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Without music, life would be a mistake.

Friedrich Nietzsche
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Abstract

Activation of the Wnt pathway through mutation of the adenomatous polyposis coli

and -catenin genes is a hallmark of colon cancer. These mutations lead to

constitutive activation of transcription from promoters containing binding sites for

Tcf/LEF transcription factors. Tumour-selective replicating oncolytic viruses are

promising agents for cancer therapy. They can in principle spread throughout a

tumour mass until all the cancerous cells are killed, and clinical trials have shown that

they are safe except at very high doses. Adenoviruses are interesting candidates for

virotherapy because their biology is well understood and their small genome can be

rapidly mutated. Adenoviruses with Tcf binding sites in the E2 early promoter

replicate selectively in cells with an active Wnt pathway. Although these viruses can

replicate in a broad panel of colon cancer cell lines, some colorectal cancer cells are

only semi-permissive for Tcf-virus replication.

The aim of my thesis was to increase the safety and the efficacy of Tcf-viruses

for colon cancer virotherapy. I replaced the endogenous E1A viral promoter by four

Tcf binding sites and showed that transcription from the mutant promoter was

specifically activated by the Wnt pathway. A virus with Tcf binding sites in the E1A

and E4 promoters was more selective for the Wnt pathway than the former Tcf-E2

viruses. Moreover, insertion of Tcf binding sites into all early promoters further

increased viral selectivity, but reduced viral activity. I showed that Tcf-dependent

transcription was inhibited by the interaction between E1A and p300, but deletion of

the p300-binding site of E1A generally led to viral attenuation. In the semi-permissive

cell lines, replication of Tcf-viruses remained lower than that of the wild-type virus.

The E2 promoter was the most sensitive to the cell type, but I was unable to improve

its activity by targeted mutagenesis. To increase the toxicity of the Tcf-E1A/E4 virus,

I decided to express a suicide gene, yeast cytosine deaminase (yCD), late during

infection. This enzyme converts the prodrug 5-FC to the cytotoxic agent 5-FU. yCD

was expressed in a DNA replication-dependent manner and increased viral toxicity in

presence of 5-FC. Tcf-E1A and yCD adenoviruses are potentially useful vectors for

the treatment of liver metastases from colorectal tumours.
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Résumé

Dans la quasi-totalité des cancers du côlon, la voie Wnt est activée par des

mutations dans les gènes codant pour APC ou pour la -caténine. Ces mutations

activent de façon constitutive la transcription de promoteurs contenant des sites de

liaison pour les facteurs de transcription Tcf/LEF. Les virus réplicatifs spécifiques aux

tumeurs sont des agents prometteurs pour la thérapie cancéreuse. En principe, ces

vecteurs peuvent se propager dans une masse tumorale jusqu’à destruction de toutes

les cellules cancéreuses, et des études cliniques ont démontré que de tels vecteurs

n’étaient pas toxiques, sauf à de très hautes doses. Les adénovirus sont des candidats

intéressants pour la thérapie virale car leur biologie est bien définie et leur petit

génome peut être rapidement modifié. Des adénovirus comportant des sites de liaison

à Tcf dans leur promoteur précoce E2 se répliquent sélectivement dans les cellules qui

possèdent une voie Wnt active. Ces virus sont capables de se répliquer dans un grand

nombre de cellules cancéreuses du côlon, bien que certaines de ces cellules ne soient

que semi-permissives pour la réplication des virus Tcf.

 Le but de ma thèse était d’augmenter la sécurité et l’efficacité des virus Tcf.

Le promoteur viral endogène E1A a été remplacé par quatre sites de liaison à Tcf, ce

qui a rendu son activation dépendante de la voie Wnt. Un virus comportant des sites

de liaison pour Tcf dans les promoteurs E1A et E4 était plus sélectif pour la voie Wnt

que les précédents virus Tcf-E2, et un virus comportant des sites Tcf dans tous les

promoteurs précoces était encore plus sélectif, mais moins actif. J’ai montré que

l’interaction entre E1A et p300 inhibait la transcription dépendante de Tcf, mais la

délétion du domaine concerné dans E1A a eu pour effet d’atténuer les virus. Dans les

cellules semi-permissives, la réplication des virus Tcf était toujours plus basse que

celle du virus sauvage. J’ai identifié le promoteur E2 comme étant le plus sensible au

type cellulaire, mais n’ai pas pu augmenter son activité par mutagenèse. Pour

augmenter la toxicité du virus Tcf-E1A/E4, j’ai décidé d’exprimer un gène suicide, la

cytosine déaminase (yCD), pendant la phase tardive de l’infection. Cette enzyme

transforme la prodrogue 5-FC en l’agent cytotoxique 5-FU. yCD était exprimée après

réplication de l’ADN viral et augmentait la toxicité virale en présence de 5-FC. Les

virus Tcf-E1A et yCD sont des vecteurs potentiellement utiles pour le traitement des

métastases hépatiques de cancers colorectaux.
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1. Introduction

1.1. Adenoviruses

1.1.1. General description

Adenoviruses (Ad) are mild pathogens that cause respiratory diseases,

epidemic conjunctivitis and infantile gastroenteritis. They have an

icosahedral capsid and a linear, double-stranded DNA genome. The viral

DNA is covalently attached at its 5’ termini to the terminal protein (TP) and

is associated with core proteins (Figure 1.1). The adenoviral life cycle is

divided into two phases, which are separated by the onset of viral DNA

replication (Figure 1.2a). Early events comprise the viral entry into the host

cell and the subsequent transcription and translation of early genes. Early

viral gene products drive the cell into S phase, thus providing an essential

environment to sustain viral replication. Late gene products are mainly

structural proteins or proteins involved in capsid assembly. To date, more

than 50 human adenoviruses have been classified into 6 subgroups, based

on their hemagglutination properties and DNA homology. They infect a

great variety of post-mitotic cells; even those associated with highly

differentiated tissue. In this work, I will focus on human adenovirus type 5

(Ad5), which belongs to the subgroup C of adenoviruses.

1.1.2. Genomic organisation

The adenoviral genome is depicted in Figure 1.2b and contains,

adjacent to the coding regions, two inverted terminal repeats (ITRs) and a

packaging signal. The ITRs are 103 bp long in Ad5 and are essential for

viral DNA replication. The 170 bp packaging signal is located near the left

terminus and directs the interaction of viral DNA with the encapsidation

proteins. The transcription units are named according to the onset of their

transcription during the viral life cycle (early, intermediate, and late).



Introduction

12

Figure 1.1: (A) Electron microscopy image of adenoviral particles. (A4 virus, courtesy of J.
Bamat) (B) Schematic description of an adenoviral particle and (C) Legend.210

The viral chromosome carries five early transcription units (E1A,

E1B, E2, E3, and E4), two intermediate units (IVa2 and IX) and a major

late unit composed of five distinct cassettes (L1, L2, L3, L4, L5). In

addition, other late transcripts include those from the late E2 promoter (E2-

L) as well as E3 coding sequences that are spliced from the major late

promoter (MLP). Finally, the virus encodes two PolIII-dependent RNAs

called the virus-associated RNAs (VA RNAs). Their expression is greatly

increased during the late phase of infection.
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Figure 1.2: (A) Adenoviral life cycle. (B) Organisation of the adenoviral genome. The
genome size is in kilobases. The genome map is drawn conventionally with the E1A gene

at the left end. Both strands are transcribed with the rightward reading strand coding for the
E1A, E1B, IX, Major late, VA RNA, and E3 units and the leftward strand coding for the

E2, E4, and IVa2 units. 59

1.1.3. Entry

The attachment of the virus to the cell is mediated by high-affinity

interactions between the viral fibre knob and the coxsackie and adenovirus

receptor (CAR).16,19,202 Internalisation is triggered by the interaction between

the RGD motif (Arg-Gly-Asp) of the penton protein of the capsid and the

cellular integrins v 3 and v 5.
251 This interaction activates clathrin-
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mediated viral endocytosis via v integrins, small GTPases, and

phosphatidylinositol 3-kinase (PI3K). Release from the early endosomal

compartment is driven by the adenoviral protease, reduced pH and probably

signalling coming from the integrins. The virus is transported to the nucleus

in a microtubule- and dynein/dynactin-dependent pathway. It docks to the

nuclear pore complex and get disassembled with the help of nuclear histone

H1 and the H1 import factors importin  and importin 7. In addition, the

activation of protein kinase C by PI3K can also activate macropinocytosis, a

process that provides further internalisation of the virus.96

1.1.4. Early transcription units

The early phase of infection has three functions: 1) to drive the cell

into S phase, 2) to protect the cell against elicited antiviral defences, 3) to

produce viral proteins required for DNA replication. The products of the

early transcription units (E1A, E1B, E2, E3, and E4) accomplish these

functions and will be described in this chapter.

E1A proteins

The first gene to be expressed from the adenoviral genome is E1A.

Transcription of the E1A gene occurs rapidly due to a constitutively active

promoter117 and to the pIX protein of the capsid, which has been shown to

transactivate the E1A promoter.163 Following transcription, alternative

splicing of the E1A mRNA leads to production of the 12S and 13S mRNAs,

which are translated into the 243R and 289R E1A proteins, respectively.

Three smaller E1A mRNA species have been observed later during

infection but no role has been assigned to these late peptides so far.3 The

role of the E1A gene products is to force the cells to enter the cell cycle and

to transactivate the other early promoters. Comparison of E1A sequences

from various serotypes show that E1A proteins have four conserved regions

(CR1-CR4).8 These regions interact with a variety of cellular factors

involved in transcription and chromatin remodelling, such as pRb,

p300/CBP, ATF, and CtBP (Figure 1.3).
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For example, the E2F family of transcription factors regulates several

genes that are important for the progression through S phase (such as

dihydrofolate reductase, DNA polymerase , and thymidine kinase). In

quiescent cells, the retinoblastoma gene product (pRb) inhibits E2F by

direct binding. The binding of E1A to pRb relieves this repression, resulting

in activation of E2F-dependent transcription, and thus to promotion of the

cell cycle.45,179

E1A interacts with the histone acetyltransferases (HATs) p300/CBP66

and P/CAF197, but controversial studies indicate that E1A modulates the

HAT activity of these proteins either in a positive2 or negative40 manner.

E1A binds also to a complex containing the SWI2/SNF2-related protein

p400 and the cofactor TRRAP,81 suggesting a role of E1A in the modulation

of chromatin remodelling complexes.

The CR4 region of E1A binds to the C-terminal binding protein

(CtBP), a corepressor that binds to histone deacetylases. Interaction of CtBP

with the E1A C-terminus inhibits CR1-mediated transactivation in cis223 and

negatively modulates oncogenic transformation. The E1A-CtBP interaction

is decreased by acetylation of E1A by the bound HATs267 and modulates the

effect of E1A on several cellular genes.

Figure 1.3: Schematic description of the E1A proteins and their binding partners. The CR3
domain is absent in E1A 243R.210

The N-terminus of E1A has been shown to interfere with the

formation of the TBP-TATA complex,25 and to be sufficient for binding to

p300/CBP10.
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Lastly, the CR3 domain binds to the ATF/CREB family of

transcription factors,44,211 TBP,89,224 TFIID88 and Sur2, a subunit of the

mammalian Mediator.27 The transactivating CR3 domain is present in the

289R protein only and probably functions by bridging proteins of the

transcription machinery to transcription factors like ATF.

Apart from driving the host cell into S phase, E1A proteins

transactivate the other early viral promoters. E1A activates the E2 and E4

promoters by activating E2F and E4F factors, respectively.179 Similarly,

interaction of E1A with ATF results in activation of the E2, E3, and E4

promoters.150

E1B proteins

The E1B region encodes the E1B19K and E1B55K proteins, whose

major roles are to prevent E1A-induced apoptosis. E1B19K is similar to the

anti-apoptotic protein Bcl-2 and prevents procaspase-9 activation.50,105

E1B55K binds to p53 and can function as a transcriptional repressor.261

E1B55K, together with E4orf6, also inhibits p53-dependent apoptosis by

promoting p53 degradation.108,195 E1B55K binds to RNA126 and is involved,

together with E4orf6, in the preferential transport and stabilisation of late

viral mRNAs.9,63,191

E2 proteins

The E2 region codes for proteins of the viral replication machinery

and can be subdivided into two regions named E2A and E2B. E2A encodes

the single-stranded DNA binding protein (DBP), which is required to

stabilise the nascent DNA chain during adenoviral DNA replication.80 DBP

was also shown to activate a variety of viral promoters42 but other reports

showed that DBP has an inhibitory effect on early promoters.38 E2B

encodes the adenoviral polymerase (Pol) and the precursor of the terminal

protein (TP). The TP protein is covalently linked to the termini of the viral

genome, mediates its association with the proteins of the nuclear matrix and

serves as primer during viral replication.76,190
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E3 proteins

The E3 proteins are involved in the immunomodulation of the host;

they play various roles, such as inhibition of antigen presentation, inhibition

of ligand-induced cell death, and stabilisation of NF- B. At least seven

proteins are produced from the E3 region.127,255 (1) E3-gp19k is a

transmembrane protein that binds to the MHC class I heavy chain and

retains it in the endoplasmic reticulum,36 thus preventing antigen

presentation. (2&3) A heterotrimer of E3-10.4kD and E3-14.5kD

(RID & ) inhibits TNF  and Fas ligand-induced cell death by internalising

their receptors and promoting their degradation in lysosomes.255 (4) E3-

14.7k inhibits TNF-mediated apoptosis by enhancing IKK  phosphorylation

of IK , thus stabilising NF- B.127 (5&6) The function of E3-12.5kD and

E3-6.7kD is not known. (7) The E3-11.6K protein (adenoviral death protein,

or ADP) is a glycosylated transmembrane protein required at late stages of

infection to accelerate lysis and induce virus release from the host cell.236 A

recent report indicates that this effect might be due to the interaction of E3-

11.6K with MAD2B, a spindle assembly checkpoint protein.262 Although

originally described as an early protein, ADP is expressed late during

infection from the MLP and must therefore be considered as a late

protein.237 RID &  and E3-14.7kD are also detected predominantly late

during infection.111

E4 proteins

The E4 region encodes at least six distinct polypeptides defined as

E4orf1 to E4orf6/7 according to the arrangement of their open reading

frame. These proteins have a disparate set of functions, but are mainly

involved in the facilitation of viral mRNA metabolism and in the protection

of the viral DNA ends.

E4orf3 and E4orf6 are associated with E1B55K.94,151 E4orf3

reorganises components of nuclear bodies or PML oncogenic domains

(PODs) and probably brings E1B55K in close vicinity to these regions.

E4orf6 plays a role, with E1B55K, in the preferential cytoplasmic

accumulation of viral late mRNAs and in the degradation of p53. In the
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cytoplasm, E1B55K and E4orf6 were found in a complex with proteins

involved in the ubiquitin/proteasome pathway such as Cullin-5, Rbx1 and

Elongins.108,195 Based on these findings, a model was proposed according to

which E1B55K and E4orf6 replace MDM2, the RING-finger protein

responsible for targeting p53 to the proteasome pathway. E4orf3 and E4orf6

also enhance viral replication, reorganise the PODs and target the double

strand break repair machinery to prevent concatenation of viral genomes.

E4orf3 redistributes the double-stranded break repair complex Mre11-

Rad50-NBS1 and E4orf6 targets it for degradation.226 E4orf3 also binds to

the DNA-dependent protein kinase (DNA PK) and protects the ends of the

viral chromosome from non-homologous end joining.26 In E4orf3, the

inhibition of concatenation can be genetically separated from the enhanced

viral replication.70

E4orf6/7 transactivates the E2 promoter by binding to free E2F and

inducing its dimerisation.185 The E2F dimer binds with an increased stability

to the two inverted E2F-binding sites in the Ad5 E2 early promoter109 and in

the cellular E2F-1 promoter.215 E4orf6/7 is sufficient to displace pRb and

the related protein p107 from E2F complexes and activate E2 expression.184

E4orf1 and E4orf6 have partial transforming activities that are able to

stimulate E1 transformation. E4orf1 is related to dUTP pyrophosphatases

and interacts with PDZ domain-containing cellular proteins (like DLG and

MAGI-1).92 This leads to PDZ protein-dependent activation of PI3K, which

contributes to the transforming potential of E4orf1.77 E4orf4 interacts with

PP2A137 and downregulates AP-1 activity through hypophosphorylation of

both c-Fos and E1A.173 E4orf4 inactivates SR-mediated splicing in L1,

probably through dephosphorylation of the SR proteins.68 Finally, E4orf4

was shown to block yeast and mammalian cells in G2/M.139

1.1.5. Replication

Synthesis of new viral DNA is initiated at either terminus of the linear

genome. Replication requires the ITRs, where nuclear factor I and III bind

to recruit the Ad Pol-pTP complex. Once bound to the ITR, the pTP protein

serves as a primer for DNA replication and becomes covalently attached to
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the first nucleotide of the nascent strand.153 Chain elongation is mediated by

Ad Pol, DBP and nuclear factor II, a type I topoisomerase.175 DBP

multimerisation results in double-stranded DNA unwinding and enhances

Ad Pol processivity.58 Replication by strand displacement results in a DNA

duplex and a molecule of single-stranded DNA. The ITRs of the ssDNA

product can anneal intramolecularly and serve as a template for another

round of replication.149

1.1.6. Late phase and release

Late gene expression occurs after the onset of viral DNA replication.

The adenovirus major late transcription unit (MLTU) is differentially

spliced and polyadenylated. The resulting mRNAs are classically grouped

into five families, termed L1 to L5, based on the utilisation of different

polyadenylation sites (Figure 1.2b). This unit is placed under the control of

the major late promoter (MLP), whose activation relies on viral DNA

replication238 and on the delayed early viral genes IVa2162 and pIX.163 Genes

encoded by the MLTU are principally proteins of the capsid and non-

structural proteins that have roles in virion assembly.

In the late phase of infection, selective expression of viral proteins is

achieved through viral regulation of mRNA export and translation. First,

viral mRNAs are selectively exported to the cytoplasm. This selective

export depends on E1B-55K, E4orf6 and cellular proteins.43,85 Further

selective expression of viral proteins is achieved by inhibition of the cap-

dependent RNA helicase complex eIF4F, which is mediated by the L4

100kD gene product. This helicase is necessary for linear mRNA scanning

by the ribosome. Viral mRNAs transcribed from the MLP have a common

5’ sequence called the tripartite leader. This sequence helps late mRNAs to

bypass the requirement for eIF4F by a mechanism called ribosome

shunting.57,265

Once the capsid is assembled, the viral DNA packaging signal directs

the encapsidation of the viral DNA into the capsid. The L3-encoded

protease maturates at least four viral polypeptides to generate the mature VI,

VII, VIII, and TP proteins and render the virus infectious. The release of the
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progeny virus is facilitated by cytokeratin cleaveage268 and by the E3

adenovirus death protein (ADP).236 E4orf4 was shown to increase viral

release by inducing apoptosis in a novel, p53-independent manner, in

transformed or infected cells.30

1.2. Virotherapy

Cancer is the result of abnormal cell proliferation and deregulated

apoptosis.106 Standard chemotherapy and radiotherapy kill cancer by

inducing apoptosis but apoptosis resistant clones are likely to emerge during

treatment.114 Tumour-selective replicating oncolytic viruses are promising

agents for cancer therapy. They infect, replicate, and kill target cells by

various mechanisms. Provided their replication is restricted to cancer cells,

they can in principle spread throughout the tumour mass until all the tumour

cells are killed. Replicating viruses have a higher therapeutic index than

non-replicating viruses because they are selectively amplified in tumour

cells, leading to very high local concentrations. As they do not replicate

efficiently in normal cells, they have a low associated toxicity and clinical

trials have shown that oncolytic agents are safe except at very high doses.

Various strategies and vectors are used to achieve tumour-selectivity.

Some viruses such as reoviruses, parvoviruses, Newcastle disease viruses,

measles viruses, and vesicular stomatitis viruses, display natural

oncotropism, whereas others have to be specifically engineered to become

tumour-specific, like adenoviruses, herpes simplex viruses, and vaccinia

viruses. In my thesis, I have developed conditionally replicating

adenoviruses that target cells with an activated Wnt pathway. Therefore, I

will concentrate on the description of adenoviruses as oncolytic vectors.

The other vectors mentioned above have been reviewed recently.114,123,200

Human adenovirus 5 (Ad5) is a promising candidate virus for tumour

therapy because the biology of the virus is well understood and its small

genome can be rapidly mutated. The virus can be manufactured relatively

easily in large amounts, and clinical trials with attenuated forms have shown

that it is well tolerated except at very high doses. Four main types of
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modification have been proposed to convert the virus into an effective

therapeutic agent. First, tumour-specific replication can be achieved upon

deletion of essential viral genes. Second, expression of viral genes can be

regulated using tissue- or tumour-specific promoters. Third, mutating

proteins of the viral capsid can modify the viral tropism. Finally, the

toxicity of the virus can be increased by inserting an unconditional toxin or

a prodrug activating enzyme in the viral genome. The following chapters

will illustrate briefly these strategies.

1.2.1. Complementary defect approach

Adenoviruses encode proteins that drive infected cells into S phase

and anti-apoptotic proteins that prevent premature death of the infected cell.

Tumours are defective in controlling cell proliferation and apoptosis. Thus,

deletion of viral genes implicated in the control of these pathways will

prevent viral replication in normal, quiescent cells, while viral replication

will occur in cells that are actively cycling or have a corrupted apoptotic

pathway. These two processes are mainly linked to the pRb and p53

pathways, respectively.

The first recombinant adenovirus used to target a cellular defect was

the dl1520 virus (ONYX-015), which contains a deletion of the E1B55K

gene.22 The rationale was that E1B55K is needed to inhibit p53-dependent

apoptosis. In consequence, this virus would be attenuated in normal cells,

which have an intact p53 pathway. In most cancer cells, this pathway is

defective and should allow the virus to replicate and spread. Although the

selectivity of this virus had been questioned,93,107,208,242 it was used in phase I

to III trials before being discontinued. Clinical trials showed that dl1520

was safe but elicited few objective responses (14 %).177 Another study

showed that combination of virotherapy and standard chemotherapy led to

tumour regression in 63% of evaluable patients with intra-tumoural virus

administration.135 When delivered intra-arterially or intravenously, dl1520

failed to demonstrate any significant tumour remission.100,198

In addition to its role in inhibition of p53-dependent apoptosis,

EIB55K is also implicated in the preferential export of late viral mRNAs.
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To circumvent this problem, the Onyx group tested point mutants in the

E1B55K protein deficient in down-regulation of p53 only.219 Two mutants

failed to bind to p53 but enabled expression of late viral genes. One virus

was able to replicate as efficiently as wild-type in U2OS, a p53-positive cell

line, and both viruses showed no striking difference between p53-positive

and p53-negative cell lines. This indicates that abolition of p53-binding site

in E1B55K is not sufficient to render viral growth p53-dependent.

Unfortunately, no data is available on the behaviour of these new E1B55K-

mutant viruses in normal cells.

Mutations that abolish the binding of E1A to pRb ( Rb mutations)

have also been reported.65,84,120 Viruses carrying these mutations are not able

to activate the pRb pathway, and thus cannot force cells into S phase to

provide an environment suitable for viral replication. Such viruses do not

replicate in quiescent, normal cells but they replicate efficiently in tumour

cells. Unfortunately, they also replicate in actively cycling normal cells,

sometimes even better than wild-type.120 Overall, their replication is

attenuated in normal cells relative to tumour cells, although the wild-type

virus was not compared side-by-side in that particular experiment. These

viruses are promising agents to target various tumours and have been

improved by combining the Rb mutation with fibre mutations147, or with

tumour-specific promoters (see below).132

Transactivation of differentiation-associated genes by the histone

acetyltransferase p300 is inhibited by E1A. Although the basis for the p300

targeting is less clear than for the p53 or pRb targeting, mutations in E1A

abolishing p300 binding ( p300) were introduced either alone or together

with the Rb mutation.65,82,120 Viruses harbouring both mutations remain

dependent on the cycling state of the cells, similar to the Rb single

mutants, and the p300 mutation was reported to attenuate the virus,82,120

probably because of the importance of the interaction between E1A and

p300 in the viral life cycle. This suggests that the p300-binding site in E1A

should be retained in therapeutic viruses.

Viral infection triggers antiviral responses such as the interferon

pathway. The double-stranded RNA-activated protein kinase (PKR) is a

target of the interferon (IFN) pathway168 and is activated during infection by



Virotherapy

23

viral dsRNA. Active PKR phosphorylates the  subunit of eIF-2  to inhibit

protein synthesis and viral replication.254 Therefore, bypass of the interferon

pathway by therapeutic viruses is essential for viral growth. Virus-

associated RNAs I and II (VA RNAs) counteract the IFN response by

binding and inhibiting PKR.134 Downstream effectors of Ras block PKR

activation by dsRNA.174 For that reason, viruses that cannot bypass the PKR

pathway can replicate in Ras-transformed cells (defects in the Ras pathway

are common in tumour cells). This is the basis of the natural tumour-

selectivity of viruses such as measles virus and reovirus.209,227 To a similar

extent, adenoviruses harbouring a deletion in the VAI RNA gene have been

shown to target cells with an active Ras pathway.39 Active Ras can also

stabilise specific mRNAs, a feature that was used to target Ras-transformed

cells with viruses containing such an RNA-stabilising element in the 3’UTR

of the E1A gene.1

1.2.2. Tumour-specific promoters

Many kinds of tumour or tissue have been targeted by replacing

endogenous viral promoters by tissue- or tumour-specific promoters. For

example, prostate targeting was achieved upon replacement of the E1A

promoter by the PSA promoter, a prostate-specific cellular promoter.201 The

E1B promoter was further mutated by inserting enhancer and promoter

sequences from the prostate-specific kallikrein gene.264 Alternatively, E1A

and E1B promoters were replaced with the prostate-specific rat probasin

promoter and the prostate-specific PSA enhancer/promoter, respectively.263

These viruses lysed efficiently PSA-positive cells and reduced significantly

xenografts upon tail vein injection, provided the E3 region was maintained

in the constructs.

A broader targeting strategy consists of using the E2F-1 promoter to

drive transcription of E1A.131,240 It has been shown that the E2F-1 promoter

is active in tumours and cycling cells in vitro. In vivo, an E2F-E1A virus

was active in cancer cells but not in regenerating liver, suggesting that the

levels of “free E2F” was higher in tumours than in cycling cells.187 The

conserved region 2 of E1A is responsible for the transactivation of E2F-
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containing promoters. Simultaneous deletion of region 2 and replacement of

the E1A promoter by the E2F-1 promoter led to increased selectivity

compared to single modifications.132 Because E4orf6/7 can activate E2F,185

the E4 region was placed under the control of the E2F-1 promoter, resulting

in an even tighter regulation of both E2F-1 promoters present in the virus.

Deletion of the open reading frame E4orf7 was reported to have no effect

on selectivity, but this experiment was done only in the context of the most

selective virus, thus hindering potential changes.132

Other targeting strategies rely on selective or over-activation of

signalling pathways in a certain subset of cancers. A virus containing the

E1A gene under the control of the -fetoprotein (AFP) promoter was shown

to target AFP-positive cells, AFP being expressed in 80% of hepatocellular

carcinomas (HCC).102 Similarly, E1A was placed under the control of the

MUC1 promoter to confer breast cancer specificity.144 To target lung tissue,

the surfactant protein B promoter was engineered into already tumour-

selective viruses to drive the E4 genes.64 Insertion of hypoxia-responsive

elements in viral promoters leads to hypoxia-dependent regulation of viral

genes.21,124 This is of great interest because the core of the tumour is

generally hypoxic. Therefore, incorporation of such elements in viral

promoters could enhance the viral activity when oxygen supply is low.

Tcf4 is activated by -catenin upon Wnt signalling, a pathway

deregulated in virtually all colon cancers (see below). The laboratory of Dr.

Iggo was the first to describe replicating adenoviruses that target colon

cancer cells, where targeting is achieved by insertion of binding sites for

Tcf transcription factors in early viral promoters.34 The first viruses

contained Tcf binding sites in their E2 and E1B promoters. E2 was chosen

because of the absolute requirement for E2 gene products in virus

replication. E1B was mutated in order to reduce inflammation in vivo and

had no effect on virus growth in vitro.

I further developed these replicating adenoviruses by placing E1A

under the control of a Tcf promoter, either alone or in combination with

other mutant promoters. Multiply mutated viruses show increased

selectivity towards the Wnt signalling pathway but are attenuated in some
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colon cancer cell lines.82 Other groups have targeted colorectal cancer with

Wnt-dependant adenoviruses, which express the apoptotic gene fadd or

prodrug converting enzymes such as nitroreductase and HSV thymidine

kinase from a Tcf promoter.47,146,155 As these vectors are non-replicating,

they have less potential for further clinical development than replicating

vectors (see chapter 1.2.1).

1.2.3. Cellular binding

The third kind of modification for converting the virus into an

effective therapeutic agent was performed on the capsid proteins of

adenoviral vectors. Expression of the native cellular receptor CAR is often

reduced in tumour cells. CAR is an adhesion molecule and therefore it is

conceivable that its down-regulation helps the dissemination of invasive

tumours. Besides, CAR is present in many organs, including lung and liver.

CAR binding, as achieved by the wild-type capsid, favours the targeting of

normal cells.

Ablation of CAR and integrin binding decreases viral gene expression

in liver but does not decrease hepatic viral uptake.250 This is of specific

interest, as approximately 90% of the injected viruses are found in the liver

after intravenous injection and hepatotoxicity is one of the major hurdles

towards systemic delivery of any therapeutic virus.12 This suggests that

additional mechanisms are present in vivo. Other factors have been

proposed, like binding of the shaft domain of the fibre to heparan sulfate

proteoglycans221 or binding via Factor IX.218 Kupffer cells are liver-resident

macrophages that play an important part in adenovirus-induced

inflammation, vector persistence, and transgene gene expression.145,154,216

Depletion of these cells however does not decrease the number of viral

genomes in the liver. This suggests that Kupffer cells are not a major factor

underlying liver tropism.160

Various strategies have been followed for viral retargeting, and the

most popular approaches were the deletion of the CAR-binding site and the

insertion of specific peptide sequences into the knob domain of the fibre.

This was done either at the C-terminus of the fibre169,252 or in the HI loop, an
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exposed and flexible region of the fibre knob.61 The insertion of an RGD

sequence in the HI loop facilitates binding and entry via integrins that are

abundantly expressed on tumour cells.61 An alternative approach to extend

the tropism of adenoviruses is pseudotyping, where the fibre knob is

replaced with one from another, non-CAR binding serotype.110 In principle,

any sequence able to trimerise in a coiled-coil fashion can be fused to the

fibre tail to generate a chimeric fibre. Such strategies have been used to

insert the reovirus fibre214,241 or the phage T4 fibritin,141 which show CAR-

independent infection and retargeting to the novel receptor. The length of

the shaft has also been reported to play a role in viral infection. Both

shorter6 and longer217 shafts reduce liver transduction, most likely due to the

length and the flexibility of the fibre which must allow the penton base to

bind integrins while the knob domain is bound to CAR.258 Another

explanation is that long-shafted viruses cannot diffuse through the

fenestrated endothelium of the liver. Other viral coat proteins have been

mutagenised and ligands have been successfully added to penton base,67

hexon,247 and pIX proteins.62,245

Retargeting can also be achieved via conjugate-based strategies,

where a molecule is used to bridge the viral capsid to a cellular surface

protein. Bispecific antibodies that target both the fibre knob domain and a

cellular receptor have been shown to redirect the tropism of the virus.101,171

A similar strategy consists of using the fibre-binding domain of CAR133

fused to a peptide180 or a natural ligand like EGF.60 In addition, binding of

ligands to viruses can be achieved by biotinylation and bridging of the two

reagents. Taken together, the disadvantage of these strategies is the need to

manufacture and combine multiple reagents.

Another scheme to link targeting ligands to adenoviruses involves

coating of the virion with polymers like polyethylene glycol (PEG)56 or

poly-[N-(2-hydroxypropyl)methacrylamide] (pHPMA).74 These polymers

can be coupled to peptides for re-targeting. Addition of a ligand through

PEGylation was shown to expand viral tropism, but the effect on the

ablation of the native tropism differs from study to study. In general, the

native tropism was not ablated,56,204 although a recent study has shown

detargeting with PEGylated viruses.148 In contrast, pHPMA coating per se
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was shown both in vitro and in vivo to efficiently ablate viral uptake into

cells. Addition of ligands onto the polymer coat enabled virus re-targeting,

and pHPMA coating protected the virus from neutralising antibodies. With

a manufacturing process that is simpler than the one involving bi-specific

polypeptides, polymer coating represents a promising method for fast viral

re-targeting.

1.2.4. Suicide gene therapy

Clinical trials have shown that oncolytic agents are not potent enough

when used in monotherapies. In general, infection of tumour cells is

inefficient or insufficient to lead to complete tumour regression. It is

possible to express an unconditional toxin like TNF 166 or diphteria

toxin A157 from a virus in order to increase its toxicity, but this raises

biosafety concerns in a replicating human virus. A more prudent strategy is

to express a prodrug-activating enzyme, where a prodrug is converted into

its toxic form only in cells that express the transgene. The advantage of this

approach is that the toxic effect is limited to the period of exposure to the

prodrug, which itself is harmless. Initially, such genes were placed under

the control of a ubiquitous early promoter like CMV or RSV,48 but

expressing these genes only in tumour cells decreased systemic toxicity and

increased the therapeutic index of the viruses.266

The enzymes most commonly used for prodrug activation are HSV

thymidine kinase (tk) and E.coli or S.cerevisiae cytosine deaminase (CD),

although many other prodrug activating enzymes are being studied.97,136

Thymidine kinase converts gancyclovir (GCV) to GCV monophosphate.

Subsequent reactions catalysed by cellular enzymes lead to a number of

toxic metabolites. Amongst them, GCV-triphosphate competes with

deoxyguanosine triphosphate for incorporation into elongating DNA during

cell division, causing inhibition of the DNA polymerase and single strand

breaks.98 Cytosine deaminases convert the prodrug 5-fluorocytosine (5-FC)

to 5-fluorouracil (5-FU). 5-FU is a widely used cytotoxic drug which is

metabolised to fluorinated ribo- and deoxyribonucleotides which have

multiple effects, including inhibition of thymidylate synthase, altered DNA
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stability, induction of single- and double-strand breaks, and decreased RNA

stability.

In devising a strategy for expression of a suicide gene, one can choose

between use of an early and a late transcription unit. Early expression risks

killing the virus if the drug interferes with viral DNA replication.79,203

Nevertheless, viruses expressing a CD-tk fusion gene under a heterologous

promoter in the E1B55K region express high level of CD-tk and

combination virus, prodrug and radiation therapy has given promising

results in preclinical studies and in a phase I clinical study in prostate

cancer.78 Late expression of suicide genes is more attractive because

replication can increase the number of transcription templates to many

thousands of copies. Provided viral replication is restricted to tumour cells,

genes expressed from late promoters should also be restricted to tumour

cells. Therefore, there is no a priori reason to use a tumour specific

promoter. Expression of a late gene is possible by making a fusion protein,

by splicing a new exon into an existing transcript112 or by reinitiation of

translation from an internal ribosome entry site (IRES).83,213

1.3. Wnt pathway

The Wnt signalling pathway is evolutionary conserved from

nematodes to vertebrates (see Figure 1.4 for an overview of the pathway).

This pathway is active during embryogenesis, where it has been shown to

regulate many patterning events, like the formation of the dorso-ventral axis

in the developing vertebrate embryo.
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Figure 1.4: Overview of the Wnt signalling pathway. (A) In absence of a Wnt signal, -
catenin is phosphorylated by GSK-3 , ubiquitinated by the SCF -TrCP complex, and targeted

for degradation. Tcf/Lef transcription factors actively repress transcription by recruiting
corepressors like histone deacetylases. (B) In presence of a Wnt signal, the destruction

complex is destabilised and -catenin can act as a cofactor for Tcf/Lef transcription factors.
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In the adult body, the Wnt pathway is particularly linked to stem cell

compartments, such as bone marrow, hair follicles and crypts of the

intestine. It is not clear whether Wnt is important for the maintenance of the

stem cell compartment or for the amplification of the transiently amplifying

cells. In the intestinal crypts, activation of the Wnt pathway leads to

expression of c-myc, which blocks the transcription of the cell-cycle kinase

inhibitor (CKI) p21. This enables the cells to progress through the cell

cycle.244

Wnt ligands can activate several pathways, namely: the canonical Wnt

pathway, the planar cell polarity pathway, and the Wnt/Ca2+ pathway. These

pathways branch early in the signalling cascade and are modulated by

various proteins and protein-protein interactions.129 In my thesis, I will focus

on the canonical Wnt pathway, which is mutated in many cancers. In this

pathway, binding of Wnt to its receptors induces a cascade of events that

leads to the stabilisation of -catenin and its translocation into the nucleus

(Figure 1.4b). There, it functions as a cofactor for transcription factors of

the T-cell factor/lymphoid enhancing factor (Tcf/Lef) family to turn on

expression of target genes such as c-myc, cyclin D1, and axin2. Besides its

role in the Wnt signalling pathway, -catenin is involved in the formation of

adherent junctions and links E-cadherin to -catenin, which in turn binds to

the actin cytoskeleton. In conclusion, -catenin is distributed into three

main cellular pools: membrane-bound, cytoplasmic and nuclear. The first

pool participates in adherent junctions while the two others are mostly

devoted to regulation of the Wnt signalling pathway.

1.3.1. Molecular mechanisms of the Wnt signalling pathway

In absence of Wnt signal, -catenin is part of a multiprotein

cytoplasmic complex, called the “destruction complex”, that contains APC,

axin, CKI and GSK3  (see Figure 1.4 for an overview of the pathway,

Figure 1.5 for a schematic description of the main proteins,182 and Giles,

2003 for a recent review90). APC is a large protein that interacts with many

proteins including -catenin, axin, EB-1 and DLG, and is capable of
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homodimerisation. It has multiple roles in cell migration, adhesion, spindle

orientation, cell cycle regulation and chromosome stability.189 APC exports

-catenin to the cytoplasm and targets it to the destruction complex.122,207

The critical role of APC in tumorigenesis is linked to its capacity to down-

regulate cellular levels of -catenin (see chapter 1.3.3.). In the adult body,

APC is mainly expressed in regions where cell replication has ceased and

terminal differentiation is established.170

Figure 1.5: Structure of the proteins of the Wnt signalling pathway. Arm=armadillo
repeats, TA= Transactivation domain. O=oligomerisation domain. P=PDZ domain. D=DIX

domain. R=RGS domain. H=HMG domain. 15R, 20R= -catenin interaction domains.
SAMP=axin-binding sites. NES=nuclear export signal. MCR = mutation cluster region.

Div = diversin. Gro = groucho. Cadh = Cadherin. Chi = Chibby. 182
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Axin acts as a scaffold protein that brings together GSK3 , APC, -

catenin, and diversin.128 This complex stimulates a two-step phosphorylation

of -catenin. First, Casein Kinase I (CKI) binds diversin and phosphorylates

-catenin at Ser-45. Then, once primed by CKI, -catenin is phosphorylated

on the remaining N-terminal sites by GSK3 ,7,159 which can also

phosphorylate axin to increase the stability of the destruction complex.259

-catenin is a poor substrate for “free” GSK3  and can only be

efficiently phosphorylated within the destruction complex.

Polyphosphorylated -catenin is then recognised by the F-box -TrCP and

degraded via the ubiquitin/proteasome pathway.158 In the nucleus, Tcf

transcription factors are bound to their target DNA sequence and to

transcriptional repressors of the groucho family, which in turn recruit

histone deacetylases to actively repress promoters by chromatin

condensation.46,205

Canonical Wnt signalling is initiated upon binding of a Wnt ligand to

a member of the Frizzled (Fz) family of receptors and to the co-receptor

LRP–5/6.20,192 Upon Wnt binding, the intracellular domain of LRP-5

interacts with axin and destabilises the scaffold protein165. In parallel, Wnt

binding to Fz leads to phosphorylation of Dishevelled (Dsh),260 which is

followed by Frat-1-mediated dissociation of GSK3  from axin (Figure

1.4b). Once the destruction complex is destabilised, phosphorylation of -

catenin is stopped and the protein accumulates and translocates to the

nucleus.

-catenin contains 12 armadillo repeats that mediate its interaction

with proteins such as cadherins, APC, axin, and Tcf. These repeats are

sufficient for nuclear import.71 Nuclear sequestration has also been shown to

be mediated by APC via the APC/ -catenin complex.178 Once in the

nucleus, -catenin binds to Lef/Tcf transcription factors and to additional

proteins implicated in histone acetylation and remodelling such as

CBP/p300119,233 and Brg-1.11 Furthermore, -catenin activation is regulated

by BCL9 and Pygopus through an unknown mechanism.140 Active -

catenin-Tcf complexes drive transcription of target genes such as c-Myc,116

CyclinD,234 MMP-7,28 PPAR ,115 and axin2/conductin.161
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1.3.2. Colorectal cancer and Wnt

Colorectal cancer (CRC) is a leading cause of mortality with about

300’000 new cases and 200’000 deaths in Europe and in the USA each year.

Most colorectal cancers arise within pre-existing adenomatous polyps or

adenomas, which are common lesions. Studies have shown a prevalence of

about 35% in Europe and in the USA, with lower rates in Asia and Africa

(10-15%). About 5% of adenomatous polyps are estimated to become

malignant, a process that takes 5 to 10 years.181

The risk of developing colorectal cancer is determined by genetic

predisposition and environmental factors such as diet. Hereditary forms of

CRC are familial adenomatous polyposis (FAP) and hereditary non-

polyposis colorectal cancer (HNPCC). FAP patients have a mutant APC

gene, whereas HNPCC patients have mutations in genes involved in DNA

mismatch repair.

Each cell must undergo multiple mutations for malignant

transformation to occur. Vogelstein and colleagues have proposed a model

where multistep genetic events favour the progression of sporadic CRC.

These events involve oncogenes like K-Ras and myc and tumour suppressor

genes like APC and p53.73 Remarkably, virtually all CRCs have activating

mutations of the canonical Wnt signalling pathway, leading to stabilisation

and nuclear accumulation of -catenin. The vast majority of sporadic colon

cancers (85%) have truncated APC proteins and both alleles of APC need to

be mutated for loss of growth-suppressing activity. When the first mutation

occurs close to codon 1300 (before the axin-binding sites), the second allele

usually undergoes loss-of-heterozygosity. On the other hand, when the

mutations are outside this region, the second allele is often mutated in that

particular region. This suggests that the best selective advantage for cancer

cells is achieved by retention of a single truncated APC allele that retains

the ability to bind to -catenin but fails to bind to axin. In theory, such a

protein is still able to facilitate the nuclear import of -catenin, but is unable

to export and degrade it (see chapter 2.2).

The remaining 10% of the CRC tumours have mutations that affect

the phosphorylation sites of -catenin, thus making it untargetable for
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degradation. APC and -catenin mutations are mutually exclusive,

consistent with their redundancy in the activation of the Wnt pathway.

However, -catenin mutations are under-represented in invasive cancers

and seem less potent than APC mutations to progress from small adenomas

to invasive carcinomas. This suggests that both mutations are not

functionally identical and that APC is the preferred target for mutations in

the Wnt pathway.90

Mouse models of heterozygous mutations for truncated alleles of APC

mimic more or less the phenotype encountered in FAP patients and develop

numerous adenomas throughout the gastro-intestinal tract.228 Genotyping of

these early lesions showed that all had lost their wild-type APC allele,

indicating that the mutation in APC is an early event in tumour initiation.186

Mice harbouring a truncated APC that can still degrade -catenin remain

tumour-free.222 Stem cells homozygous for this mutation however exhibit

chromosomal instability, underlining the role of APC in chromosomal

segregation.75 Mutation in APC is of particular importance to CRC as it

results to lack of -catenin degradation and improper segregation of

chromosomes. This links the activation of the Wnt pathway to chromosomal

instability (CIN), a phenomenon observed in most of the APC mutant cells.

1.4. Pre-existing Tcf-viruses

As the Wnt pathway is predominantly switched off in the adult body

but constitutively activated in most colorectal cancer, Wnt-targeting viruses

should specifically target colon cancer cells. In order to target the Wnt

pathway, Tcf-binding sites were inserted in endogenous viral promoters to

activate the transcription of essential viral genes, a project initiated by M.

Brunori in the lab of Dr. R. Iggo. The first viruses included Tcf binding

sites in the E2 promoter as well as silent mutations in the nearby E3

promoter. The E2 promoter was chosen because mutations elsewhere in the

virus or cell cannot bypass the absolute requirement for E2 gene products in

virus replication, and E3 was mutated to avoid cross-talk between the two

promoters. Tcf sites were also inserted in the E1B promoter. This reduced
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inflammation in vivo but had no effect in vitro.34 Although these viruses are

approximately 100-fold selective for cells with an activated Wnt pathway,

several colon cancer cell lines were found to be only weakly permissive for

the Tcf-viruses, despite harbouring activating mutations in the Wnt

pathway. These cell lines are called semi-permissive. During the course of

my Ph.D. studies, I focused on the improvement of Tcf-targeting vectors

and on the difference between permissive and semi-permissive cell lines.
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2. Results and discussion

2.1. Summary

To increase the selectivity of the Tcf-viruses, I placed the E1A gene

under the control of a tightly regulated Tcf promoter. To achieve this, I

deleted the region ranging from the second half of the ITR to the TATA box

and replaced it by four consensus Tcf binding sites. To ensure proper

encapsidation of the virus, the packaging signal was inserted at the right end

of the genome. In addition, in order to maintain the symmetry needed for

proper viral DNA replication, three Tcf binding sites were inserted in the

right ITR. I showed by reporter assays that the E1A promoter is regulated

by the Wnt pathway and that it is more active than the endogenous

promoter. In contrast, the E4 promoter was shown to be less active than the

wild-type promoter. Cotransfection experiments showed that the E1A 12S

protein has an inhibitory effect on the Tcf-promoters. I showed by

cotransfection of various E1A deletion mutations that E1A inhibits Tcf-

dependent transcription partly through sequestration of p300, which at the

time was shown to be a co-factor of -catenin.119,233

To characterise the effect of the mutations in the E1A and E4

promoters in the context of the viral genome, I constructed viruses

containing the E1A/E4 changes in either wild type or Tcf-viruses. My

results showed that the activity of the E1A promoter depends on an

activated Wnt pathway, and that selective expression of E1A leads to

selective production of progeny virus and viral spread. The activity and

selectivity of the Tcf-E1A/E4 virus was comparable to that of the Tcf-E2

viruses. Therefore, a Tcf-driven E1A promoter confers selective viral

replication in cells with an active Wnt pathway. Viruses containing Tcf

binding sites in the E1A, E1B, E2, and E4 promoters showed enhanced

selectivity (100’000-fold) for cells with an active Wnt pathway. Deletion of

the p300-binding domain of E1A in the context of a virus did not lead to

increased viral activity but resulted in the attenuation of the virus.82
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It had been shown that the cellular permissivity to the Tcf-viruses

correlates with their Wnt activity, but cotransfection of members of the

Tcf/ -catenin complex failed to increase the activity of a Tcf-promoter in

various colon cancer cell lines. This suggests that the reduced Wnt activity

might be the consequence of something either located downstream of -

catenin, or regulating -catenin stability or localisation. Cotransfection or

stable expression of the downstream activators BCL9 and Pygopus showed

that these factors could not be held responsible for the difference between

semi-permissive and permissive cell lines.

Analysis of mutations in -catenin or APC, as well as -catenin

localisation studies, indicated that the presence of an APC protein capable

of exporting -catenin to the cytoplasm correlates with semi-permissivity.

The Tcf-E2 promoter was shown to be the most sensitive to cell type and

Tcf-viruses failed to induce host cell protein shut-off in a semi-permissive

cell line. To improve the activity of the Tcf-E2 promoter, I did targeted

mutagenesis but failed to see any improvement in reporter assays. Because

reporter assays might not reflect the behaviour of the promoter in the

context of the viral genome, I constructed a virus that will permit screening

of multiple E2 promoters.

Another way to increase the activity of the Tcf-E2 promoter is to bind

a transactivator to -catenin. The virus uses the E1A protein to bridge

transcription factors like ATF to components of the mediator, a multiprotein

complex involved in transcription activation. The HD2 domain of BCL9

was shown to bind to -catenin without disrupting the -catenin/Tcf

interaction. Therefore, an E1A-HD2 fusion protein was constructed to

bridge E1A to -catenin during adenoviral infection. Because reporter

assays had shown that E1A-HD2 can increase the activity of a Tcf promoter

in a -catenin dependent manner, I constructed an E1A-HD2 virus that

might have increased activity in cells with an activated Wnt pathway.

Finally, to increase the toxicity of the existing Tcf viruses, I expressed

yeast Cytosine Deaminse (yCD) with late kinetics in a Tcf-E1A/E4

backbone. yCD is expressed in these viruses either through re-initiation of

translation after the fibre or by alternative splicing. I showed that yCD is
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expressed late during infection, and that its expression is dependent on viral

DNA replication, following the expression kinetics of endogenous late

genes. Treatment of infected cells with the prodrug 5-FC had little effect on

viral replication but increased the cytotoxity of the Tcf-viruses. The yCD

viruses showed a slightly increased activity in non-permissive cell lines, due

to expression of early viral proteins through an unknown mechanism, but

retained their selectivity for cells with an activated Wnt pathway.83
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2.2. Adenoviruses used in this study

In this thesis, the viruses will be described with a codename

summarising their structure. For example, a Tcf-E1A/E4 virus will be

described as the “A4” virus. All the viruses used in this study are shown

schematically in the figure below, and the mutations are listed in the legend.

Figure 2.1 Schematic diagram showing mutant regions in the viruses used in this study. To
facilitate interpretation of the figures, the viruses are given a codename summarising their
structure: A, B, 2, 4 = Tcf sites in the E1A, E1B, E2, and E4 promoters, respectively. 3 =
silent mutations in the NF1, NF B, AP1, and ATF sites in the E3 promoter. 3' = as 3, but

without the ATF site mutation.  = deletion of amino acids 2-11 in E1A that abolishes
p300 binding. H = E1A-HD2. FT = Floxed- and Tet-regulated E2 promoter. C = yCD

coding sequence. I = EMCV IRES. S = Ad41 long fibre splice acceptor sequence.
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2.3. Adenoviruses with Tcf-binding sites in multiple early
promoters

2.3.1. Introduction

The group of Dr. Iggo was the first to describe adenoviruses that

replicate in response to activation of the Wnt signalling pathway.34 The

rationale for the development of these viruses was that Wnt signalling is

pathologically activated in virtually all colon tumours,193 leading to

activation of promoters containing Tcf binding sites.138 Originally, Tcf

binding sites were inserted in the adenovirus E2 promoter because

mutations elsewhere in the virus or cell cannot bypass the absolute

requirement for E2 gene products in viral replication. In order to achieve

tight regulation of E2 transcription, the adjacent E3 enhancer was mutated.

In addition, Tcf sites were inserted in the E1B promoter, but this particular

change did not affect viral replication in vitro. The Tcf-E2 viruses showed a

50- to 100-fold decrease in replication in non-permissive cell lines whereas

their activity was comparable to wild type Ad5 in many but not all colon

cancer cell lines.34 The remaining colon cell lines were semi-permissive for

the Tcf-viruses.

In this chapter, I will describe the two approaches I initially followed

to render the existing Tcf viruses active in a broader range of colon cell

lines. I first inserted Tcf-binding sites in the E1A and E4 promoters and

showed that the activity of the Tcf-E1A promoter was Wnt-dependent,

whereas the activity of the Tcf-E4 promoter was reduced in a non-specific

manner. Second, I mutagenised the E1A protein to determine which of its

domains represses -catenin-dependent transcription, and mapped this

domain to the p300-binding domain of E1A. Mutation of this domain

partially relieved E1A-mediated repression of Tcf-dependent transcription

in reporter assays. Nevertheless, in the context of the virus, this p300

mutation did not lead to increased transcription from the Tcf-E2 promoter

and actually reduced the viral activity. Similar attenuation by mutation of

the amino-terminus of E1A had been reported by the Onyx group.120

Mutation of all early promoters resulted in highly selective, yet attenuated
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viruses. The new virus containing only the Tcf changes in the E1A and E4

promoters (A4) was selective for cells with active Wnt signalling and active

in most of the colon cancer cells studied.

2.3.2. Results

Mutation of the E1A and E4 promoters

The wild type E1A enhancer contains two types of regulatory

element, termed I and II,117 which overlap the packaging signal. In addition

to these elements, there are transcription factor binding sites in the inverted

terminal repeat (ITR) and close to the E1A TATA box (Figure 2.2a,

E1Awt). To produce a tightly regulated E1A promoter responding only to

Wnt signals, the E1A enhancer, the packaging signal, and half of the ITR

were deleted and replaced with four Tcf binding sites. The changes in the

ITR do not affect the minimal replication origin.41 The resulting E1A

promoter contains four Tcf sites and a TATA box (Figure 2.2a, E1Amut).

To maintain the symmetry of the terminal repeats and preserve the ability of

the two ITRs to anneal during viral DNA replication, three Tcf sites were

inserted in the right ITR. The packaging signal was also inserted at the right

end of the genome to permit proper encapsidation of viral DNA (Figure

2.2b, E4mut).
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Figure 2.2: Schematic diagram showing the mutagenesis of (A) the E1A promoter, and (B)

the E4 promoter. Both regions are shown from the ITRs to the beginning of the first open

reading frame. (C) Legend. The dark triangles represent the A motifs in the packaging

signal.

The promoters were tested in reporter assays (Figure 2.3) in H1299

and SW480. H1299 is a human lung cancer cell line that does not contain

activating mutations in the Wnt pathway. SW480 is a colon cancer line with
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a truncated APC. In H1299, the basal activity of the mutant promoter is

lower than that of the wild-type promoter. Upon cotransfection of N- -

catenin, the E1Awt promoter was only slightly activated in H1299 (Figure

2.3a; lanes labelled “ ”), whereas the Tcf-E1A promoter was activated

about 10-fold to reach a final level that was 2-fold that of the wild-type

promoter. This suggests that the Tcf-E1A promoter should confer selectivity

for cells with an active Wnt pathway when incorporated into adenoviruses.

Figure 2.3: Activity of the E1A and E4 promoters measured by luciferase reporter assay.
(A) Activity of the wild type or Tcf- E1A promoter in H1299 either in absence (-) or in

presence ( ) of stabilised -catenin. Activity of the various E4 promoters in H1299 (B) or
SW480 (C). The Mut-E4 promoter has three Tcf binding sites but no encapsidation signal.

Values are expressed in arbitrary units on a linear scale.

The mutant E4 promoter (Tcf-E4) was not regulated by the Wnt

pathway (Figure 2.3b; compare “–“ and “ ”). Surprisingly, its activity was

lower than that of the wild-type E4 promoter, even in the presence of N- -

catenin, or in the permissive cell line SW480 (Figure 2.3c). The Mut-E4

promoter contains the three Tcf binding sites in the ITR but does not have

the encapsidation signal. This promoter was more active than the wild-type

promoter in SW480 cells (Figure 2.3c, compare Mut-E4 with E4wt). This

suggests that insertion of Tcf-binding sites in the E4 promoter confers some

Wnt-inducibility, although this was not directly tested. Addition of the

packaging signal in Tcf-E4 led to a 3-fold decrease in promoter activity
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(Figure 2.3c, compare Tcf-E4 with Mut-E4). Such a loss in activity was

unexpected as the packaging signal contains some enhancer sequences of

the E1A promoter117. It is possible that the localisation of these enhancer

sequences within the E4 promoter is not compatible with proper activation

of transcription. Moreover, insertion of the packaging signal increased the

distance between the Tcf binding sites and the TATA box, further

preventing Tcf-dependent transactivation. Provided the Tcf-E4 promoter

can sustain efficient viral activity, reduced activity may help to reduce

hepatotoxicity, as E4 gene products have been reported to play an active

role in liver damage.51 In conclusion, this construct remains a valid

candidate for the development of Tcf-viruses.

Tcf-E1A/E4 promoter viruses

Because of ITR symmetry and packaging signal requirements, both

the E1A and E4 mutations must be present in the virus. Adenoviral genomic

DNA was created by homologous recombination in yeast86 using various

adenoviral backbones such as wtAd5 or Tcf-E2 viruses.34 The viral genomes

were converted to virus in C7 cells5 expressing a stable -catenin mutant.

Primary virus stocks were plaque purified and expanded on SW480 cells.

The Tcf-E1A/E4 mutant viruses grew readily on SW480 cells, indicating

that the ITR mutagenesis and exchange of the packaging signal are

compatible with the production of viable virus. All the constructs are shown

schematically in Figure 2.1 (page 40). Viruses are described with letters and

numbers that correspond to the mutant promoters. For example, the Tcf-

E1A/E4 virus is described as the “A4” virus (see legend of Figure 2.1 for

further description of the abbreviations used in this study). To determine

whether the Tcf-E1A promoter responds to activation of the Wnt pathway

in the context of the virus, I infected cMM1 cells with A4 virus. cMM1

cells are a clone of H1299 lung cancer cells expressing N- -catenin from a

tetracycline-regulated promoter.164 Wnt signalling was activated by removal

of tetracycline from the medium (Figure 2.4, lanes 5-8, N- -catenin). This

had no effect on E1A expression by wild type Ad5, but induced expression

of E1A by the A4 virus (Figure 2.4, lanes 3 & 7, E1A). Since DBP is
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expressed from the normal E2 promoter in A4, the DBP level should rise

following activation of Wnt signalling, because the normal E2 promoter is

activated by E1A. The promoter was weakly active in the absence of E1A in

H1299 cells, and showed a moderate and reproducible increase in activity

following induction of N- -catenin expression (Figure 2.4, lanes 3 & 7,

DBP). Thus, the mutant E1A promoter responds to activation of the Wnt

pathway, and this feeds through to an effect on expression of viral

replication proteins.

Figure 2.4: The Tcf-E1A promoter responds to activation of wnt signalling. Western blot of

cMM1 cells probed for E1A and DBP 24 hours after infection with wild type Ad5 and Tcf-

viruses. Tetracycline withdrawal leads to expression of N- -catenin in these cells (“-tet”).

The effect of the Tcf-E1A/E4 promoter substitutions was then tested

on a panel of colon cell lines with active Wnt signalling: SW480, ISREC-01

and HT29 have mutant APC; Hct116 has mutant -catenin; and Co115 has

microsatellite instability but the defect in Wnt signalling has not been

defined.55 Three control cell lines with inactive Wnt signalling were tested:

H1299, HeLa and low passage normal human small airway epithelial cells

(SAEC). E1A was detectable by western blotting 24 hours after A4

infection of all of the colon cell lines but not H1299, HeLa or SAEC (Figure

2.5, lane 3, E1A). Relative to wild type Ad5, the level of E1A expression

was higher in SW480 and ISREC-01, the same in Co115 and lower in HT29

and Hct116 (Figure 2.5, compare lanes 2 & 3, E1A). The hierarchy of

responsiveness of the Tcf-E1A promoter in the different cell lines was thus

the same as with the Tcf-E2 viruses34 but the level of expression relative to
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the normal promoter was higher for E1A than E2. Since the E1B and E2

enhancers are wild type in A4, these transcription units should be inducible

by E1A. The E4 promoter in A4 is potentially able to respond to both E1A

and Tcf.

Figure 2.5: Western blot for E1A, E1B55k, DBP and E4orf6 24 hours after infection of

different cell lines with wild-type Ad5 and Tcf viruses. SW480 and ISREC-01 are

permissive colon cancer cell lines. Co115, Hct116 and HT29 are semi-permissive colon

cancer cell lines. H1299, HeLa and SAEC are non-permissive cell lines in which the Wnt

pathway is inactive. The SAEC blot is derived from two separate experiments giving

similar wild-type Ad5 activity.

To test this, I tested the expression of the E1B55K, DBP and E4orf6

proteins. Consistent with the E1A results, all three proteins were expressed

normally in SW480, ISREC-01 and Co115, and undetectable in HeLa and
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SAEC (Figure 2.5, compare lanes 2 & 3). Despite the absence of E1A

expression, all three proteins were expressed weakly in H1299 cells,

suggesting that these cells contain an endogenous activity that can substitute

for E1A. Compared to wild type infections, the levels of E1B55K, DBP and

E4orf6 were slightly reduced in HT29 and more substantially reduced in

Hct116 cells infected with A4 (Figure 2.5, compare lanes 2 & 3).

Viruses with Tcf sites in multiple early promoters

To test the effect of regulating E1A expression in the context of the

previous generation of Tcf viruses, cells were infected with B23' and

AB23'4 (Figure 2.5, compare lanes 5 & 6). E1A and E4orf6 expression

were well preserved in SW480, ISREC-01 and Co115 infected with

AB23’4, but DBP expression was maintained only in SW480 and ISREC-

01, and even there it was slightly lower with AB23’4 than wild type Ad5

(Figure 2.5, compare lanes 2 and 6, DBP). In the remaining cell lines, DBP

expression was undetectable with AB23’4. Reduction of E1A protein levels

was seen in various cell lines even when E1A was expressed from its

endogenous promoter (Figure 2.5, compare lanes 9 and 2, E1A), probably

because lower DBP levels resulted in less viral DNA replication. Insertion

of Tcf sites in the E1A, E1B, E2 and E4 promoters abolished the E1A-

independent expression of E1B55K, DBP and E4orf6 seen in H1299

infected with A4 (Figure 2.5, compare lanes 3 and 6, H1299). In

consequence, insertion of Tcf sites into multiple early promoters produces

an extremely selective virus but one with reduced activity in some colon

cell lines.

Inhibition of Tcf-dependent transcription by E1A

The defect in early gene expression from the Tcf viruses in the semi-

permissive cell lines is not restricted to a single promoter. Instead, there

appears to be a general defect in activation of viral Tcf promoters. This can

be partly explained by generally weaker Tcf activity. The reason for this is

unclear, but it does not reflect a lack of Wnt pathway activation per se,
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since most of the semi-permissive cell lines contain mutations in either APC

or -catenin, and the Tcf-E2 transcriptional activity measured by luciferase

assay is not increased by transfection of exogenous N- -catenin, hTcf4,

combination of the two proteins, or a fusion protein between the

transactivation domain of -catenin and hTcf1 ( -cat-hTcf1; Figure 2.6).

The differences between permissive and semi-permissive cell lines will be

further examined in chapter 2.4.

Figure 2.6: Members of the Tcf/ -catenin complex are not limiting in SW480 and Co115

colon cancer cell lines. Luciferase assays in SW480 and Co115 using a Tcf-E2 reporter. -

cat-hTcf1 is a fusion protein between the transactivating domain of -catenin and hTcf1.

The values are normalised to the activity of the Tcf-E2 promoter and expressed on a linear

scale.

An alternative explanation for this semi-permissivity is that E1A

could inhibit the viral Tcf promoters, for example, by sequestering p300,

which is a coactivator of Tcf-dependent transcription.119,233 To determine

whether E1A inhibits the viral Tcf promoters, I performed transcription

assays using the Tcf-E1A and Tcf-E2 promoters coupled to the luciferase

gene. In SW480, the Tcf-E2 promoter was more active than the wild type

E2 promoter in the absence of E1A (Figure 2.7b, lanes 1 & 6), and gave

almost exactly wild type activity in the presence of E1A (Figure 2.7b, lanes

2 & 7). This convergence was due to increased wild type E2 promoter

activity and decreased Tcf-E2 promoter activity in the presence of E1A.

Mutation of the E3 promoter is required to produce a tightly regulated Tcf-

E2 promoter, because the E3 promoter is adjacent to the E2 promoter.34



Results and discussion

50

Figure 2.7: E1A inhibits Tcf-dependent transcription. (A) Schematic diagram of the
E1A12S mutants. (B-D) Luciferase assays with a wild-type E2 reporter and Tcf-E2

reporters. The “Tcf-E2/E3m” reporter contains inactivating mutations in the E3 enhancer.34

Cells were transfected with luciferase reporters and plasmids expressing the E1A mutants
shown in A. (B) SW480, (C) Co115, (D) Hct116. Values are normalised to the value of the

wild-type E2 promoter in presence of E1A.
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E3 mutation reduced the activity of the E2 promoter slightly in

SW480 cells transfected with E1A, but the activity was still close to that

seen with the wild type promoter (Figure 2.7b, lanes 2 & 12). The high

activity of the Tcf-E2 promoter in SW480 probably explains the

permissivity of this cell line for the Tcf-viruses. In contrast, in the presence

of E1A the level of Tcf-E2 activity was substantially below the wild type

level in Co115 and Hct116 cells (Figure 2.7c & d, lanes 2, 7 & 12).

Since E1A13S is the transactivating isoform, cotransfection

experiments were performed in SW480 and Co115 to examine whether the

inhibition observed previously was specific to E1A12S (Figure 2.8). The

E1A13S protein was potentially more active than the E1A12S protein on

every promoter tested, in both SW480 and Co115 cells. In SW480, the

absolute activity of all the promoters was roughly identical in presence of

E1A13S. In Co115, the absolute activity of both Tcf-E2 promoters

remained about 10-fold lower than the activity of the wild-type E2 promoter

in Co115, despite a smaller inhibitory effect of E1A13S compared to

E1A12S. Thus, experiments with the E1A13S isoform confirm that the

inhibitory effect of E1A is stronger in semi-permissive than in permissive

cell lines.

Figure 2.8: E1A-dependent inhibition is not relieved by E1A13S. SW480 or Co115 were
transfected with luciferase reporters and plasmids expressing either the E1A12S or the
E1A13S protein. The values are normalised to the value of the wild-type promoter in

absence of E1A.
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To determine the mechanism of inhibition, I tested different E1A

mutants (Figure 2.7a). Mutation of the Rb binding site in E1A impaired

transactivation of the wild type E2 promoter in SW480 and Co115 (Figure

2.7b & c, lane 3) but not in Hct116 cells (Figure 2.7d, lane 3), whereas

mutation of the p300 or p400 binding sites had little effect on

transactivation of the wild type promoter by E1A in all three cell lines

(Figure 2.7b, c & d, lanes 4 & 5). Given the presence of E2F sites in the E2

promoter, one would expect reduced transactivation by an E1A mutant

lacking its pRb-binding domain. The Tcf sites replace the normal enhancer

in the Tcf-E2 promoter.34 In all three cell lines the Rb and p400 binding site

mutations did not relieve inhibition of the Tcf promoters by E1A (Figure

2.7b, c & d, lanes 8, 10, 13 & 15). A mutation in the p300 binding site (E1A

2-11, labelled p300N) partially relieved the inhibition, but in SW480 and

Co115 the maximum recovery never exceeded 50% of the lost activity

(Figure 2.7b & c, lanes 9 & 14). Mutation of E1A amino acid 2 to glycine

(R2G), which also blocks p300 binding, had the same effect (data not

shown). In Hct116, the p300N mutation completely restored activity of the

Tcf-E2 promoter (Figure 2.7d, lane 9). Interestingly, I have noticed by

western blot analysis that p300 is truncated in this cell line (the protein has a

mobility on SDS-PAGE of ~240 kD, data not shown). Therefore, in Hct116

the effect of the mutation in E1A is surprising, but could reflect E1A

binding to CBP or to the residual p300 fragment.

Analysis of additional E1A mutants

To investigate the cause of the incomplete recovery of Tcf-dependent

transcription after mutation in the p300 binding site in E1A, additional

luciferase assays were performed in H1299 cells (Figure 2.9). The Tcf-E1A

promoter was activated 10-fold by N- -catenin (Figure 2.9a, compare

lanes 1 & 2), and this activation was inhibited by E1A (Figure 2.9a, lane 3).

p300 binds to two sites in E1A and mutation of either site partially relieved

the inhibition of Tcf-dependent transcription (E1A p300N and p300C,

Figure 2.9a, lanes 4 & 5). The C-terminal p300 binding site lies within

conserved domain 1 (CR1), but deletion of the entire domain did not restore
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activity (Figure 2.9a, lane 6). This suggests that there may be a positively

acting factor which binds somewhere in CR1. To determine whether the

E1A p300N mutation only partially restored activity because it did not

completely block p300 binding, I cotransfected increasing amounts of p300

with E1A (Figure 2.9b). Exogenous p300 reversed the inhibition of

promoter activity to the same extent as mutation of the p300 binding site

(Figure 2.9b, lanes 4 & 7), and the effects of the p300N mutation and p300

transfection were not additive (Figure 2.9b, lane 8). This suggests that

p300N completely blocks binding of E1A to p300. Large amounts of

exogenous p300 reduced promoter activity (Figure 2.9b, lanes 5, 6, 9 & 10),

suggesting that a cofactor was being titrated. P/CAF is a candidate for being

this cofactor because it is a histone acetyltransferase (HAT) that binds to

p300, and the coactivation of Tcf by p300 does not require intrinsic p300

HAT activity.119 Since E1A inhibits P/CAF,197 I tested whether mutation of

the P/CAF binding domain in E1A relieved inhibition of Tcf activity by

E1A and observed no effect (Figure 2.9a, lane 7). P/CAF was not limiting

because cotransfection of P/CAF and wild type or P/CAF mutant E1A also

failed to restore activity (Figure 2.9c, lanes 4 & 9). To test whether p300

and P/CAF act together, I constructed an E1A gene with mutations in the

binding sites for both HATs (labelled  in Figure 2.9), but this mutant also

failed to relieve the repressive effect of E1A (Figure 2.9a, lane 8). The same

results were obtained when P/CAF was cotransfected with an E1A mutant

in the p300 binding site (Figure 2.9c, lane 6), or when of p300 was

cotransfected with an E1A mutant in the P/CAF binding site (Figure 2.9c,

lane 8).

As in colon cells (Figure 2.7), mutation of the Rb binding site in E1A

had no effect on repression of Tcf-dependent transcription (Figure 2.9a, lane

9). CtBP and TIP49 have both been implicated in transcription modulation

by Tcf,13,29 but neither mutations in E1A which abolish CtBP binding

( CtBP, C52; Figure 2.9a, lanes 10 & 11) nor cotransfection of wild type

or dominant negative TIP49 with E1A (Figure 2.9c, lanes 10 & 11) could

overcome the repressive effect of E1A. In conclusion, the E1A mapping

studies showed that mutation of the p300 binding domain could restore
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about half of the Tcf activity lost upon E1A expression, but the remaining

repressive effect could not be mapped to a known domain in E1A.

Figure 2.9: Luciferase assays in the lung cancer cell line H1299 showing inhibition of Tcf-

dependent transcription by mutant forms of E1A. (A) Cotransfection of a Tcf-E1A reporter

with various E1A mutants and N- -catenin. (B) Cotransfection of increasing amounts of

p300 plasmid (0.5, 1, or 2 g). (C) Effect of p300, P/CAF and Tip49 on Tcf-dependent

transcription in the presence of wild-type and mutant forms of E1A. The values represent

the fold activation versus the E1A wild-type reporter in the absence of E1A and N- -

catenin on a linear scale.
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E1A p300N mutant Tcf viruses

To test whether deletion of the p300 binding site in E1A would

increase the activity of the Tcf promoters in the context of the virus, the

p300N mutation was introduced into various Tcf-dependent backbones

(See Figure 2.1 on page 40). For the Tcf-E1A promoter, inhibition of p300

by E1A should inhibit expression of E1A itself. This was tested by infecting

the cMM1 cell line with A4 and A 4 (the p300N derivative of A4) in the

presence and absence of tetracycline. Consistent with there being negative

feedback by E1A on its own expression, the level of E1A after activation of

Wnt signalling was higher with A 4 than A4 (Figure 2.4, compare lanes 7

& 8, E1A). Despite the increase in E1A expression, there was no difference

in DBP expression, possibly because the p300N mutant is defective in

some other function required for activation of the wild type E2 promoter

(Figure 2.4, compare lanes 7 & 8, DBP). The viruses mutated at multiple

sites were then tested on a panel of cell lines (Figure 2.5). The effect of the

p300N mutation can best be appreciated by comparing matched pairs of

viruses: A4 vs. A 4 (Figure 2.5, lanes 3 & 4); B23 vs. B23 (Figure 2.5,

lanes 9 & 8); and AB23’4 vs. A B234 (Figure 2.5, lanes 6 & 7). In each

case the latter is derived from the former by deletion of the p300 binding

site in E1A (the only exception is that the E3 promoter ATF site is present

in AB23’4 but absent in A B234). In almost every case the p300N

mutation actually reduced the level of expression of E1B55K, DBP and

E4orf6. The only promoter whose activity was reasonably well maintained

was the Tcf-E1A promoter (Figure 2.5, lanes 4 & 7, E1A). The wild type

E1A promoter was also barely affected by the E1A p300N mutation

(Figure 2.5, lane 8, E1A). The most comprehensively mutated virus

(A B234, Figure 2.5, lane 7) was completely inactive in the control cell

lines (H1299, HeLa and SAEC), but also 100-fold attenuated in the semi-

permissive colon lines (Co115, HT29 and Hct116). When changes in

multiple promoters were combined with the p300N mutation, the

expression of DBP and E4orf6 even decreased in the permissive cell lines

SW480 and ISREC-01, whereas in the absence of the p300N mutation, the

virus with changes in multiple promoters (AB23’4) showed wild type
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expression of E1A, E1B55K, DBP and E4orf6 in the same cell lines. The

E1A p300N mutation did not increase E1B55K or DBP expression in any

of the viruses with Tcf-E1B and Tcf-E2 promoters (Figure 2.5, compare

lanes 6 vs. 7, and 9 vs. 8). Thus, in the context of the virus the E1A p300N

mutation does not rescue the defect in Tcf promoter activity in the semi-

permissive cell lines.

Stability of the E1A p300N protein

To determine whether the mutation in E1A had any effect on the

stability of the protein, I performed a cycloheximide block on cells infected

with either a wtE1A virus or with a p300N virus. The half-life of the

E1A p300N protein was longer than that of the E1Awt protein (Figure

2.10). This probably results in higher E1A protein levels when the E1A

protein is mutated to p300N. In the previous western blotting experiments,

the activity of the E1A promoter was estimated by E1A protein levels, and

might therefore have been overestimated because of the increased stability

of the protein. If this is the case, it further indicates that the p300N

mutation causes a reduction in viral activity and should be avoided in the

development of Tcf-viruses.

Figure 2.10: Cycloheximide (CHX) block showing the half-life of the E1Awt and
E1A p300N proteins. Samples were taken at the indicated time after addition of 60 µg/mL

of CHX.
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Cytopathic effect of the Tcf-viruses

The new viruses were tested in cytopathic effect assays (CPE). In the

most permissive colon cell line, SW480, both A4 and B23 were at least 10-

fold more active than wild type Ad5 in CPE assays (Figure 2.11a, compare

lane 1 with lanes 2 & 6). For these viruses, the corresponding p300 mutant

viruses were about 10-fold less active (Figure 2.11a, compare lanes 2 vs. 3,

and 6 vs. 7). Only for the AB23’4 virus was the p300 mutant virus as active

as the parent (Figure 2.11a, compare lanes 4 vs. 5), but these viruses were

100-fold less active than the virus with only the Tcf-E1A/E4 changes (A4,

Figure 2.11a, lane 2). In another permissive cell line, ISREC-01, A4 and

B23 showed cytopathic effects comparable to wild type and AB23’4

activity was only 10-fold lower than wild type (Figure 2.11b). A4 showed

wild type activity on Co115 (Figure 2.11c, compare lanes 1 vs. 2). This was

10-fold better than the previous best virus, B23 (Figure 2.11c, lane 6). In

Hct116, the situation was reversed: B23 was slightly better than A4, but

wild type was better than either Tcf virus (Figure 2.11d, lanes, 1, 2 & 6). In

Co115, all of the p300 mutant viruses were 10-fold less active than the

corresponding viruses with wild type E1A (Figure 2.11c, compare lanes 2

vs.. 3, 4 vs.. 5, and 6 vs. 7). In HT29, the least permissive colon cancer cell

line tested, both the A4 and B23 viruses show 100-fold less activity than the

wild-type virus and AB23’4 was further reduced by 10-fold (Figure 2.11e).

All of the Tcf viruses were substantially less active than wild type Ad5 on

HeLa cells, which lack Tcf activity (Figure 2.11f). The most engineered

viruses failed to produce plaques on HeLa even after infection with 100

plaque-forming units (pfu) per cell (Figure 2.11f, lanes 4 & 5). The effect of

the mutation of the p300 binding site in E1A was less obvious than on

permissive cells. Overall, the best virus was A4, which was 10-fold less

active than B23 and 1000-fold less active than wild type Ad5 on HeLa cells

(Figure 2.11f, lanes 1, 2 & 6). Since A4 is 10-fold more active than wild

type Ad5 on SW480, its overall selectivity for the most permissive colon

cells is 10,000-fold relative to wild type Ad5.
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Figure 2.11: Cytopathic effect assays in different cell lines infected with 10-fold dilutions

of wild type Ad5 and Tcf viruses. (A) SW480 cells were infected at a starting multiplicity

of infection (MOI) of 10 pfu/cell and stained 6 days after infection. (B) ISREC-01 were

infected at a starting MOI of 10 pfu/cell and stained 8 days after infection. (C) Co115, (D)

Hct116, and (E) HT29 were infected at a starting MOI of 100 pfu/cell and stained 7 days

after infection. (F) HeLa were infected at a starting MOI of 100 pfu/cell and stained 8 days

after infection.
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Burst assays of Tcf-viruses

Burst assays measure the amount of infectious viral particles produced

during a single viral life cycle. In burst assays, the effect of the p300

binding site mutation was specific to the virus and the cell line. In SW480,

the mutation reduced burst size 50-fold in the A4 backbone (Figure 2.12a,

compare lanes 2 & 3), but had almost no effect in the B23 backbone (Figure

2.12a, compare lanes 4 & 5). This difference may be due to the fact that E2

promoter requires E1A function in A 4, where the wild type E2 enhancer is

activated by ATF and E2F, but not in B23, where the E2 enhancer is

replaced by Tcf sites. The virus with Tcf sites in all the early promoters and

the p300 mutation in E1A (A B234) was 100-fold less active than wild

type in SW480, but almost as active as A 4 (Figure 2.12a, compare lanes 3

& 6). There was a striking reduction in A B234 burst size in the non-

permissive cells (107-fold in HeLa cells, 105-fold in SAEC; Figure 2.12a,

lanes 12 & 17). The remaining Tcf viruses showed 100 to 5000-fold

reduction in burst size in HeLa and SAEC. The p300 mutation again

reduced burst size in the virus with E2 driven by E1A (Figure 2.12a,

compare lanes 8 & 9), but actually increased burst size (albeit from a very

low level) in SAEC when the E2 promoter was driven by Tcf (Figure 2.12a,

compare lanes 15 & 16).  In general, the p300N mutation in E1A

decreased viral burst size. This correlates with the reduction of the

cytopathic effect shown previously (Figure 2.11). Viral bursts with selected

viruses were further assayed in ISREC-01 and HT29 (Figure 2.12b). In both

cell lines, the less mutated viruses (i.e. A4 and B23) were 5- to 10-fold less

active than wild type, while the activity of A B234 was further decreased

by about 10-fold. Finally, the A4 virus was analysed on a panel of cell lines,

as well as human normal hepatocytes (nHNeps). The activity of the virus is

shown in pfu produced per input pfu, which is the same as the burst size per

cell if the multiplicity of infection is below 1 (Figure 2.12c). In colon cancer

cell lines, the absolute burst size of the A4 virus varies between 100 and

1000 pfu/pfu. The absolute burst size is close to 1 in SAECs and hNHeps.

This indicates that A4 is barely able to replicate if at all in normal cells.

Figure 2.12d shows the relative burst size of A4 compared to wild type. In
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all colon cancer cell lines tested, the burst size of A4 is not decreased by

more than ~ 5-fold compared to wild type. On the other hand, it is

approximately 100- to more than 1000-fold attenuated compared to the wild

type virus in non colon cancer cell lines.

Figure 2.12: Viral burst assays on permissive and non-permissive cell lines. (A) SW480,

HeLa and SAEC cells were infected with 300 viral particles/cell and lysed 48 hours after

infection. The titre of viral particles present in the lysate was measured by plaque assay on

SW480. Values were normalised to the wild type Ad5 titre on each cell line. (B) The same

experiment was done on SW480, ISREC-01 and HT29. (C, D) A4 and Ad5wt viruses were

tested on a broader panel of cell lines. Values are expressed either in pfu recovered per

input pfu (C) or relative to Ad5wt (D). A, B, and D are in log10 scale.
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2.3.3. Discussion

In this chapter, I have described adenoviruses that replicate efficiently

in a wide range of colon cancer cells but not in normal cells. I tested viruses

with Tcf sites in multiple viral early promoters and mutation of the p300

binding site in E1A. Compared to the previous generation of Tcf viruses,34

A4 is less toxic to cells lacking Wnt activity and has broader activity in a

panel of colon cancer cell lines in cytopathic effect assays. It has Tcf sites in

both ITRs, but only E1A transcription is tightly regulated by Wnt

signalling. This is partly explained by the fact that the Tcf sites are adjacent

to the TATA box in the Tcf-E1A promoter, but several hundred base pairs

upstream of the E4 TATA box. To create an E1A promoter with the

minimum possibility of interference from extraneous signals, all of the

normal regulatory elements were deleted in A4. This contrasts with the

approach used to produce prostate, hepatocellular cancer and breast cancer

targeting viruses, which retain the complete E1A enhancer but place

exogenous promoters between it and the E1A start site.102,125,201 To remove

the E1A enhancer in A4 it was necessary to transfer the viral packaging

signal to the right ITR. In addition, half of the ITR was replaced by Tcf

sites. This construction dictated the position of the Tcf sites relative to the

E4 start site. The endogenous E4 control elements were retained in A4

because they confer repression of E4 transcription in normal cells.72 The

mutant E4 promoter thus contains the part of the E1A enhancer contained in

the packaging signal, which could activate the promoter, flanked by Tcf and

E4F sites, which should repress the promoter in normal cells. The net result

of these changes is reduced E4 transcription measured by luciferase assay,

regardless of cell type.

Replication of the previous generation of viruses is restricted to cells

with activated Wnt signalling by the Tcf sites in the E2 promoter.34 A B234

and AB23’4, which have Tcf sites in multiple early promoters, were even

more severely attenuated in cells lacking Wnt activity. In cytopathic effect

assays in HeLa cells, they were at least 104-fold less active than wild type

virus, and in burst assays in HeLa and SAEC, A B234 was 105 to107-fold

less active than wild type virus. The reduced activity of these viruses in
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permissive cells might be due to deletion of element II in the E1A enhancer,

which was previously reported to activate transcription of all of the early

promoters in cis.118 Comparison of different viruses shows that the Tcf-E1A

and Tcf-E2 promoters display the same hierarchy of activity in a panel of

colon cell lines, but relative to the corresponding wild type promoters, the

Tcf-E1A promoter is more active than the Tcf-E2 promoter. This probably

explains why A4 is more toxic than B23 in Co115 cells. The comparison

between the different colon cancer lines is further explored in chapter 2.4.

Luciferase reporter assays showed a systematic inhibition of Tcf-

dependent transcription by E1A. Mutagenesis of E1A indicated that this

effect was partly due to inhibition of p300 by E1A, consistent with reports

that p300 is a coactivator for -catenin.119,229 Coexpression of p300 together

with E1A had the same effect on Tcf-dependent transcription as deletion of

the p300 binding site in E1A, indicating that the remaining repression was

unlikely to be due to inhibition of p300. The residual repressive effect of

E1A could not be mapped to any known domain and merits further study.

The negative results obtained with the CR1 mutant are surprising because

deletion of the CR1 p300-binding subdomain alone did partially restore Tcf-

dependent transcription. This could conceivably be explained by an

artefactual elevation of transcription of the renilla luciferase control by

CR1 E1A, but a more likely explanation is that another function of E1A is

impaired by deletion of the entire CR1 domain.

The inhibition of Tcf-dependent transcription by E1A was greatest in

the semi-permissive cell lines like Co115, resulting in very low luciferase

activity because the starting level of Tcf activity was also lower in these

cells. Hence, I expected to see a substantial effect of the 2-11 E1A

mutation in the context of the viruses. In practice, the mutation produced no

increase in expression from the Tcf-E2 promoter in colon cell lines and

reduced the activity of the virus in cytopathic effect assays. There was a

small but reproducible increase in E1A protein level in cMM1 cells

expressing mutant -catenin infected with A 4 virus compared to A4 virus.

These results are consistent with decreased negative feedback of E1A on its

own expression through relief of p300 inhibition, but the increase in E1A
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level could be due to protein stabilisation. Consistent with the latter

explanation, I have observed stabilisation of lower mobility E1A isoforms

in SW480 infected with p300N virus. The mutation had complex and

inconsistent effects in burst assays: it appeared to reduce burst size in

permissive cells when the E2 promoter was driven by E1A (ie wild type),

but increase burst size in some non-permissive cells when the E2 promoter

was driven by Tcf. A general explanation is that any gain in Tcf activity due

to the E1A mutation was offset by a loss of other E1A activities. In

addition, there are some basal promoter activities regulated by E1A which

may be abrogated by the 2-11 mutation.142,156

In conclusion, I have shown that adenovirus replication can be

regulated by insertion of Tcf sites into the E1A or E2 promoters. Mutation

of the p300 binding site in E1A did not increase transcription from Tcf

promoters in the context of the virus. Since the E1A 2-11 mutation

consistently reduced virus activity in cytopathic effect assays, it would be

better to retain this domain in therapeutic viruses.

2.3.4. Materials and Methods

Adenovirus mutagenesis

An Ad5 E1A fragment (nucleotides nt 1 to 952) was amplified by

PCR from ATCC VR5 adenovirus 5 genomic DNA with primers

CGGAATTCAAGCTTAATTAACATCATCAATAATATACC (G76) and

GGGTGGAAAGCCAGCCTCGTG (oCF1), cut with PacI, and cloned into

the BamHI/PacI sites in pMB1 to give pCF4. pMB1 contains the left end of

Ad5 cloned into the EcoRI/SmaI sites of pFL39.24,34 The endogenous

adenoviral sequence from the middle of the ITR to the E1A TATA box was

replaced with four Tcf binding sites by inverse PCR with primers

tccAGATCAAAGGGattaAGATCAAAGGGccaccacctcattat (oCF3) and

tCCCTTTGATCTccaaCCCTTTGATCTagtcctatttatacccggtga (oCF4) to

give pCF25 (the Tcf sites in the primers are shown in capitals). The final

sequence of the mutant ITR and E1A promoter is catcatcaataatataccttattttgg

attgaagccaatatgataatgaggTggtggCCCTTTGATCTTAATCCCTTTGATCTG
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GATCCCTTTGATCTCCAACCCTTTGATCTAGTCCtatttata, where the

wt Ad5 sequence is in lowercase and the E1A TATA box is underlined. A

G to T mutation was introduced just before the first Tcf binding site to

mutate the Sp1 binding site.152

The Ad5 E4 fragment (nt 35369 to 35938) was amplified by PCR

from VR5 DNA with primers G76 and ACCCGCAGGCGTAGAGACAAC

(oCF2), cut with PacI and cloned into the BamHI/PacI sites in pMB1 to

give pCF6. To compensate for the mutations introduced in the left ITR,

three Tcf binding sites were introduced, and the endogenous sequence (nt

35805 to 35887) was simultaneously deleted by inverse PCR with primers

oCF3 and tCCCTTTGATCTccactagtgtgaattgtagttttcttaaaatg (oCF5) to give

pCF16 (the Tcf site is shown in capitals and the SpeI site is underlined).

The packaging signal was amplified by PCR from pCF6 with primers

GAACTAGTAGTAAATTTGGGCGTAACC (oCF6) and ACGCTAGCAA

AACACCTGGGCGAGT (oCF7), cut with SpeI/NheI and cloned into the

SpeI site in pCF6 to give pCF34. The packaging signal has the same end-to-

center orientation as at the left end of the adenoviral genome.

The 2-11 mutation was introduced in two steps. First, plasmids

pCF4 (wild type E1A promoter) and pCF25 (Tcf-E1A mutant) were cut by

SnaBI/SphI following by self-ligation to give pRDI-283 and pRDI-284,

respectively. Second, the 2-11 region in pRDI-283 and pRDI-284 was

deleted by inverse PCR with primers CATTTTCAGTCCCGGTGTCG

(oCF8) and ACCGAAGAAATGGCCGCCAG (oCF9) to give pCF61 and

pCF56, respectively.

The YAC/BAC vector pMB1986 was cut with PacI followed by self-

ligation to give pCF1, a YAC/BAC vector harbouring a unique PacI site.

In order to produce the gap repair vectors, combinations of left and

right adenoviral ends were first assembled and then transferred to the

YAC/BAC vector itself. During the first step, pCF34 was cut with

EcoRI/Sal and cloned into the Pst/SalI sites of pCF25 to give pRDI-285.

Similarly, pCF56 was cut with HindIII/SalI and cloned into the PstI/SalI

sites of pCF34 to give pCF46. Finally pCF61 was cut with HindIII/SalI and

cloned into the PstI/SalI sites of pCF16 to give pCF52. pRDI-285, pCF46
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and pCF52 all contain a cassette with the left and right ends of the genome

separated by a unique SalI site. These cassettes were isolated by PacI

digestion and cloned into the PacI site of pCF1 to give pCF78, pCF79 and

pCF81, respectively. pCF78 has mutant E1A and E4 promoters, pCF79 has

mutant E1A and E4 promoters plus the 2-11 mutation, and pCF81 has

wild-type E1A and E4 promoters plus the 2-11 mutation.

A4 (clone name: vCF011) and AB23’4 (clone name: vCF022) were

constructed by gap repair86 of pCF78 with Ad5wt (ATCC VR5) and B23’

(clone name: vMB31)34 DNA, respectively. A 4 (clone name: vCF042) and

A B234 (clone name: vCF062) were constructed by gap repair of pCF79

with VR5 and B23 (clone name: vMB19)34 DNA, respectively. B23

(clone name: vCF081) was constructed by gap repair of pCF81 with B23

DNA. The viral DNA was cut with ClaI before gap repair to target the

recombination event to a site internal to the mutations at the left end of the

genome.

 Viral genomic DNA was converted into virus by transfection of PacI

digested YAC/BAC DNA into cR1 cells. The viruses were then plaque

purified on SW480 cells, expanded on SW480, purified by CsCl banding,

buffer exchanged using NAP25 columns into 1 M NaCl, 100 mM Tris-HCl

pH 8.0, 10% glycerol and stored frozen at -70°C. The identity of each batch

was checked by restriction digestion and automated fluorescent sequencing

on a Licor 4200L sequencer in the E1A (nt 1-1050), E1B (nt 1300-2300),

E2/E3 (nt 26700-27950) and E4 (nt 35250-35938) regions using primers

IR213 (E1A antisense: CAGGTCCTCATATAGCAAAGC), IR190 (E1B

sense: TGTCTGAACCTGAGCCTGAG), IR110 (E2/E3 sense: CATCTCT

ACAGCCCATAC), IF171 (E2/E3 antisense: AGTTGCTCTGCCTCTCCA

C) and IR215 (E4 sense: CGTGATTAAAAAGCACCACC). Apart from

the desired mutations, no differences were found between the sequence of

VR5 and the Tcf viruses. Particle counts were based on the OD260 of virus in

0.1% SDS using the formula 1 OD260 = 1012 particles/ml. Plaque-forming

units (pfu) were estimated by counting plaques formed on SW480 cells after

10 days under 1% Bactoagar in DMEM 10% FCS.
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E1A, p300, P/CAF, Tip49, -catenin, hTcf4 and cat-hTcf1 plasmids

Wild type 12S E1A (pCF9) and E1A mutants pRb (124A,135A),

p300N ( 2-11), p300C ( 64-68), p400 ( 26-35), P/CAF (E55),

CtBP (LDLA4), and C52 were described by Alevizopoulos et al4 and

Reid et al.197 All the mutants were provided in a pcDNA3 backbone

(Invitrogen, Carlsbad, USA) except the p300N and p300C mutants that

were isolated with BamHI/EcoRI and cloned into the BamHI/EcoRI sites of

pcDNA3. The CR1 mutant ( 38-68) was made by inverse PCR of pCF9

with primers TCTGTAATGTTGGCGGTGCAGGAAG (oCF10) and

ATGGCTAGGAGGTGGAAGAT (oCF12) to give pCF45. The  p300-

P/CAF double mutant was constructed by three-way ligation of BstXI

fragments from the single mutants. The E1A12S mutants are schematised in

Figure 2.7a. The E1A13s plasmid was constructed by digestion of pCF9

with BstXI (5.4, 0.68, and 0.32kb bands) and further digestion of the 0.68kb

band by BsmBI to obtain a 0.54 kb band. pRc13s (R. Bernards) was cut

with BstXI and BsmBI to purify the CR3 domain (0.27kb). A four-way

ligation was done with the 5.4, 0.54, 0.32, and 0.27kb bands to get pCF113.

This plasmid codes for E1A13S in a pcDNA3 backbone. The N- -catenin

plasmid was described by van de Wetering et al.243 The p300 vector

contains HA-tagged p300 expressed from the CMV promoter. The P/CAF

expression vector was described by Blanco et al.23 The Tip49 and Tip49DN

vectors were described by Wood et al257. The hTcf4 and cat-hTcf1 were

provided in a pcDNAI backbone by Nick Barker.138

Cell lines

ISREC-01,37 SW480 (ATCC CCL-228) and Co11555 were supplied by

Dr B Sordat. HCT116 (CCL-247), HT29 (HTB-38), 293T were supplied by

ATCC. HeLa (CCL-2) were supplied by ICRF. H1299 were supplied by Dr

C Prives.49 The cMM1 cells express myc-tagged N- -catenin243 from the

tet-off promoter.164 C7 cells were supplied by Dr. J. Chamberlain.5 To create

the cR1 packaging cells, C7 cells were infected with a lentivirus expressing

myc-tagged N- -catenin.34 Clonetics small airway epithelial cells (SAEC)
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and human normal hepatocytes (hNHep) were grown in SAGM and HCM

media, respectively (Cambrex, East Rutherford, USA). All the other cell

lines were grown in Dulbecco's Modified Eagle's Medium with 10% fetal

calf serum (Invitrogen, Carlsbad, USA).

Luciferase assays

The E2 reporters were described by Brunori et al.34 To construct E1A

reporters, wild type and mutant E1A promoters were amplified by PCR

from pCF4 and pCF25, respectively, with primers G76 and

GTGTCGGAGCGGCTCGGAGG (oCF13), cut with HindIII, and cloned

into the NcoI/HindIII sites of pGL3-Basic (Promega, Madison, USA). To

isolate the E4wt promoter, pCF6 was cut with HindIII. The fragment

containing the E4 promoter was isolated, cut with AluI, and inserted into the

NcoIKf/HindIII sites of pGL3-Basic (Promega, Madison, USA) to give

pCV1. The Mut-E4 and Tcf-E4 reporters have been constructed using the

same method with pCF16 and pCF34 to give pCV2 and pCV3, respectively.

Cells were seeded at 2.5x105 cells per 35-mm well 24 hours before

transfection. 4.5 µl of Lipofectamine (Invitrogen, Carlsbad, USA) was

mixed for 30 minutes with 100 ng of reporter plasmid, 1 ng of control

Renilla luciferase plasmid (Promega, Madison, USA) and 500 ng of

expression vectors. pcDNA3 empty vector was added to equalise the total

amount of DNA. In Figure 2.9b, 0.5, 1 and 2 µg of p300 vector were used.

Cells were harvested 48 hours after transfection and dual luciferase reporter

assays performed according to the manufacturer's instructions (Promega,

Madison, USA) using a Biocounter (Lumac bv, Landgraaf, The

Netherlands). Each value is the mean of one to nine independent

experiments done in triplicate and transfection efficiency is normalised to

the activity of the Renilla control.
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Western blotting

Cells were infected with 1000 viral particles per cell. Two hours after

infection, the medium was replaced. Cells were harvested 24 hours later in

SDS-PAGE sample buffer. Protein synthesis was blocked by addition of 60

µg/mL of Cycloheximide (Sigma, St Louis, USA). E1A, E1B55K, DBP and

E4orf6 were detected with the M73 (Santa Cruz Biotechnology, Santa Cruz,

USA), 2A6,212 B6196 and RSA3167 monoclonal antibodies, respectively. Myc-

tagged -catenin was detected with the 9E10 monoclonal antibody.69

Cytopathic effect assay

Cells in six-well plates were infected with ten-fold log dilutions of

virus. Two hours after infection, the medium was replaced. After six to

eight days (Figure 2.11), the cells were fixed with paraformaldehyde and

stained with crystal violet.

Virus replication assay

Cells in six-well plates were infected with 300 viral particles per cell.

Two hours after infection, the medium was replaced. Cells were harvested

48 hours later and lysed by three cycles of freeze-thawing. The supernatant

was tested for virus production by counting plaques formed on SW480 cells

after 10 days under 1% Bactoagar in DMEM 10% FCS. Each bar in the

figure represents the mean +/- SD of triplicate plaque assays.
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2.4. Permissivity and viral replication

2.4.1. Introduction

As seen in the previous chapter and in work from other people, there

is a clear overall trend for Tcf promoters to be less active in some colon cell

lines.34,47,155,206 The relative activity of a Tcf-promoter compared to that of a

promoter with mutant Tcf sites can be considered as a measure of Wnt

activity in a given cell line. In general, this value33,206 correlates with the

permissivity of the cells, as determined by their ability to sustain growth of

Tcf-viruses. It is formally possible that the modest Tcf activity seen in some

colon cell lines reflects a loss of activity that happened during tumour

development or in vitro culture. In this case, there is no need to improve the

existing Tcf viruses. On the other hand, this modest activity could be linked

to specific genetic alterations found in these cancer cells. In this chapter, I

will describe the experiments that were done to understand the semi-

permissivity of these cell lines, and the approaches I took to circumvent that

problem and make our viruses more active in this sub-population of

colorectal cancer cells.

As seen in chapter 2.3.2, exogenous mutant -catenin, hTcf4, or a

fusion between the -catenin transactivation domain and hTcf1, did not

increase Tcf activity in reporter assays. Western blot analysis did not

indicate any significant difference in total protein levels for -catenin and

hTcf4 between the cell lines (data not shown), suggesting that the levels of

both proteins are probably not limiting. Therefore, the difference between

permissivity and semi-permissivity should lie downstream of the Tcf/ -

catenin complex, or, alternatively, at the level of -catenin localisation.

BCL9 and Pygopus are likely candidates for being limiting factors in

semi-permissive cell lines because they have been described as important

effectors of the Wnt signalling pathway and have been shown to act

downstream of the Tcf/ -catenin complex.140 Transient transfection or

lentiviral expression of these proteins however indicated that they are

probably not limiting in semi-permissive cells. Interestingly, the subcellular
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localisation of -catenin was closely related to the permissivity of the cell

line and correlated with the genetic defect present in the cell. Taken

together, these observations indicate that the nature of the mutation in the

Wnt pathway might predict the responsiveness of a given cell line to the

Tcf-viruses.

The most cell type-sensitive Tcf-promoter appears to be E2 (see

chapter 2.3). Time-course analysis of viral infections further confirmed this

observation and indicated that the Tcf-viruses were less prone to enter the

late phase of infection in the semi-permissive cell lines. Basal transcription

factors such as TBP and TFIIB recognise the TATA and BRE elements,

respectively.103 Both of these elements poorly match their consensus

sequences in the E2 promoter. In order to improve these sequences, I

modified the spacing of the different elements, and inserted binding sites for

known transcription factors such as E2F or FoxM1. E2F-dependant

transcription is activated in S-phase and by the E1A protein.225 FoxM1 is a

forkhead transcription factor expressed in the area of the crypt where the

Wnt pathway54 is active, it is a marker for proliferating cells,249 and is an

interesting candidate for being a selector99 factor for Wnt. Mutating the E2

promoter did not improve its activity. To have a more biologically relevant

assay, I developed a new vector that makes it possible to test various

promoters in the context of a viral infection. Finally, I will describe the

analysis of an E1A protein that is fused to the HD2 domain of BCL9, which

is the domain responsible for the binding of BCL9 to -catenin. The

rationale for creating such a fusion protein is to bring E1A to the vicinity of

the early viral promoters through -catenin-E1A interaction. The E1A

fusion protein was able to activate transcription from the E2-Tcf promoter

better than the wild type E1A protein, and this activation was dependent on

an active Wnt pathway. I inserted the E1A-HD2 fusion protein into the

AB23’4 background in order to test its ability to increase viral activity in

the context of a virus.
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2.4.2. Results

Expression of BCL9 and Pygopus1/2 proteins in CRC cells

BCL9, Pygopus 1 (Pygo1), and Pygopus 2 (Pygo2) are likely

candidates for being limiting factors in semi-permissive cell lines because

they have been described as important downstream effectors of the Wnt

signalling pathway. BCL9 acts by bridging -catenin to Pygo1/2, while the

NHD domain of Pygo1/2 transactivates the promoters.140 In order to check

whether these proteins were limiting in the semi-permissive cell lines, their

mRNA levels were measured by reverse transcription coupled to

quantitative PCR (RT-qPCR) (Figure 2.13a). In general, there was no trend

between mRNA levels and permissivity. Pygo1 was only detectable in

HeLa, and BCL9 levels were 2-fold lower in CRC cells than in HeLa.

Transient transfection experiments were performed to determine whether

BCL9, Pygo1, or Pygo2 are limiting for Wnt activity. A Tcf-E2 luciferase

reporter plasmid was cotransfected with various combinations of these

proteins in the permissive cell line SW480 and the semi-permissive cell line

Co115 (Figure 2.13b&c, respectively). In SW480, none of these proteins

was able to activate the Tcf-E2 promoter, whereas BCL9 had a very

marginal activating effect in Co115. This suggests that BCL9 or Pygo1/2

are not limiting in these cell lines.



Results and discussion

72

Figure 2.13: (A) mRNA levels of Pygo1, Pygo2, and BCL9 were measured by RT-qPCR
and normalised to 18s RNA. Transient transfection of Pygo1, Pygo2, and BCL9 in SW480

(B) or Co115 (C). Min is the E2 reporter in which all the activating sequences had been
removed. Values are normalised to the activity of the Tcf-E2 promoter and represented on

a linear scale.

To see if overexpression of these proteins could increase viral toxicity

in the context of a viral infection, Pygo1 and Pygo2 were stably expressed

from lentiviruses in SW480 and HT29 to produce the cell lines SW·P1,

SW·P2, HT·P1, and HT·P2. After selection, overexpression of the Pygo

proteins was confirmed by RT-qPCR (Figure 2.14a; “+”). Cytopathic effect

assays were performed on these cell lines to determine whether this

overexpression increased viral spread. As shown in Figure 2.14b, stable

expression of Pygo1 or Pygo2 did not increase viral toxicity in either

SW480 or HT29.
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Figure 2.14: Cell lines stably expressing Pygo1 or Pygo2. (A) relative mRNA levels are
expressed in arbitrary units. (B) Cytopathic effect assay in SW480 or HT29 cells, or their

derivatives expressing either Pygo1 (P1) or Pygo2 (P2), with the AB23’4 virus. Cells were
infected at a starting MOI of 100 pfu/cell and stained 6 days (SW480) or 9 days (HT29)

after infection.

In conclusion, both transient and stable expression of BCL9, Pygo1 or

Pygo2 showed that these proteins are not limiting in the semi-permissive

cell lines Co115 and HT29.
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Immunofluorescence assays

In the cell, -catenin exists in three pools: membrane-bound,

cytoplasmic, and nuclear. Wnt target genes are activated by nuclear -

catenin, while the other pools are unavailable for transcription. If the total

amount of -catenin is roughly equivalent between permissive and semi-

permissive cell lines, the localisation of the protein might differ. Therefore,

I used indirect immunofluorescence to determine the subcellular localisation

of -catenin in various cell lines. Non-permissive and semi-permissive cell

lines showed only membrane staining but -catenin was detected in the

nucleus of the permissive cells (Figure 2.15). This indicates that the semi-

permissivity might be due to mislocalisation of -catenin rather than a

missing downstream effector of the Tcf/ -catenin complex. The absence of

-catenin in the nucleus of the semi-permissive cells Hct116 and HT29 is

incompatible with the modest, yet present, Wnt activity seen in these cell

lines. It is possible that the level of -catenin is below the detection limit in

these cells. Alternatively, the epitope of -catenin may be masked by other

proteins in vivo.
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Figure 2.15: Detection of -catenin by immunoflurescence assay. Images were taken using
a confocal microscope to prevent background from the overlaying membranes.
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Time-course expression of viral proteins

I showed in the previous chapter that the activity of the E2 promoter is

the most sensitive to cell type. In order to determine which step of the viral

life cycle is inhibited in the semi-permissive cell lines, time-course analysis

of viral protein expression were done in SW480 and Co115. In SW480, all

proteins were expressed similarly from the various viruses tested (Figure

2.16a). Fibre is expressed after viral DNA replication and was used as a

marker for entry into the late phase of the viral life cycle. In SW480, the

kinetics of fibre expression was comparable between all the viruses, and

metabolic labelling experiments showed that viral late proteins were

synthesised to a similar extent from all the viruses. Host cell proteins shut-

off was obvious with Ad5wt- and B23-infected cells, whereas it was less

pronounced when the cells were infected with the A4 and AB23’4 viruses

(Figure 2.16b). Taken together, this confirms that the Tcf-viruses behave

very similarly to the wild type virus in SW480.

Expression from the Tcf-E1A promoter was shown to be similar to

that of the wild type promoter in Co115 (Figure 2.5, compare lanes 3&2). In

contrast, expression from the Tcf-E2 promoter was drastically reduced

compared to the native promoter (Figure 2.5, compare lanes 9&2). The

pattern of expression of the E2 proteins DBP and pTP confirmed that the

Tcf-E2 promoter is severely impaired in Co115 (Figure 2.17a). The fibre

protein was not expressed from these viruses, suggesting that poor E2

protein expression resulted in reduced viral replication and slower

progression to the late phase of the viral life cycle. In addition, no late viral

protein was detected with the Tcf-E2 viruses in metabolic labelling

experiments. Finally, the Tcf-E2 viruses induced less host cell protein shut-

off than the wild-type virus (Figure 2.17b). All these experiments are

consistent with a failure of the Tcf-E2 viruses to progress beyond viral

replication during their viral life cycle, and the pattern of expression of the

early viral proteins indicates that the most defective promoter in Co115 is

the E2 promoter. In conclusion, the activity of the E2 promoter needs to be

improved in order to render the Tcf-E2 viruses active in a broader panel of

colon cancer cell lines.
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Figure 2.16: The progression of the Tcf-viruses through the viral cycle is not impaired in
SW480. (A) Western blot for E1A, E1B55K, DBP, E4orf6, E4orf6/7, and Fibre at various

time points after infection with wtAd5 or Tcf-viruses. (B) Autoradiography. Cells were

pulsed with 
35

S-Methionine/Cysteine for one hour and collected at various time points after

infection.
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Figure 2.17: The progression of the Tcf-viruses through the viral cycle is impaired in
Co115. (A) Western blot for E1A, E1B55K, DBP, pTP, E4orf6, E4orf6/7, and Fibre at

various time points after infection with wtAd5 or Tcf-viruses. (B) Autoradiography. Cells

were pulsed with 
35

S-Methionine/Cysteine for one hour and collected at various time points

after infection.
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Mutagenesis of the E2 promoter

The structure of the wild type and Tcf-E2 promoters and sequences of

the consensus binding sites for TBP (TATA) and TFIIB (BRE, TFIIB-

responsive element) are depicted in Figure 2.18. Both elements poorly

match the consensus sequence and this might contribute to the poor activity

of the Tcf-E2 promoter.

Figure 2.18: Organisation of the wild type (A) and Tcf-E2 (B) promoters, described in the
antisense orientation compared to viral situation. pVIII indicates the starting ATG of the
pVIII protein, CAP is the E2 Cap site. (C) Comparison between the consensus and the

actual BRE and TATA sequences, where BRE is the TFIIB response element. Bases that
match the consensus are indicated in green, whereas bases that do not match the consensus
are indicated in red. The underlined G in the BRE is essential for its proper function. S=C

or G, R=G or A, W=T or A.



Results and discussion

80

Figure 2.19: Structure of the mutant E2-Tcf promoters. (A) Tcf-E2 promoter used in the
Tcf-E2 viruses. (B) 15bp- or 20bp-phased Tcf binding sites. (C) Duplicated native (bad)

TATA box series. (D) Added (good) TATA box series. (E) Variation of the spacing
between the first Tcf-binding site and the TATA box. (F) Addition of two FoxM1 binding
sites. (G) Addition of two E2F binding sites. The name describes the promoter: 15=15bp-
phased Tcf-binding sites; 20=20bp-phased Tcf-binding sites; S=SpeI site; Bad=addition of

the native TATA box; Good=addition of an optimal TATA box; -=addition of a spacer
between the Tcf sites and the TATA box; +4 to –11=addition or deletion in the spacer;

FF=addition of two FoxM1 binding sites; E> or E<=addition of two E2F binding sites in
the forward or reverse orientation.
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I mutated the E2-Tcf promoter in order to increase its activity. The E2

TATA box could not be directly mutated because it contains the last codons

of the 33K gene product (on the complementary strand). To circumvent this

problem, I inserted a new optimal TATA box immediately upstream of the

existing TATA. A non-optimal TATA box (i.e. the native E2 TATA box)

was inserted at the same position as a control. The importance of the

spacing between two Tcf binding sites was analysed by comparison of

15bp- and 20bp-spaced Tcf-binding sites. Finally, I constructed promoters

with different length between the TATA box and the Tcf binding sites.

These promoters are schematised in Figure 2.19.

In SW480, I showed by reporter assays that none of these

modifications provoked any major difference in E2 promoter activity

(Figure 2.20a). Rather surprisingly, insertion of an optimal TATA box did

not result in higher transcription from the Tcf-E2 promoters. Similarly,

varying the spacing between the first Tcf-binding site and the TATA box

did not result in significant changes in the activity of the promoter (data not

shown).

In Co115, some modifications decreased the activity of the promoter

by approximately 4-fold, but no modification resulted in an important

increase from the E2-promoter (Figure 2.20b). In addition, no difference in

promoter activity was seen when the spacing between the TATA box and

the Tcf sites was altered (data not shown). I conclude that none of these

modifications can increase the activity of the E2 promoter.

Insertion of FoxM1-binding sites did not increase the activity of the

E2 promoter, even when a plasmid coding for the FoxM1 protein was co-

transfected (data not shown). Insertion of E2F-binding sites increased the

activity of the E2 promoter by 25- to 30-fold in SW480, suggesting that an

E2F activity is present in that cell line (Figure 2.21a). This is consistent

with a study reporting inactivation of the p16 promoter in SW480.87 In

Co115, insertion of E2F-binding sites decreased the activity of the E2

promoter by approximately 50-fold (Figure 2.21b). Although this cell line

was also reported to have inactivating mutations in the p16 promoter,87 such

results are compatible with E2F-mediated repression. Surprisingly,

cotransfection of E1A (Figure 2.21; “+”) did not affect E2 activity in either
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cell line, suggesting that these activities are not modulated by E2F. In

conclusion, none of the mutant promoters showed an increase in activity in

both permissive and semi-permissive cell lines.

Figure 2.20: Activity of the new E2-Tcf promoters in SW480 (A) and Co115 (B). Values
are normalised to the value of the E2-Tcf promoter used in the Tcf-viruses and plotted on a

linear scale.
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Figure 2.21: Activity of the E2-Tcf promoters containing E2F binding sites in SW480 (A)
and Co115 (B). Values are normalised to the value of the E2-Tcf promoter used in the Tcf-

viruses and expressed on a log10 scale.

Construction of a viral vector for rapid modification of the E2

promoter

It would be much more informative to be able to mutate the E2

promoter in the viral genome, and during a viral infection. I created a virus

in which the E2 promoter is replaced by a tetracycline-inducible promoter

and flanked by two different LoxP sites (Figure 2.22). This virus was

created in an AB23’4 background to allow thigh selection of the E2

promoter and is called ABFT34, FT meaning Floxed- and Tetracycline-

regulated E2 promoter. In principle, such a virus can grow normally in

absence of tetracycline, provided that an activator like Tet-VP16 is present

in the cell. In presence of tetracycline, promoter activation is abrogated and

viral growth is inhibited. In Cre-expressing cells infected with ABFT34, a

transfected E2 promoter sequence that is flanked by the two LoxP sites will
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be incorporated in the viral genome by Cre-mediated recombination.

Because these cells do not express Tet-VP16, only the recombined viruses

will grow. Such a system could be used to incorporate a specific E2

promoter, or to select a promoter from a bank of mutant promoters.

Figure 2.22: Schematic organisation of the E2/E3 region. (A) Wild type E2/E3 region with
endogenous binding sites. The L4 33K mRNA (in pink) is composed of two exons (thick

lines). In the intron (thin line), the two putative branchpoints are depicted. (B) Tcf-E2
region as present in the Tcf-E2 viruses. (C) Floxed-Tet-E2 region in ABFT34. The Tcf
binding sites have been replaced by seven Tet-responsive elements. One LoxP site was

introduced in the L4 33K intron and the other immediately upstream of the Tet-E2
promoter. (D) Legend.

Because the sequence coding for the late protein L4-33K on the

rightward strand is embedded in the E2 promoter, it was not possible to
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insert the first LoxP site immediately downstream of the E2 TATA box. To

circumvent this problem, I inserted the first LoxP site in the intron of 33K,

which is located further downstream of the E2 promoter. The second LoxP

site, which is mutant (LoxP511), was inserted immediately upstream of the

Tet-responsive elements of the E2 promoter (Figure 2.22).

To produce the virus containing the modifications mentioned above,

the Tet-VP16 protein was stably expressed in CR1 and SW480 cells upon

infection with a lentivirus coding for the Tet-VP16 transactivator. CR1·Tet-

VP16 will be used for the initial conversion of plasmid DNA to viral

particles and SW480·Tet-VP16 will be used to expand the virus. The Tet-

VP16 activity of these cell lines was tested using a TET-E2 reporter plasmid

(Figure 2.23). In both cell lines, activity of the TET-E2 promoter was

comparable to that of the Tcf-E2 promoter (compare TET-E2 with Tcf-E2)

but could be abrogated to nearly background levels (Min-E2) upon addition

of tetracycline in the medium. Therefore, these cell lines appear suitable for

production and expansion of ABFT34.

Figure 2.23: Activity of the E2 promoters in SW480·Tet-VP16 (A) and CR1·Tet-VP16 (B).
TET-E2=Floxed-TET-E2 promoter as depicted in Figure 2.22c; Tcf=Tcf-E2 promoter;

Min=Min-E2 promoter. Values are normalised to the activity of the Min-E2 promoter and
plotted on a linear scale.
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Currently, the production of the ABFT34 virus has been unsuccessful.

This could be explained by a possible interference between the LoxP sites

and the expression of viral proteins. To bypass this problem, I propose to

use a helper virus. Helper viruses are E1-deficient and can be propagated in

complementing cell lines. Apart from E1, these viruses can provide all the

other viral functions in trans and are used to produce viruses with

deficiencies outside E1. The packaging signal of these viruses is flanked by

two sites (i.e. LoxP or Frt) and can be excised by the corresponding

recombinase (Cre or Flp, respectively), such that only the other virus is

packaged. The ABFT34 virus might need the help of such a virus to be

made or propagated.

E1A-HD2 fusion protein

TOPFLASH reporter assays and infection with Tcf-viruses suggest

that the activity of the Wnt pathway is reduced in semi-permissive cell lines

and that the E2 promoter is the most sensitive to the level of Tcf activity,

and therefore to the cell type. It is possible that this promoter needs a higher

threshold of activating signals. BCL9 binds to -catenin through its HD2

domain in a way that does not prevent Tcf/ -catenin interaction. The E1A

protein transactivates early viral promoters through interaction of its CR3

domain with ATF and the Mediator complex. In order to restore the

transactivating potential of E1A, the HD2 domain of BCL9 was fused to the

C-terminus of E1A. The fusion protein should bind to the Tcf/ -catenin

complex and further activate transcription. To verify this hypothesis, the

activity of the E1A12S-HD2 and E1A13S-HD2 proteins was tested by

reporter assays.

In SW480, fusion of E1A to HD2 abrogated the E1A12S-dependent

inhibition of the Tcf-E2 promoter (Figure 2.24a). The fusion protein was

presumably still sequestering essential cellular proteins, though in the

vicinity of the promoter. In a similar manner, transcription from the E2

promoter was better activated by E1A13S-HD2 than E1A13S (Figure

2.24a). This is compatible with the model that an E1A-HD2 fusion protein
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that is tethered to the promoter can activate transcription. E1A13S probably

activates the transcription through its CR3 domain.

In Co115, the HD2-proteins led to higher activity from the Tcf-E2

promoter that the parental proteins (Figure 2.24b). This is compatible with

the model cited above. Tcf-dependent transcription was not inhibited by

E1A in this set of experiments, so these results require confirmation.

Figure 2.24: Reporter assays with E1A-HD2 proteins in SW480 (A),  Co115 (B), and HeLa
(C and D)  cells. Values were not normalised to Renilla luciferase due to large variations of

the activity of its promoter in presence of the E1A proteins. Values are normalised to the
activity of the Tcf-E2 promoter in absence of any E1A protein (A to D). In (C), values are
normalised within each group (+ or - N- cat), whereas in (D) all values are normalised to

the activity of the Tcf-E2 promoter in absence N- cat.
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In HeLa cells, the E1A13S-HD2 fusion protein activated transcription

of the Tcf-E2 promoter by about 13-fold (Figure 2.24c), indicating either

that HeLa have weak Wnt activity or that the fusion protein is somehow

able to activate transcription independently of Wnt signalling. This

activation was about 36-fold in presence of activated -catenin (Figure

2.24c). In absolute values, E1A13S-HD2 and -catenin together activate the

transcription of the E2-promoter by about 470-fold (Figure 2.24d). This

result indicates that the E1A-13S protein needs active Wnt signalling to

efficiently activate transcription from a Tcf promoter. Thus, fusion of the

HD2 domain of BCL9 to E1A in Tcf-viruses might increase expression

from Tcf-promoters and improve their viral toxicity in colorectal cancer cell

lines. The E1A gene was replaced by E1A-HD2 in an AB23’4 background

to generate the AHB23’4 virus. This virus will enable testing the effect of

E1A-HD2 during viral infection.

2.4.3. Discussion

In this chapter, I examined the differences between permissive and

semi-permissive cell lines. As seen in the previous chapter, expression of

components of the Tcf/ -catenin complex (or a fusion protein) could not

increase the activity of a Tcf promoter in SW480 or in Co115 cells. This

suggested that the block in semi-permissive cells either occurs downstream

of -catenin, or influences its level or localisation. I decided to look at the

downstream effectors BCL9, Pygo1, and Pygo2, three proteins involved in

Wnt/Wg signalling. In flies, homozygous mutations of these proteins cause

embryonic lethality similar to that seen in wg mutant embryos. Moreover,

Pygo1 had been reported to strongly activate Tcf-dependent transcription in

HEK293 cells,140 and inhibition of Pygo1 or Pygo2 by dsRNA has been

shown to decrease the activity of a Tcf promoter in SW480 and Hct116

cells.235 This indicates that BCL9/Pygo is a functional and important

component of the Wnt signalling pathway.

No relevant difference in BCL9 or Pygo mRNA levels could be seen

between various cell lines. Cotransfection of these proteins with a Tcf-E2

reporter did not result in increased expression of the reporter gene and the
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toxicity of a Tcf-virus was not increased in cell lines that stably express

Pygo1 or Pygo2. Taken together, these results suggest that these proteins

are not limiting factors in the cell lines tested and thus cannot explain the

difference between these two classes of cell lines.

I performed immunofluorescence assays on various cell lines and

showed that non- and semi-permissivity correlated with the absence of -

catenin in the nucleus. In contrast, -catenin was observed in the nucleus of

SW480 and ISREC-01, two permissive cell lines. The widely accepted

model is that -catenin functions in the nucleus, where it binds to Tcf to

activate transcription of target genes. Therefore, it is logical that

permissivity should correlate with nuclear staining. The fact that no nuclear

signal was seen in semi-permissive cells probably indicates that nuclear -

catenin levels are very low but sufficient to modestly activate transcription

from Tcf promoters. Virtually all colon cancer cells have mutations in either

APC or -catenin. Most of the truncations in APC occur between the first

and the third “20R” domains, in the so-called mutation cluster region

(MCR, see Figure 1.5). These truncated APC proteins lose their ability to

interact with axin, and thus to target -catenin to the degradation complex.

Interestingly, most of the cell lines permissive for Tcf-viruses or able

strongly to transactivate in TOPflash assays contain truncations in the MCR

(Type I truncations). In contrast, semi-permissive cell lines often contain

mutations in -catenin and retain a full-length APC protein. A puzzling

exception was the HT29 cell line. This cell line is semi-permissive but

contains a truncation mutation near the MCR. Nuclear export sequences

have been reported either at the N-terminus or immediately after the third

20R domain of APC,122,207 and the APC protein of HT29 retains both nuclear

export sequences. Such truncations are called Type II truncations and have

been associated with reduced Wnt activity.206 Therefore, it is possible that

the semi-permissivity is due to the presence of an APC protein that can

export -catenin to the cytoplasm. This would explain why Wnt activity

could not be increased upon addition of -catenin. A way to test this

hypothesis is to silence the expression of APC by RNA interference (RNAi)

and look at the localisation of -catenin and at the activity of Tcf promoters.
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Recent work in SW480 and Hct116 cells showed that APC RNAi could

increase the activity of a Tcf promoter in Hct116 but not in SW480.246 This

further indicates that the “cytoplasmic export” theory might prove correct.

If this is the case, our viruses should work in most colorectal cancers, since

85% of them have Type I APC mutations. Furthermore, most liver

metastases show nuclear staining of -catenin (K.J. Lipinski, pers. comm.).

Alternatively, detection of -catenin in the semi-permissive cell lines

might be impaired if the protein is complexed with cell type-specific

inhibitors like chibby or ICAT, which are negative regulators of the Wnt

pathway.231,232 These proteins bind directly to a region between the last

armadillo repeats and the C-terminus. Noticeably, this region is the one

used to raise the -catenin antibody. Thus, binding of these inhibitory

factors might abrogate the detection of -catenin in the nucleus of semi-

permissive cells. Lastly, other pathways such as the TAK1/NLK/MAPK

pathway have been shown to disrupt the Tcf/ -catenin complex and might

play a role in the modulation of its activity.130

Analysis of viral protein expression showed that the E2 promoter is

more sensitive than the E1A promoter to the cell type. Low expression of

the E2 proteins presumably leads to reduced replication of the adenoviral

DNA, and thus to a delayed late viral phase. In the semi-permissive cell line

Co115, the Tcf-viruses failed to express E2 and late proteins. Analysis of

the E2 promoter showed poor binding sites for proteins of the basal

transcription machinery such as TBP and TFIIB. Nevertheless,

improvement of these sites or addition of binding sites for other

transcription factors did not result in an important increase in promoter

activity. One can speculate that the non-optimal sequence of the E2

promoter ensures it is activated only after the expression of E1A and

E4orf6/7 gene products. That further supports the hypothesis that the E2

promoter might need a higher “activating signal” than other promoters.

In order to increase this activating signal and recapitulate an E1A-

induced activation of the E2 promoter, the -catenin binding domain of

BCL9 was fused to the C-terminus of E1A. Reporter assays showed that the

fusion proteins are able to activate transcription from an E2 promoter better
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than the native E1A proteins, and that proper activation depends on an

activated Wnt pathway. Thus, E1A-HD2 might activate transcription from

Tcf-containing promoters during the viral infection, leading to a Wnt-

dependent, positive feedback loop. To test this hypothesis and to see

whether expression of an E1A-HD2 protein is able to override the block

seen in semi-permissive cell lines, I inserted the E1A-HD2 gene into the

AB23’4 background. Such a mutation is compatible with viral growth and

study of this virus might prove to be very interesting.

Because the E1A promoter is less sensitive to cell type than the E2

promoter and A4 is active in a broader panel of colon cancer cell lines, I

suggest keeping the A4 background as long as the defect in the E2 promoter

is not identified.

2.4.4. Material and Methods

Quantitative RT-PCR

Total RNA was extracted with the Qiagen RNeasy mini kit following

the manufacturer’s instructions (Qiagen, Hilden, Germany). Reverse

transcription was performed with random hexanucleotides (Amersham

Biosciences, Little Chalfont, UK) and Superscript II reverse transcriptase

(Invitrogen, Carlsbad, USA). Quantitative PCR was performed on Roche

Lightcycler using DNA Master SYBR Green I (Roche, Basel, Switzerland)

following the manufacturer’s instructions. Pygo1 was amplified with

200nM of primers oCF61 (TTCCTCGCATGGTGGTGA) and oCF62

(GAAAGAAGGTCCCTGTGTATTTG) at 62 °C. Pygo2 was amplified

with 100nM of oCF63 (GGGCAAGGCCGGTCTG) and oCF64 (GTGAGT

ATGCAGGGCCCTGAGTAT) at 62°C. BCL9 was amplified with 200nM

of oCF65 (GATGGCCAATAAAGCTGCAG) and oCF66 (CTGTGTGTTC

AGAGGCGCTG) at 63°C. The PCRs were performed in presence of 5 mM

MgCl2. The PerkinElmer pre-developed kit was used for 18S RNA

detection (PerkinElmer, Wellesley, USA). Values are the result of three

independent experiments.
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HD2-E1A plasmids

 E1A12S was isolated from pCF9 with BamHI and EcoRI and

introduced into pUC19 to produce pALP1. A XmaI site was introduced at

the C-terminus of E1A by iPCR on pALP1 with primers oCF83

(CGGGCCTGGGGCGTTTACAG) and oCF84 (GGTAAGGTGTAAACC

TGTGATTGC) to produce pALP3. The region around the HD2 domain of

BCL9 was amplified by PCR with primers oCF85 (TACCCGGGAGC

AATAGCTCTTCAG) and oCF86 (ACCCCGGGATTCTGCTGCGGTCC

CCCAC). The PCR product was cut by XmaI and inserted into pALP3 to

give pALP5. The E1A coding sequence was cut from pALP5 with HpaI and

BamHI and reintroduced into pCF9 to give pALP9. pALP9 has the

E1A12S-HD2 gene in a pcDNA3 backbone (Invitrogen, Carlsbad, USA).

E1A13S was isolated from pCF113 with BamHI and EcoRI and

introduced into pUC19 to produce pALP2. pALP5 was cut with PshAI and

NdeI to isolate an E1A-HD2 fragment that was introduced into pALP2 to

give pALP7. The E1A coding sequence was cut from pALP7 with HpaI and

BamHI and reintroduced into pCF113 to give pALP8. pALP8 has the

E1A13S-HD2 gene in a pcDNA3 backbone.

Lentiviral constructs

Plasmids coding for hPygo1 (pCF251), hPygo2 (pCF252), and BCL9

(pCF331) in a pBSIISK(-) backbone were kindly provided by K.Basler.

pCF251 was cut with XhoIKf and EcoRI and inserted into pCF243 cut with

SmaI and EcoRI to give pCF255. pCF252 was introduced similarly in

pCF248 to give pCF256. pCF331 was cut with NotIKf and SalIKf(C/T) into

pCF247 cut with EcoRIKf and BamHIKf(G/A) to give pCF343. The TET-VP16

sequence was isolated from pES126 (pBPSTR-1)188 with HindKf and BamHI

and inserted into pCF243 cut with SmaI and BamHI to give pCF234.

pCF243, pCF248, and pCF247 are pHR’-derived lentiviral backbones176 that

contain SV40 promoter-driven resistance genes against puromycin,

neomycin, and phleomycin, respectively. In all these constructs, the

transgene is driven by an EF1  promoter.



Permissivity and viral replication

93

5x106 293T cells were seeded 24h before transfection in 10-cm

dishes. One hour before transfection, medium was replaced with 4ml

DMEM, 10% FCS supplemented with 25 µM chloroquine (Sigma, St.

Louis, USA). Calcium-phosphate cotransfection was performed by mixing

6.5 µg packaging construct pCMV- R8.91 and 3.5 µg pseudotyped

envelope-encoding plasmid pMD2. VSVG (provided by D.Trono, Geneva)

with 10 µg of lentiviral vector, in 250 µM final CaCl2. An equal volume of

2xHBS (0.28 M NaCl, 0.05 M HEPES, 1.5 mM Na2HPO4, pH=7.10) was

added. The precipitate was formed in 20’ at room temperature and added to

the 293T cells. Transfected cells were incubated 6 h at 37°C, then medium

was replaced by 6 ml fresh DMEM, 10%FCS, and cells were incubated

again at 37°C for 24 h. The viral supernatant was harvested with 8 µg/ml

polybrene, filter-sterilized through a 0,20 µM pore filter, and frozen at

–70°C before infection.

Production of stable cell lines and transfection assays

400’000 SW480 or 500’000 HT29 cells were seeded 24 hours before

infection in a 35-mm dish. Cells were infected with 10x-, 30x-, and 90x-

dilutions of lentiviral stocks overnight. Cells were passaged at 1/10 and 9/10

into 10-cm dishes. After one day, the medium was changed to medium

containing 1 µg/ml puromycin or 1.6 mg/ml neomycin for selection of the

integrants.

Luciferase Assays

Transfection and luciferase assays were done as described in chapter

2.3.4 using 0.5 µg of lentiviral plasmid to express the various proteins and

0.1 µg of Tcf-E2 promoter-driven luciferase as reporter.34 The amount of

DNA was normalised to 1 µg with empty lentiviral vector. Transfection

efficacy was normalised using 5 ng of TK promoter-driven Renilla

luciferase (Promega, Madison, USA). TET-E2 or E1A-HD2 transfections

were done with Lipofectamine 2000 (Invitrogen, Carlsbad, USA), with a

Lipofectamine 2000:DNA ratio was of 3:1 (v:w).
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Immunofluorescence assay

30’000 to 100’000 cells were seeded onto a 15-mm glass coverslip

(Fluka) into 24-well plates. Once the cells reached the desired confluence,

wells were washed twice with PBS, and cells were fixed with 200µL

formaldehyde 4% in PBS for 15’ at RT. Cells were washed once with PBS

and permeabilised with 0.1 % (v/v) Triton X-100, 1% (w/v) BSA in PBS for

10’ at RT. Cells were washed three times with PBS and blocked with 5%

BSA (w/v), 5% (v/v) FCS in PBS for 30’ at RT. Cells were washed once

with PBS and incubated with 200 µl of 250 µg/µl anti -catenin antibody

(C19220, BD Biosciences Pharmingen, San Diego, USA) in 0.5 % BSA, 0.5

% FCS in DMEM (staining buffer) at 37°C for 1h30’. Cy3-coupled anti-

mouse secondary antibody solution (100 µg/ml) was centrifuged at 10’000

rpm at 4°C for 20’ to pellet unconjugated Cy3. Cells were washed three

times with PBS and incubated with 200 µl of 5 µg/ml centrifuged secondary

antibody in staining buffer for 30’ at 37°C. Cells were washed three times

with PBS. The coverslips were mounted on slides in DABCO solution

(Sigma, St-Louis, USA) and sealed with nail polish (Maybelline, NY,

USA). DABCO solution is made by adding 245 mg of DABCO in 3 ml of

PBS, adjusting the pH at 7.4, adding glycerol up to 9.5 ml and adding 0.5

ml of PBS 10X.

Western blotting

Western blotting was performed as described in chapter 2.3.4.

Additional reagents were anti-fibre (RDI-ADENOV2abm, 1:2000, Research

Diagnostics, Flanders, USA) and anti-pTP (IB6A8, 1:1000, gift of J.A.

Engler)76 antibodies.

Radiolabelling of proteins in infected cells

Cells in 35-mm dishes were infected with 1000 viral particles per cell

for two days. The medium was replaced by 2 ml of DMEM (without L-

methionine, L-cysteine, glutamine, sodium pyruvate, with Glutamax)

containing 10 µCi of 35S methionine (Redivue L-[35S] Methionine or Promix
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70% 35S Methionine, 30% 35S Cysteine, Amersham Biosciences, Little

Chalfont, UK). One hour after addition of the radiolabelled amino acids,

cells were collected in SDS-PAGE sample buffer, separated by SDS-PAGE,

stained with Coomassie, dried for one hour on a DEAE membrane and

developed on a Kodak Biomax MR film.

Mutagenesis of the E2 promoter

All the mutagenesis done on the E2 promoter was done starting from

the pMB60 reporter, which contains the luciferase gene under the control of

the Tcf-E2 promoter and has the nearby E3 promoter mutated.34 Mutations

were inserted by iPCR using primers oCF17 (new TATA box, CGACGCCT

ATATATCTAGTCCTTAAGA), oCF18 (old TATA box, CTAGTCCTTA

AGAGCTAGTCCTTAAGAGTCAGC), oCF19 (no spacer, ATCAAAGGG

TTGGAGATCAA), oCF20 (spacer, CATATGGCTAGCTAAGCGATCAA

AGGGTTGGAG), oCF21 (20bp spaced-Tcf, CATTGCCCTTTGATCTCC

TACTGAACCCTTTGATCG), oCF22 (20bp spaced Tcf + SpeI, CATAAG

ATCAAAGGGACTGTAGACAGATCAAAGGGACTAGTGCCATTATG

AGCAAGG), oCF27 (15bp spaced Tcf + SpeI, AGTCCCTTTGATCTTAA

TCCCTTT), and oCF28 (15bp spaced Tcf + SpeI AGTCCATTATGAGCA

AGGAAATT). Various combinations of templates and primers led to pCF

plasmids that were backcloned to give the corresponding pCV plasmids

(Table 2.1).

FoxM1 binding sites were inserted by annealing oCF23 (CTAGTAC

GTTGTTATTTGTTTTTTTCG) with oCF24 (CTAGCGAAAAAAACAA

ATAACAACGTA) and inserting the double-stranded oligonucleotide into

pCV20, pCV21, or pCV26 cut with SpeI. Similarly, E2F binding sites were

inserted by annealing oCF35 (CTAGTTTTCGCGCCTGCGTTTTCG

CGCG) with oCF36 (CTAGCGCGCGAAAACGCAGGCGCGAAAA) and

inserting the double-stranded oligonucleotide into pCV21 or pCV26.

Various combinations are summarised in Table 2.2.
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Template Oligo1 Oligo2 Plasmid Backcloned Name*

pCF21 oCF17 oCF19 pCF118 pCV13 15Good

pCF21 oCF18 oCF19 pCF122 pCV15 15Bad

pCF21 oCF17 oCF20 pCF127 pCV17 15-Good

pCF21 oCF18 oCF20 pCF128 pCV19 15-Bad

pCF21 oCF21 oCF22 pCF162 pCV25 S20

pCF21 oCF27 oCF28 pCF169 pCV29 S15

pCF118 oCF21 oCF22 pCF132 pCV20 S20Good

pCF118 oCF27 oCF28 pCF137 pCV21 S15Good

pCF122 oCF27 oCF28 pCF144 pCV23 S15Bad

pCF127 oCF21 oCF22 pCF164 pCV26 S20-Good

pCF128 oCF21 oCF22 pCF167 pCV27 S20-Bad

pCF128 oCF27 oCF28 pCF171 pCV30 S15-Bad

Table 2.1: generation of mutant E2 promoters in reporter plasmids. * 15=15bp between two
Tcf sites, 20=20bp between two Tcf sites, S=SpeI site 5’ of the Tcf sites, -=spacer between
Tcf sites and TATA box, Good=insertion of a new optimal TATA box, Bad=insertion of a

new native TATA box

Template Sites Product Name*

pCV20 FoxM1 pCF174 SFF20Good

pCV20 FoxM1 pCF175 SF20Good

pCV21 FoxM1 pCF176 SFF15Good

pCV21 FoxM1 pCF177 SF15Good

pCV26 FoxM1 pCF180 SFF20-Good

pCV26 FoxM1 pCF181 SF20-Good

pCV26 E2F pCF186 SE>20-Good

pCV26 E2F pCF188 E<S20-Good

pCV21 E2F pCF189 SE>15Good

Table 2.2: Generation of FoxM1- and E2F-binding sites-containing E2 promoters. * as in
Table 2.1, additional symbols: F=FoxM1 binding site, E>=2 E2F binding sites in the

forward orientation, <E=2 E2F binding sites in the reverse orientation

Changing the spacing between the Tcf sites and the TATA box was

done from pCV26, where spacer sequence was cleaved with NheI, NdeI, or

BlpI. The ends were processed with either the Klenow fragment or the

Mung Bean nuclease. The plasmid was then re-ligated and gave pCF193 (-6

bp compared to pCV26), pCF194 (-4bp), pCF195 (+4 bp), pCF196 (+3 bp),

pCF197 (-8bp), and pCF199 (-11 bp).
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The TET-E2 promoter was isolated from pCF249 (see below) cut with

EcoRI and AflII and inserted into pMB3934 cut with EcoRI and AflII to give

pCF271.

Floxed-Adenovirus mutagenesis

A LoxP511239 site was introduced before the E2 promoter by iPCR of

the plasmid pMB66 (the integrating vector with mutant E2 and E3

promoters34) with primers oCF46 (ATACTATACGAAGTTATCGCCATT

ATGAGCAAGG) and oCF47 (ACATTATACGAAGTTATCTCGAGTTA

ACCTAGTCCTTAAGAGTCA) to yield pCF237. The Tet-responsive

element was isolated from pES149 (pUHD10-3)95 cut with StuI and XhoI

and inserted in the E2 promoter of pCF237 cut with HpaI and XhoI to give

pCF249. A LoxP site was introduced into the 33K intron by iPCR of

pCF157 with primers oCF48 (ATGCTATACGAAGTTATTTAGCCCAAG

AGCAACA) and oCF49 (ACATTATACGAAGTTATCGGCGGCGGCTG

CTTGG) to yield pCF241. pCF157 is the KpnI fragment of Ad5 (nt 25838

to 28592) in pUC19. pCF241 was cut with KpnIT4 and AflII and inserted

into pCF249 cut with SgrAIKf and AflII to give pCF253, the integrating

vector with the floxed TET-E2 promoter. The floxed TET-E2 sequence was

introduced into an AB23’4 backbone using two-step gene replacement in

yeast as described previously86 to give ABFT34 (FT standing for Floxed-

and TET-E2). Viral genomic DNA was converted into virus by transfection

of PacI digested YAC/BAC DNA into cR1 cells. The viruses were then

purified, expanded and characterised as described in chapter 2.3.4.

HD2-Adenovirus mutagenesis

A SalI site was inserted into the multiple cloning site of pcDNA3 by

cloning the HindIII/EcoRI fragment of pUC19 into pcDNA3 to give

pUCDNA3. vpCF2 is the AB23’4 genomic sequence in a YAC-BAC

vector. The leftmost part of vpCF2 (nt 1 to 1748) was cut with SpeIKf and

KpnI and inserted into pUCDNA3 cut with EcoRIKf and KpnI to give

pCF358. The E1A-HD2 sequence was isolated from pALP8 with BsmBI
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and HpaI and inserted into pCF358 to give pCF387. pCF358 was cut with

SphI and cloned into pCF34 to make pCF389, the pre-gap repair vector

containing Tcf-E1A, Tcf-E1B, and Tcf-E4 promoters. pCF387 was cut with

KpnI and XhoI and inserted into pCF389 to give pCF393, the E1A-HD2

pre-gap repair vector. Finally, the Tcf-E1A/E1A-HD2/Tcf-E1B//Tcf-E4

cassette was isolated from pCF393 by PacI and inserted into pCF1 to

produce the gap-repair vector pCF398. The vector was cut with SalI and

gap repaired in yeast with the AB23’4 backbone as described previously86 to

give AHB23’4. Viral genomic DNA was converted into virus by

transfection of PacI digested YAC/BAC DNA into cR1 cells. The viruses

were then purified, expanded and characterised as described in chapter

2.3.4.
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2.5. Tcf-viruses expressing yeast cytosine deaminase

2.5.1. Introduction

As stated in chapter 1.2.4, clinical trials have shown that oncolytic

agents are not potent enough when used in monotherapies. To increase viral

toxicity, viruses are made to express prodrug-activating enzymes, which

convert a prodrug into its toxic form only in cells that express the transgene.

The advantage of this approach is that the toxic effect is limited to the

period of exposure to the prodrug, which itself is harmless.

The enzymes most commonly used for prodrug activation are HSV

thymidine kinase (tk) and E.coli or S.cerevisiae cytosine deaminase (CD),

although many other prodrug activating enzymes are being studied.97,136

Cytosine deaminases convert the prodrug 5-fluorocytosine (5-FC) to 5-

fluorouracil (5-FU). 5-FU is a widely used cytotoxic drug which is

metabolised to fluorinated ribo- and deoxyribonucleotides which have

multiple effects, including inhibition of thymidylate synthase, altered DNA

stability, induction of single- and double-strand breaks, and decreased RNA

stability.

In devising a strategy for expression of a suicide gene, one can choose

between use of an early and a late transcription unit. Early expression risks

killing the virus if the drug interferes with viral DNA replication.79,203 Late

expression of suicide genes is more attractive because replication can

increase the number of transcription templates to many thousands of copies.

Provided viral replication is restricted to tumour cells, genes expressed from

late promoters should also be restricted to tumour cells. Therefore, there is

no a priori reason to use a tumour specific promoter. Expression of a late

gene is possible by making a fusion protein, by splicing a new exon into an

existing transcript112 or by reinitiation of translation from an internal

ribosome entry site (IRES).83,213

To test whether late expression of a suicide gene could increase the

toxicity of our Tcf viruses, I decided to construct two viruses that express

the yeast cytosine deaminase gene (yCD) late during the viral cycle of the

A4 virus. Because the early phase of the life cycle was already controlled by
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the Wnt pathway, I could use an endogenous late promoter. For late

expression in Ad5 there was a choice between using the major late promoter

and the E2 late promoter. The E2 genes are also expressed from the E2

early promoter, making it unlikely that a linked therapeutic gene would only

be expressed with late kinetics. The major late promoter drives expression

of five groups of transcripts (L1 to L5) with common 5’ exons (encoding

the tripartite leader) and differing polyadenylation (polyA) sites. The major

late transcripts encode mainly viral core and capsid proteins. I chose to

express yCD from the major late promoter using either an internal ribosome

entry site (IRES) or by alternative splicing of a new exon analogous to the

Ad41 long fibre exon.

Both strategies (IRES or alternative splicing) led to replication-

dependent expression of the transgene. yCD was expressed in higher

amounts from the IRES-yCD virus (AIC4) than from the splice-yCD virus

(ASC4). Northern blotting and RT-PCR confirmed that yCD was present in

a bicistronic fibre-IRES-yCD messenger in the AIC4 virus. In ASC4, yCD

was spliced from the tripartite leader like any late transcript. Nevertheless,

most of the yCD-containing transcripts also contained the fibre sequence

upstream of the suicide gene, indicating that the yCD splice acceptor

sequence and the fibre polyadenylation signal should be improved. Viral

burst size was reduced by less than ~10-fold by 5-FC, showing that

expression of yCD as a late gene is compatible with virus replication.

Cytopathic effect assays in colon cancer cell lines showed that both yCD

viruses have ~10-fold increased toxicity in the presence of the prodrug 5-

fluorocytosine (5-FC), which is converted to 5-fluorouracil (5-FU) by yCD.

The largest gain in toxicity was seen in HT29 colon cancer cells, which are

the least permissive colon cancer cells for the parental virus, indicating that

the new 5-FC/yCD viruses may have broader applications for colon cancer

therapy than their predecessors.
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2.5.2. Results

Virus constructs

Yeast cytosine deaminase was used because it has a lower Km and

higher Vmax than the bacterial enzyme.104,183 The yCD coding sequence was

inserted at the end of the L5 transcript in A4.82 Two viruses were produced

(AIC4 and ASC4, Figure 2.25). The AIC4 virus uses the

encephalomyocarditis virus (EMCV) IRES to convert the L5 transcript into

a bicistronic mRNA. The ASC4 virus uses the splice acceptor sequence

from the Ad41 long fibre gene to splice the yCD cassette onto the tripartite

leader exons of the major late transcript. A polyA signal was placed

between the fibre and yCD genes in the ASC4 virus, with the intention of

splitting the existing L5 transcript into new L5 and L6 transcripts encoding

fibre and yCD, respectively. The yCD insertion contributes 520 bp to ASC4

and 1071 bp to AIC4, yielding total genome sizes that are only slightly

larger than normal (Figure 2.25).

Both viruses grow as well as wild type Ad5 on SW480 cells, which

have high Tcf activity and were used as producer cells. The viruses have a

particle/pfu ratio approximately 5-fold higher than the parental virus, an

increase that could be explained by the increase in genome size or a slight

delay in fibre expression, leading to fewer infectious particles.
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Figure 2.25: Adenoviruses used in this study. The name summarises the structure of the
virus: A, 4 = Tcf sites in the E1A and E4 promoters; C = yCD; I = IRES; S = Ad41 splice
acceptor. Size: the size of the viral genome relative to wild type Ad5. part/pfu: the ratio of

particles measured by OD260 to plaque forming units measured on SW480 cells.

yCD is expressed with late kinetics

SW480 is a colon cancer cell line in which the A4 virus replicates

slightly better than wild-type Ad5; Hct116 and HT29 are colon cancer cell

lines with lower Tcf activity that are less permissive for A4 replication.34,82

To check yCD expression from the new viruses, cell extracts were collected

at various times after infection and western blots were probed for yCD and

viral proteins. Despite the changes to the L5 transcript, fibre was expressed

to similar levels by all three viruses, except for a slight delay and reduced

level in SW480 with AIC4 (Figure 2.26). yCD expression was detectable in

all three cell lines, with stronger expression from AIC4 than ASC4 (Figure

2.26). To determine whether yCD is expressed as a late gene, cells were

treated with cytosine arabinoside (ara-C) to inhibit viral replication. This

had no effect on expression of early genes (E1A and DBP) but blocked

expression of yCD and fibre, showing that these behave as late genes.
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Figure 2.26: Western blot for E1A, DBP, fibre and yCD at the indicated times after
infection of colon cancer cell lines in the presence or absence of ara-C.
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E2 and E4 expression in normal cells

Normal human small airway epithelial cells (SAECs) and lung

fibroblasts (HLFs) were infected with the yCD viruses to test whether the

A4 backbone retains its specificity for tumour cells after insertion of the

transgene. Unexpectedly, both yCD viruses expressed DBP, and the ASC4

virus even expressed a small amount of fibre protein (Figure 2.27a). This

could be caused by contamination of the viral batch with wild type virus,

but this possibility was excluded by rigorous checking of the virus

preparations using PCR primers specific for the wild type E1A promoter.

DBP expression was not blocked by the inhibitor of DNA replication ara-C,

showing that DBP was expressed from an early promoter. This could be

explained by transactivation of an early promoter by an enhancer embedded

in the yCD sequence or by a change in splicing of E2 transcripts initiated at

an upstream promoter. To define the start site of the offending transcripts,

rapid amplification of cDNA ends (RACE) was performed using RNA from

SAECs harvested 48 hours after infection. The major RACE RT-PCR

product had the same size in cells infected with wild type Ad5 as with the

yCD viruses (data not shown). Sequencing of cloned RACE cDNAs showed

that DBP was mainly expressed from the canonical E2 early promoter,

ruling out abnormal splicing or transcription initiation at a cryptic promoter

within the yCD sequence. The E2 early promoter is regulated by E1A and

E4 orf6/7. Transactivation by E1A seems unlikely because E1A expression

was not deregulated in normal cells infected with the yCD viruses, except

for a small increase at late time points when the template copy number had

probably increased (Figure 2.27a & b). An alternative possibility is that E4

orf6/7 expression is deregulated in the yCD viruses. This could be explained

by transactivation of the E4 promoter by a fortuitous enhancer in the yCD

gene, particularly given the proximity of the two sequences in the viral

constructs. Western blotting for E4 proteins confirmed that E4 is indeed

deregulated in the yCD viruses in SAECs and HLFs (Figure 2.27a & b).



Tcf-viruses expressing yeast cytosine deaminase

105

Figure 2.27: (A) and (B) Western blots for E1A, DBP, E4orf6, E4orf6/7, fibre and yCD at
the indicated times after infection of SAECs (A) and 48 hours after infection of HLFs (B)
in the presence or absence of ara-C. (C) Western blot for E1A, DBP, E4orf6, E4orf6/7 and
Tcf4 12 hours after infection of LS174 L8 cells in the presence or absence of doxycycline.

To test the ability of the viruses to respond to activation of the Wnt

signalling pathway, LS174T colon tumour cells with a dominant negative

Tcf4 (DN-Tcf4) gene expressed from a tetracycline-inducible promoter

(LS174 L8)244 were infected with the Tcf regulated viruses (Figure 2.27c).
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DN-Tcf4 abolished E1A expression, as expected given the presence of Tcf

sites in the E1A promoter, but only partially inhibited DBP expression,

showing that additional factors regulate DBP expression in these cells

(Figure 2.27c, lanes plus doxycycline). One of these factors is probably E4

orf6/7, because E4 genes were expressed constitutively and failed to

respond to DN-Tcf4 inhibition (Figure 2.27c).

Fibre expression was detectable at 48 hours in SAECs infected with

the yCD viruses (Figure 2.27a). Despite higher fibre expression with ASC4,

yCD was only detectable in SAECs infected with the AIC4 virus (Figure

2.27a), presumably because the IRES is more efficient than the Ad41 splice.

yCD was not detectable by western blotting in HLFs at any time point,

although this does not rule out weak expression below the detection limit of

the antibody (Figure 2.27b). In summary, western blotting shows that the

yCD viruses have lost some of their specificity for cells with Tcf activation,

most likely because of transactivation of the E4 promoter by a fortuitous

enhancer in the yCD sequence. To address this question, the yCD sequence

was added downstream of the luciferase gene in a Tcf-E4 reporter plasmid,

but failed to activate the Tcf-E4 promoter in the non-permissive cell line

HeLa (data not shown). Although this simple assay might not reflect the

context of a viral infection, it indicates that the yCD sequence itself is not

able to directly transactivate nearby promoters. Alternatively, it is possible

that the E4 promoter already has a background activity in Hela cells that

prevents significant activation by the yCD sequence.

The exogenous splice acceptor is used correctly in the ASC4 virus

To determine whether the yCD cassette functions correctly as an L6

transcript in the ASC4 virus, the structure of the yCD mRNA was examined

by northern blot analysis and RT-PCR. RNA was extracted from infected

HT29 cells and northern blots were hybridised to fibre and yCD probes

(Figure 2.28a). AIC4-infected cells gave a 3.0 kb band with both probes that

had the size expected for the fibre-IRES-yCD mRNA. The ASC4-infected

cells gave a 2.5 kb band with both probes that was bigger than the expected

wild type fibre or yCD mRNAs (2.0 kb and 0.7 kb, respectively). To
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ascertain the nature of this RNA, an RT-PCR was performed with primers

in the tripartite leader and yCD. This confirmed the presence of the major

2.5 kb transcript observed on the northern blot (Figure 2.28b, ASC4 lane).

The RT-PCR also showed 0.7 kb bands potentially corresponding to

correctly spliced L6 RNA.  The 2.5 and 0.7 kb PCR products from the

ASC4-infected cells were cloned and sequenced. A schematic description of

the observed transcripts is shown in Figure 2.28c.

Figure 2.28: (A) Northern blots of RNA from HT29 cells 48 hours after infection with
AIC4 or ASC4 viruses. The blots were probed for yCD or fibre. (B) RT-PCR of the same
RNA using primers for the tripartite leader and yCD. (C) Schematic diagram showing the

structure of the transcripts in (B). t1-7, transcripts.

The 2.5 kb band corresponds to yCD transcripts that contain the fibre

gene preceded by the tripartite leader either alone (labelled t1 in Figure

2.28c) or combined with the x and y leaders (t2, t3). The presence of these

transcripts is explained by failure of the prototypic L5 transcripts to use the

polyA signal placed between the fibre and yCD genes. The lower bands

correspond to mRNAs that use the exogenous Ad41 splice acceptor to

create the desired new L6 transcript. The tripartite leader was correctly

used, either alone (t4) or in conjunction with the y leader (t5). Two less
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abundant transcripts were observed (t6 and t7), which nevertheless still used

the Ad41 acceptor. I conclude that the Ad41 splice acceptor is functioning

correctly but weakly and that the polyA signal between fibre and yCD is

used inefficiently if at all. The smaller amount of correctly spliced yCD

transcripts readily explains the lower yCD expression seen on western blots

with the ASC4 than the AIC4 virus (Figure 2.26).

Viral burst size in the presence of 5-FC

To test whether 5-FC interferes with virus replication, I performed

burst assays on colon cancer cell lines (Figure 2.29a). The cell pellet and

culture supernatant were tested separately to detect any effect on virus

release. Viral burst size was higher in SW480 than Hct116 or HT29 cells

with all three viruses, as expected. In the absence of 5-FC, the yCD viruses

replicated at least as well as A4, despite their higher particle to pfu ratio.

Less virus was detected in the pellet fraction in Hct116 and HT29 cells after

5-FC treatment. The amount of virus in the supernatant was little changed

by 5-FC treatment, indicating that the drug had little effect on virus release.

Thus, treatment with 5-FC has a small effect on the burst size of the AIC4

and ASC4 viruses.

To test whether the increased E2 and E4 expression from the yCD

viruses in normal cells decreases the selectivity of the viruses at the level of

viral replication, burst assays were performed in normal cells. In SAECs,

the A4 virus was more than 1000-fold attenuated relative to wild type Ad5

(Figure 2.29b). The yCD viruses replicated 10 to 100-fold better than A4 in

these cells. 5-FC had a small effect on replication comparable to that in

colon cancer cell lines, consistent with the yCD expression seen by western

blotting in SAECs (Figure 2.27a). In HLFs, the A4 virus was ~1000-fold

attenuated compared to wild type Ad5 (Figure 2.29c). The yCD viruses

were again less selective than A4, but still showed ~100-fold attenuation

relative to wild type Ad5. In summary, the yCD viruses replicate better than

the A4 virus in non-permissive cell lines, but remain attenuated compared to

wild type Ad5.
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Figure 2.29: Viral burst assays in the presence or absence of 800 µM 5-FC. (A) Colon
cancer cell lines, (B) SAECs, and (C) HLFs were infected with 1 pfu/cell and collected 48
hours post-infection. The titres of virus in the cell pellet and the supernatant (A) or both

combined (B and C) were measured by plaque assay. Values are expressed as pfu produced
per pfu used for infection.
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5-FC increases the toxicity of the yCD viruses

Before testing the toxicity of the yCD viruses, I first looked at the

sensitivity of different cell lines to 5-fluorouracil to test their responsiveness

to the drug (Figure 2.30a). Cells were grown in the presence of various 5-

FU concentrations for 4 days and stained with crystal violet, to mimic the

readout of a cytopathic effect (CPE) assay. SW480 cells were at least 10-

fold more resistant to 5-FU than the other cell lines. Hct116 cells with a

homozygous deletion of the tumour suppressor gene p53 show a greatly

reduced apoptotic response to 5-FU but were only slightly more resistant

than the parental cells in this assay.35 The cell lines were then infected with

10-fold dilutions of virus in the presence or absence of 800 µM 5-FC

(Figure 2.30b to d, and “E” in e). In every cell line tested, 5-FC had no

effect on the toxicity of the parental A4 virus but increased the toxicity of

the yCD viruses 5 to 10-fold (compare lanes + and -). The gain in toxicity

was comparable between AIC4 and ASC4, despite evidence from western

blotting that AIC4 gives higher yCD expression than ASC4 (Figure 2.26).

This could indicate that low levels of enzyme are sufficient for production

of toxic amounts of 5-FU, or it may simply reflect the longer duration of the

CPE assay. Deletion of p53 in Hct116 did not confer resistance to 5-FC.

The biggest effect was seen in HT29, the colon cancer cell line least

sensitive to the parental virus, probably because they express the most yCD.

Inspection of the cultures revealed that 5-FC increased the toxicity of

the yCD viruses as early as two days after infection. To test whether the

toxicity would increase by application of the drug after completion of the

first cycles of viral replication, I compared addition of 5-FC either directly

after infection (Figure 2.30e, “E”) or four days later (Figure 2.30e, “L”).

Late administered 5-FC was not toxic, except for a small effect with the

AIC4 virus, which expresses the highest amount of yCD. Earlier addition of

5-FC exposed the cells to the drug for twice as long, which may account for

the increased toxicity. The ability of the virus to kill the cells at a

multiplicity of infection (m.o.i.) below 1 pfu/cell could be explained either

by viral replication and spread in the presence of the drug or by a bystander

effect caused by release of 5-FU from infected cells.
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Figure 2.30: (A) Sensitivity of colon cancer cell lines and HLFs to 5-FU. Cells were
stained four days after addition of the drug. (B to E, G) Cytopathic effect assays using 10-

fold dilutions of virus. 800 µM 5-FC was added immediately after infection, except for
HT29 (L, late) where it was added four days after infection. Cells were stained 5 (SW480),

7 (Hct116 and Hct116-/-), or 8 (HT29 and HLF) days post-infection. (F) SW480 were
infected with AIC4 at an m.o.i. of 1 or 0.1 and 800 µM 5-FC or 25-100 µM 5-FU was

added either immediately after infection. Cells were stained 4 days after infection.
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If the increase in CPE is caused by conversion of 5-FC to 5-FU, it

should be possible to mimic the effect by treating infected cells with 5-FU

instead of 5-FC. This can only be tested with low doses of 5-FU, because

higher doses inhibit cell growth even in the absence of virus. SW480, the

cells most resistant to 5-FU, were used to compare the effects of 5-FC and

5-FU after infection with the AIC4 virus (Figure 2.30f). The assay was

stopped after 4 days, compared to 8 days in Figure 2.30b, which explains

why a higher m.o.i. was required to kill the cells. At 25 µM 5-FU there was

an increase in CPE in the cells infected at an m.o.i. of 1. The gain from

combining the two treatments was less clear at higher 5-FU concentrations,

probably because of combined inhibition of virus and cell growth by the

drug. The advantage of 5-FC was apparent from the fact that it could be

given at a much higher concentration without harming the uninfected cells

(Figure 2.30f, mock), yet increased the CPE of virus at an m.o.i. of 0.1

whereas 5-FU required an m.o.i. of 1 (Figure 2.30f).

Finally, the toxicity of the viruses was tested in normal cells (HLFs,

Figure 2.30g). All three Tcf viruses were ~1000-fold less toxic than wild-

type adenovirus type 5. AIC4 and ASC4 started to show some CPE at an

m.o.i. of 10. This correlates with the expression of DBP and fibre seen in

Figure 2.27. 5-FC had a marginal effect with AIC4, presumably due to yCD

expression below the detection limit of western blotting.

In conclusion, 5-FC increased the toxicity of the yCD viruses in all

colon cancer cell lines tested but had only a minor effect in normal

fibroblasts. Despite the difference in the efficiency of yCD expression from

the AIC4 and ASC4 viruses, there were only small differences in the

toxicity of the two viruses. The biggest gain in therapeutic response was

seen in HT29 cells, which show the least response to the parental virus

alone.
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2.5.3. Discussion

I used reinitiation of translation or alternative splicing to express the

yCD transgene from the major late promoter in the A4 backbone. The

IRES-yCD and splice-yCD cassettes raised the size of the genome to 102%

and 101% of wild type size, respectively. This is below the published 105%

packaging limit.18 I preferred addition to replacement because replacement

of a viral gene carries the risk that the virus might be less active in vivo. For

instance, the E3 genes are non-essential and can be replaced with

therapeutic genes,14,111-113 but retention of the E3 region has been shown to

increase the efficacy of oncolytic adenoviruses in mouse xenograft

models.230,263 Similarly, ADP is important for cell lysis and is not an ideal

candidate for replacement in an oncolytic virus, although delayed lysis can

permit more prolonged transgene expression.112 The E3B region is deleted

in many laboratory strains of Ad5, including the dl1520 E1B-deleted virus

used by the Onyx group in clinical trials, but deletion of the E3B 14.7 kD

gene increases the neutrophil response and could hasten clearance of the

virus in vivo.91,248 Recently, deletion of E3gp19k has been found to increase

viral spread in an immunocompetent mouse model, although the basis of

this effect is not clear.248

The L5/E4 junction was chosen as the site for insertion of yCD

because use of distal splice sites in the major late transcript is blocked early

in infection. Use of a putative L6 transcript would thus guarantee the

maximum restriction of expression to cells that are committed to viral

replication, both at the level of promoter activation and splice site selection.

This is desirable for a suicide gene whose expression is not restricted to

tumour cells by use of a tumour-specific promoter. yCD expression was

blocked by treatment of cells with ara-C, which prevents viral DNA

replication, demonstrating that yCD is expressed with late kinetics.

Of the two methods tested for expressing yCD, the IRES gave higher

expression. Expression of a transgene using an IRES in this site was

recently demonstrated with p53.213 One disadvantage of the EMCV IRES is

its relatively large size (588 bp). A recent study found that the eIF4G IRES,

which is only 339 bp long, gave substantially higher expression than the
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EMCV IRES.256 If the major concern is to avoid increasing the size of the

virus while maintaining a full complement of viral genes, the most attractive

ways to express a suicide gene are fusion to a viral protein or alternative

splicing.

Fusion to a late gene in the E3 region is an interesting possibility;

fusion to a structural gene might result in loss of specificity if active

enzyme could be packaged and escape from the endosome immediately

after infection. At first glance, the complexity of splicing of the major late

transcript makes alternative splicing a less attractive option. In fact, the

enteric adenoviruses Ad40 and Ad41 prove that it is possible to insert an

additional L6 splicing unit in the major late transcript.

As a first step to test the feasibility of adding an L6 transcript to Ad5,

I inserted the Ad41 L6 splice acceptor site between the fibre and yCD

genes. Sequencing of mRNAs cloned from infected cells showed that the

Ad41 splice acceptor was used correctly, but RT-PCR and northern blotting

both indicated that it was only used by a minor group of transcripts.

Furthermore, the L5 transcript did not use its new polyA signal but instead

continued to the putative L6 polyA signal. These observations demonstrate

the feasibility of adding an L6 transcript to Ad5 after transfer of only a

minimal stretch of Ad41 sequence. Further development could include

transfer of a larger piece of the Ad41 DNA separating the long and short

fibre genes to improve the efficiency of splicing and termination, or

inclusion of binding sites for virus-dependent splicing enhancer factors such

as the 3VDE sequence to reinforce the restriction of expression to the late

phase of infection.172

Despite the low level of correct splicing, western blotting showed that

yCD was indeed expressed from the ASC4 virus. The simplest

interpretation is that it was translated from the correctly spliced “L6”

transcripts, although translation from the more abundant “L5” transcripts by

reinitiation cannot be excluded. The response to 5-FC of the AIC4 and

ASC4 viruses was almost identical in the colon cancer cell lines, and there

was an effect on replication and CPE in normal cells despite low or

undetectable yCD expression in these cells by western blotting. This

probably indicates that the level of yCD required to convert useful amounts
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of 5-FC to 5-FU is low and well within the range that can be achieved with

the virus. Since the therapeutic gain is only seen in the presence of the drug,

the fate of 5-FC in infected cells is of great interest. At the dose used, 100%

conversion would be required to kill SW480 cells unless the 5-FU were

concentrated in the cells or more efficiently used than when supplied in the

medium. A possible explanation is that the virus and prodrug act

synergistically. Disentangling this issue with selectively replicating viruses

is not simple, because the virus itself invariably shows some toxicity during

the late phase of infection.

The particle to pfu ratio of the yCD viruses was five-fold higher than

that of the parental virus. The difference was not associated with an obvious

small plaque phenotype or a reduction in CPE or burst size. It could be due

to inefficient packaging of the over-sized genome, but the increase in

genome size was small, particularly for ASC4, and certainly within the

published 105% limit.18 An alternative explanation is that reduced fibre

expression may have resulted in the production of some fibreless viruses.

Deletion of the E4 region has previously been noted to have this effect.32

The reduction in fibre expression was most obvious at early time points,

after which the yCD viruses showed normal fibre expression.

One unexpected finding was that insertion of yCD increased DBP

expression in normal cells. This expression was not blocked by ara-C,

suggesting that it came from an early promoter. In addition to transcripts

originating from the well characterised E2 early and late promoters, the

classic Ad2 transcript map shows E2 transcripts originating from the E3/L5

junction and the E4 promoter.31 I can rule out increased expression of DBP

from the latter sites, or from a novel promoter in the yCD gene itself, as

transcript mapping by RACE showed that the offending transcripts began

mainly at the prototypic E2 early promoter. Direct transactivation of this

promoter by an enhancer in the yCD sequence is possible. Indirect

transactivation by E4 orf6/7 is also possible, as I have shown that E4

expression is deregulated in these viruses. Nevertheless, one cannot favour

either possibility based on the available data. Reporter assays indicated that

the yCD sequence was not able to transactivate a nearby promoter (data not

shown), but this might not reflect the viral situation because the reporter
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construct is quite different from the viral genome and transfection

experiments are not directly comparable to viral infections. The yCD

viruses had a particle/pfu higher than the A4 virus and all the m.o.i were

expressed as pfu/cell. Thus, it is formally possible that a higher amount of

defective viral particles resulted in non-specific transactivation of the early

promoters. In that respect, proteins of the capsid like pIX have been

reported to activate transcription from TATA-containing promoters.163

E2 expression in normal cells leads to virus replication and yCD

expression, which can be seen as a slight decrease in the confluence of 5-

FC-treated HLFs infected with the highest dose of virus and a reduction in

the burst size of 5-FC-treated SAECs. It is worth pointing out in this context

that the Tcf virus backbone used for these experiments has the least

selectivity of our family of Tcf viruses. If greater selectivity is required, I

have ample scope for increasing it by addition of Tcf sites to other early

promoters.82 Alternatively, it might be possible to map the putative enhancer

in the yCD sequence and then destroy it by mutagenesis if such an element

is active in the context of the virus.

I have shown that 5-FC treatment of colon cancer cells infected with

an oncolytic virus expressing yCD from the major late promoter increases

the cytopathic effect of the virus by about 10-fold. The magnitude of the

improvement appears small because Tcf viruses are already highly active in

these cells. In SW480, for example, the parental virus can kill the cells at an

moi of 0.01. The largest gain in activity was seen in HT29, which are

relatively resistant to Tcf viruses because of low Tcf activity. The gain in

activity can be unequivocally attributed to the action of yCD on 5-FC,

because both are required to see the effect. It is a complex phenomenon

resulting from the combination of multiple competing factors. Minimally,

these include the efficiency of conversion of 5-FC to 5-FU, the sensitivity

of viral and cellular replication to 5-FU, the toxicity of 5-FU and perhaps

bystander effects.

Adenoviral replication has been reported to improve at 4 µM 5-FU

and decline at 250 µM 5-FU.17 The results of that study may not exactly

translate to this work because of important differences in virus design, but



Tcf-viruses expressing yeast cytosine deaminase

117

the overall conclusion was that drugs blocking cells in the S or G2 phases of

the cell cycle generally potentiate virus replication. In particular,

camptothecin and cisplatin were both compatible with virus replication,

even if topoisomerase I is required for in vitro viral DNA replication and

DNA inter-strand cross-links should stall the viral polymerase. This is

encouraging because the two chemotherapeutics commonly given with 5-

FU for colon cancer are irinotecan, a topoisomerase I inhibitor related to

camptothecin, and oxaliplatin, a cross-linking agent related to cisplatin.

Combination therapy with virus and 5-FU or cisplatin was previously found

by the Onyx group to give better results than virus alone in xenografts121

and gave encouraging results in patients.135,199 The use of non-toxic prodrugs

such as 5-FC would represent a considerable gain for patients. The efficacy

of 5-FC treatment can be further increased by expressing enzymes that

hasten the conversion of 5-FU to 5-FdUMP, such as uracil phosphoribosyl

transferase or thymidine phosphorylase.52,53 Of particular relevance to colon

cancer, it is possible to reduce the dose of irinotecan by expressing

carboxyesterase, which converts irinotecan to SN38, the active

metabolite.253 Yet another option for colon cancer is to express

nitroreductase, which converts CB1954 to a bifunctional alkylating agent.155

Preliminary xenograft experiments showed that Tcf viruses are able to

slow tumour growth when administered intravenously and indicated that 5-

FC further increases the toxicity of AIC4 in vivo (K. Homicsko, pers.

comm.). An improved protocol will certainly lead to more significant

differences. 5-FC treatment alone of xenografts injected with a replicating

E1B-deficient adenovirus expressing a bacterial CD gene fused to HSV tk

(Ad5-CD/TKrep) was unable to eradicate tumours.203 To achieve cures with

that virus, it was necessary to give two prodrugs (5-FC and ganciclovir)

combined with radiotherapy. Following infection with Ad5-CD/TKrep,

expression of the CD-tk fusion protein starts early but only reaches high

levels following amplification of the template copy number by viral

replication. Ganciclovir was considerably more effective at blocking viral

replication than 5-FC, although infection was severely attenuated by 5-FC

at the concentration used in our study.79,203 Monotherapy for cancer is rare,

and most groups now expect to see viral therapy used only in combination
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with other treatments. Besides major differences in the way viral replication

is targeted to tumours and the wide range of different prodrug/enzyme

systems under development, additional layers of complexity are provided by

the need to improve tumour targeting at the level of the cell surface receptor

and the need to evade neutralising antibody after intravascular

injection.15,114,123,143,194,200

In summary, I have developed oncolytic adenoviruses that express a

prodrug activating enzyme with late kinetics. They are selective for cells

with activated Wnt signalling, but less so than the parental A4 virus. This

might be due to inappropriate transactivation of viral early promoters by an

enhancer in the yCD sequence or simply reflect a higher particles/pfu ratio

of the yCD viruses. Combination treatment of colon cancer cell lines with

virus and prodrug gives a 10-fold increase in toxicity in vitro over that of

virus alone. Moreover, preliminary in vivo experiments showed enhanced

cytopathic effect in the presence of 5-FC. Taken together, Tcf-viruses

expressing yCD late during infection are potential vectors for the treatment

of colon cancer.

2.5.4. Materials and methods

Adenovirus mutagenesis

The fibre region (nucleotides nt 30470 to 33598) of adenovirus 5

(ATCC VR5) was cut with KpnI/XbaI and cloned into pUC19 to give

pCF159. A SpeI site was inserted after the polyA site of the fibre by inverse

PCR with primers AGTTTCTTTATTCTTGGGCAATGT (oCF67) and

AGTCGTTTGTGTTATGTTTCAAC (oCF68) to give pCF277. yCD was

cloned from S.cerevisiae genomic DNA by PCR with primers

TCGCTAGCCAGGCACAATCTTCGCATTTCTTTTTTTCCAGATGGT

GACAGGGGGAATGGC (oCF31) and TGACTAGTTATTCACCAATAT

CTTCAAA (oCF32). The product was cut with NheI and SpeI (underlined)

and inserted into the XbaI site of pCDNA3 (Invitrogen, Carlsbad, USA) to

give pCF232.
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The EMCV internal ribosome entry site (IRES) was cloned by PCR

from the pSE280-IRES plasmid (gift of O. Zillian, ISREC). This plasmid

contains the EMCV IRES of pCITE-1 (Novagen, Madison, USA) cut with

EcoRI and BalI and cloned into the EcoRI/SmaI sites of pSE280

(Invitrogen, Carlsbad, USA). The IRES was amplified with primers

ATGCTAGCGAATTCCGCCCCTCTC (oCF69) and ATACTAGTTATGC

ATATTATCATCGTGTTT (oCF70), cut with NheI and SpeI (underlined)

and inserted into the SpeI engineered immediately downstream of the fibre

to give pCF274. This plasmid contains the full-length wild-type fibre

followed by the EMCV IRES. The BfrBI site at the end of the IRES (bold)

can be used to introduce a foreign gene, whose first codon is the ATG of the

BfrBI site. The polyA site of fibre is embedded at the end of the coding

sequence and was mutated by silent mutations (GAA TAA A to GAG TAG

A, where the coding sequence remains Glu-Stop). To do so, the 5’-end of

the fibre gene was amplified by PCR from pCF274 using primers

GGAATTCGCTAGTTTCTCTACTCTTGGGCAATGTA (oCF77, contains

the mutant polyA signal, underlined) and GGTGGTGGAGATGCTAAACT

CACTTTGGTC (oKH9) and re-introduced into pCF274 using EcoRI and

BstXI. The vector obtained after backcloning is pCF328. It contains the

full-length wild-type fibre sequence with a mutant polyA site followed by

the EMCV IRES. This viral sequence is in a pRS406 backbone.220

yCD was cloned by PCR with primers GTGACAGGGGGAATGGCA

AG (oCF71) and TGACTAGTTTATTCACCAATATCTTCAAA (oCF76),

cut with SpeI and inserted into the BfrBI/SpeI sites of pCF278, a K7-fibre

but otherwise identical derivative of pCF274, to give pCF308. An extra A

(bold) was added at the end of yCD (last two codons underlined) to create a

polyA signal. The junction between the IRES and yCD was corrected by

PCR to give pCF317. The IRES-yCD cassette of pCF317 was backcloned

with AvrII and SpeI into pCF328 to obtain pCF330, the corresponding

shuttle vector.

The splice acceptor sequence was synthesised in oCF31 and used with

oCF76 to amplify yCD by PCR. The product was cut with NheI and SpeI

and cloned into the SpeI site of pCF277 to give pCF298. The splice cassette
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of pCF298 was backcloned with EcoRI into pCF260 to obtain pCF325, the

corresponding yeast integrating vector.

The IRES-yCD (pCF330) or splice-yCD (pCF317) sequences were

introduced into the vCF11 (A4) YAC/BAC82 by two-step gene replacement

in yeast86 to obtain vpCF12 and vpCF13, respectively. Plasmids were

checked by automated fluorescent sequencing on a Licor 4200L sequencer

in the fibre region using primers IF272 (Fibre sense: GCCATTAATGCAG

GAGATG) and IR281 (E4 antisense: GGAGAAAGGACTGTGTACTC).

Viral genomic DNA was converted into virus by transfection of PacI

digested YAC/BAC DNA into cR1 cells. The viruses were then plaque

purified on SW480 cells, expanded on SW480, purified by CsCl banding,

buffer exchanged using NAP25 columns into 1 M NaCl, 100 mM Tris-HCl

pH 8.0, 10% glycerol and stored frozen at -70°C. The identity of each batch

was checked by restriction digestion. Particle counts were based on the

OD260 of virus in 0.1% SDS using the formula 1 OD260 = 1012 particles/ml.

Pfu titres were measured on SW480.34 The clone names for AIC4 and ASC4

are vCF125 and vCF132, respectively.

Cell lines

SW480 (ATCC CCL-228), HCT116 (CCL-247) and HT29 (HTB-38)

were supplied by ATCC. Human embryonic lung fibroblasts (HLFs) were

supplied by Dr M Nabholz. p53-/- HCT116 were supplied by Dr B

Vogelstein.35 cR1 cells are C7 cells expressing myc-tagged N- -catenin

(see chapter 2.3.4). LS174 L8 were supplied by Dr M van de Wetering244

and grown in RPMI medium with 5% foetal calf serum (Invitrogen,

Carlsbad, USA). All other cell lines were grown in Dulbecco's Modified

Eagle's Medium (DMEM) with 10% foetal calf serum. Clonetics small

airway epithelial cells (SAECs) were grown in SAGM medium (Cambrex,

East Rutherford, USA).
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Western blotting

Cells were infected with 10 plaque forming units (pfu) per cell in

DMEM. Two hours after infection, the medium was replaced with complete

medium plus or minus 20 µg/ml of cytosine arabinoside (Sigma, St. Louis,

USA). Cells were harvested at various times in SDS-PAGE sample buffer.

E1A, DBP, Fibre and yCD were detected with the M73 (Santa Cruz

Biotechnology, Santa Cruz, USA), B6,196 4D2 (Research Diagnostics Inc,

Flanders, USA) and 2485-4906 (Biogenesis, Poole, England) antibodies,

respectively. E4orf6 and E4orf6/7 were detected with the RSA3 antibody.167

For LS174 L8 cells, dominant-negative Tcf expression was induced with 1

µg/ml of doxycycline (Sigma, St. Louis, USA). Tcf4 was detected with the

N-20 antibody (Santa Cruz Biotechnology, Santa Cruz, USA).

Cytopathic effect assay

Cells in six-well plates were infected with ten-fold dilutions of virus

in DMEM. Two hours after infection, the medium was replaced with

complete medium containing or not 800 µM 5-fluorocytosine (Sigma, St.

Louis, USA). Four days after infection, new medium was added. Late

addition of 5-FC was performed at that time. After five to eight days (see

legend to Figure 2.30), the cells were fixed with 4% formaldehyde in PBS

and stained with crystal violet. For the sensitivity to 5-fluorouracil (Sigma,

St. Louis, USA), the drug was added at various concentrations for four days

before staining with crystal violet.

Virus replication assay

Cells in six-well plates were infected with 1 pfu per cell in DMEM.

Two hours after infection, the medium was replaced with complete medium

containing or not 800 µM 5-fluorocytosine (5-FC). 48 hours later, the

medium and the cells were collected and centrifuged at 3000 rpm in a table-

top centrifuge. The supernatant was collected, while the pellet was

resuspended in medium containing 10% glycerol and lysed by three cycles

of freeze-thawing. Cell extracts were obtained after centrifugation of the
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cellular debris. Both supernatant and cell extract were tested for virus

production by counting plaques formed on SW480 cells after 10 days under

0.9% Bacto agar in DMEM 10% FCS. Two independent infections were

tested in triplicate for the cell extracts. One infection was tested in duplicate

for the supernatant. For SAECs and HLFs, supernatant and cell extract were

collected together and tested in duplicate.

Northern blotting and RT-PCR

HT29 cells were infected with 10 pfu per cell in DMEM. RNA was

extracted with the Qiagen Rneasy midi kit following the manufacturer’s

instructions (Qiagen, Hilden, Germany). 10 µg total RNA per lane was

resolved on a 1.2% agarose/1x MOPS/6.3% formaldehyde gel. RNA was

transferred by capillarity with 20x SSC on positively charged membrane

(Appligene, Strasbourg, France) and UV cross-linked to the membrane in a

Stratalinker (Stratagene, La Jolla, USA). Northern blots were hybridised

with random-primed 32P-labeled probes corresponding to full-length

cytosine deaminase (482 bp, PCR with oCF71 and oCF76) or a 468bp

fragment of fibre (NheI to HindIII). The membranes were prehybridised in

Church Buffer (0.5M NaPO4, 1mM EDTA, 7% SDS, 1% BSA) for 2 hours

at 65°C and hybridised in the same conditions overnight. Blots were washed

in 2xSSC, 0.1% SDS at 65°C, and then in 1xSSC, 0.1% SDS at 65°C.

RT was performed with oligo-dT12-18 (Amersham Biosciences, Little

Chalfont, UK) and Superscript II reverse transcriptase (Invitrogen,

Carlsbad, USA) according to the manufacturer’s instructions. yCD was

amplified with Pfu turbo (Stratagene, La Jolla, USA) using primers oCF76

and AGGATCCACTCTCTTCCGCATCGCTGTC (TPLupper). Bands were

purified from a TAE agarose gel and 3’ A-overhangs were added with Taq

DNA Polymerase (Sigma, St. Louis, USA). The PCR product was cloned

by TOPO TA cloning into pCR2-1-TOPO following the manufacturer’s

instructions (Invitrogen, Carlsbad, USA) and sequenced using primers

AGGGTTTTCCCAGTCACGACGTT (M13fwd) and AGCGGATAACAA

TTTCACACAGGA  (M13rev).
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RACE cloning of the DBP mRNA cap site

SAECs were infected with 10 pfu per cell in DMEM. RNA was

extracted with the Qiagen Rneasy midi kit following the manufacturer’s

instructions (Qiagen, Hilden, Germany). Reverse transcription was

performed with a DBP-specific primer (TTGTGATGAGTCTTCCT,

oCF109) and Superscript II reverse transcriptase (Invitrogen, Carlsbad,

USA). RNA was digested with RNase H (Invitrogen, Carlsbad, USA) after

the reverse transcription. cDNA was purified on a Qiagen PCR purification

column (Qiagen, Hilden, Germany) and polyadenylated with terminal

deoxynucleotidyl transferase (Amersham Biosciences, Little Chalfont, UK)

according to the manufacturer’s instructions. The polyadenylated cDNA

was then amplified by PCR using primers oCF110

(CTGCTCCTCTTCCCGACT) and T7-Oligo(dT). (GGCCAGTGAATTGT

AATACGACTCACTATAGGGAGGCGGTTTTTTTTTTTTTTTTTTTTT

TTTVN, where V is G, A or C, and N is any nucleotide) with Taq DNA

polymerase (Sigma, St. Louis, USA). The PCR product was cloned by

TOPO TA cloning and sequenced with M13fwd and M13rev primers.
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3. Perspectives

I have constructed a panel of Wnt-targeting replicating adenoviruses

and shown that these viruses are selective for the Wnt pathway. These

viruses are active in most of the colon cancer cell lines studied. A subset of

CRC cells that have activated Wnt pathway are semi-permissive to Tcf-

viruses replication. I showed that this semi-permissiveness impacts mainly

on the activity of the E2 promoter. To increase the viral toxicity, I used a

viral backbone that retains the wild type E2 promoter to express a prodrug

converting enzyme. I showed that this results in increased cytotoxicity in

colon cancer cells upon addition of the prodrug.

Viruses with multiple mutations are safer because more than one

recombination event is needed in order to revert to the wild type sequence.

Thus, it is interesting to look for a new Tcf-E2 promoter that will enable

proper E2 expression in the semi-permissive cell lines. With respect to this

issue, the ABFT34 virus should allow us screening for new promoters in the

context of a viral infection. Alternatively, the AHB23’4 virus contains an

E1A-HD2 fusion gene that might further activate transcription from Tcf-

containing promoters and thus bypass the higher activation signal that is

apparently required by the E2 promoter.

The molecular mechanism of the semi-permissivity is a potentially

very interesting and useful question to address. Semi-permissivity might be

the consequence of nuclear -catenin export by APC. In that case, this

indicates that the vast majority of colorectal cancers would be permissive to

the Tcf-viruses, since most of them have APC mutations that abolish its

export function. On the other hand, specific inhibitors of the Wnt pathway

might be differentially expressed in the various cell lines tested. If this is the

case, inhibiting these proteins might be a way to increase Wnt activity,

provided it does not lead to stabilisation of -catenin.

Protein inhibition can be achieved for example by expression of a

dominant-negative protein, or expression of a peptide that binds to the

active site or prevents protein-protein interaction. Inhibition of protein

expression can be achieved via RNAi-mediated silencing. In that respect, it
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might be possible to incorporate an shRNA into the PolIII-encoded VA

RNAs. These RNAs are attractive because the termination site is very

precise. Preliminary data show that it is formally possible to add a

functional shRNA into the sequence of the VAI RNA (S.Pébernard, pers.

comm.). If this approach proves to be efficient, the question of the target

will remain. One can target specific inhibitors of the Wnt pathway, or genes

that maintain the cellular architecture and prevent efficient viral particles

release such as lamin. Other potential targets are genes involved in drug

resistance or in the degradation of therapeutic drugs like MDR (Multi-Drug

Resistance) and DPD (DihydroPyrimidine Dehydrogenase), respectively.

The E4 promoter behaved roughly like the wild type promoter. A

tighter E4 promoter will probably increase the active repression in non-

permissive cells, and thus lead to more selective viruses. I deleted the entire

wild type control region of the Tcf-E4 promoter and reporter assays showed

that this promoter is more selective for the Wnt pathway than the previous

Tcf-E4 promoter (data not shown). To check the activity of this promoter in

the context of a virus, it was inserted into an AB4 background.

A way to check if the yCD sequence contains a cryptic enhancer that

activates nearby promoters is to replace yCD by another suicide gene like

the E.coli nitroreductase gene. Similarly, deletion of the E4orf7 gene should

prevent transactivation of the E2 promoter by E4orf6/7. Another possibility

would be to incorporate the new E4 promoter into one of the yCD-viruses to

see whether E4 protein expression will be abolished in normal cells.

Finally, it is known that the tumour core or the tumour endothelium is

often hypoxic. One way to enable our viruses to spread in the tumour

endothelium or to further activate the virus in the tumour core would be to

insert a hypoxia-responsive element in the Tcf-E1A and Tcf-E4 promoters.

I propose to create dual Tcf/HRE promoters that will be responsive to both

the Wnt pathway and to hypoxia. The activity of such a promoter in

different conditions will be analysed by reporter assays. Of particular

interest is the activity of the promoter in hypoxic cells with an inactive Wnt

pathway (like the tumour endothelium cells). Provided both pathways are

not mutually exclusive, Tcf/HRE promoters could be more efficient than the

actual Tcf promoters to treat colon cancer in vivo.
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4. Annexes

4.1. Abbreviations

5-FC 5-Fluorocytosine
5-FU 5-Fluorouracil
Ad Adenovirus
ADP Adenovirus death protein
AP-1 Activator protein 1 (jun)
APC Adenomatous polyposis coli
ara-C Cytosine arabinoside
Arm Armadillo
ATF Activating transcription factor
BCL9 B-cell lymphoma 9 protein
BRE TFIIB responsive element

-TRCP -Transducin repeats containing protein
CAR Coxsackie and Adenovirus receptor
CD / yCD Cytosine deaminase / yeast Cytosine deaminase
CHX Cycloheximide
CIN Chromosomal instability
CKI Casein kinase I
CMV Cytomegalovirus
CPE Cytopathic effect
CR1 to CR4 Conserved regions 1 to 4
CRC Colorectal cancer
CREB cAMP response element binding protein
CtBP C-terminal binding protein
DBP single-stranded DNA binding protein
DIX Domain present in dishevelled and axin (formerly DAX)
DLG Discs large homolog
DNA PK DNA proteine kinase
Dsh Dishevelled (cf. Mad)
E1A, E1B, E2, E3, E4 Early unit 1A, 1B, 2, 3, and 4
E2F E2 factor
E4F-1 E4 factor 1
eIF-2 Eukaryotic translation initiation factor 2
eIF4F Eukaryotic translation initiation factor 4F (eIF4A, 4E, and 4G)
EMCV Encephalomyocarditis virus
FAP Familial adenomatous polyposis
fopflash False Tcf-optimal promoter driving luciferase
FRAT Frequently rearranged in advanced T-cell lymphomas
Fz Frizzled
GCV Gancyclovir
GSK3 Glycogen synthase kinase 3
HAT Histone acetyltransferase
HD2 Homology domain 2
HLF Human lung fibroblasts
hNHeps Human normal hepatocytes
HMG High mobility group
HNPCC Hereditary non-polyposis colorectal cancer
HRE Hypoxia-responsive element
HSV Herpes simplex virus
IFN Interferon
icat inhibitor of -catenin
IRES Internal ribosome entry site
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ITR Inverted terminal repeat
L1 to L5 Late unit 1 to 5
LRP Low-density lipoprotein receptor-related protein
MCR Mutation cluster region
MLP Major late promoter
MLTU Major late transcription unit
m.o.i. Multiplicity of infection
NES Nuclear export signal
NF- B Nuclear factor - B
NHD N-terminal homology domain
NLS Nuclear localisation signal
Ntr Nitroreductase
Pol Polymerase
RGD Arginine – Glycine – Aspartic acid
p300 / CBP 300kDa protein / CREB-binding protein
p400 400kDa protein part of the TIP60 complex
PAR Ser/Thr protein kinase (partitioning)
P/CAF p300/CBP associated factor
PCR Polymerase chain reaction
pfu Plaque-forming units
PI3K Phosphatidylinositol 3-kinase
PDZ protein-protein interaction domain, target to sub-membranous sites
PKR double-stranded RNA-activated protein kinase R
PML Promyelocytic Leukaemia protein
POD PML oncogenic domain
polyA signal Polyadenylation signal
PP2A Protein phosphatase 2 A
pRb Retinoblastoma protein
(p)TP (pre) Terminal protein
Pygo Pygopus
RACE Rapid amplification of cDNA ends
RID Receptor internalisation and degradation protein
RING-finger domain involved in the mediation of ubiquitin ligase activity
RGS Regulator of G-protein signalling
RNAi RNA interference
Rpd3 Reduced potassium dependency protein 3 (histone deacetylases)
RSV Rous sarcoma virus
RT Reverse transcription
SAEC Small airways epithelial cells
SAMP Serine – Alanine – Methionine – Proline domain
SCF Skp1 / Cullin / F-Box complex
SWI/SNF DNA remodelling complex
TAF TBP-associated factor
TBP TATA binding protein
TCF/LEF T-cell transcription factor / Lymphoid enhancer binding factor
TFIIB Transcription initiation factor IIB
TFIID Transcription initiation factor IID
tk thymidine kinase
TNF Tumour necrosis factor
topflash Tcf-optimal promoter driving luciferase
TRRAP Transformation/transcription domain-associated protein
UTR Untranslated region
VA RNA Virus-associated RNA
Wnt Wingless – int(egration)
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4.2. Oligos list

oCF1 5’–GGGTGGAAAGCCAGCCTCGTG–3’
oCF2 5’–ACCCGCAGGCGTAGAGACAAC–3’
oCF3 5’–TCCAGATCAAAGGGATTAAGATCAAAGGGCCACCACCTCATTAT–3’
oCF4 5’–TCCCTTTGATCTCCAACCCTTTGATCTAGTCCTATTTATACCCG

GTGA–3’
oCF5 5’–TCCCTTTGATCTCCACTAGTGTGAATTGTAGTTTTCTTAAAATG–5’
oCF6 5’–GAACTAGTAGTAAATTTGGGCGTAACC–3’
oCF7 5’–ACGCTAGCAAAACACCTGGGCGAGT–3’
oCF8 5'–CATTTTCAGTCCCGGTGTCG–3'
oCF9 5'–ACCGAAGAAATGGCCGCCAG–3'
oCF10 5'–TCTGTAATGTTGGCGGTGCAGGAAG–3'
oCF12 5'–ATGGCTAGGAGGTGGAAGAT–3'
oCF13 5'–GTGTCGGAGCGGCTCGGAGG–3'
oCF17 5'–CGACGCCTATATATCTAGTCCTTAAGA–3'
oCF18 5'–CTAGTCCTTAAGAGCTAGTCCTTAAGAGTCAGC–3'
oCF19 5'–ATCAAAGGGTTGGAGATCAA–3'
oCF20 5'–CATATGGCTAGCTAAGCGATCAAAGGGTTGGAG–3'
oCF21 5'–CATTGCCCTTTGATCTCCTACTGAACCCTTTGATCG–3'
oCF22 5'–CATAAGATCAAAGGGACTGTAGACAGATCAAAGGGACTAGTG

CCATTATGAGCAAGG–3'
oCF23 5'–CTAGTACGTTGTTATTTGTTTTTTTCG–3'
oCF24 5'–CTAGCGAAAAAAACAAATAACAACGTA–3'
oCF27 5'–AGTCCCTTTGATCTTAATCCCTTT–3'
oCF28 5'–AGTCCATTATGAGCAAGGAAATT–3'
oCF31 5'–TCGCTAGCCAGGCACAATCTTCGCATTTCTTTTTTTCCAGATGG

TGACAGGGGGAATGGC–3'
oCF32 5'–TGACTAGTTATTCACCAATATCTTCAAA–3'
oCF35 5'–CTAGTTTTCGCGCCTGCGTTTTCGCGCG–3'
oCF36 5'–CTAGCGCGCGAAAACGCAGGCGCGAAAA–3'
oCF46 5'–ATACTATACGAAGTTATCGCCATTATGAGCAAGG–3'
oCF47 5'–ACATTATACGAAGTTATCTCGAGTTAACCTAGTCCTTAAGAGTCA–3'
oCF48 5'–ATGCTATACGAAGTTATTTAGCCCAAGAGCAACA–3'
oCF49 5'–ACATTATACGAAGTTATCGGCGGCGGCTGCTTGG–3'
oCF61 5'–TTCCTCGCATGGTGGTGA–3'
oCF62 5'–GAAAGAAGGTCCCTGTGTATTTG–3'
oCF63 5'–GGGCAAGGCCGGTCTG–3'
oCF64 5'–GTGAGTATGCAGGGCCCTGAGTAT–3'
oCF65 5'–GATGGCCAATAAAGCTGCAG–3'
oCF66 5'–CTGTGTGTTCAGAGGCGCTG–3'
oCF67 5'–AGTTTCTTTATTCTTGGGCAATGT–3'
oCF68 5'–AGTCGTTTGTGTTATGTTTCAAC–3'
oCF69 5'–ATGCTAGCGAATTCCGCCCCTCTC–3'
oCF70 5'–ATACTAGTTatgCATATTATCATCGTGTTT–3'
oCF71 5'–GTGACAGGGGGAATGGCAAG–3'
oCF76 5'–TGACTAGtTTATTCACCAATATCTTCAAA–3'
oCF77 5'–GGAATTCGCTAGTTTCTCTACTCTTGGGCAATGTA–3'
oCF83 5'–CGGGCCTGGGGCGTTTACAG–3'
oCF84 5'–GGTAAGGTGTAAACCTGTGATTGC–3'
oCF85 5'–TACCCGGGAGCAATAGCTCTTCAG–3'
oCF86 5'–ACCCCGGGATTCTGCTGCGGTCCCCCAC–3'
oCF109 5’–TTGTGATGAGTCTTCCT–3’
oCF110 5’–CTGCTCCTCTTCCCGACT–3’
oKH9 5’–GGTGGTGGAGATGCTAAACTCACTTTGGTC–3’
G76 5’– CGGAATTCAAGCTTAATTAACATCATCAATAATATACC–3’
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Sequencing plasmids
IF171 5’–AGTTGCTCTGCCTCTCCAC–3’
IF272 5’–GCCATTAATGCAGGAGATG–3’
IR110 5’–CATCTCTACAGCCCATAC–3’
IR190 5’–TGTCTGAACCTGAGCCTGAG–3’
IR213 5’–CAGGTCCTCATATAGCAAAGC–3’
IR215 5’–CGTGATTAAAAAGCACCACC–3’
IR281 5’–GGAGAAAGGACTGTGTACTC–3’
M13fwd 5’–AGGGTTTTCCCAGTCACGACGTT–3’
M13rev 5’–AGCGGATAACAATTTCACACAGGA–3’

4.3. Plasmids list

Name Resistance Backbone Construction
pCF1 Chr pNKBAC39 pMB19·PacI and self-ligated (Gagnebin 1999)
pCF4 AmpTrp1 pLS77 Ad5 left terminus (nt 1 to 952) PCR’ed with

G76/oCF1·PacI into pMB1·PacI/BamHIKf (pMB1 is
based on pLS77)

pCF6 AmpTrp1 pLS77 Ad5 right terminus (nt 35369 to 35938) PCR’ed with
G76/oCF2·PacI into pMB1·PacI/BamHIKf

pCF9 AmpNeo pcDNA3 wt E1A 12S into pcDNA3 (Alevizopoulos 1998)
pCF10 AmpNeo pcDNA3 E1A 12S mutant (124A-135A, unable to bind pRb)

into pcDNA3 (Alevizopoulos 1998)
pCF12 AmpNeo pcDNA3 E1A 12S mutant ( 26-35, unable to bind p400) into

pcDNA3 (Alevizopoulos 1998)
pCF16 AmpTrp1 pLS77 iPCR of pCF6 with oCF3/oCF5. E4 with Tcf b. sites
pCF17 Amp pGL3-Basic pMB39 (wtE2·wtE3, E2-driven luc, Brunori 2001)
pCF20 Amp pGL3-Basic pMB59 (mutE2·wtE3, E2-driven luc, Brunori 2001)
pCF21 Amp pGL3-Basic pMB60 (mutE2·mutE3, E2-driven luc, Brunori 2001)
pCF25 Amp pLS77 iPCR of pCF4 with oCF3/oCF4 to give pCF13.

pCF13·PvuII into pCF4 to get rid of the point
mutation in E1A 12S

pCF27 Amp pCMV-HA p300 in pCMV-HA
pCF32 AmpNeo pcDNA3 E1A 12S mutant ( 2-11, unable to bind p300) from a

pBH2-based vector (Alevizopoulos 1998)·BamHI·
EcoRI into pCF12

pCF34 AmpTrp1 pLS77 PCR of packaging signal with oCF6/oCF7·SpeI·NheI
into pCF16

pCF37 Amp pcDNAI N- catenin dominant mutant (van de Wetering
1997)

pCF42 Amp pGL3-Basic pCF17·AflII·SacIT4, “minimal” E2=E3 luc reporter
pCF43 AmpNeo pcDNA3 E1A 12S mutant ( 64-68, unable to bind p300) from

a pBH2-based vector (Alevizopoulos 1998)·BamHI·
EcoRI into pCF9

pCF45 AmpNeo pcDNA3 iPCR of pCF9 with oCF10/12. E1A 12S CR1
pCF46 AmpTrp1 pLS77 pCF56·HindIIIKf·SalI into pCF34·PstIT4·SalI. Pre gap-

repair vector: mutant left ITR 2-11 / mutant right
ITR

pCF52 AmpTrp1 pLS77 pCF61·HindIIIKf·SalI into pCF6·PstIT4·SalI. Pre gap-
repair vector: wt left ITR 2-11 / wt right ITR

pCF56 Amp short-pLS77 iPCR of pRDI-284 (pCF25-derived) with oCF8 and
oCF9. Mutant left ITR E1A 64-68

pCF61 Amp short-pLS77 iPCR of pRDI-283 (pCF4-derived) with oCF8 and
oCF9. Wild type left ITR E1A 2-11

pCF78 Chr pNKBAC39 pRDI-285·PacI into pCF1. Gap repair vector. mut left
ITR / wt E1A / mut right ITR

pCF79 Chr pNKBAC39 pCF46·PacI into pCF1. Gap repair vector. mut left
ITR / E1A 2–11 / mut right ITR
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pCF81 Chr pNKBAC39 pCF52·PacI into pCF1. Gap repair vector. wt left ITR
/ E1A 2–11 / wt right ITR

pCF83 Amp pGL3-Basic PCR of pCF4 with G76/oCF13·HindIII·PNK into
pCF26·NcoIKf·HIII. Wild type E1A promoter driving
luciferase

pCF86 Amp pGL3-Basic PCR of pCF25 with G76 and oCF13·HindIII·PNK
into pCF26·NcoIKf·HIII. Mutant E1A promoter
driving luciferase

pCF88 AmpNeo pcDNA3 E1A 12S C52 (K. Alevizopoulos)
pCF89 AmpNeo pcDNA3 E1A 12S E55, P/CAF binding def. mut. (Reid 1998)
pCF91 AmpNeo pcDNA3 E1A 12S LDLA4, CtBP binding deficient mutant (K.

Alevizopoulos)
pCF93 Amp pCX Flag-tagged P/CAF (Blanco 1998)
pCF94 Amp pCX Flag-tagged P/CAF HAT ( 579-608) (Blanco 1998)
pCF102 AmpNeo pcDNA3 pCF89·BstXI into pCF32·BstXI. E1A 2-11 and E55
pCF105 Amp pBSK+C S (CMV/ -globin/splice)-Flag-Tip49 (Wood 2000)
pCF106 Amp pBSK+C S C S-Flag-Tip49 DN (Wood 2000)
pCF107 Amp pcDNA1 myc TAG– cat (TAD)–hTcf1 (Korinek 1997)
pCF109 Amp pcDNA1 hTcf4 (Korinek 1997)
pCF110 Amp pRc-CMV pRc12S (Ad2 E1A 12S) from René Bernards
pCF111 Amp pRc-CMV pRc13S (Ad2 E1A 13S) from René Bernards
pCF113 Amp pcDNA3 pCF9·BstXI -> Gpur of 5.4, 0.68 and 0.32 kb. 0.68

kb·BsmBI -> Gpur of 0.54 kb. pCF111·BstXI·BsmBI
-> Gpur of 0.27 kb (CR3) 4-way lig of 5.4, 0.54, 0.32
and 0.27 => E1A 13S vector

pCF118 Amp pGL3-Basic iPCR of pCF21 with oCF17/oCF19. New TATA and
BRE upstream of E2-Tcf wt TATA

pCF122 Amp pGL3-Basic iPCR of pCF21 with oCF18/oCF19. Old TATA and
BRE upstream of E2-Tcf wt TATA

pCF127 Amp pGL3-Basic iPCR of pCF21 with oCF17/oCF20. New TATA,
BRE, and spacer upstream of E2-Tcf wt TATA

pCF128 Amp pGL3-Basic iPCR of pCF21 with oCF18/oCF20. Old TATA,
BRE, and spacer upstream of E2-Tcf wt TATA

pCF132 Amp pGL3-Basic iPCR of pCF118 with oCF21/oCF22. New TATA
and BRE. 20 bp phasing btw Tcf sites + SpeI site.

pCF137 Amp pGL3-Basic iPCR of pCF118 with oCF27/oCF28. New TATA
and BRE. 15 bp phasing btw Tcf sites + SpeI site.

pCF144 Amp pGL3-Basic iPCR of pCF122 with oCF27/oCF28. Old TATA and
BRE. 15 bp phasing btw Tcf sites + SpeI site.

pCF157 Amp pUC19 wtAd5·KpnI·XbaI (25838-28592) into pUC19
pCF159 Amp pUC19 wtAd5·KpnI·XbaI (30470-33598) into pUC19 (rev)
pCF162 Amp pGL3-Basic iPCR of pCF21 with oCF21/oCF22. E2-Tcf wt basal

promoter with Tcf sites spaced by 20bp + SpeI
pCF164 Amp pGL3-Basic iPCR of pCF127 with oCF21/oCF22. New Basal,

spacer, 20bp phasing between Tcf sites and SpeI
pCF167 Amp pGL3-Basic iPCR of pCF128 with oCF21/oCF22. Old Basal,

spacer, 20bp phasing between Tcf sites and SpeI
pCF169 Amp pGL3-Basic iPCR of pCF21 with oCF27/oCF28. E2-Tcf wt basal

promoter with a SpeI site upstream of Tcf sites
pCF171 Amp pGL3-Basic iPCR of pCF128 with oCF27/oCF28. New Basal,

spacer, 15bp phasing between Tcf sites and SpeI
pCF174 Amp pGL3-Basic oCF23/oCF24 into pCV20·SpeI. 2 FoxM1 sites fwd
pCF175 Amp pGL3-Basic oCF23/oCF24 into pCV20·SpeI. 1 FoxM1 site fwd
pCF176 Amp pGL3-Basic oCF23/oCF24 into pCV21·SpeI. 2 FoxM1 sites fwd
pCF177 Amp pGL3-Basic oCF23/oCF24 into pCV21·SpeI. 1 FoxM1 site fwd
pCF180 Amp pGL3-Basic oCF23/oCF24 into pCV26·SpeI. 2 FoxM1 sites fwd
pCF181 Amp pGL3-Basic oCF23/oCF24 into pCV26·SpeI. 1 FoxM1 site fwd
pCF186 Amp pGL3-Basic oCF35/oCF36 into pCV26·SpeI. 1 E2F-1 site fwd
pCF188 Amp pGL3-Basic oCF35/oCF36 into pCV26·SpeI. 1 E2F-1 site rev
pCF189 Amp pGL3-Basic oCF35/oCF36 into pCV21·SpeI. 1 E2F-1 site fwd
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pCF193 Amp pGL3-Basic pCV26·NheIKf·NdeIKf self-lig (-6 bp vs. pCF26)
pCF194 Amp pGL3-Basic pCV26·NheIKf·NdeIKf self-lig (-4 bp vs. pCF26)
pCF195 Amp pGL3-Basic pCV26·NheIKf·NdeIMung self-lig (+4 bp vs. pCF26)
pCF196 Amp pGL3-Basic pCV26·NheIKf·NdeIMung self-lig (+3 bp vs.  pCF26)
pCF197 Amp pGL3-Basic pCV26·NdeIKf·NheIMung self-lig (-8 bp vs. pCF26)
pCF199 Amp pGL3-Basic pCV26·NdeIKf·BlpIMungself-lig (-11 bp vs.  pCF26)
pCF206 AmpNeo pcDNA3 yCD PCR’ed from yeast with oCF31/32·SpeI·NheI

into pcDNA3·XbaI (mut)
pCF231 AmpNeo pcDNA3 yCD PCR’ed from yeast with oCF31/32·SpeI·NheI

into pcDNA3·XbaI (mut)
pCF232 Amp pcDNA3 pCF231·ApaIT4·BamHI into pCF206·KpnIT4·BamHI.

yCD wt
pCF234 AmpPuro pUC19 pES126·HindIIIKf·BamHI (TET-VP16 TAD) into

pRDI292·SmaI·BamHI. EF1 -TET-VP16/SV40/puro
pCF237 AmpUra3 pRS406 iPCR of pMB66 (mut E3/4·Tcf-E2 pop-in/out) with

oCF46/oCF47 -> LoxP511 before the E2 promoter
pCF241 Amp pUC19 iPCR of pCF157 with oCF48/oCF49 -> LoxP into

33k intron
pCF243 AmpPuro pUC19 Lentivirus : EF1  promoter and SV40/puro cassette

(pRDI-292)
pCF247 AmpBleo pUC19 pBabeBleo·EcoRI·ClaI into pRDI-282·EcoRI·BstBI.

EF1 /BamHI·EcoRI//SV40/Bleomycin lentivirus
pCF248 AmpNeo pUC19 pBabeNeo·EcoRI·ClaI into pRDI-282·EcoRI·BstBI.

EF1 /BamHI·EcoRI//SV40/Neomycin lentivirus
pCF249 AmpUra3 pRS406 pES149·StuI·XhoI (Tet-RE) into pCF237·HpaI·XhoI

–> LoxP511-TET-E2 promoter in popin/out vector
pCF251 Amp pBSII SK(-) hPygo1 in pBSKII SK(-) (Kramps 2002)
pCF252 Amp pBSII SK(-) hPygo2 in pBSKII SK(-) (Kramps 2002)
pCF253 AmpUra3 pRS406 pCF241·KpnIT4·AflII into pCF249·SgrAIKf·AflII.

LoxP in 33k intron + LoxP511-TET-E2 promoter in
pop inout vector

pCF255 AmpPuro pUC19 pCF251·XhoIKf·EcoRI into pCF243·SmaI·EcoRI.
EF1 /hPygo1//SV40/puro lentivirus

pCF256 AmpNeo pUC19 pCF252·XhoIKf·BamHI into pCF248·SmaI·BamHI.
EF1 /hPygo2//SV40/neo lentivirus

pCF260 AmpUra3 pRS406 pCF204(Fibre K7 in pUC19)·KpnI·XbaI into pMB31.
Fibre K7 in popin/out vector

pCF262 Amp pUC19 iPCR of pCF159 with oCF67/68. SpeI site 3’ of fibre
pCF267 Amp pUC19 PCR of IRES from pSE280-IRES with

oCF69/oCF70·NheI·SpeI into pCF262·SpeI. Fibre-
IRES (mut, duplication at beg. of IRES)

pCF270 Amp pUC19 yCD PCR’ed from pCF232·NheI·SpeI into
pCf262·SpeI. Fibre-yCD (PolyA not optimal)

pCF271 Amp pGL3-Basic pCF249·EcoRI·AflII into pCF17. wtE3-TET-E2 luc
pCF272 Amp pUC19 pCF260·BstXI·XbaI into pCF159. K7 fiber
pCF274 Amp pUC19 pCF267·BstXI·XbaI into pCF272. Fibre-IRES (mut)
pCF276 Amp pUC19 pCF270·BstXI·SpeI into pCF272. Fibre-yCD
pCF277 Amp pUC19 pCF262·BstXI·SpeI into pCF272. wtFiber – SpeI
pCF278 Amp pUC19 pCF265(pCF267-K7)·BstXI·SpeI into pCF272
pCF281 Amp pUC19 yCD PCR’ed from pCF232 with oCF31/oCF76·

NheI·SpeI into pCF272·SpeI. K7-splice-yCD
pCF284 Amp pUC19 yCD PCR’ed from pCF232 with oCF72/oCF76·

PstI·SpeI into pCF266 (pUC19-like). yCD (PstI/SpeI)
pCF291 Amp pUC19 pCF284·PstIT4·SpeI into pCF274·BfrBI·SpeI. wt fibre-

IRES-yCD (Poly(A) after fibre)
pCF298 Amp pUC19 pCF281·AflII·SpeI into pCF276. Fibre-splice-yCD
pCF299 Amp pUC19 delete Poly(A) of fibre in pCF274. 3-way ligation. 5.1

kb (AflII/BstXI) frag of pCF291 + 0.9 kb
(AflII/EcoRI) frag of pCF274 + oKH9/oCF77
(RI/BXI).
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pCF302 Amp pUC19 delete Poly(A) of fibre in pCF278. 3-way ligation. 5.1
kb (AflII/BstXI) frag of pCF291 + 0.9 kb
(AflII/EcoRI) frag of pCF278 + oKH9/oCF78
(RI/BXI).

pCF308 Amp pUC19 yCD PCR’ed from pCF284·SpeI  into
pCF278·BfrBI·SpeI

pCF315 Amp pUC19 pCF302·EcoRI into pCF299. Fiber-NoPoly(A)-IRES.
pCF317 Amp pUC19 pCF308 PCRed with oCF69/79, used as primer with

oCF76 (2nd PCR). Re-amplified with oCF69/76. Cut
with DraIII into pCF308.

pCF325 AmpUra3 pRS406 pCF298·XbaI·SpeI into pCF260. Fiber-splice-CD in
pop in/out vector

pCF328 AmpUra3 pRS406 pCF315·XbaI·SpeI into pCF260. Fiber-IRES in pop
in/out vector

pCF330 AmpUra3 pRS406 pCF317·AvrII·SpeI into pCF328. Fiber-IRES-CD in
pop in/out vector.

pCF331 Amp pBSII SK(-) hBCL-9 in pBSII SK(-) (Kramps 2002)
pCF343 AmpPhleo pUC19 pCF331·NdeI into pCF258·NdeI (mutant BCL9 in a

lentivirus). EF1 /hBCL9//SV40/phleo lentivirus
pCF357 Amp pUCDNA3 pUC19·HindIII·EcoRI into pcDNA3. Extended MCS

in pcDNA3.
pCF358 Amp pUCDNA3 vpCF2·SpeIKf·KpnI into pCF357·EcoRIKf·KpnI.

Leftmost part of vCF02 (1-1748) into pUCDNA3.
Tcf-E1A and Tcf-E1B.

pCF387 Amp pUCDNA3 pALP8 (E1A 13S-HD2)·BsmBI·HpaI into pCF358.
vpCF2-HD2 to make gap repair.

pCF389 Amp pLS77 pCF358·SphI into pCF34. Pre-gap repair. Tcf-E1A,
Tcf-E1B // Tcf-E4 (classical Tcf-E4).

pCF393 Amp pLS77 pCF387·KpnI·XhoI into pCF389. Pre-gap repair. Tcf-
E1A(HD2), Tcf-E1B // Tcf-E4 (classical Tcf-E4)

pCF398 Chr pNKBAC39 pCF393·PacI into pCF1. Gap repair vector.Tcf-E1A
(HD2), Tcf-E1B // Tcf-E4 (classical E4)

Constructed by Christelle Volorio

Name         Resistance    Backbone        Construction
pCV1 Amp pGL3-basic pCF6·HindIII, purified, AluI (E4wt promoter) into

pGL3-Basic·NcoIKf·HindIII
pCV2 Amp pGL3-basic pCF16·HindIII, purified, AluI (E4wt promoter) into

pGL3-Basic·NcoIKf·HindIII
pCV3 Amp pGL3-basic pCF34·HindIII, purified, AluI (E4wt promoter) into

pGL3-Basic·NcoIKf·HindIII
pCF13 Amp pGL3-basic pCF118·NarI·KpnI into pCF21
pCV15 Amp pGL3-basic pCF122·NarI·KpnI into pCF21
pCV17 Amp pGL3-basic pCF127·NarI·KpnI into pCF21
pCV19 Amp pGL3-basic pCF128·NarI·KpnI into pCF21
pCV20 Amp pGL3-basic pCF132·NarI·KpnI into pCF21
pCV21 Amp pGL3-basic pCF137·NarI·KpnI into pCF21
pCV23 Amp pGL3-basic pCF144·NarI·KpnI into pCF21
pCV25 Amp pGL3-basic pCF162·NarI·KpnI into pCF21
pCV26 Amp pGL3-basic pCF164·NarI·KpnI into pCF21
pCV27 Amp pGL3-basic pCF167·NarI·KpnI into pCF21
pCV29 Amp pGL3-basic pCF169·NarI·KpnI into pCF21
pCV30 Amp pGL3-basic pCF171·NarI·KpnI into pCF21
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Constructed by Anne-Laure Pittet

Name         Resistance    Backbone        Construction
pALP1 Amp pUC19 pCF9·BamHI·EcoRI into pCF153 (wtAd5 (14290-

15376)·KpnI). E1A 12S in pUC19
pALP2 Amp pUC19 pCF113·BamHI·EcoRI into pCF153 (wtAd5 (14290-

15376)·KpnI). E1A 13S in pUC19
pALP3 Amp pUC19 iPCR of pALP1 with oCF85/oCF86. E1A/XmaI site

in pUC19
pALP5 Amp pUC19 PCR of hBCL9(HD2) from pCF250 (like pCF331 but

w/mutation at the C-term) with primers
oCF85/oCF86·XmaI into pALP3

pALP7 Amp pUC19 pALP5·PshAI·NdeI into pALP2. E1A 13S-HD2 in
pUC19

pALP8 Amp pcDNA3 pALP7·HpaI·BamHI into pCF113. E1A 13S-HD2 in
pcDNA3

pALP9 Amp pcDNA3 pALP5·HpaI·BamHI into pCF9. E1A-HD2 in
pcDNA3

4.4. Contributions

I would like to specifically acknowledge the work that was done by

my diploma students and that has been incorporated into this thesis, and I

will briefly indicate the projects in which the students were involved, as

well as the figures they made, or for which they participated.

Christelle Volorio helped me in characterising my first generation of

viruses (Figure 2.3b). She also did numerous experiments with the E4

promoters (Figure 2.6), the E1A13S protein (Figure 2.8), and semi-

permissivity (Figure 2.6). Anne-Laure Pittet was involved in the

BCL9/Pygopus story (Figure 2.13, Figure 2.14), did time-course infection

experiments (Figure 2.16, Figure 2.17), and finally constructed and

analysed the E1A-HD2 fusion proteins (Figure 2.24). Christophe Hug did

experiments with the latest E4 promoters (data not shown) and MTT asays

with the yCD viruses (data not shown). Finally, Jessica Vazquez is doing

RNA interference against APC (data not shown), constructing a new

generation of viruses, and will help me in characterising the new E4 viruses.

I am deeply indebted to these people, and would like again to thank

them for all the work they did.
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