represented, and a supplementary procedure would have been required to 

concatenate the information about one gene. This is now also provided in the recent versions of Trome. 

The other   important  point  is  that  the Trome database is  updated at   the same time than the EMBL 

database, meaning one release every three months, whereas the Unigene database follows a weekly 

update system. As this is a major point in CleanEx, it seemed important to follow a system with a very 

frequent update. At present time, a few other organism­specific genomic databases exist, which provide 

even more detailed information than the Unigene database, and which are also updated very frequently. 

One could for example consider using the Ensembl database, or directly the Entrez GeneID system 
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from the NCBI as gene references. This would probably improve the update procedure. Indeed, as the 

information about a gene is concentrated at one spot, the update will take much less time.

Despite the emergence of brand new gene expression databases, all based on more and more precise 

international recommendations, the ideal solution has not yet been found. The creation and structure of 

each such database depends mainly on the use that one intends to make of it. It is thus very difficult to 

obtain a consensus definition of a good and useful expression database. For example, though designed 

at the same time, it is striking to see that the structure of databases like GEO or ArrayExpress differ 

significantly from the CleanEx one.  Indeed, though also split in three major  file systems, the GEO 

structure is directly linked to its repository function. The CleanEx design is much more specific to gene 

information retrieval. The first design attempt for CleanEx was to generate only two file types. The first 

one contained the expression experiments,  while  the other  one was intended to serve as gene data 

retrieval and link to expression data. This kind of simple design was efficient enough for dual channel 

experiments. The integration of other data types raised new problems, which were not easily solvable 

by  keeping  that  kind  of  structure.  For  example,  in  the  Affymetrix  experiments,  one  probeset  is 

represented by more than one sequence on the chip. This change in the relationship between spotted 

sequences and the numerical values obtained, going from a “one to one” relationship to a “many to 

one”, needed a new way of storing the data. The decision was thus taken to generate an intermediate file 

for target information (the CleanEx_target file type). This structure change was also justified by the fact 

that,  while  adding  new  datasets  in  CleanEx,  the  same  sequences  are  sometimes  reused  in  new 

experiments. Keeping the two-files system would then have greatly increased the redundancy in the 

database, while the intermediate file can contain one entry per sequence, regardless of the number of 

datasets  which  have  used  it.  The  creation  of  this  third  file  also  allowed us  to  store  more  precise 

information for sequences which were mapped with the tagger, like the position of the spotted sequence 

on the reference sequence, the cases of multiple hits, as well as the quality tag for each sequence. 

Actually, the major databases are mainly data repositories, meaning storage facilities, linked to a few 

analysis tools. GEO, ArrayExpress,  or even the Stanford Microarray Database are the most famous 

amongst these ones. From the structure of this kind of databases, consisting of a split between series, 

samples,  and  platforms,  it  is  quite  difficult  to  retrieve  gene-centered  expression  information,  or  to 

compare the expression level of  a few genes at the same time. Moreover, the data annotation is not 
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trivial and the link between numerical data of expression measurements and the actual gene which is 

over- or under-expressed in the specific tissue is not always well defined. In that sense, the CleanEx 

database structure is an alternative solution which generates coherent and biologically understandable 

information about gene expression. The table 2  gives a comparison between the features present in 

CleanEx and in the other major expression databases. 

ArrayExpress GEO GeneCards SOURCE CleanEx

Dataset Upload  

Dual­channel

Affymetrix

SAGE and/or  

ESTs

Single dataset  

cross dataset  

Genes­oriented  

Show clones per  

Show tags per  

Sequence  
Table 2 : Database comparison. Pink “smileys” indicate that the corresponding database has the selected feature. 

Blue frowns show a lack of this feature.

7.1.2. Linking expression data to promoter analysis

Nowadays, as the amount of publicly available data is increasing, new databases appear, which try to 

link  biological  interpretation  with  heterogeneous  expression  or  genomic  data.  As  expression  data 

become  also  more  precise,  researchers  want  to  push  the  analysis  towards  the  discovery  of  new 

regulatory elements. The idea of finding common promoter  elements in co-expressed genes is very 

tempting [57, 58, 59], and this feature is now in a trial  phase in some newly generated expression 

databases [60, 61, 62, 63]. Anyway, finding motifs in promoter sequences is a huge problem per se. For 
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example, one should not forget that the transcription start site is quite often not well defined, or even 

unknown, for many genes. Sometimes, genes have also alternative transcription start sites, which are 

used in different tissues, or under different conditions. It is thus very difficult to determine the exact 

position of a motif, relative to the transcription start site, on the genomic sequence. Moreover, it might 

be the relationship between different motifs, and not always the position of the motif itself, which could 

influence the transcription level of the gene. One thus needs a tool which would be able to recognize 

“metamotifs” instead of single motifs, meaning a sequence, or a suite, of conserved motifs, in different 

promoter regions. The solution chosen in the CleanEx system, the link to the SSA server, was dictated 

by two major points. First, all the SSA tools have been generated and set up in-house, and they can thus 

be easily tailored for our purpose. Second, these tools are based on a precise alignment of the sequences 

around  a  defined  site  (here  the  transcription  start  site),  information  which  is  available  and  easily 

retrievable for a few genes in the other in-house database called Eukaryotic Promoter Database. By 

using the position information of EPD to align the genomic sequences of co-expressed genes, we are 

able to study some basic information regarding the promoter sequence, like extracting regions showing 

a non random distribution of nucleotides, or  finding the percentage of sequences containing known 

binding motifs. This is a first step in promoter analysis. If one would like to go ahead in that way, one 

would need to adopt a more general view on the existing motifs and their relationships (like position 

and distance regarding the other motifs, number of motif occurrence...) between the promoters of the 

co-expressed genes. One way to do it would be to link the first results obtained by SSA about non-

random sequences in the promoters with a new metamotifs tool. One would also need to take into 

account all the possible alternative transcription start sites of the co-expressed genes as an attempt to 

determine which one is used under which condition or in which sample.

7.2. Advantages and drawbacks of CleanEx

CleanEx combines the use of sequence annotation and expression data by linking a precise and up-to-

date target annotation database with a powerful expression data retrieval system.

CleanEx is indeed a very powerful tool for gene-oriented expression data retrieval and analysis. By 

using a  simple web-based tools  system, the user  can directly  access  a  complete  expression  viewer 
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showing very heterogeneous experiments and various conditions for the gene of interest. This viewer 

will provide the user with general information on his gene, like it’s name, description, corresponding 

genomic, transcriptomic or proteomic sequences, as well as gene expression information coming from 

very heterogeneous experiment types at a glance. Moreover, the multiviewer will then lead the user to a 

possible comparison of different clones corresponding to the same gene in one experiment, and will 

thus give a hint on either the quality of the experiment, or even the possibility of alternative splicing 

occurrences for this gene. This multiviewer for expression data can also give users quick clues on how 

to  pursue  their  researches.  Though  this  approach  has  been  already  used  in  other  databases 

(S.O.U.R.C.E, GeneCards), CleanEx is so far the only database which includes results coming from 

protocols  as  different  as  SAGE,  Affymetrix,  Dual-channel,  and  EST counts.  It  is  one  of  the  rare 

databases which allows not only expression data retrieval  from these heterogeneous techniques,  but 

which also provides gene-centered information about all possible features from these heterogeneous 

sources (SAGE tags, Affymetrix probe sets, as well as clones from Unigene). 

Regarding  the  comparison  of  a  gene  set  between heterogeneous  expression  datasets,  the  two tools 

accessible via the CleanEx web server have two significantly different functions, though they are both 

based  on  cross-dataset  comparison.  The  first  one,  the  step-by-step  tool,  allows  comparison  of 

expression  levels  in  different  datasets,  meaning  in  data  which  have  been generated  using different 

techniques, but which address a closely related question, like comparable tissue types. The question 

raised by this tool is : how coherent and how comparable are expression results if they come from 

different sources ? Do we retrieve the same genes in the over-expressed set ? By applying this step-by-

step method, one obtains a first clue on the comparability level of the selected datasets.  One could also 

use this kind of tool to orient or refine the design of a new experiment. This comparison tool is fully 

functional. As it is based on mean difference ranking, it works especially well for comparing highly 

differentiated expression levels in two experiment pools, for example high versus low expression. It still 

needs some more powerful statistical tools for the retrieval of genes which share a common expression 

pattern in the two experiments pools.

The second comparison  tool,  the comparison of  expression  levels  between two different  biological 

categories, gives accurate results and allows the discovery of  highly specific genes via a very simple 
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interface.  This tool is meant to provide expression measurements analysis,  but can also be used to 

retrieve common genes from different platforms. The experiment classification also allows the retrieval 

of the name and original dataset of comparable experiments in a big pool of heterogeneous datasets. 

The by-class  cross-dataset  analysis  tool  still  needs  further  developments.  The major  problem is  to 

generate a list of biological classes and to attribute these classes to the integrated datasets. This takes 

time, as the CleanEx database does not provide a list of keywords for each experiments. In fact, the 

creation of a biological keywords list, based on a  universal controlled vocabulary, as for example the 

GO  (Gene  Ontology)  system,  and  its  integration  and  indexation  for  each  dataset  would  probably 

increase the analysis capacity as well as the accuracy of this tool.

The basic structure of CleanEx, meaning the split by of the data in three different files according to their 

type,  not  only  allows partial  update  of  the  database,  but  also increases  the  search  speed and data 

retrieval via the common unique identifier which links these three files. The semi-automatic procedure 

for  GEO datasets  already  increased  considerably  the  number  of  integrated  SAGE and  Affymetrix 

datasets.  This  procedure  will  be  run  regularly,  as  a  way to  retrieve  newly  uploaded datasets,  and 

integrating new data will shortly become a fully automatic procedure, either from GEO or from other 

web sites, with different options according to the raw data format.

The most important and yet most useful part in CleanEx is still the CleanEx_trg file, which provides 

links between genes and features found in the expression experiments. This link clearly appears  to be 

missing  or  incomplete  for  many  features.  The  CleanEx  procedure,  which  provides  precise  and 

individual mapping results, is an easy and fast way to solve this lack of information. The Affymetrix re-

annotation files are probably the best example of this kind of information. The use of these files by 

external developers is a very encouraging step for maintaining this procedure in CleanEx. In fact, the 

probe-to-gene files could even be used to discriminate between splice variants spotted on the chips.

Still there are two major drawbacks linked to CleanEx. The first one is, as mentioned above, that the 

cross-dataset  tool  needs  much  more  solid  statistical  tools  for  more  precise  comparison.  The  other 

important  feature  to increase  the cross-experiment  comparison  precision  is  to  do the  analysis  on a 

bigger data sample. To achieve this, the dataset integration system in CleanEx has to be improved. On 
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one side, the automatic procedure will help solving this problem, but on the other side, if the number of 

integrated datasets will  of course increase,  the experiments range,  meaning the number of different 

experiment  types  in  CleanEx,  will  increase  as  well.  This  will  in  the  end  only  generate  more 

experiment's  classes,  and will  not increase the number  of experiments per  class.  In that sense,  this 

automatic procedure will not increase the accuracy of the statistical comparisons. One way to bypass 

this problem could be to filter the datasets’ integration by keeping only a few classes representing very 

specific problems (like cancer and tissue type, or survival analysis), and to temporarily leave the other 

datasets  aside.  To  achieve  this,  one  should  take  into  account  the  further  described  proposition  of 

creating an indexed keywords system based on a controlled vocabulary.

139



8. FUTURE DEVELOPMENTS

8.1. Web interfaces

8.1.1. Single CleanEx entries

To improve the CleanEx entry interface and to facilitate data extraction from this page, the accent will 

be put on classifying the expression links. So far, it could be quite difficult to understand and retrieve 

the appropriate information, due to the increasing number of expression links for each entry. A good 

solution to remedy this lack of clarity will be to put the expression links on another page. These results 

could be pre-selected by class on the CleanEx gene entry, and then displayed. This system will enable a 

short description of the linked datasets to be added to this intermediate page,  when keeping the results 

page short and readable.

8.1.2. Targets and annotation retrieval data

The target page itself does not need to be modified significantly. However, numerical results of the tags 

and probes mapping, though very useful, are not that easy to read. Linking these numbers to a basic 

viewer, as done by the DNA Chip Splice Machine for Affymetrix probes, will help users to interpret the 

data.  This  will  be  the  page  corresponding  to  the  CleanEx_exp  single  viewer.  If  one  thinks  of  a 

correspondence for  the CleanEx_exp multiviewer,  one could end up with the creation of a general 

viewer giving the accurate position of any possible feature present in any CleanEx dataset on the gene 

and, further on, on the chromosome. This kind of representation already exists, to a certain extent, for 

example  on  the  Ensembl  gene  viewer,  though  it  does  not  give  access  to  either  individual  probes 

positions or SAGE or MPSS tags. Having a general view with clones, Affymetrix probe sets, as well as 

SAGE tags on one single page could lead to more detailed interpretation of discrepancies in the results 

obtained by different techniques, as previously shown with the T0001 and GDS181 datasets.

8.2. Expression data analysis

So far, the step-by-step analysis is done without any normalization procedure, and as said before, with 

quite weak statistical tools. One way to improve this method will be to apply a more powerful analysis 
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procedure, like a Student's t-test, to the two datasets pools. Of course, using more complex tools implies 

a loss in the procedure speed. As one could be interested in quickly generated and general results, in the 

future, a choice of different statistical methods to compare the two pools of experiments will be given to 

the user.

8.3. Update, database formats and database growth

8.3.1. Update procedure : towards a new database format ?

The split into three different files for CleanEx is already a very helpful step to decrease the time taken 

by the update procedure. The whole database has to be rebuilt entirely at each release anyway . There is 

a file structure which avoids this so-called “from scratch” build, which is a relational database system. 

By using such a database format, one would be able to use an incremental update system, thus updating 

only entities which have changed in between two releases.  This will be especially efficient for the most 

time-consuming parts of the update, meaning the Affymetrix and single tags mapping procedure. The 

relational database interface also comprises a very complex and fast query language system which will 

allow an even faster entry retrieval from the CleanEx tables. Moreover, it will be easy as well to rebuild 

the three original flat files from these tables, so that one can still have access to the old CleanEx format. 

This could be useful for local batch experiments, for example. Given all these considerations, it would 

be very interesting to make a trial relational version of CleanEx to see how much time would be gained, 

for the update as well as for the on-line query retrieval system.

8.3.2. MAGE-ML : giving access to raw data in standard exchange format

As mentioned before, the first function of CleanEx is not raw expression data retrieval, and thus does 

not need to be fully MGED compatible. Nevertheless, in a near future, we plan to give public access to 

the raw expression data so that people could redo their own analysis. As standard formats now exist, we 

will have to think about creating an interface capable of recreating the standard format, as implemented 

in the Stanford Microarray Database. The MGED Society, via the MAGE_stk, provides a great number 

of scripts to allow this procedure, and it should thus be quite feasible to build such a tool and to provide 

raw data in an MAGE_ML compatible format.
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8.3.3. New datasets incorporation : adapting the GEO automatic procedure

As a way to increase the number of available data in CleanEx, a new automatic procedure will be set up. 

As all data published in major journals are now available in one of the three official data repositories, 

the automatic data incorporation implemented for GEO will be modified to fit the two other officially 

approved databases, namely ArrayExpress and CIBEX.  The formerly explained procedures to integrate 

Series, Samples, and Platforms from GEO will be adapted to the Experiment, Array, and Protocol level 

organizations of the ArrayExpress database respectively .  To avoid fuzziness in the data, a filter will 

allow data selection, based on the dataset description, according to the chosen centers of interest for 

CleanEx.
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