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Energy demand is an important constraint on neural signaling. Several methods have been 
proposed to assess the energy budget of the brain based on a bottom-up approach in which 
the energy demand of individual biophysical processes are fi rst estimated independently 
and then summed up to compute the brain’s total energy budget. Here, we address this 
question using a novel approach that makes use of published datasets that reported average 
cerebral glucose and oxygen utilization in humans and rodents during different activation 
states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy 
metabolism and (2) to compute a precise state-dependent energy budget for the brain. 
Under the assumption that the fraction of energy used for signaling is proportional to the 
cycling of neurotransmitters, we fi nd that in the activated state, most of the energy (∼80%) 
is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. 
Glial cells, while only contributing for a small fraction to energy production (∼6%), actually 
take up a signifi cant fraction of glucose (50% or more) from the blood and provide neurons 
with glucose-derived energy substrates. Our results suggest that glycolysis occurs for 
a signifi cant part in astrocytes whereas most of the oxygen is utilized in neurons. As a 
consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to 
take place. Furthermore, we fi nd that the amplitude of this transfer is correlated to (1) the 
activity level of the brain; the larger the activity, the more metabolites are shuttled from glia 
to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, 
less metabolites are shuttled from glia to neurons. While some of the details of a bottom-
up biophysical approach have to be simplifi ed, our method allows for a straightforward 
assessment of the brain’s energy budget from macroscopic measurements with minimal 
underlying assumptions.
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Neuron-glia metabolic interactions have been the subject of 
several recent modeling studies (Aubert et al., 2005, 2007; Hyder 
et al., 2006). Most of these studies tend to support the presence of 
an activity-regulated lactate shuttle from astrocytes to neurons as 
originally proposed by Pellerin and Magistretti (1994). The pres-
ence of this shuttle has recently been reported in slices (Rouach 
et al., 2008). Similarly, several mathematical methods have been 
derived to assess the energy budget of the brain. These methods are 
traditionally based on a bottom-up approach in which the energy 
demand of individual biophysical processes are fi rst estimated 
independently and then summed up to compute the brain’s total 
energy budget (Attwell and Laughlin, 2001; Lennie, 2003; Nawroth 
et al., 2007). Most of these methods focus on energy requirements 
rather than on energy supply.

Here, we introduce a novel top-down approach that addresses 
the question of the brain’s energy budget from the opposite perspec-
tive. We re-analyzed datasets reporting average glucose and oxygen 
utilization in the human and rodent brains in different activation 
states (Gjedde, 2007). Using these fi gures, it is possible to evaluate 
the average tissue ATP production corresponding to the different 

INTRODUCTION
The energy requirements of the brain are amazingly high; indeed, 
while representing only about 2% of the body weight, its oxygen 
and glucose utilization account for approximately 20% of those 
of the whole organism, almost 10 times more than what would be 
predicted on a weight basis (Kety, 1957; Magistretti, 2008; Rolfe and 
Brown, 1997; Sokoloff, 1960). A similar mismatch is also observed 
for blood fl ow destined to the brain, which represents over 10% 
of cardiac output. A central feature of brain energy metabolism 
is that it is tightly coupled to neuronal activity. This tight cou-
pling is at the basis of functional brain-imaging techniques, such 
as positron emission tomography and functional magnetic reso-
nance imaging (Magistretti and Pellerin, 1999). However, the exact 
principles underlying this coupling and in particular the nature 
and role of neuron-glia metabolic interactions are still a subject 
of active research (Gordon et al., 2008; Rouach et al., 2008) and 
of controversy at times (Hertz et al., 2007). Similarly, the precise 
energy budget of the brain and in particular the cost associated 
with neuronal signaling is still not well understood (Attwell and 
Laughlin, 2001; Lennie, 2003).
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activation states. We then proceed to show that neuronal versus glial 
(i.e. astrocytic) oxygen and glucose metabolism can be evaluated by 
combining this fi rst dataset with data reporting the rate of neuronal 
glucose-equivalent oxidation as a function of the rate of cycling 
of neurotransmitters (Hyder et al., 2006; Sibson et al., 1998). This 
can be achieved with minimal underlying hypotheses. It is then 
possible to compute the brain’s energy budget as well as the cycling 
rate of neurotransmitters corresponding to the different activation 
states. Finally, using our prediction of the compartmentalization 
of neuronal versus astrocytic glucose and oxygen utilization, it is 
possible to evaluate whether these two cell populations completely 
oxidize the glucose they take up or rather import or export glucose-
derived metabolites.

Our results suggest that a signifi cant part of glucose is taken up 
by astrocytes while oxygen is mostly consumed within the neuronal 
population. We fi nd that this bias tends to increase with the level of 
activation. The higher the activation state, the higher the proportion 
of oxygen being used by neurons and the higher the proportion 
of glucose entering glia. Moreover, our approach yields an energy 
budget for different brain states. At high levels of activation, we fi nd 
that about 80% of energy is produced to support neuronal signaling 
while glia only use up a small fraction of energy to recycle neuro-
transmitters (5–6%). Finally, we fi nd that the glial population takes 
up more glucose than it can oxidize while the neurons oxidize more 
glucose-derived metabolites than the amount of glucose they take 
up. This is suggestive of a transfer of glucose-derived metabolites 
from the astrocytes to the neurons. Furthermore, the amplitude of 
this transfer is shown to be proportional to the level of activity as 
measured by the cycling of neurotransmitters, a fi nding consistent 
with the astrocyte-neuron lactate shuttle hypothesis (Pellerin and 
Magistretti, 1994). While lacking the details of a more biophysical 
approach (Attwell and Laughlin, 2001; Nawroth et al., 2007), our 
approach yields an energy budget that matches observed tissue 
glucose and oxygen utilization as well as the compartmentalization 
of glucose transport and oxygen utilization between neurons and 
astrocytes across different levels of brain activation. The resulting 
budget is in agreement with the one detailed in the work of Attwell 
and Laughlin (2001) and at the same time supports the view of 
an activity-regulated transfer of glucose-derived metabolites from 
astrocytes to neurons.

MATERIALS AND METHODS
Our goal is to segment energy production in the cerebral gray matter 
in signaling (s) versus housekeeping or non-signaling components 
(hk) and further in astrocytic (a) versus neuronal (n) components. 
The detail of processes contained in these categories is discussed 
in the “Results” section. By construction, f f f fhk,n hk,a s,n s,a+ + =+ 1. 
To this end, we combine two preexisting datasets. The fi rst dataset 
is the average tissue glucose (CMR

glc
) and oxygen (CMR

O2
) utiliza-

tion computed for the different brain states as defi ned in Gjedde 
(2007). These four states S are: (1) no function, (2) low function/ 
unconscious, (3) high function/awake and (4) maximum cortical 
activation. The second dataset is the measured empirical linear rela-
tion linking the total cycling of neurotransmitters V

cyc(tot)
 to the neu-

ronal oxidative glucose utilization CMRglc,ox
n  as recently reviewed in 

Hyder et al. (2006). The following analysis further assumes (i) that 
cells other than glia or neurons can be neglected (for simplicity, 

all glial cells are pooled together and are hereafter referred to as 
astrocytes), (ii) that the system is at steady-state which was also 
assumed during the collection of the two datasets to be used and 
(iii) that energy measured as adenosine triphosphate production 
(ATP) is used in the compartment where it is produced.

Average CMR
glc

 and CMR
O2

 lead to the average tissue (T) ATP 
yield for each state S = 1,…,4 through the following stoichiometric 
relation (Gjedde, 2007; Gjedde et al., 2002)

V S S SATP
T

glc O2CMR CMR( ) ( ) ( )= +2 λ
 

(1)

Theoretically, λ = 6 yielding a total of 38 ATP molecules per 
glucose molecule in the case of complete oxidation. Here, we use 
λ = 28/6 for a total of 30 ATP molecules, a yield closer to experi-
mental measurements (Berg et al., 2006; Hinkle et al., 1991). It is 
worth noting however, that we fi nd no signifi cant difference in the 
results reported when using λ = 6.

As reviewed in Hyder et al. (2006), the total cycling of neuro-
transmitters V

cyc(tot)
 and the neuronal oxidative glucose utilization 

CMRglc,ox
n  are linked by

CMR Vglc,ox
n

cyc(tot)= +A B  (2)

with A and B parameters to be determined. As shown in Jolivet 
et al. (2009), assuming most of glucose entering the tricarboxylic 
acid (TCA) cycle in neurons is ultimately oxidized (Gjedde, 2007), 
Eq. 2 can be rewritten

V A r Bcyc(tot) O2 O2CMR= −( ) −⎡
⎣⎢

⎤
⎦⎥

−1 1

6
1

 
(3)

with r
O2

 the astrocytic contribution to oxygen utilization. All CMRs 
in our analysis describe rates measured in µmol g−1 min−1.

From these premises, state S = 1 (no function) can be readily 
identifi ed to V

cyc(tot)
 = 0. It follows that the total fraction of energy 

used for housekeeping metabolism (tot = n + a) is given by

f S
V

V Shk,tot
ATP
T

ATP
T

( )
( )

( )
= 1

 
(4)

and as a consequence, the fraction of energy used for signaling is 
fs,tot hk,tot

( ) ( ).S f S= −1
To go one step further, we now make the hypothesis that the 

fraction of energy used for signaling is proportional to V
cyc(tot)

f S k
V S

V Ss,tot

cyc(tot)

ATP
T

( )
( )

( )
=  (5)

with k a constant to be determined. Combining Eqs 3 and 5 
leads to

r S
S

Af S V S

k
BO

O

2

2

1
6

( )
( )

( ) ( )
= − +

⎛
⎝⎜

⎞
⎠⎟CMR

s,tot ATP
T

 
(6)

Choosing r
O2

 for a specifi c state S allows the determination of k. 
Inserting k back in Eq. 6 then determines r

O2
 for the other states. 

In other words, the hypothesis that the fraction of energy used for 
signaling is proportional to V

cyc(tot)
 (Eq. 5) makes the astrocytic 

contributions to oxygen utilization (r
O2

) interdependent over dif-
ferent activation states. r

O2
(S) can then be inserted into Eq. 3 to 



Frontiers in Neuroenergetics www.frontiersin.org July 2009 | Volume 1 | Article 4 | 3

Jolivet et al. Neuron-glia metabolic compartmentalization

compute V
cyc(tot)

(S). The fraction of energy expended by astrocytes 
for signaling is then given by

f S
N V S

V Ss,a

a cyc(tot)

ATP
T

( )
( )

( )
=  (7)

with N
a
 the cost of recycling one neurotransmitter molecule and 

f S f S f Ss,n s,tot s,a( ) ( ) ( ).= −
We then estimate the housekeeping metabolism of neurons from 

the value of B. Assuming that neurons are only fed on glucose in 
state 1, we write

f S
B

V Shk,n

ATP
T

( )
( )

=
+( )6 2λ

 (8)

and thus f S f S f Shk,a hk,tot hk,n( ) ( ) ( ).= −  It is then possible to compute 
r

glc
, the astrocytic contribution to glucose utilization by compar-

ing [ ( ) ( )] ( )f S f S V Ss,a hk,a ATP
T+  with the amount of energy produced 

by astrocytes computed from the fractions of glucose and oxygen 
that they use. Some algebra leads to

r S
f S f S V S r S S

glc

s,a hk,a ATP
T

O2 O2

gl

CMR

CMR
( )

( ) ( ) ( ) ( ) ( )
=

+⎡⎣ ⎤⎦ − λ
2 cc( )S

 

(9)

Finally, we compute the amount of non-oxidized carbons 
released or captured by neurons and astrocytes by comparing the 
utilization of glucose and oxygen in both cell types. To that end, 
we use Gjedde (2007)

J S r S S r S Scarbons,n glc glc O2 O2CMR CMR( ) ( ) ( ) ( ) ( )= −⎡⎣ ⎤⎦ − −[ ]2 1 1λ
 

(10)

for neurons and J
carbons,a

(S)=2r
glc

(S)CMR
glc

(S)–λr
O2

(S)CMR
O2

(S) 
for astrocytes with J

carbons
 being positive if carbons are released or 

negative if carbons are required to satisfy for the observed oxygen 
utilization in that compartment.

Parameters in this study were chosen as follows. A and B were 
obtained by fi tting Eq. 2 to the data in Figures 1A,B (least-square fi t; 
data equally weighted). In the case of humans, because of the lack 
of data in the range V

cyc(tot)
 ≈ 0, we imposed the value of B to be 

three times smaller than the value of B obtained for rodents to 
account for the fact that human glucose utilization in state 1 is 
one-third of the one in rodents (see Figures 1C,D) (Gjedde, 2007). 
This procedure yields A = 0.86, B = 0.1 (µmol g−1 min−1) for rodents 
and A = 1.14, B = 0 03.  (µmol g−1 min−1) for humans. Finally, we 
used N

a
 = 2.2 assuming fi rst that GABA constitutes ∼20% of the 

total neurotransmitter cycling (Patel et al., 2005) and second that 
recycling one glutamate molecule requires 2.33 ATPs (Attwell and 
Laughlin, 2001) while recycling one GABA molecule only uses 1.66 
ATPs (Chatton et al., 2003).

RESULTS
We aim at computing an energy budget of cerebral gray matter for 
different states of activity (Gjedde, 2007). Rather than computing 
this budget in a bottom-up fashion by evaluating and then summing 
up the contribution of individual biophysical processes (Attwell 
and Laughlin, 2001; Nawroth et al., 2007), a useful approch, which 
however relies on a considerable number of estimates and approxi-
mations, we start from the total steady-state energy  production 

and introduce a method to segment energy production of different 
compartments and categories of interest. More specifi cally, we aim 
at segmenting energy production in the gray matter in signaling 
versus non-signaling components (housekeeping) and further in 
glial versus neuronal components. To this end, we combine two 
preexisting datasets. The fi rst dataset is the empirical linear rela-
tion linking the total cycling of neurotransmitters V

cyc(tot)
 to the 

neuronal oxidative glucose utilization CMRglc,ox
n  (Hyder et al., 2006) 

(see Figures 1A,B). The second dataset is the average tissue glucose 
(CMR

glc
) and oxygen (CMR

O2
) utilization computed for the dif-

ferent brain states S = 1,…,4 (see Figures 1C,D). These four states 
S are defi ned as: (1) no function, (2) low function/unconscious, 
(3) high function/awake and (4) maximum cortical activation (see 
Gjedde, 2007 for further details). It is shown in the “Materials and 
Methods” section that these two datasets are suffi cient to compute 
a steady-state budget for gray matter under the hypothesis that the 
energy used for signaling is proportional to V

cyc(tot)
, neglecting cells 

other than glia or neurons and assuming that energy measured as 
adenosine triphosphate production is used in the compartment 
where it is produced. For the sake of simplicity, all glial cells are 
pooled together and are hereafter indiscriminately referred to as 
astrocytes or glia. These two datasets are taken from the literature. 
All the other results presented in this section have been calculated 
on the basis of these data.

In order to segment energy production between the neuronal 
and the glial compartments, it is necessary to know their cor-
responding glucose and oxygen utilization. Direct and indirect 
measurements of the compartmentalization of glucose utiliza-
tion are available for various conditions and systems but have 
yielded relatively different fi gures with estimates of the glial con-
tribution to glucose utilization (r

glc
) ranging from about 50% to 

100% (Nehlig et al., 2004; Tsacopoulos et al., 1988; Véga et al., 
2003; Zielke et al., 2007). So far, there is no direct measurement 
of the glial contribution to oxygen utilization (r

O2
), however 

the relative activities of the TCA cycle could be used as a proxy 
(see Jolivet et al., 2009). It is however very diffi cult to relate these 
measurements to the abovementioned brain states S = 1,…,4. As 
demonstrated in the “Materials and Methods” section, the values 
of r

O2
(S) become interdependent under the hypothesis that the 

fraction of energy used for signaling is proportional to V
cyc(tot)

. 
In other words, choosing the value of r

O2
 for any given state 

determines the value of r
O2

 for all the other states. In the follow-
ing analysis, we consider two scenarios. In the fi rst scenario, we 
assume that glial oxygen utilization is approximately constant 
across all states (Δox,a

3 4 0→ = %), consistent with the observation 
made in hippocampal slices by Kasischke et al. (2004) that NADH 
autofl uorescence is constant in astrocytic mitochondria upon 
activation. In the second scenario, we assume that glial oxygen 
utilization increases by 15% from state 3 to state 4 (Δox,a

3 4 15→ = + %) 
(Cruz et al., 2005).

Figure 2 shows r
O2

 and r
glc

 computed following the procedure 
detailed in the “Materials and Methods” section for rats (A) and 
humans (B) in the fi rst (solid lines) and the second scenario 
(dashed lines). Our method yields results very similar for both 
species and consistent with experimental fi ndings. We fi nd that r

glc
 

is increasing with the level of activation and typically rests between 
49% and 78% in humans and between 49% and 98% in rats in 
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agreement with in vivo measurements (Nehlig et al., 2004) and 
other modeling efforts (Hyder et al., 2006). The increase of r

glc
 with 

the level of activation is less prominent in the second scenario than 
in the fi rst scenario and this effect is more pronounced in humans 
with r

glc
 being almost constant in the latter case. In both species, we 

fi nd the glial oxygen utilization fraction r
O2

 to be decreasing with 
the level of activation from about 49% in state 1 to approximately 
10% in state 4. Again, these predictions are consistent with experi-
mental fi ndings showing that the relative contribution of glia to the 
total TCA cycle might be higher in anaesthetized animals (∼41%) 
(Choi et al., 2002) than in awake animals (∼21%) (Öz et al., 2004). 
Likewise, we fi nd r

O2
 values in the range 6–17% in states 3 and 4 

consistent with measurements in awake humans reporting ∼8% 
(Shen et al., 1999), ∼10% (Gruetter et al., 2001) and ∼11% (Lebon 
et al., 2002) (calculated from the ratio of TCA cycles as summa-
rized in Hyder et al., 2006). Fluctuations in the order of ±5% in the 

parameters convert into about ±5% fl uctuations in the predicted 
value of r

O2
 and about ±19% fl uctuations in the predicted value 

of r
glc

. However, the compartmentalization is not strongly affected 
with most of oxygen being used by neurons in both scenarios, 
most of glucose being used by astrocytes in the fi rst scenario and 
a more balanced situation with about the same amount of glucose 
being used by both compartments in the second scenario. Finally, 
we observe that the values computed for r

O2
 in the activated state 

are remarkably close to the distribution of mitochondria between 
neurons and glia (Wong-Riley, 1989).

We formulated the two scenarios considered here as an increase 
of astrocytic oxygen utilization from state 3 to state 4 because it is 
numerically convenient. It is interesting to note however that in the 
second scenario, the astrocytic oxygen utilization (r

O2
·CMR

O2
) con-

tinuously increases from state 1 to state 4 (Choi et al., 2002; Öz et al., 
2004; Serres et al., 2008). We consider that GABA constitutes 20% 

FIGURE 1 | Cerebral glucose and oxygen utilization derived from the 

literature. (A) Neuronal oxidation of glucose equivalents CMRglc,ox
n  as a 

function of the total neurotransmitter cycling Vcyc(tot) in the rodent brain 
(µmol g−1 min−1). (B) Same as in (A) but in the human brain. In both 
(A) and (B), the solid lines indicate the least-square fi t of the data points 
(see Materials and Methods). Data in (A) and (B) are adapted from 

Hyder et al. (2006). Values have been calculated based on measurements 
of 13C labeling of glutamate from [1-13C]glucose. (C) Average tissue glucose 
(black) and oxygen (white) utilization in the rodent brain (µmol g−1 min−1) 
in the four brain states defi ned in the text. (D) Same as in (C) in the 
human brain. Data in (C) and (D) and brain states are adapted from 
Gjedde (2007).
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of the total neurotransmitter cycling (see Materials and Methods). 
If GABA is recycled by astrocytes, it seems surprising that r

O2
 can be 

signifi cantly lower than this value. However, each GABA recycled 
by astrocytes might lead to the production of NADH and FADH

2
 

requiring a maximum of 1.5 O
2
 per GABA molecule. Hence, r

O2
 can 

be smaller than 20% as long as 1 5 20 100. × × ×V rcyc(tot) O2 O2CMR<  
which is always the case in our results (data not shown). Similarly, it 
has been reported by several groups that the rate of glial anaplerotic 
glutamine synthesis might be as high as one-third of the rate of 
the glutamate-glutamine cycle (Lieth et al., 2001; Merle et al., 2002; 
Sibson et al., 2001; Xu et al., 2004). Glutamine generated in that 
way might lead to the production of NADH requiring a maximum 
of 1.5 O

2
 per glutamine molecule. Hence, r

O2
 can be smaller than 

33% as long as 1 5 1 3. /× × < ×V rcyc(tot) O2 O2CMR  which is always the 
case in our results (data not shown).

With r
O2

(S) and r
glc

(S) available, it is possible to compute the 
energy budget for four categories of interest. They are the astro-
cytic housekeeping metabolism category, the neuronal housekeep-
ing metabolism category, the astrocytic signaling category and the 
neuronal signaling category (see Materials and Methods). By con-
struction, these categories cover the following biophysical proc-
esses. The housekeeping categories contain all energy demanding 
processes which are not related to signaling tasks, that is essentially 
maintaining the electrochemical gradient across the cell membrane 
by activating the Na+/K+ pump as well as biochemical processes 
required to maintain structural integrity. The neuronal signal-
ing category contains the energy expended after the activation of 
postsynaptic receptors and after the generation and propagation 
of action potentials, mostly due to the activation of the Na+/K+ 
pump needed to restore the electrochemical gradients across the 
cell membrane. It also includes the energy required to package 
neurotransmitters into vesicles at presynaptic terminals. Finally, 
the astrocytic signaling category contains the energy used to capture 
and metabolically process neurotransmitters. Figure 3 shows the 
energy budget computed (fi rst scenario) for these four categories 

for rats (A) and humans (B) and details the exact percentages for 
state 4 (C–D). By construction, these four fractions sum up to 1 
in all four states. As expected, the fraction of energy dedicated to 
housekeeping metabolism decreases with the level of activation 
while the fraction of energy dedicated to signaling increases with 
the level of activation to reach 84% and 86% in rodents and in 
humans respectively. Of these, the astrocytes only contribute for a 
small fraction of 7% in rodents and 5% in humans. The rest, about 
80%, is used for neuronal signaling. Our approach yields fi gures for 
the energy budget remarkably similar to the results of Attwell and 
Laughlin (2001). Interestingly, the computed energy budget is not 
signifi cantly dependent on the scenario considered, and therefore 
only the fi rst scenario is shown.

Using the values of r
O2

(S) we have derived together with Eq. 3, 
it is now possible to compute V

cyc(tot)
(S), i.e. the amplitude of 

the cycling of neurotransmitters corresponding to brain states 
S = 1,…,4. Figure 4 shows V

cyc(tot)
(S) calculated in this way for 

both humans and rodents in both scenarios. This procedure yields 
values in range of experimental measurements. We fi nd values of 
V

cyc(tot)
 between 0 and 0.35 for humans and between 0 and 1.17 

for rodents. Interestingly, these results closely match the ones 
reported by Gjedde, obtained with a different approach (Gjedde, 
2007). He fi nds V

cyc(tot)
(1)≈0, V

cyc(tot)
(2)≈0.2 and V

cyc(tot)
(3)≈0.5 for 

the rodent, whereas we can deduce V
cyc(tot)

(1)≈0, V
cyc(tot)

(2)≈0.2 and 
V

cyc(tot)
(3)≈0.6. Note that the choice of a specifi c scenario does not 

affect the results signifi cantly, nor do ±5% fl uctuations in the free 
parameters (i.e. A, B and N

a
 the average cost of recycling one neu-

rotransmitter molecule).
Finally, it is possible to evaluate the level of neuron-glia meta-

bolic exchanges by comparing the balance of oxygen and glucose 
utilization in these two compartments. Indeed, complete oxi-
dation of glucose requires six times more oxygen than glucose 
(Gjedde, 2007). Thus, combining the experimental values for 
CMR

O2
(S), CMR

glc
(S) (Figures 1C,D) and the values we derived 

for r
O2

(S), r
glc

(S) (Figure 2) into Eq. 10, it is possible to compute 

FIGURE 2 | Calculated astrocytic contribution to glucose and oxygen 

utilization. (A) Astrocytic contribution to glucose (rglc; red) and oxygen 
utilization (rO2; black) in the rodent brain for the fi rst scenario (constant 
astrocytic oxygen utilization; solid) and the second scenario (astrocytic 

oxygen utilization increases by 15% from state 3 to state 4; dotted). 
(B) Same as in (A) in the human brain. Shaded areas delimit the 
maximal deviations observed with ±5% parameter fl uctuations 
(see text).
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J
carbons

(S). J
carbons

 is positive if the compartment exports carbons 
(net transfer), that is, if the observed oxygen utilization in that 
compartment is smaller than six times the observed glucose uti-
lization. On the contrary, J

carbons
 is negative if the compartment 

imports carbons, that is, if the observed oxygen utilization in that 
compartment is larger than six times the observed glucose utili-
zation. Doing so, we fi nd that J

carbons
 is systematically positive for 

astrocytes, systematically negative for neurons and very close to 
0 in the case of state 1 for both the neuronal and the astrocytic 
compartments. This indicates that carbons are released from the 
glial compartment and are at least partially taken up by the neu-
ronal compartment. In the case of state 1, glia and neurons are 
metabolically separated (no fl ux of carbons). The latter result is 
to be expected since the measured ratio CMR

O2
(1)/CMR

glc
(1) is 

very close to 6 indicating a well balanced system. Moreover, we 
imposed that neurons use exclusively glucose in this state when 
computing r

glc
, thus preventing glia-to-neuron carbon exchanges. 

Figure 5 shows the absolute value of J
carbons

 versus the level of 
activation as embodied by the total cycling of neurotransmitters 
V

cyc(tot)
(S). J

carbons
 is computed individually for neurons and glia as 

well as for both scenarios considered in this paper. In all cases, we 
observe a strong linear relationship (R2 ≥ 0.99) indicating that the 
amplitude of the glia-to-neuron carbon exchange is proportional 
to the activity in the tissue measured as the total cycling of neuro-
transmitters. The overall amplitude of this coupling signifi cantly 
depends on the scenario considered. It is signifi cantly stronger 
in the fi rst scenario (constant astrocytic oxygen utilization) than 
in the second scenario (astrocytic oxygen utilization increases 
by 15% from state 3 to state 4). Finally, the fact that astrocytes 
always export more carbons than neurons capture suggests that 
a small fraction of carbons is simply released by the system to the 
bloodstream consistent with fi ndings that lactate is being released 
by the brain in various states (Dalsgaard, 2006).

Our analysis relies on the choice of three parameters, A and B 
characterizing the linear relation between CMRglc,ox

n  and V
cyc(tot)

 and 
N

a
 representing the average cost of recycling one neurotransmitter 

molecule. In addition, we have arbitrarily selected two scenarios. 
In the fi rst scenario, we assume constant astrocytic oxygen utiliza-
tion (Δox,a

3 4 0→ = %), while in the second scenario we assume that 
the astrocytic oxygen utilization increases by 15% from state 3 to 

FIGURE 3 | Calculated energy budget for the fi rst scenario. (A) Fractions of 
energy spent for astrocytic housekeeping (green), astrocytic signaling (pink), 
neuronal housekeeping (red) and neuronal signaling (white) in the rodent brain. 

(B) Same as in (A) in the human brain. (C) Pie chart of these fractions in state 4 
in the rodent brain. (D) Same as in (C) in the human brain. Abbreviations ast and 
nrn refer to astrocytes and neurons respectively.
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the balance of glucose utilization from being mostly glial to being 
mostly neuronal. As a consequence, the amplitude of the carbon 
shuttle from glia to neurons progressively decreases with increasing 
values of Δox,a

3 4→  (Figure 5). Increasing Δox,a
3 4→  beyond +15%, we fi nd 

that the glia to neuron shuttle stops at Δox,a
3 4 22→ = + % for humans 

and +23% for rodents yielding a situation where both cell types are 
metabolically independent and releasing excess carbons. Increasing 
Δox,a

3 4→  further, we fi nd that a shuttle from neurons to glia takes place 
for values Δox,a

3 4 27→ = + % and higher.

DISCUSSION
The exact principles underlying the coupling of metabolic processes 
in register with neuronal activity and in particular the nature and 
role of neuron-glia metabolic interactions are still a subject of active 
debate. Here, we have introduced a novel computational approach 
to decipher neuron-glia compartmentalization in the context of 
brain energy metabolism. Based on measurements of tissue glu-
cose and oxygen utilization in different brain states (Figure 1), our 
approach allows computing the fractions of oxygen and glucose 
taken up by glial cells (r

O2
 and r

glc
) and neurons (1-r

O2
 and 1-r

glc
 

respectively; Figure 2). Our approach suggests that a signifi cant 
portion of glucose is taken up by astrocytes while oxygen is mostly 
used within the neuronal population and that this bias increases 
with the level of activation. The exact proportion of astrocytic glu-
cose uptake is dependent on the scenario considered with most 
glucose being taken up by astrocytes in the fi rst scenario and a 
more balanced situation in the second scenario. We then computed 
an activity-dependent energy budget for the brain (Figure 3) and 
assessed the balance of oxygen and glucose in both the neuronal 
and glial compartments (Figure 5). Finally, we found that there is 
a probable transfer of glucose-derived metabolites from astrocytes 
to neurons, the amplitude of which is proportional to the level 
of activity as measured by the cycling of neurotransmitters. Our 
approach is systematically applied to both human and rodent data 
yielding similar results for both species.

FIGURE 4 | Calculated V
cyc(tot)

 in the rodent brain (green) and in the 

human brain (blue) for the fi rst (solid) and the second scenario (dotted). 

Shaded areas delimit the maximal deviations observed with ±5% parameter 
fl uctuations (see text). Note that Vcyc(tot) here was calculated by us and differs 
from Vcyc(tot) as plotted in Figures 1C,D which was taken from the literature.

FIGURE 5 | Calculated transfer of carbons. (A) Flux of carbons leaving 
the astrocytes (black), alternatively entering the neurons (absolute values; 
red), in the rodent brain for the fi rst (solid) and the second scenario (dotted; 

µmol g−1 min−1). (B) Same as in (A) in the human brain. Shaded areas 
delimit the maximal deviations observed with ±5% parameter fl uctuations 
(see text).

state 4 (Δox,a
3 4 15→ = + %). None of the results presented in this paper 

was dramatically affected by ±5% fl uctuations of the value of A, B 
and/or N

a
. On the contrary, the choice of a scenario for the rela-

tive increase of the astrocytic oxygen utilization has a signifi cant 
impact on the results as already illustrated in Figures 2 and 5. In 
particular, r

glc
 is signifi cantly smaller with Δox,a

3 4 15→ = + % than with 
Δox,a

3 4 0→ = % (Figure 2). Thus, increasing Δox,a
3 4→  progressively shifts 
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Our fi ndings are in general agreement with results by Attwell and 
Laughlin (2001) on the cost of cortical computation. With our top-
down approach it is not possible to distinguish between the cost of 
action potentials and the cost of postsynaptic potentials which are 
pooled together with other mechanisms in the neuronal signaling 
component f

s,n
. It is nevertheless possible to make a rough estimate 

of the cost of postsynaptic potentials using the same strategy as used 
in Eq. 7, that is allocating a fi xed cost to postsynaptic potentials per 
recycled glutamate molecule while neglecting inhibition. After a 
quick calculation based on the study by Attwell and Laughlin using 
only the smallest reported value (that is 25.5 ATP/glutamate as a 
result of NMDA, non-NMDA and G-protein coupled receptors), 
we fi nd that postsynaptic potentials would account for 47% of the 
total ATP utilization versus 35% for action potentials in humans 
and 58% versus 20% in rodents in the maximally activated state. 
These numbers suggest that postsynaptic potentials might con-
tribute more to the energy budget than originally suggested by 
Attwell and Laughlin (2001). This is consistent with the fi nding 
that metabolic response is more correlated with local fi eld poten-
tials, refl ecting principally post-synaptic potentials, that to spiking 
activity (Logothetis et al., 2001).

The fi ndings presented here are also consistent with an  activity-
regulated transfer of glucose-derived metabolites from astro-
cytes to neurons as it was originally proposed by Pellerin and 
Magistretti (1994). Existence of this mechanism has been recently 
demonstrated in slices (Rouach et al., 2008). Our calculations 
show that such a shuttle from astrocytes to neurons is perfectly 
compatible with a relatively low cost associated to the recycling 
of neurotransmitters and with an upregulation of the astrocytic 
oxidative metabolism upon activation. Our approach does not 
allow us to determine the metabolic species involved in this shuttle 
but there is no doubt that lactate must be an important com-
ponent of it, given the experimental evidence indicating lactate 
usage by neurons (Schurr and Payne, 2007). Of course the pos-
sibility that several metabolic species contribute to this shuttle 
cannot be excluded (see, e.g., Pfrieger, 2003). The potential roles 
of this shuttle beyond feeding neurons remains to be determined. 
Interestingly, lactate was recently demonstrated to play a direct 
role in the regulation of the local blood fl ow (Gordon et al., 2008; 
Yamanishi et al., 2006), of neuronal activity in the retrotrapezoid 
nucleus (Erlichman et al., 2008) as well as in the regulation of 
the local inhibitory activity in the subfornical organ (Shimizu 
et al., 2007).

Our approach relies on the division of brain activity in states 
as defi ned by Gjedde (2007). Average tissue glucose and oxygen 
utilization are provided for all these states (Figures 1C,D). While 
this division might be perceived as slightly arbitrary, it allows us 
to compute the astrocytic and neuronal fractions of glucose and 
oxygen utilization (Figure 2), the energy budget (Figure 3) and 
the net transport of glucose-derived metabolites (Figure 5) for a 
meaningful range of activation levels. These states should not be 
considered as fi xed and well-defi ned categories but rather as indi-
vidual samples along a continuum of brain activation states. For a 
better comparison with experimental results, it is then possible to 
convert these states into the corresponding amplitude of the cycling 
of neurotransmitters V

cyc(tot)
 (Figure 4) as illustrated for the case of 

the net transport of glucose-derived metabolites (Figure 5). The 

same procedure can be applied to the glial and neuronal fractions 
of glucose and oxygen utilization and to the energy budget (not 
shown).

Our method is in part based on several assumptions that are 
rather common in the fi eld. It is assumed that cells other than glia 
or neurons can be neglected since these two cell types constitute the 
vast majority of cells in the brain and occupy most of the cortical 
tissue volume (not counting extracellular space) (Verkhratsky and 
Butt, 2007). Even though ATP can be released as a neurotransmitter, 
notably by astrocytes, this release is unlikely to contribute signifi -
cantly in comparison to the amount of ATP produced to fuel the 
system. Finally, like most modeling work and some experimental 
techniques in the fi eld, our approach is restricted to the steady-
state condition. It also relies on the hypothesis that the total energy 
used for signaling in the tissue is linearly proportional to the total 
cycling of neurotransmitters. While it is obvious that this hypoth-
esis holds for the cost associated to neurotransmitters recycling, 
it is less clear that it holds for action potentials and postsynaptic 
potentials. However, the frequency versus current (f-I) curve of 
cortical neurons is close to linear in the presence of noise (Rauch 
et al., 2003). One can therefore assume that this hypothesis also 
holds within a physiologically relevant regime although it may not 
be valid in pathological cases or at either very low or very high levels 
of activation. Also note that our approach is not strictly restricted by 
this hypothesis and could easily be extended to non-linear relation-
ships. The analysis would be essentially the same but would then 
require extra data in order to estimate the additional parameters 
entering into Eq. 5 and characterizing the relation between f Ss,tot( ) 
and V Scyc(tot)( ).

The results derived here rely on a steady-state or quasi steady-
state condition. In the fi rst few seconds that follow the increase or 
decrease in brain activation, the tissue undergoes fast metabolic 
transitions and the system is undoubtedly out of steady-state. 
However, upon activation, cerebral blood fl ow reaches a new sta-
tionary level after a few seconds only. Moreover, it was recently 
shown that sustained neuronal activation raises metabolism to a 
new steady-state level (Mangia et al., 2007). In particular, lactate 
quickly reaches a new steady-state and so does pyruvate because 
of the dynamic equilibrium between these metabolites. Similarly, 
recovery from activation is very slow, taking place over minutes 
to tens of minutes as illustrated by the slow decay of accumulated 
lactate after stimulation (Prichard et al., 1991). Likewise, it seems 
reasonable to assume that different anesthetic levels correspond to 
different steady-states. Even though our formalism was developed 
under the assumption of steady-state conditions, we expect it to be 
valid except during the short transitions between different steady-
states or quasi steady-states. Simulations of such non-steady-state 
transitions require alternative modeling methods.

As already discussed previously, our approach yields qualita-
tively robust results when we apply ±5% fl uctuations in the param-
eters. This is true except for Δox,a

3 4→  which characterizes how much 
the astrocytic oxygen utilization increases with activation (from 
states 3 to 4). In particular, increasing Δox,a

3 4→  progressively shifts 
the balance of glucose utilization from being mostly glial to being 
mostly neuronal. As a consequence, the amplitude of the carbon 
shuttle from glia to neurons progressively decreases with increas-
ing values of Δox,a

3 4→  (Figure 5). While the value we chose for Δox,a
3 4→  is 
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in line with the study by Cruz et al. (2005) (Δox,a
3 4 16→ ≈ + %), some 

of us have reported larger values in the range of +90% in rodents 
and +60% in humans (Wyss et al., 2009). However, it should be 
noted that the increase in CMR

glc
 between rest and activation 

observed by Wyss and colleagues is about +130%, much larger 
than the values used in this study (+79% in humans and +75% in 
rats). When increasing CMR

glc
(4) so as to match such an increase, 

we could increase Δox,a
3 4→  as high as Δox,a

3 4 60→ = + % in rodents with 
no signifi cant qualitative change in the results presented above 
(not shown). Nevertheless, the importance of Δox,a

3 4→  as a control 
parameter in our approach suggests that the oxidative metabo-
lism of astrocytes might play a very important role in the control 
of metabolic neuron-astrocyte interactions possibly inducing a 
change of regime from highly interdependent cell populations at 
the onset of activation when the astrocytic oxidative metabolism 
is not or only weakly upregulated (Cruz et al., 2005; Kasischke 
et al., 2004) to metabolically disconnected or weakly connected 
cell populations at later stages of stimulation (Wyss et al., 2009). 
The lactate produced in these late stages could diffuse away from 
the production site, possibly to other brain areas (Dienel and Cruz, 
2004; Dienel and Hertz, 2001).

In our analysis, we have not considered glycogen, a potentially 
important energy substrate reservoir localized in astrocytes only. 
During strong activation, there is evidence that the stock of glyco-
gen decreases (Swanson et al., 1992). Glycogen has been reported 
to be continuously degraded and resynthesized (Shulman et al., 
2001; Walls et al., 2009). Glucose metabolism via this glycogen shunt 
only produces one ATP versus two generated via the glycolysis. 
Notwithstanding, our main results should not be signifi cantly 
affected by this simplifi cation even though it implies that our 
estimate of the astrocytic contribution to the total energy budget 
might be slightly overestimated. It is important however to keep 
in mind that most of the ATP is produced oxidatively. Moreover, 
the size of the glycogen reservoir is relatively small and thus may 

not contribute to an extent that would affect the calculated energy 
budget. Similarly, neglecting glycogen does not change our fi ndings 
on the astrocyte-neuron transfer of glucose-derived metabolites. 
Glycogen utilization can be interpreted as an increase in the effective 
astrocytic fraction of the total glucose used to feed ATP synthesis. 
Furthermore, the end product of glycogenolysis in astrocytes has 
been reported to be lactate (Dringen et al., 1993). This process is 
consistent with the concept of the astrocyte-neuron lactate shut-
tle hypothesis rather than with the exchange of substrates in the 
opposite direction (Pellerin et al., 2007).

It should be further emphasized that our results do not depend 
on any assumption about the distribution of glucose and lactate 
transporters or on a specifi c scheme of stimulation during activa-
tion. Likewise, they do not depend on the exact route followed 
by metabolites, the extracellular space very likely being the place 
of exchanges between astrocytes and neurons. Furthermore, our 
results are independent from the exact pathways involved in glucose 
oxidation. More specifi cally, they hold equally well whether lactate 
or pyruvate is the end product of aerobic glycolysis in neurons 
(Schurr and Payne, 2007). Finally, our approach bypasses consid-
erations on what drives the lactate shuttle, glutamate capture by 
astrocytes (Pellerin and Magistretti, 1994) or activation of astrocytic 
AMPA receptors (Caesar et al., 2008), while producing estimates 
of the cost of recycling glutamate consistent with other studies 
(Attwell and Laughlin, 2001). Future work is needed to experimen-
tally test the predictions and conclusions drawn from the present 
modelling work.
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