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Abstract. Assume that the surplus process of an insurance company is described by a general
Lévy process and that possible dividend pay-outs to shareholders are restricted to random
discrete times which are determined by an independent renewal process. Under this setting
we show that the optimal dividend pay-out policy is a band-policy. If the renewal process is a
Poisson process, it is further shown that for Cramér-Lundberg risk processes with exponential
claim sizes and its diffusion limit the optimal policy collapses to a barrier-policy. Finally, a
numerical example is given for which the optimal bands can be calculated explicitly. The
random observation procedure studied in this paper also allows for an interpretation in terms
of a random walk model with a certain type of random discounting.

1. Introduction

The identification of optimal pay-out schemes for dividends to shareholders in an insurance
context is a classical problem of risk theory. Given a stochastic process describing the surplus
of an insurance portfolio as a function of time, it is a natural question at which points in time
and to which amount dividends should be paid out to the shareholders. These pay-outs then
reduce the current surplus. A popular optimality criterion is to maximize the expected total
sum of discounted dividend payments until ruin (i.e. the dividend payments stop as soon as the
surplus becomes negative for the first time). This problem was studied over the last decades
under increasingly general model assumptions. Extending earlier work of de Finetti [7], Gerber
[8] showed that if the surplus process is modeled by a random walk in discrete state space, then
a so-called band-policy maximizes the expected sum of discounted dividend payments until ruin.
He then also established this result for a continuous-time surplus process of compound Poisson
type with downward jumps, and showed that in case of exponentially distributed claim sizes
this optimal band-policy collapses to a barrier-policy, i.e. whenever the surplus process is above
a certain barrier b, the excess is paid out as dividends immediately, and no dividends are paid
out below this level b. In recent years, this problem was studied for general spectrally negative
Lévy processes, and the most general conditions on such a process for which barrier-policies
are optimal have recently been given in Loeffen & Renaud [10]. We refer to Schmidli [11] and
Albrecher & Thonhauser [2] for an overview of mathematical tools and results in this area.

The implementation of the optimal pay-out policies that were identified for the above-mention-
ed continuous-time models of the surplus process need continuous observation of (and usually
continuous intervention into) the surplus process, which can not be realized in practice. In this
paper we therefore follow a somewhat different approach, namely to still consider a continuous-
time model for the surplus process, as the latter is useful for many reasons, but to assume
that observations (of possible ruin) and interventions (i.e. dividend pay-outs) are only possible
at discrete points in time, and these time points are determined by a renewal process which
is independent of the surplus process. This will enable a general treatment of the stochastic
control problem to determine the optimal dividend pay-out scheme.
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We will work with a general Lévy process for the underlying surplus process. Note that if one
considers the value of the surplus process at the observation times only, this results again in a
random walk, now with random discounting where in each period the random discount factor
is also dependent on the size of the increment. Since this interpretation does not seem natural
and, also, the available results for random discounting do not directly apply to our situation, we
prefer to give a self-contained treatment in the present framework (see Remark 2.1 for details).
We will show that under the above assumptions, a band-policy is optimal. We then show that
for the case where the random observation times are determined by a homogeneous Poisson
process and the surplus process is given by a Cramér-Lundberg risk process with exponential
claims, this optimal policy collapses to a barrier-policy. We also discuss the diffusion model for
the surplus process as a limiting case. Finally, we give an explicit example of a surplus process
for which a band-policy with two bands is - according to numerical computations - optimal.

2. A Dividend Pay-Out Model with Random Intervention Times

We suppose that the surplus process (St) of an insurance company is given by a general (one-
dimensional) Lévy process, i.e. the process (St) has independent and identically distributed
increments and the paths are assumed to be right-continuous with left-hand limits (càdlàg).
Important special cases are the pure diffusion setting

St = x+ ct+ σWt, t ≥ 0,

where c > 0 and (Wt) is a Brownian motion, and the classical Cramér-Lundberg risk model

St = x+ ct−
Nt∑
i=1

Ui, t ≥ 0

where (Nt) is a Poisson process with intensity λ > 0 and the claim sizes U1, U2, . . . are indepen-
dent and identically distributed positive random variables. The parameter c is here the premium
rate. In general a Lévy process can be characterized by its Lévy triplet (c, σ2, ν), where ν is the
Lévy measure.

At (random) discrete time points 0 = Z0 < Z1 < . . . we are allowed to pay out dividends.
We assume that the time lengths Tn := Zn − Zn−1, n = 1, 2, . . . between interventions form a
sequence of i.i.d. random variables which is also independent of the stochastic process (St).
Thus it is enough to observe the process

(
S(Zn)

)
which evolves in discrete time. All quantities

are assumed to be defined on a common probability space (Ω,F ,P). In what follows we denote
by

Yn := S(Zn)− S(Zn−1), n = 1, 2, . . .

the increments of the surplus process. The aim is now to find a dividend pay-out policy such
that the expected discounted dividends until ruin are maximized. Note that ruin is defined as
the event that the surplus process at an observation time point is negative, so we disregard what
happens between the time points (Zn). Obviously the bivariate sequence (Tn, Yn) is i.i.d.

In order to solve this problem we use the theory of Markov Decision Processes (for details
see e.g. Bäuerle & Rieder [5]). More precisely we assume that R+ is the state space of the
problem where the state x represents the current surplus. The action space is R+ where the
action a represents the amount of money which is paid out as dividend. When the surplus is x
we obtain the constraint that we have to restrict the dividend pay-out to the set D(x) := [0, x].
The one-stage reward of the problem is r(x, a) =: a. A dividend policy π = (f0, f1, . . .) is simply
a sequence of decision rules fn, where a function fn : R+ → R+ is called decision rule when it
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is measurable and f(x) ∈ D(x) is satisfied. The controlled surplus process (Xn) is given by the
transition

Xn := Xn−1 − fn−1(Xn−1) + Yn, n = 1, 2, . . . .

When we denote by

τ := inf{n ∈ N0 : Xn < 0}

the ruin time point in discrete time and by δ > 0 the discount rate, then the expected discounted
dividends under pay-out policy π = (f0, f1, . . .) are given by

V (x;π) := Ex
[ τ−1∑
n=0

e−δZnfn(Xn)
]
, x ∈ R+.

The optimization problem then is

V (x) := sup
π
V (x;π), x ∈ R+,

where the supremum is taken over all policies. In what follows we assume that (we let T := T1
and Y := Y1)

(a) P(0 < T <∞) = 1,
(b) P(Y < 0) > 0,
(c) EY + <∞,
(d) either σ > 0 (there is a Brownian part), ν(R) =∞ (infinite activity) or (St) is compound

Poisson and jump sizes have a density.

The first assumption is natural, the second and the third assumption make the problem non-
trivial. The last assumption guarantees that the distribution of St has a density (see e.g. Cont
& Tankov [6], Section 3.6), with the exception that in the compound Poisson case there is a
point mass on x+ ct, because St = x+ ct corresponds to the event that no claim occurs in the
time interval [0, t].

Finally note that if we denote by Q the joint distribution of T and Y , then the transition
kernel for the Markov Decision Process is for a measurable function v : R+ → R+, state x and
action a ∈ D(x) given by ∫ ∞

0

∫ ∞
a−x

e−δtv(x− a+ y)Q(dy, dt).

Here the integration limits of the inner integral ensure that dividends can only be paid until
ruin or up to x.

Remark 2.1. It becomes clear from the preceding discussion that one could also interpret the
model studied in this paper as a discrete time random walk model with random discounting,
albeit with a very specific dependence between the random “discount rate” δTn and the random
walk increment Yn in each period n (specified through the bivariate distribution Q for the i.i.d.
pairs (Tn, Yn), n ≥ 1). Whereas this dependence of the increment Yn = S(Zn) − S(Zn−1) on
Tn = Zn − Zn−1 is natural in our model, it may not be so intuitive in the random discounting
framework. Furthermore, on the technical side, in contrast to the pure random walk model dealt
with by Schmidli [11], we face here an uncountable state space and consequently a different
transition operator. Finally, as we will later directly exploit our specific dependence structure
represented by Q, we prefer to refrain from the random discounting interpretation in the sequel
and instead give a self-contained treatment tailored to our random observations interpretation.
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3. The Bellman Equation and First Properties

In this section we will show some simple properties of the value function V and the validity of
the Bellman equation which gives us a tool to solve the problem. In order to state the results
let us introduce the following abbreviations where x+ := max(0, x) is the positive part of x:

(a) E[e−δT ] =: β,
(b) E[e−δTY +] =: C,
(c) E[e−δT 1[Y≥0]] =: β+,

Note that β+ ≤ β < 1. Moreover we introduce the operator T◦ which acts on the set
M := {v : R+ → R+ measurable}:

T◦v(x) := sup
a∈[0,x]

{∫ ∞
0

∫ ∞
a−x

e−δtv(x− a+ y)Q(dy, dt)
}
.

A first observation gives us the following bounds on V and a convergence statement:

Lemma 3.1. In the dividend pay-out problem the following holds:

a) The value function is bounded by

x+
C

1− β+
≤ V (x) ≤ x+

C

1− β
, x ∈ R+.

b) For b(x) := 1 + x it holds that:

Tn◦ b ≤ βnb+ nβn−1C, n ∈ N.

Proof. a) The upper bound is obtained when we replace the increments Yn by Y +
n . Obvi-

ously the value of the problem increases and since Y +
n ≥ 0 one can never get ruined and

it is optimal to pay-out immediately. Hence

V (x) ≤ x+ E
[ ∞∑
n=1

e−δ(T1+...+Tn)Y +
n

]
= x+ C

∞∑
n=0

βn = x+
C

1− β
.

The lower bound is obtained by considering the special policy which pays out the complete
surplus. Here we obtain:

V (x) ≥ x+ E
[
e−δT1Y +

1 +
∞∑
n=2

e−δ(T1+...+Tn)Y +
n 1[Y1≥0,...,Yn−1≥0]

]
= x+ C

∞∑
n=0

βn+ = x+
C

1− β+
.

b) We show the statement for n = 1, the rest follows easily by iteration.

T◦b(x) = sup
a∈[0,x]

{∫ ∞
0

∫ ∞
a−x

e−δt(1 + x− a+ y)Q(dy, dt)
}
≤

≤
∫ ∞
0

∫ ∞
−∞

e−δt(1 + x)Q(dy, dt) +

∫ ∞
0

∫ ∞
0

e−δtyQ(dy, dt)

= (1 + x)β + C.

�
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For Mb := {v ∈ M : v ≤ c b for some c > 0}, we obviously have V ∈ Mb. Next we can show
the validity of the Bellman equation

V (x) = sup
a∈[0,x]

{
a+

∫ ∞
0

∫ ∞
a−x

e−δtV (x− a+ y)Q(dy, dt)
}
, x ∈ R+, (3.1)

which helps solving the dividend pay-out problem. In order to ease notation, it is common to
introduce the following operators: For a decision rule f and a function v ∈Mb let us denote

Tfv(x) := f(x) +

∫ ∞
0

∫ ∞
f(x)−x

e−δtv
(
x− f(x) + y

)
Q(dy, dt),

T v(x) := sup
f
Tfv(x).

Hence the Bellman equation can also be written as TV = V . A decision rule f with the property
Tfv = Tv is called maximizer of v. The fact that Tn◦ b→ 0 for n→∞ is an important condition
which implies that maximizers of the Bellman equation yield an optimal stationary policy (i.e.
the maximizer only depends on the state of the surplus, but yields the optimal policy also among
path-dependent strategies).

Theorem 3.2. The value function V of the dividend pay-out problem satisfies the Bellman
equation:

V (x) = sup
a∈[0,x]

{
a+

∫ ∞
0

∫ ∞
a−x

e−δtV (x− a+ y)Q(dy, dt)
}
, x ∈ R+.

Moreover, maximizers of V exist and every maximizer f∗ of V defines an optimal stationary
policy (f∗, f∗, . . .).

Proof. The proof follows essentially from the analogous statement to Theorem 7.2.1 in Bäuerle
& Rieder [5] for the continuous case. Note that the convergence condition limn→∞ T

n
◦ b = 0 is

satisfied. Moreover we have that D(x) = [0, x] is compact, the set-valued mapping x→ D(x) is
continuous, the mapping (x, a) 7→ r(x, a) = a is continuous and finally for every v ∈ Mb which
is continuous the mapping

(x, a) 7→
∫ ∞
0

∫ ∞
a−x

e−δtv(x− a+ y)Q(dy, dt)

is again continuous. Note that the possible discontinuity of Q in the compound Poisson case
is away from the boundary and due to our integrability assumption we can apply dominated
convergence. �

In what follows, we will use the abbreviation

G(x) :=

∫ ∞
0

∫ ∞
−x

e−δtV (x+ y)Q(dy, dt), x ∈ R+

for the sake of readability. Then we can write the Bellman equation as

V (x) = sup
a∈[0,x]

{a+G(x− a)}, x ∈ R+.

The decision rule f∗ will always be the largest maximizer of V . From Remark 2.4.9 in Bäuerle
& Rieder [5] it follows that f∗ is upper semicontinuous and from Proposition 2.4.8 in Bäuerle &
Rieder [5] we know that f∗ is continuous if it is unique. The following two lemmata establish
some basic properties of the value function in our model.

Lemma 3.3. The value function has the following properties:
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a) V is increasing and

V (x)− V (y) ≥ x− y, x ≥ y ≥ 0.

b) It holds for x ≥ 0 that f∗
(
x− f∗(x)

)
= 0 and

V (x)− f∗(x) = V
(
x− f∗(x)

)
.

Proof. a) The fact that V (x) is increasing is obvious. Now let 0 ≤ y ≤ x. We obtain

V (x) = sup
a∈[0,x]

{a+G(x− a)} ≥

≥ sup
a∈[0,y]

{x− y + a+G(y − a)} = x− y + V (y).

b) From the Bellman equation we obtain that V (x) = f∗(x) + G
(
x − f∗(x)

)
and

V
(
x− f∗(x)

)
≥ G

(
x− f∗(x)

)
. Thus it follows with part a) that

V (x)− f∗(x) ≤ V
(
x− f∗(x)

)
≤ V (x)− f∗(x).

Hence we get V (x)− f∗(x) = V
(
x− f∗(x)

)
which implies V

(
x− f∗(x)

)
= G

(
x− f∗(x)

)
.

Hence we know that a∗ = 0 is optimal in state x− f∗(x). We have to show that this is
the maximal solution. Now suppose the largest maximizer satisfies f∗

(
x − f∗(x)

)
> 0.

By definition we have

V
(
x− f∗(x)

)
= f∗

(
x− f∗(x)

)
+G

(
x− f∗(x)− f∗

(
x− f∗(x)

))
.

By our assumptions it is feasible to pay out the amount f∗(x) + f∗
(
x− f∗(x)

)
in state

x. When we do this we obtain with the previous equation

f∗(x) + f∗
(
x− f∗(x)

)
+G

(
x− f∗(x)− f∗

(
x− f∗(x)

))
= f∗(x) + V

(
x− f∗(x)

)
= V (x) = f∗(x) +G

(
x− f∗(x)

)
.

But this implies that f∗(x)+f∗
(
x−f∗(x)

)
> f∗(x) also maximizes the Bellman equation

which is a contradiction to the maximal property of f∗(x) and the statement follows.
�

Next we can show that there exists a finite value ξ for the optimal dividend pay-out policy,
beyond which all surplus is paid out. It is easy to see that this property implies that ruin occurs
with probability one.

Lemma 3.4. Let ξ := sup{x ∈ R+ | f∗(x) = 0}. Then ξ <∞ and

f∗(x) = x− ξ for all x ≥ ξ.

Proof. For x ≥ 0 with f∗(x) = 0 we obtain with the upper bound in Lemma 3.1:

V (x) = G(x) = E
[
e−δTV (x+ Y )1[Y≥−x]

]
≤ E

[
e−δT

(
(x+ Y ) +

C

1− β

)
1[Y≥−x]

]
≤ βx+ C +

C

1− β
β = βx+

C

1− β
.

On the other hand we have from Lemma 3.1 the lower bound:

V (x) ≥ x+
C

1− β+
.
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These bounds imply that

x ≤ C(β − β+)

(1− β2)(1− β+)
.

Hence ξ is finite. Now suppose f∗(ξ) > 0. The definition of ξ implies that there exists an
ε ∈ (0, f∗(ξ)) such that f∗(ξ − ε) = 0. Since f∗(ξ) is a maximizer it holds

f∗(ξ) +G
(
ξ − f∗(ξ)

)
≥ ε+G(ξ − ε).

Since f∗(ξ)− ε is a feasible pay-out in state ξ − ε we obtain with the previous inequality

f∗(ξ)− ε+G
(
ξ − ε− f∗(ξ) + ε

)
= f∗(ξ)− ε+G

(
ξ − f∗(ξ)

)
≥ G

(
ξ − ε

)
which, since 0 is an optimal pay-out in state ξ− ε, implies that f∗(ξ− ε) ≥ f∗(ξ)− ε > 0 which
is a contradiction. Altogether it follows that f∗(ξ) = 0.

Now let x ≥ ξ. From Lemma 3.3 we know that f∗
(
x − f∗(x)

)
= 0 which implies by the

definition of ξ that f∗(x) ≥ x − ξ. Since x − f∗(x) ≤ ξ ≤ x it is admissible to pay out
f∗(x)− (x− ξ) in ξ. Hence

V (ξ) ≥ f∗(x)− (x− ξ) +G
(
x− f∗(x)

)
= V (x)− (x− ξ) ≥ V (ξ) (3.2)

where the last inequality follows from Lemma 3.3. We see now that equality must hold in (3.2)
and this implies that 0 = f∗(ξ) ≥ f∗(x)− (x− ξ). Together with the first inequality we obtain
f∗(x) = x− ξ which concludes the proof. �

4. Optimality of a Band-Policy

In this section we will show that an optimal dividend pay-out policy is given by a so-called
band-policy.

Definition 4.1. a) A stationary policy f∞ is called a band-policy, if there exists a partition
of R+ of the form A ∪B = R+ with

f(x) =

{
0, if x ∈ B,

x− z where z = sup{y | y ∈ B ∧ 0 ≤ y < x}, if x ∈ A.

b) A stationary policy f∞ is called a barrier-policy if there exists a number c ≥ 0 such that

f(x) =

{
0, if x ≤ c

x− c, if x > c.

Remark 4.2. Note that from Lemma 3.4 we have (ξ,∞) ⊂ A. If the number of connected
components of the set A∩ [0, ξ) is finite (which is not clear a priori), one can define a band-policy
f∞ in a simpler way through numbers 0 ≤ c0 < d1 ≤ c1 < d2 ≤ . . . < ξ with

f(x) =


0, if x ≤ c0,

x− ck, if ck < x < dk+1,
0, if dk ≤ x ≤ ck,

x− ξ, if x ≥ ξ.

Finally, a barrier-policy is a special band-policy with B = [0, c] and A = (c,∞).

Theorem 4.3. The optimal policy (f∗, f∗, . . .) is a band-policy.

Proof. We only have to consider the interval [0, ξ) since f∗ is known on [ξ,∞) according to
Lemma 3.4. Next observe that for 0 ≤ y < x ≤ ξ we have

V (x) = sup
a∈[0,x]

{a+G(x− a)} ≥ x− y + sup
a∈[0,y]

{a+G(y − a)}.
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In particular, if f∗(x) > x − y then f∗(x) = f∗(y) + x − y. This can be used to construct
the bands as follows: Let f∗(x′) := sup0≤x≤ξ f

∗(x). The maximal value is attained since f∗ is
upper semicontinuous. If f∗(x′) = 0, a barrier-policy is optimal and we are done. Now suppose
that f∗(x′) > 0. From our previous considerations we know that on [x′ − f∗(x′), x′] it holds
that f∗(x) = x − x′ + f∗(x′). Then we look for the next highest value on the remaining set
[0, ξ] \ [x′ − f∗(x′), x′]. This procedure is carried on until all bands are constructed. �

Corollary 4.4. When the maximizer f∗ is unique, then the optimal policy is a barrier-policy.

Proof. When the maximizer f∗ is unique we know from Proposition 2.4.8 in Bäuerle & Rieder
[5] that f∗ is continuous. A band-policy (f∗, f∗, . . .) with continuous f∗ however is a barrier-
policy. �

Corollary 4.4 shows that there is an intimate relation between the existence of a barrier-
policy and the uniqueness of the maximizer. Moreover, if the maximizer is not unique, still a
barrier-policy may be among the optimal policies.

5. The Compound Poisson Case with Exponential Claims - Optimality of a
Barrier-Policy

In this section we suppose that the surplus process is a compound Poisson process with claim
arrival process (Nt) having intensity λ > 0 and exponentially distributed claim sizes Ui with
parameter ν > 0. The premium rate is again denoted by c. Thus we obtain

St = x+ ct−
Nt∑
i=1

Ui, t ≥ 0.

The inter-observation times are also assumed to be exponentially distributed with parameter
γ > 0 (i.e. the observations are determined by a homogeneous Poisson process with intensity
γ). For a fixed barrier-policy (f b, f b, . . .) with barrier b, i.e.

f b(x) =

{
0, 0 ≤ x ≤ b,
x− b, x > b,

the expected discounted dividends have been computed in Albrecher, Cheung & Thonhauser [1]
to be

V (x; b) =

{
VM (x; b), 0 ≤ x ≤ b,
x− b+ VM (b; b), x > b,

where

VM (x; b) =
(Rγ + ρ0)e

ρ0x − (Rγ −R0)e
−R0x

Rγ+ρ0
1−ρ0/ργ ρ0e

ρ0b +
Rγ−R0

1+R0/ργ
R0e−R0b

and −Rγ < 0 and ργ > 0 (−R0 < 0, ρ0 > 0 for γ = 0) are roots of the quadratic equation

z2 +
(
ν − λ+ γ + δ

c

)
z − (γ + δ)ν

c
= 0,

which is the extension of the Lundberg fundamental equation for this case. In that derivation,
using the usual renewal argument, one formulates an interacting system of integro-differential
equations for V (x; b) (representing the three layers x < 0, 0 ≤ x ≤ b and x > b). For exponential
claims this can be transformed into a system of second-order ordinary differential equations with
constant coefficients which can be solved explicitly, giving the above solution VM for the middle
layer 0 ≤ x ≤ b (see [1] for details).
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In what follows we suppose that b is already the barrier with the maximal value. This maximal
value is given by

b = max
{

0,
1

ρ0 +R0
log

(Rγ −R0)(ργ − ρ0)R2
0

(Rγ + ρ0)(ργ +R0)ρ20

}
(5.1)

according to Example 5.1 in Albrecher, Cheung & Thonhauser [1].

Theorem 5.1. The barrier-policy (f b, f b, . . .) is optimal in the compound Poisson case with
exponential claims.

Proof. In order to show that the barrier-policy is optimal we have to show that TV (x; b) =
TfbV (x; b). The statement follows then from Howard’s policy improvement algorithm since

(f b, f b, . . .) cannot be improved in this case (see Theorem 7.5.1 in Bäuerle & Rieder [5]). When
we consider

TV (x; b) = sup
a∈[0,x]

{
a+

∫ ∞
0

∫ ∞
a−x

e−δtV (x− a+ y; b)Q(dy, dt)
}
,

it is crucial to note that the expression

Ṽ (x; b) :=

∫ ∞
0

∫ ∞
−x

e−δtV (x+ y; b)Q(dy, dt)

equals exactly the expected discounted dividends when we are not allowed to pay out a dividend
at time 0 and then follow the barrier-policy for the next observation time points. Thus we can
write

TV (x; b) = sup
a∈[0,x]

{
a+ Ṽ (x− a; b)

}
.

The quantity Ṽ is the value of a barrier policy if there is no observation at t = 0 (which for
0 ≤ x ≤ b coincides with VM , whereas for the upper layer x > b it differs from V , as the excess

over b is not paid out until the first oberservation). Ṽ has been computed in Albrecher, Cheung
& Thonhauser [1] to be

Ṽ (x; b) =

{
VM (x; b), 0 ≤ x ≤ b
VU (x; b), x > b

where

VU (x; b) =
γ(x− b)
γ + δ

+
1

Rγ
(e−Rγ(x−b) − 1)

( γ

γ + δ
− 1
)

+ VM (b; b).

Note that we have used here that the optimal b has the property d
dxV (x; b)

∣∣∣
x=b

= 1 (see Section

5 of Albrecher, Cheung & Thonhauser [1]). It can now be shown that

(i) Ṽ (x; b) < VM (b; b) + x− b for x > b,
(ii) V (x; b)− V (y; b) > x− y for 0 ≤ y < x ≤ b.

The first inequality follows when we plug in the formula for Ṽ (x; b). Rearranging the terms gives

1

Rγ

(
1− e−Rγ(x−b)

)
< x− b.

Inspecting the derivative of the left-hand side we see that this is true for x > b. The second
inequality is satisfied if d

dxV (x; b) > 1 for x ∈ (0, b). We assume here that b > 0, otherwise the
statement is obvious. Since at x = b this derivative is equal to 1, the statement is shown if
d2

dx2
V (x; b) < 0 for x ∈ (0, b). Computing the second derivative we see that it is increasing in x

and hence it is enough to check that d2

dx2
V (x; b)

∣∣∣
x=b

< 0. This is satisfied if and only if

(Rγ + ρ0)ρ
2
0e
ρ0b < R2

0(Rγ −R0)e
−R0b.
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Rearranging terms this is equivalent to

b <
1

ρ0 +R0
log

(Rγ −R0)R
2
0

(Rγ + ρ0)ρ20
.

But this is true since we know from Section 5 in Albrecher, Cheung & Thonhauser [1] that the
optimal b is given by

b =
1

ρ0 +R0
log

(Rγ −R0)R
2
0(ργ − ρ0)

(Rγ + ρ0)ρ20(ργ +R0)

and (ργ − ρ0)/(ργ +R0) ∈ (0, 1).
Properties (i) and (ii) yield now the desired result:
First suppose that 0 ≤ x ≤ b. In this case we have

Ṽ (x; b) = V (x; b) > x− (x− a) + V (x− a; b) = a+ V (x− a; b)

for a ∈ (0, x] by virtue of (ii). Hence a∗ = 0 maximizes the expression.
Next suppose that x > b. For an a > x− b we obtain

x− b+ V (b; b) > a+ V (x− a; b)

again by (ii). For a < x− b we obtain

x− b+ VM (b; b) > a+ Ṽ (x− a; b)

by (i). Hence a∗ = x− b maximizes the expression.
Altogether we have shown that f b is again a maximizer of V (x; b) which yields the statement.

�

6. Convergence to a Diffusion Model

Consider now a sequence of the exponential models studied in the previous section. More
precisely, let us assume that in the n-th model, the Poisson process (Nn

t ) has intensity λn := λn,
the claim sizes Uni are exponentially distributed with parameter νn := ν

√
n and the premium

rate is cn := λ
ν

√
n(ρn + 1) with limn→∞

√
nρn = κ. The parameter γ of the random observation

time and the discount factor δ are kept fixed. Then it is well known (see e.g. Grandell [9,
Sec.1.2]) that the corresponding compound Poisson process can be written as

Snt := x+ cnt−
Nn
t∑

i=1

Uni

d
= x+

λ

ν

√
n(ρn + 1)t−

Nnt∑
i=1

Ui√
n

= x+
λ

ν

√
nρnt−

√
2λ/ν2

( S̄(nt)− (λ/ν)nt√
2λ/ν2

√
n

)
where S̄(t) :=

∑Nt
i=1 Ui. From this representation it follows that (Snt ) converges for n → ∞

weakly to a diffusion. More precisely we have

(Snt )⇒ (x+
λ

ν
κ t+

√
2λ/ν2Wt) (6.1)

where ⇒ denotes weak convergence on the space of càdlàg functions and (Wt) is Brownian
motion. Obviously the limiting model is again in the general Lévy class that we considered
in the beginning. Since we know already from the previous section that for every exponential
model a barrier-policy is optimal, one can show - by taking limits - that the same is true for
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a diffusion model (in principle one could of course do an analysis similar to Section 5 directly
for the diffusion model; it is however instructive to study the limiting behavior, as it is not a
priori clear that also the optimal strategy converges to the one of the limiting diffusion, see also
Bäuerle [4]). In order to rigorously show this statement, we first investigate the fundamental
equation

z2 +
(
νn −

λn + γ + δ

cn

)
z − (γ + δ)νn

cn
= 0. (6.2)

Lemma 6.1. The roots −Rnγ < 0, ρnγ > 0 of equation (6.2) converge for n→∞ to finite values
and the optimal barriers bn also converge to a finite value b.

Proof. Looking at the coefficients of equation (6.2) we see that

lim
n→∞

(
νn −

λn + γ + δ

cn

)
= lim

n→∞

λ
√
nρn − (γ + δ)/

√
n

ρnλ/ν + λ/ν
= κν

lim
n→∞

(γ + δ)νn
cn

= lim
n→∞

(γ + δ)ν2

λ(ρn + 1)
=

(γ + δ)ν2

λ
.

Hence the roots of equation (6.2) converge to the roots of

x2 + κνx− (γ + δ)ν2

λ
= 0.

Inspecting the formula (5.1) for the optimal barriers bn we immediately see that limn→∞ b
n = b

is well-defined. Note that the expression in the logarithm cannot be zero. �

With our choice of parameters, we obtain

Lemma 6.2.

lim
n→∞

E[e−δT (Y n)+] = lim
n→∞

Cn = E[e−δTY +] =: C. (6.3)

Proof. By our assumptions we know that Y n ⇒ Y and hence with the continuous mapping
theorem we obtain e−δT (Y n)+ ⇒ e−δT (Y )+. Thus, the statement follows if we can show that
the sequence (e−δT (Y n)+) is uniformly integrable. But this follows since the sequence is L2-
bounded:

sup
n

E
[
e−2δT

(
(Y n)+

)2] ≤ sup
n

E
[
e−2δT (Y n)2

]
= sup

n

∫ ∞
0

e−2δt
∫
R
y2Qn(dy|t)g(t)dt,

where Qn(·|t) is the distribution of Y n given T = t and g is the density of T . Let us consider
the inner integral: ∫

R
y2Qn(dy|t) = E

[(
cnt−

Nn
t∑

i=1

Uni

)2]

= (cnt)
2 − 2cnt

2λ

ν

√
n+ E

[( Nn
t∑

i=1

Uni

)2]
= (cnt)

2 − 2cnt
2λ

ν

√
n+ 2t

λ

ν2
+ t2n

λ2

ν2

= t2
λ2

ν2
nρ2n + 2t

λ

ν2
≤ t2λ

2

ν2
κ̄2 + 2t

λ

ν2
,
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where κ̄ := supn
√
nρn which is finite since limn→∞

√
nρn = κ. Hence we obtain

sup
n

∫ ∞
0

e−2δt
∫
R
y2Qn(dy|t)g(t)dt ≤

∫ ∞
0

e−2δt
(
t2
λ2

ν2
κ̄2 + 2t

λ

ν2

)
g(t)dt

which is finite since the expression in front of g is bounded. �

Now for fixed n ∈ N the value function under the optimal barrier bn is given by

V n(x; bn) =

{
V n
M (x; bn), 0 ≤ x ≤ bn
x− bn + V n

M (bn; bn), x > bn

where

V n
M (x; bn) =

(Rnγ + ρn0 )eρ
n
0 x − (Rnγ −Rn0 )e−R

n
0 x

Rnγ+ρ
n
0

1−ρn0 /ρnγ
ρn0e

ρn0 b
n

+
Rnγ−Rn0
1+Rn0 /ρ

n
γ
Rn0e

−Rn0 bn
.

Theorem 6.3. It holds that the limit limn→∞ V
n(x; bn) =: V (x; b) exists, the convergence is

uniform on R+ and the limit V (x; b) equals the expected discounted dividends in the diffusion
model given by (6.1) under the barrier-policy (f b, f b, . . .).

Proof. The pointwise convergence of V n(x; bn) is obvious by its representation for x 6= b. For
x = b note that due to the continuity of V (x; b) we have convergence of sequences from the left
and from the right.

For the uniform convergence it is enough to show uniform convergence on the compact interval
I := [0,maxn b

n] since the functions are linearly extended with slope one. However, uniform
convergence can be seen directly by noting that in particular

lim
n→∞

sup
x∈I
‖eρn0 x − eρ0x‖ ≤ max

k
bk emaxk b

kmaxk ρ
k
0 lim
n→∞

‖ρn0 − ρ0‖ = 0.

From the exact formulas of the value functions it is easy to see that we obtain the same limit
when we fix the barrier b, i.e. limn→∞ V

n(x; b) = V (x; b).
Finally for the interpretation of the limit recall that

V n(x; b) := Ex
[ ∞∑
k=0

e−δZkf b(Xn
k )1[Xn

1 ≥0,...,Xn
k−1≥0]

]
where

Xn
k := Xn

k−1 − f b(Xn
k−1) + Y n

k , k = 1, 2, . . . .

Thus Xn
k is a continuous function of the random variables (Y n

1 , . . . , Y
n
k ). By the choice of

parameters we know that (Y n
1 , . . . , Y

n
k ) ⇒ (Y1, . . . , Yk) where Y1, Y2, . . . are the increments of

the diffusion limit. From the continuous mapping theorem it follows for n→∞ that

e−δZkf b(Xn
k )1[Xn

1 ≥0,...,Xn
k−1≥0] ⇒ e−δZkf b(Xk)1[X1≥0,...,Xk−1≥0] (6.4)

since P(X1 = 0 ∨ . . . ∨ Xk−1 = 0) = 0, i.e the discontinuity points in the indicator appear
with zero probability. From (6.4) it follows with the Skorokhod Theorem that we can define a
common probability space such that for n→∞

e−δZkf b(Xn
k )1[Xn

1 ≥0,...,Xn
k−1≥0] → e−δZkf b(Xk)1[X1≥0,...,Xk−1≥0] a.s.

It remains now to show that when considering the expression limn→∞ V
n(x; b) we can interchange

the limit and the expectation. Indeed we can use dominated convergence because
∞∑
k=0

e−δZkf b(Xn
k )1[Xn

1 ≥0,...,Xn
k−1≥0] ≤ x+

∞∑
k=1

e−δZk(Y n
k )+ =: Ūn
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and from (6.3) we obtain

lim
n→∞

Ex Ūn = lim
n→∞

(
x+

Cn

1− β
)

= x+
C

1− β
= Ex

[ ∞∑
k=1

e−δZkY +
k

]
.

Altogether we get

lim
n→∞

V n(x; b) = Ex
[ ∞∑
k=0

e−δZkf b(Xk)1[X1≥0,...,Xk−1≥0]

]
.

Thus the limit V (x; b) indeed coincides with the expected discounted dividends in the limiting
diffusion model under the barrier-policy. �

Hence we finally obtain the main result of this section:

Theorem 6.4. The barrier-policy (f b, f b, . . .) with b := limn→∞ bn is an optimal policy in the
limiting diffusion model.

Proof. In order to show this statement we consider for n ∈ N:

Ṽ n(x; bn) :=

∫ ∞
0

∫ ∞
−x

e−δtV n(x+ y; bn)Qn(dy, dt)

where Qn is the joint distribution of (T, Y n). Using the explicit formulas for V n and Ṽ n we see
that

lim
n→∞

Ṽ n(x; bn) = lim
n→∞

∫ ∞
0

∫ ∞
−x

e−δtV n(x+ y; bn)Qn(dy, dt) =

=

∫ ∞
0

∫ ∞
−x

e−δtV (x+ y; b)Q(dy, dt) =: Ṽ (x; b).

Moreover, for fixed x ∈ R+ it can be shown that the convergence limn→∞ Ṽ
n(x − a; bn) =

Ṽ (x− a; b) is uniform for a ∈ [0, x]. Thus we obtain with Lemma A.1.5 in Bäuerle & Rieder [5]

V (x; b) = lim
n→∞

V n(x; bn) = lim
n→∞

sup
a∈[0,x]

{
a+ Ṽ n(x− a; bn)

}
= sup

a∈[0,x]

{
a+ Ṽ (x− a; b)

}
.

Moreover it follows from the same lemma that f b is a maximizer of the limiting fixed point
equation, hence (f b, f b, . . .) is an optimal policy. �

Figures 1 and 2 show V n(x; bn) and the optimal barrier heights bn for the parameters ν =
3, λ = 15, γ = 10, δ = 0.05. In both figures the choice n = 1 corresponds to the dotted line,
n = 10 to the dotted-dashed line, n = 50 to the dashed line and n = 1000 to the solid line.

7. Example with a band

Consider the example of a compound Poisson risk model with Tn ∼ Exp(γ) as in Section 5,
but now with Erlang(2, ν)-distributed claims Ui. Concretely, choose c = 21.4, λ = 10, ν =
1, δ = 0.1 and γ = 200. Note that for γ = ∞ (i.e. continuous observation), this example
was shown by Azcue & Muler[3] to admit no optimal barrier policy. We are now interested in
whether a barrier strategy is optimal for the chosen finite value of γ.
Following the procedure of Albrecher, Cheung & Thonhauser[1, Sec.2] (also briefly sketched in

Section 5 of this paper), one can calculate Ṽ (x; b) and V (x; b) (i.e. the expected discounted
dividends without and with observation at time zero, respectively) for a barrier-policy with ar-
bitrary barrier b ≥ 0 and Erlang(2, ν) distributed claims.
For checking optimality within the set of all admissible dividend policies, we need to examine if
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Fig. 1. V (x; bn) for n = 1, 10, 50, 1000

Fig. 2. bn for n = 1, 10, 50, 1000

V (x; b∗) = supa∈[0,x]

{
a+ Ṽ (x− a; b∗)

}
is fulfilled for the maximizing barrier height b∗ (i.e. the

optimal policy within the set of barrier-type policies). In particular, the associated intervention
rule given by f b

∗
(x) = (x − b∗)I{x>b∗} needs to be a maximizer of the right-hand side of the

Bellman equation for all x ∈ R+.
When determining the optimal barrier level b∗ among all possible barrier levels for the present
model parameters, it turns out that for 0 ≤ x ≤ 1.5293 one obtains the level b∗ = 0, whereas for
x > 1.5293 a barrier b∗ = 10.1389 is preferable. This already shows that a barrier type policy
can not be optimal for this set of parameters, since neither f0 nor f10.1389 yield a maximizer in
the Bellman equation.

In addition, Figures 3 and 4 contain plots of a+Ṽ (x−a; b∗)−V (x; b∗) and a+Ṽ (x−a; 0)−V (x; 0)
(the black areas indicate the level 0), which are the relevant quantities in the proof of Theorem
5.1 for proving the fixed point property of the value function. One observes that V (x; b∗) as
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Fig. 3. V (x; b∗) not optimal Fig. 4. V (x; 0) not optimal

well as V (x; 0) are not fixed points of the operator T since the plots show areas above zero, and
therefore indeed the barrier-policy can not be optimal.

As an alternative to barrier strategies, we will now study in some detail a simple band policy
which will turn out to be the optimal strategy:

7.1. A simple band-policy. Consider the compound Poisson model with exponentially dis-
tributed inter-observation times (parameter γ > 0), but general continuous claim size distri-
bution function F . The simplest non-trivial band-policy is then given by π = (f, f, . . .) with
parameters 0 ≤ c0 < d1 ≤ c1, i.e.

f(x) =


0, if x ≤ c0

x− c0, if c0 < x < d1
0, if d1 ≤ x ≤ c1

x− c1, if x > c1.

Let us start with the case when there is no observation at time 0, and denote by Ṽ (x;π) the
corresponding expected discounted dividend payments due to band-policy π. Conditioning on
either having a claim before an observation event, an observation event before a claim, or neither
of them in a time interval (0, h), we obtain

Ṽ (x;π) =

∫ h

0
e−(δ+λ+γ)t

[
λ

∫ ∞
0

Ṽ (x+ ct− y;π)dF (y) + γ
[
Ṽ (x+ ct;π)I{0≤x+ct≤c0∨d1≤x+ct≤c1}

+(x+ct−c0+Ṽ (c0;π))I{c0<x+ct<d1}+(x+ct−c1+Ṽ (c1;π)I{c1<x+ct}

]]
dt+e−(δ+λ+γ)hṼ (x+ch;π).

(7.1)

Letting h → 0, one sees that Ṽ (x;π) is right-continuous in x. The same argument for initial

capital x − ch also gives left-continuity and so Ṽ (x;π) is continuous in x. From (7.1) it is also

clear that the one-sided derivatives of Ṽ exist for all x ∈ R and moreover Ṽ (x;π) is differentiable
within the layers of the given band-policy, i.e. for at least x ∈ R /∈ {0, c0, d1, c1}. Taking the
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derivative with respect to h and letting h tend to zero we arrive at the system of integro-
differential equations

0 = c
d

dx
Ṽ (x;π)− (δ + λ+ γ)Ṽ (x;π) + λ

∫ ∞
0

Ṽ (x− y;π)dF (y), x < 0,

0 = c
d

dx
Ṽ (x;π)− (δ + λ)Ṽ (x;π) + λ

∫ ∞
0

Ṽ (x− y;π)dF (y), 0 < x < c0,

0 = c
d

dx
Ṽ (x;π)− (δ + λ+ γ)Ṽ (x;π) + λ

∫ ∞
0

Ṽ (x− y;π)dF (y) + γ[x− c0 + Ṽ (c0;π)], c0 < x < d1,

0 = c
d

dx
Ṽ (x;π)− (δ + λ)Ṽ (x;π) + λ

∫ ∞
0

Ṽ (x− y;π)dF (y), d1 < x < c1,

0 = c
d

dx
Ṽ (x;π)− (δ + λ+ γ)Ṽ (x;π) + λ

∫ ∞
0

Ṽ (x− y;π)dF (y) + γ[x− c1 + Ṽ (c1;π)], c1 < x.

Since Ṽ (x;π) is continuous, it follows that Ṽ (x;π) is differentiable in c0 (if c0 > 0) and c1 but
not in 0 and d1. Define

Ṽ (x;π) =


VL(x;π) if x < 0
VM1(x;π) if 0 ≤ x ≤ c0
VM2(x;π) if c0 < x < d1
VM3(x;π) if d1 ≤ x ≤ c1
VU (x;π) if x > c1.

One then can rewrite the above system of integro-differential equations to

0 = c
d

dx
VL(x;π)− (δ + λ+ γ)VL(x;π) + λ

∫ ∞
0

VL(x− y;π)dF (y), x < 0,

0 = c
d

dx
VM1(x;π)− (δ + λ)VM1(x;π) + λ

∫ x

0
VM1(x− y;π)dF (y) + λ

∫ ∞
x

VL(x− y;π)dF (y), 0 < x < c0,

0 = c
d

dx
VM2(x;π)− (δ + λ+ γ)VM2(x;π) + λ

∫ x−c0

0
VM2(x− y;π)dF (y) + λ

∫ x

x−c0
VM1(x− y;π)dF (y)

+ λ

∫ ∞
x

VL(x− y;π)dF (y) + γ[x− c0 + VM1(c0;π)], c0 < x < d1,

0 = c
d

dx
VM3(x;π)− (δ + λ)VM3(x;π) + λ

∫ x−d1

0
VM3(x− y;π)dF (y) + λ

∫ x−c0

x−d1
VM2(x− y;π)dF (y)

+ λ

∫ x

x−c0
VM1(x− y;π)dF (y) + λ

∫ ∞
x

VL(x− y;π)dF (y), d1 < x < c1,

0 = c
d

dx
VU (x;π)− (δ + λ+ γ)VU (x;π) + λ

∫ x−c1

0
VU (x− y;π)dF (y) + λ

∫ x−d1

x−c1
VM3(x− y;π)dF (y)

+ λ

∫ x−c0

x−d1
VM2(x− y;π)dF (y) + λ

∫ x

x−c0
VM1(x− y;π)dF (y) + λ

∫ ∞
x

VL(x− y;π)dF (y)

+ γ[x− c1 + VM3(c1;π)], c1 < x,
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with the pasting conditions

VL(0;π) = VM1(0;π), VM1(c0;π) = VM2(c0;π), VM2(d1;π) = VM3(d1;π),

VM3(c1;π) = VU (c1;π),
d

dx
VM1(c0;π) =

d

dx
VM2(c0;π),

d

dx
VM3(c1;π) =

d

dx
VU (c1;π).

Note that VM1 is not needed if c0 = 0. In addition, we have the natural boundary conditions
that limx→−∞ VL(x;π) = 0 and VU (x;π) is linearly bounded for x→∞ (cf. Lemma 3.1). This
uniquely determines the solution of the above system of integro-differential equations.
Finally, if time zero is also an observation time, the value of the present policy π, denoted by
V (x;π), is given by

V (x;π) =


0, if x < 0,

VM1(x;π) if 0 ≤ x ≤ c0,
x− c0 + VM1(c0;π), if c0 < x < d1,

VM3(x;π), if d1 ≤ x ≤ c1,
x− c1 + VM3(c1;π, ) if x > c1.

(7.2)

7.2. Explicit example with optimal band-policy. Let us now return to the numerical ex-
ample given in the beginning of Section 7 with Erlang(2, ν) distributed claims Ui (i.e. density
function f(y) = ν2ye−νyI{y≥0}) and apply the simple band strategy. For this choice of claim size
distribution, it is possible to convert, by standard methods, the system of integro-differential

equations characterizing Ṽ (x;π) into a system of ordinary differential equations with constant
coefficients. By using the associated characteristic equations we get that the solutions are of the
following form:

VL(x;π) = A1 e
R1x,

VM1(x;π) = B1 e
S1x +B2 e

S2x +B3 e
S3x,

VM2(x;π) = C1 e
R1x + C2 e

R2x + C3 e
R3x + C4 x+ C5,

VM3(x;π) = D1 e
S1x +D2 e

S2x +D3 e
S3x,

VU (x;π) = E1 e
R2x + E2 e

R3x + E3 x+ E4.

The exponents R1 > 0, R2, R3 < 0 are the roots of the polynomial

(cR− (δ + λ+ γ))(R+ ν)2 + λ2ν,

whereas S1, S2, S3 are the roots of the polynomial

(cS − (δ + λ))(S + ν)2 + λ2ν.

Substitution of these quantities back into the integro-differential equations together with the
pasting conditions then gives a system of linear equations for the involved coefficients. This

linear system uniquely determines the solution Ṽ (x;π) and subsequently V (x;π) by virtue of
(7.2). Even with this explicit form of V (x;π) at our disposal, it is very hard to state general
conditions under which such a simple band-policy is optimal, since all the involved coefficients
are functions of the parameters (c0, d1, c1), which specify the policy.

But what can be done is to numerically assess the situation for particular parameter settings.
Let us hence return to the previous choice c = 21.4, λ = 10, ν = 1, δ = 0.1 and γ = 200,
and retry the procedure for identifying an optimal dividend policy of simple band-type π with
parameters c0, d1, c1. I.e., we first determine a policy π∗ that maximizes V (x;π) over the set
of simple band-type policies. In a second step we then try to verify the fixed point property of
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Fig. 5. V (1; (0, d1, c1)) as function of (d1, c1)

the value function stated by the Bellman equation, i.e. V (x;π∗) = supa∈[0,x]

{
a+ Ṽ (x− a;π∗)

}
.

At first one observes that c0 = 0, which is also indicated by the above observation on pure
barrier-policies (for small values of initial surplus a barrier in zero was optimal). For deriving d1
and c1 we use a numerical optimization procedure (e.g. in Mathematica) to maximize V (x;π)
for fixed x ≥ 0 as a function of (d1, c1) (w.l.o.g. one can fix any initial surplus x ≥ 0 for this
calculation, since in case of optimality among all dividend policies the values are independent
of x). As a result we then obtain π∗ with (c0, d1, c1) = (0, 1.1854, 10.1041) for the optimal band
parameters within simple band-policies (Figure 5 shows V (1;π) as a function of (d1, c1) with
c0 = 0; one observes that the corresponding surface is very flat around its maximum, values
differ by a magnitude of 10−4).
For verifying the general optimality of π∗ = (f∗, f∗, . . .) with

f∗(x) =


0, if x ≤ 0,
x, if 0 < x < 1.1854,
0, if 1.1854 ≤ x ≤ 10.1041,

x− 10.1041, if x > 10.1041

among all dividend policies, we look at a + Ṽ (x − a;π∗) − V (x;π∗) for all admissible dividend
payments 0 ≤ a ≤ x. Figures 6 and 7 contain this difference as function in a and x for big/small
values of x. Particularly in Figure 7 one can observe that for 0 ≤ x < 1.1854 and subsequently for
1.1854 ≤ x < 2 the difference is maximized by a(x) = f∗(x) and virtually equal to zero, whereas
for different values of a it is obviously strictly negative. A plot of the decision rule f∗(x) as a

function of x is given in Figure 10. Figure 9 presents the contours of a+ Ṽ (x−a;π∗)−V (x;π∗)
as a function of x and a, the darker the area the bigger the (negative) difference.
A numerical computation of TV (x;π∗) − V (x;π∗), which is a reformulation of the Bellman
equation, is given in Figure 11. The maximal difference from zero for x = 0.01 k with k =
0, . . . , 1500 is 4.37616 · 10−6 and assumed at x = 0.01, whereas for larger values of x > 10.1041
the difference is of the order 10−13. Therefore we can (numerically) conclude that V (x;π∗) =
TV (x;π∗). We can base this conclusion of the fixed point property on the observation that for
fixed x the function V (x;π) as a function of π = (c0, d1, c1) is very flat around its maximizer.
This happens in particular for small values of x, explaining the maximal difference for small x.
Furthermore, even if the optimal solution would consist of additional bands for x > 10.1041, i.e.
in areas where TV (x;π∗)− V (x;π∗) is of order 10−13, one can expect that for its computation
numerical errors will overlay the effect of a possible improvement of the value function.
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Fig. 6. a + Ṽ (x − a;π∗) −
V (x;π∗), large x

Fig. 7. a + Ṽ (x − a;π∗) −
V (x;π∗), small x

Fig. 8. a+ Ṽ (x− a;π∗) − V (x;π∗)

Fig. 9. a + Ṽ (x −
a;π∗) − V (x;π∗),

contours

In general the fixed point may not be unique, so that this reasoning would not necessarily imply
that V (x;π∗) is the optimal value function. However, in our situation the Markov Decision
Model is positive (i.e. the paid dividend is non-negative), and, due to Theorem 7.4.5. in Bäuerle
& Rieder [5], this is sufficient to prove the optimality of the simple band-policy π∗ among all
dividend policies in this concrete example.
Finally, note that the optimality of this band-policy is quite vulnerable in the sense that for
smaller values of γ (i.e. less frequent observations), the optimal policy again collapses to a
barrier-policy. For example, the choice γ = 20 already results in an optimal barrier-policy with

height b∗ = 8.8483 as indicated by Figures 12–14, which depict a + Ṽ (x − a; b∗) − V (x; b∗) for
different magnitudes of x as well as Figure 15, which gives TV (x; b∗)− V (x; b∗). From this one
may conclude that the optimality of a barrier-policy with b∗ = 8.8483.
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