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Psychiatriques, Centre Hospitalier Universitaire Vaudois, Département de Psychiatrie, Site de Cery, CH-1008 Prilly/Lausanne, Switzerland

Amyloid-�(A�)peptidesplayakeyroleinthepathogenesisofAlzheimer’sdiseaseandexertvarioustoxiceffectsonneurons;however,relatively
little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy
metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the
effects of A� peptides on glucose metabolism in cultured astrocytes. Following A�25-35 exposure, we observed an increase in glucose
uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway,
and incorporation into glycogen. A� increased hydrogen peroxide production as well as glutathione release into the extracellular space
without affecting intracellular glutathione content. A causal link between the effects of A� on glucose metabolism and its aggregation and
internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using
astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by A� impair neuronal viabil-
ity. The effects of the A�25-35 fragment were reproduced by A�1-42 but not by A�1-40. Finally, the phosphoinositide 3-kinase (PI3-kinase)
pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are
prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that A� aggregation and internalization into astrocytes
profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.

Introduction
Alzheimer’s disease (AD), the most prevalent neurodegenerative
disorder, results in the deterioration of selective cognitive perfor-
mance, including memory and mental processing (McKhann et
al., 1984). At the structural level, the brain of AD patients typi-
cally exhibits amyloid-� (A�) plaques, intracellular neurofibril-
lary tangles, vascular amyloidosis, and neuronal and synaptic
loss. If the exact contribution of these individual lesions in the
pathogenesis of AD remains controversial, a central role of A�
peptides has been proposed (Hardy and Selkoe, 2002). The cas-
cade of molecular and cellular events, referred to as the amyloid
hypothesis, is thought to be initiated by the accumulation and
aggregation of A� peptides, leading to alterations of synaptic
function, activation of microglia and astrocytes, and oxidative
injury. Altogether, these mechanisms lead to the neuronal dys-

function and degeneration responsible for the cognitive deficits
observed in AD.

A� peptides are produced by the proteolytic cleavage of the
transmembrane amyloid precursor protein (APP) by �- and
�-secretases (Haass and Selkoe, 2007), producing mainly A�1-40

and A�1-42, peptides of 40 and 42 residues in length, respectively.
A� peptides exist in multiple assembly states—monomers, oli-
gomers, protofibrils, fibrils, and larger amorphous aggregates
such as plaques. A�1-42 is more prone to aggregation and fibril
formation than A�1-40 (Snyder et al., 1994; Dahlgren et al., 2002)
and is the predominant form found in amyloid plaques
(Younkin, 1998). The amyloid hypothesis is strongly supported
by the observation that most familial cases of AD exhibit muta-
tions within APP or its cleaving enzymes, promoting increased
A� generation and A�1-42/A�1-40 ratio (Selkoe, 2004).

One of the main features of AD is a severe reduction of the
cerebral metabolic rate of glucose, the main energy substrate used
by the brain (Zakzanis et al., 2003). Indeed, fluorodeoxyglucose
positron emission tomography studies have shown a consistent
and progressive reduction of glucose utilization in AD patients
that can even precede the onset of symptoms (Mosconi et al.,
2008).

Several essential functions have been demonstrated for astro-
cytes, in particular those related to their cooperation with neu-
rons (Belanger and Magistretti, 2009). For instance, the existence
of a tight metabolic interaction between these two cell types in
terms of energy metabolism (Magistretti, 2006), defense against
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oxidative stress (Dringen, 2000), and neurotransmitter reuptake and
recycling (Bak et al., 2006) is now well documented (Magistretti,
2008). At the morphological level, astrocytes have specialized
processes ensheathing synapses and intraparenchymal capillar-
ies. These features position astrocytes as the prevalent site of glu-
cose entry into the brain and endow them with the capacity to
sense synaptic activity and dynamically couple it to substrate dis-
tribution to neurons (Magistretti, 2006). Another key feature
of astrocytes is that they are virtually the only neural cell type
that can store glucose as glycogen (Magistretti, 2008). These
observations suggest that astrocytes might participate in the
overall modulation of glucose utilization observed in AD and
in the development and progression of neurodegeneration in
this disease (Rodriguez et al., 2009). This study was therefore
undertaken to explore the effects of A� peptides on glucose
metabolism in cultured astrocytes as well as the possible im-
plications of such metabolic changes on neuronal viability.

Materials and Methods
Reagents. Amyloid-� and control peptides were purchased from Bachem
or synthesized and purified by Dr. James I. Elliott at Yale University (New
Haven, CT) and, unless otherwise specified, prepared in sterile deionized
water. Unless otherwise specified, A�25-35 and A�35-25 were used at 25
�M (100� stock solution); human A�1-42, human A�1-40, and FITC-
labeled human A�1-42 were used at 6 �M (33� stock solution). When
solubilized in dimethylsulfoxide (DMSO), A� peptides were prepared as
500� stock solutions.

2-[1,2- 3H]Deoxy-D-glucose ([ 3H]-2-DG) (specific activity, 30 – 60
Ci/mmol) was obtained from ANAWA. D-[6- 14C]Glucose and D-[1-
14C]glucose (specific activities, 50–62 mCi/mmol) were from GE Healthcare.
[ 35S]Methionine labeling mix (L-[ 35S]methionine and L-[ 35S]cysteine)
(specific activity, �1000 Ci/mmol) was from Hartmann Analytic. En-
zymes for glycogen, lactate release, and glutathione assays, as well as
NAD, NADH, NADP, NADPH, and ATP, were purchased from
Roche. Fetal calf serum (FCS) was purchased from BioConcept.
U0126 was from Merck, and Neurobasal medium, GlutaMAX, and
B27 supplement were provided by Invitrogen. All other chemicals,
including DMEM, antibiotic/antimycotic solution (A7292), acivicin,
cycloheximide (CHX), polyinosinic acid [poly(I)], polycytidylic acid
[poly(C)], LY294002, wortmannin, and SB202190 were obtained
from Sigma-Aldrich.

Astrocytic cultures. Primary cultures of cerebral cortical astrocytes were
prepared from newborn (1–2 d old) OF1 mice (Charles River Laborato-
ries) as described previously (Allaman et al., 2004). Briefly, forebrains
were removed aseptically from the skulls, the meninges were excised
carefully under dissecting microscope, and the cortices were isolated. The
cells were dissociated by passing through needles of decreasing diameter
(16, 19, and 25 gauge) five times with a 10 ml syringe. The cells were
seeded at an average density of 10 5 cells/cm 2 on poly-ornithine-coated
dishes (35 mm), glass coverslips (12 mm diameter), or 24-well plates in
DMEM (D7777, Sigma-Aldrich) containing 25 mM glucose and supple-
mented with 44 mM NaHCO3, 10 ml/L antibiotic/antimycotic solution
(DMEM25), and 10% FCS and incubated at 37°C in an atmosphere con-
taining 5% CO2 and 95% air. The culture medium was renewed 3–5 d
after seeding and subsequently twice a week. Experiments were per-
formed on confluent 21-d-old cultures. These culture conditions yielded
�90% glial fibrillary acidic protein (GFAP; astroglial marker) immuno-
reactive cells and �1% isolectin B4-positive cells (microglial marker).
These values were unchanged after 48 h of treatment with A�25-35 (data
not shown). If not otherwise specified, culture medium was renewed 24 h
before A� treatment induced by addition of amyloid peptides in the
culture medium.

Neuronal cultures. Primary cultures of cortical neurons were prepared
from embryonic day 17 (E17) OF1 mice embryos (Charles River Labo-
ratories). Briefly, cortices were isolated, minced in 2 mm 2 pieces, and
incubated at 37°C for 30 min in a solution containing papain 20 U/ml
(Worthington Biochemical), 1 mM L-cysteine, 0.5 mM EDTA, and 100

U/ml DNAase (Worthington Biochemical). Papain activity was then in-
hibited by adding fetal calf serum and a single-cell suspension was ob-
tained by gentle trituration in Neurobasal medium supplemented with
B27 and GlutaMAX (Invitrogen). Cells were plated at an average density
of 4 � 10 4 cells/cm 2 in supplemented Neurobasal medium on poly-
ornithine-coated glass coverslips (20 mm diameter). Neurons were
maintained at 37°C in a humidified atmosphere containing 5% CO2 and
95% air and were used at day in vitro 14.

Coculture experiments. Astrocytes cultured in DMEM25 supplemented
with 10% fetal calf serum were treated with A� peptides, poly(I), or
poly(C) for 24 h. When indicated, LY294002 was added 1 h before amy-
loid peptide and maintained throughout the whole incubation period.
Active substances were then removed by aspirating the medium and
astrocytes were rinsed with fresh culture medium and then placed in
supplemented Neurobasal medium. Cocultures were initiated 4 h after
A� withdrawal by transferring neurons grown on coverslips on top of the
astrocyte layer cultured in 35 mm dish (neurons facing up). At no time
were neurons in direct contact with A�. Neuronal viability was assessed
24 h following the initiation of cocultures using thiazolyl blue tetrazo-
lium bromide (MTT; Sigma-Aldrich) reduction assay or calcein-AM (see
below).

[3H]-2-DG uptake. [ 3H]-2-DG uptake experiments were conducted as
described previously (Allaman et al., 2004). Two hours before the 2-DG
experiment, the medium was removed and cells were incubated in
serum-free DMEM (D5030, Sigma-Aldrich) supplemented with 5 mM

glucose, 44 mM NaHCO3, and 10 ml/L antibiotic/antimycotic solution
(DMEM5) at 37°C in an atmosphere containing 5% CO2 and 95% air.
The 2-DG assay was initiated by replacing the medium by 2 ml of
DMEM5 containing 1 �Ci/ml [ 3H]-2-DG. The cells were incubated for
an additional 20 min at 37°C in an atmosphere containing 5% CO2 and
95% air. The uptake was terminated by aspiration of the culture medium
(used for lactate release assay, see below) and by washing the cells three
times with 4 ml of ice-cold PBS. Cells were then lysed by addition of 2 ml
of 10 mM NaOH containing 0.1% Triton X-100. Five hundred-microliter
aliquots, in duplicate, were assayed for radioactivity by liquid scintilla-
tion counting. Results, which represent transporter-mediated glucose
uptake and subsequent phosphorylation, were calculated by subtracting
from total counts the portion that was not inhibited by the glucose trans-
porter inhibitor cytochalasin B (25 �M) added 20 min before and along
with [ 3H]-2-DG incubation. For the signaling pathway experiments the
2 h preincubation in DMEM5 was omitted and the [ 3H]-2-DG uptake
was performed directly after the incubation period to ensure continued
action of the inhibitors. When indicated, LY294002, SB202190, wort-
mannin, and U0126 were applied 30 min and CHX 1 h before A� and
kept for the whole incubation period. All media used for [ 3H]-2-DG
uptake were pre-equilibrated at 37°C in an atmosphere containing 5%
CO2 and 95% air. [ 3H]-2-DG uptake was expressed as femtomoles per
dish.

Protein content determination. Protein content in cell lysates was deter-
mined by the BCA protein assay reagent kit (Pierce) according to man-
ufacturer’s instructions. This assay was chosen over the traditional
Bradford assay, which mostly detects the presence of arginine and aro-
matic amino acids (Compton and Jones, 1985), none of which are con-
tained in the A�25-35 fragment, thus precluding its detection by this assay.
Indeed, in contrast to the BCA assay, no change in cellular protein con-
tent could be measured following treatment with A�25-35 using the Brad-
ford assay. This was interpreted as an indirect demonstration that the
increased protein content seen in astrocytes following A�25-35 treatment
(see Results) is due to its internalization.

Lactate release. Lactate release by astrocytes was determined as de-
scribed previously (Allaman et al., 2004). Briefly, 200 �l aliquots of the
culture medium used for [ 3H]-2-DG incubation were mixed with 2 ml of
glycine buffer (0.2 mM), pH 10, containing 2 mg/ml NAD and 7 U/ml
lactate dehydrogenase and incubated at 40°C for 1 h. After 20 min at
room temperature, the amount of NADH produced was measured in a
100 �l aliquot loaded on a 96-well plate with a spectrophotometer (in-
creased in absorbance at 340 nm) (Safire 2, Tecan), and absolute values
were determined from a standard curve. Lactate release into the medium
was expressed as nanomoles per dish.
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Glycogen assay. At the end of the incubation period, the cells were
rinsed three times with ice-cold PBS and lysed by sonication in 1.5 ml of
30 mM HCl. Glycogen content of the cell extracts was determined enzy-
matically as described previously (Allaman et al., 2004). Briefly, two 100
�l aliquots were sampled in duplicate. Three hundred microliters of
acetate buffer (0.1 M), pH 4.65, was added to the first aliquot, and 300 �l
of the same acetate buffer containing 1% (v/v) amyloglucosidase (140
U/ml) was added to the other. After incubation (30 min at room temper-
ature), 2 ml of Tris-HCl buffer (0.1 mM), pH 8.1, containing 3.3 mM

MgCl2, 0.2 mM ATP, 25 �g/ml NADP, 0.7 U/ml hexokinase, and 0.35
U/ml glucose-6-phosphate dehydrogenase were added to the aliquots,
and the mixture was incubated for 30 min at room temperature. The
fluorescence of the NADPH formed was read at 340/450 nm (excitation/
emission) with an appropriate standard curve (using glucose as a stan-
dard). The first aliquot provides the signal generated by glucose and
glucose-6-phosphate, while the second corresponds to the signal gener-
ated by glycogen plus glucose and glucose-6-phosphate. The amount of
glycogen was determined by the difference between the two. One should
pay attention that hereafter “one mole of glycogen” represents one mole
of glycosyl unit originating from glycogen. Glycogen cell content was
expressed as namomoles per dish.

14CO2 production assay. Production of 14CO2 from D-[1- 14C]glucose
and D-[6- 14C]glucose was used to determine net glucose utilization via
the pentose phosphate pathway (PPP) and tricarboxylic acid cycle (TCA
cycle), respectively, according to published procedure (Soucek et al.,
2003). After A� treatment, the culture medium was removed and cells
were incubated for 2 h in serum-free DMEM (D5030, Sigma-Aldrich)
containing 2.5 mM glucose, 7.5 mM NaHCO3, 5 mM HEPES, and 10 ml/L
antibiotic/antimycotic solution at 37°C in an atmosphere containing 5%
CO2 and 95% air. At the end of this incubation period, the medium was
replaced by 2 ml of the same medium containing 2.3 �Ci/ml D-[1-
14C]glucose or D-[6- 14C]glucose, and culture dishes were placed in
sealed glass containers and incubated for 2 h at 37°C. The reaction was
stopped by addition of 500 �l of 0.2 M HCl on the cells, and 1 ml of
Carbo-Sorb (PerkinElmer) was placed onto the bottom of the container.
After 1 h of equilibration, containers were opened and two 400 �l ali-
quots of Carbo-Sorb were assayed for radioactivity by liquid scintillation
counting (Permafluor E�, PerkinElmer). Production of 14CO2 from
D-[1- 14C]glucose reflects the total CO2 produced in both PPP and TCA
cycle, whereas 14CO2 produced from D-[6- 14C]glucose reflects CO2 pro-
duction in the TCA cycle only (Soucek et al., 2003). CO2 production in
the PPP is obtained by subtraction. Total CO2 production from glucose
can be calculated from the molar ratio between unlabeled and labeled
glucose. Results are expressed in nanomoles of CO2 produced per minute
per cell culture dish.

Glutathione assay. Glutathione levels (reduced form, GSH, or oxidized
form, GSSG) were determined as described previously (Gavillet et al.,
2008). For these experiments, 24 h before treatment cell culture medium
was replaced by a phenol red-free culture medium (D2902, Sigma-
Aldrich) supplemented with 44 mM NaHCO3, 10 ml/L antibiotic/anti-
mycotic solution, and 10% FCS and complemented to 25 mM glucose to
give rise to a medium that is strictly equivalent to the normal culture
medium except for phenol red. At the time of stimulation and at the end
of the treatment period, aliquots of culture medium were sampled for
extracellular glutathione determination (see below). After the incubation
period, cells were rinsed with iced-cold EDTA-phosphate buffer (16 mM

NaH2PO4, 54 mM Na2HPO4, 1 mM EDTA, pH 7.5). Then cells were lysed
on ice with 1 ml of 1% 5-sulfosalicylic acid (SSA) in H2O. Cell suspension
was collected using a cell scraper and centrifuged for 5 min at 12,000 � g
at 4°C. To determine total intracellular glutathione content (GSx � GSH �
GSSG, where GSx is total glutathione), 10 �l of the supernatant or GSSG
standards in 1% SSA (0 –200 pmol of GSSG/10 �l, equivalent to 0 – 400
pmol of GSH/10 �l) were transferred in duplicate onto a microtiter plate,
and the volume was adjusted to 100 �l with H2O. In parallel, to deter-
mine the amount of oxidized glutathione, GSSG, a 130 �l aliquot of the
supernatant was sampled and added to 5 �l of 2-vinylpyridine. pH was
adjusted between 5 and 7 with 0.2 M Tris-HCl, pH 6.8, and the mixture
was incubated for 1 h at room temperature. A set of GSSG standards
(0 –200 pmol of GSSG/10 �l in 1% SSA) was treated in the same way. At

the end of the incubation period, 10 �l aliquots were loaded, in duplicate,
onto a microtiter plate and the volume was adjusted to 100 �l with H2O.
Then, 100 �l of a reagent mix solution composed of EDTA-phosphate
buffer containing 0.15 mM 5,5�-dithiobis(2-nitrobenzoic acid) (DTNB),
0.2 mM NADPH, and 1 U/ml glutathione reductase was added into each
well at room temperature, and the amount of reduced DTNB produced
was determined spectrophotometrically (Safire 2, Tecan) at 410 nm every
15 s over a 5 min period. Intracellular glutathione levels (GSx and GSSG)
were expressed as nanomoles of GSH equivalent per dish. Extracellular
GSx levels were determined in the same way as intracellular GSx levels
using 80 �l aliquots of cell culture medium with GSSG standards dis-
solved in fresh culture medium. In these experimental conditions, gluta-
thione accumulation in the medium was determined during the 48 h
treatment period by subtracting glutathione levels measured at the time
of stimulation from the levels measured after 48 h of treatment. When
indicated, acivicin was added 1 h before A� and kept for the whole
incubation period. Extracellular glutathione levels (GSx) were expressed
as nanomoles of GSH equivalent per dish.

Hydrogen peroxide production assay. Hydrogen peroxide (H2O2) accu-
mulation in the extracellular space was determined using the Amplex
Red fluorescent assay. Briefly, after stimulation cells were rinsed with
Krebs–Ringer phosphate glucose (129 mM NaCl, 1.58 mM Na2HPO4,
4.86 mM KCl, 0.54 mM CaCl2, 1.22 mM MgSO4, 5 mM glucose, pH 7.4)
and incubated for 2 h in 500 �l of phenol red-free culture medium
(D2902, Sigma-Aldrich; supplemented with 44 mM NaHCO3, 10 ml/L
antibiotic/antimycotic solution and complemented to 25 mM glucose)
containing 10 �M Amplex Red (Invitrogen) and 1 U/ml horseradish
peroxidase (type II, Sigma-Aldrich). A standard of H2O2 (100 nM to 10
�M) was treated in parallel. Two hundred-microliter aliquots of super-
natant and standards were then sampled and loaded on a black 96-well
plate (PerkinElmer), and the amount of resorufin produced by Amplex
Red oxidation was determined fluorometrically (Safire 2, Tecan) (exci-
tation 545 nm, emission 590 nm). For these experiments astrocytes were
seeded on 24-well plates. Results are expressed as micromolar concentra-
tions of H2O2 in the medium.

MTT reduction test. After stimulation, culture medium was replaced by
DMEM5 and cells were further incubated for 2 h at 37°C in an atmo-
sphere containing 5% CO2 and 95% air. The medium was then replaced by
the same DMEM medium containing 0.1 mg/ml MTT, and cells were incu-
bated for 20 min at 37°C in an atmosphere containing 5% CO2 and 95% air.
The reaction was stopped by aspiration of the medium and addition of 2 ml
of DMSO. For MTT determination in coculture and primary neuronal
cultures experiments, a 20� stock solution of MTT was added directly to
the culture medium to give rise to a final concentration of 0.2 mg/ml, and
cells were incubated for 30 min at 37°C in an atmosphere containing 5%
CO2 and 95% air. The medium was then removed by aspiration, the glass
coverslips bearing neurons were placed in a new dish, and the reaction was
stopped by the addition of 1 ml of DMSO. The amount of reduced MTT
(formazan) solubilized in DMSO was then determined spectrophotometri-
cally using absorbance at 560 nm (Safire 2, Tecan). Results are expressed as
percentage of control values.

Calcein-AM assay. After stimulation, cocultures were rinsed with Neu-
robasal medium to remove extracellular esterases. The neuronal cover-
slips were then transferred to new wells of fresh Neurobasal medium
pre-equilibrated at 37°C in an atmosphere containing 5% CO2 and 95%
air and containing 1 �g/ml calcein-AM (Invitrogen). Neurons were in-
cubated in the presence of calcein-AM for 30 min at 37°C, after which the
reaction was stopped by rinsing three times with prewarmed (37°C) Neu-
robasal medium. Cells were lysed by sonication, 200 �l of supernatant
was transferred into a black-walled 96-well plate (PerkinElmer), and
calcein fluorescence was measured (Safire 2, Tecan) (490 nm excitation;
515 nm emission; 5 nm excitation and emission bandwidth). Results are
expressed as percentage of control values.

Cell counting. After stimulation, cells in culture were rinsed in
DMEM25 and dissociated with a solution of 0.05% trypsin-EDTA (In-
vitrogen) for 10 min at 37°C. Cells in suspension were then centrifuged
for 4 min at 200 � g and the pellet was resuspended in DMEM25 with
10% serum. Cell number per dish was determined by counting cells in
suspension using a Neubauer cell chamber.
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[35S]Methionine incorporation. Cell cultures were rinsed with DMEM
without methionine and cysteine (DMEM-aa) (Invitrogen), and culture
medium was replaced by DMEM-aa containing 10% FCS, 1% DMEM5,
and 25 �Ci/ml [ 35S]-methionine labeling mix. Cultures were then ex-
posed to A� for 24 h. When indicated, CHX was added 1 h before amy-
loid peptide and maintained throughout the entire incubation period.
Cells were then rinsed three times with ice-cold PBS and lysed with 500 �l
of a buffer composed of 62.5 mM Tris, pH 6.8, 50 mM DTT, and 0.3%
SDS. Cell suspensions were heated for 5 min at 95°C and sonicated for
15 s. Five hundred microliters of BSA (0.1 mg/ml) containing 0.02%
NaN3 was added to 50 �l aliquots of cell suspensions, and then proteins
were precipitated with 500 �l of ice-cold 20% trichloroacetic acid. The
mix was homogenized, incubated for 30 min on ice, and then filtered on
glass microfiber filter (GF/B filter, Whatman). Filters were rinsed two
times with 5 ml of 10% trichloroacetic acid and two more times with
100% ethanol. Each filter was then placed in 7 ml of scintillation liquid
and radioactivity due to 35S incorporation was determined with a beta
counter. Results are expressed as percentage of control values.

Confocal microscopy. Astrocytes seeded on glass coverslips (12 mm
diameter) were exposed to human FITC-A�1-42 for 2 h at 37°C in an
atmosphere containing 5% CO2 and 95% air. When indicated, poly(I) or
poly(C) was added 1 h before amyloid peptide and maintained through-
out the whole incubation time. Cell membrane labeling was performed
with Vybrant DiD dye (Invitrogen) added to a final concentration of 4
�M in the culture medium 15 min before the end of the stimulation. At
the end of the incubation period, cells were rinsed two times in ice-cold
PBS and fixed for 15 min in an ice-cold solution of 4% paraformaldehyde
in PBS. Then cells were rinsed four times in PBS and sealed on a micro-
scope glass slide with 1,4-diazabicyclo(2,2,2)octane (DABCO) mounting
medium (24 mg/ml DABCO, 50% glycerol, in 1�PBS, pH 7.5). The
three-dimensional (3D) image acquisitions were performed on 25–35
images with 163 nm step size on a confocal microscope (Leica TSC SP2)
with a HCx Plan Apo 63�, 1.30 numerical aperture, IMM/CORR glyc-
erol immersion objective. To avoid any cross talk, the images were ac-
quired in sequential mode using laser lines at 488 and 633 nm with a
power 10 –25% transmission, 4 – 8 average line method, 800 Hz scan
speed, and short bandpass, 495–520 nm for FITC and 650 – 690 nm for
DiD. To obtain a correct resolution, we use a format of 1024 � 1024 with
an electronic zoom at 2 corresponding to 116 nm/pixel. The pinhole
aperture was 1 Airy unit.

Electron microscopy. A�25-35 was first dissolved as stock solutions ei-
ther in sterile deionized water or in sterile DMSO. The amyloid prepara-
tions were then diluted to the final working concentration (25 �M) in
sterile deionized water. Following 4 h of incubation at 37°C, samples were
vortexed and 5 �l aliquots of the samples were then applied to formvar-
coated grids. After 1 min, excess fluid was withdrawn and the grids were
washed with two drops of bidistilled water. The specimens were nega-
tively stained with two drops of 2% (w/v) uranyl acetate, examined in a
Philips CM12 electron microscope, and photographed using a Gatan
CCD camera (Gloor Instruments).

Thioflavin T binding assay. A�25-35, A�1-42, and A�1-40 were first dis-
solved as stock solutions in either sterile deionized water or sterile
DMSO. The amyloid preparations were then diluted to the final working
concentration in phenol red-free culture medium containing 10% FCS,
identical to that used for the glutathione assay, and incubated for differ-
ent times in cell culture conditions at 37°C in an atmosphere containing
5% CO2 and 95% air. A 10 �l aliquot of each amyloid preparation was
then added to 10 �l of 100 �M thioflavin T (ThT) and 80 �l of 50 mM

glycine, pH 8.5. A sample of pure culture medium was used as the con-
trol. Fluorescence of ThT was determined using a fluorescence spectrom-
eter (Analyst AD, Molecular Devices) with excitation at 450 nm and
emission at 485 nm. Results were expressed as fluorescence intensity.

Western blot analysis. Cells were harvested in 80 �l of lysis buffer (62
mM Tris-HCl, pH 6.8, 50 mM DTT, 0.3% SDS) containing protease
(Complete, Roche) and phosphatase (Sigma-Aldrich) inhibitor cock-
tails. Loading buffer (giving rise to final concentrations of 62 mM Tris-
HCl, pH 6.8, 10% glycerol, 1% SDS, 0.1 M DTT, and 0.005%
bromophenol blue) was added to protein samples (5 �g) before denatur-
ing at 100°C for 5 min. Proteins were resolved on NuPAGE 10% Bis-Tris

minigels using MES SDS running buffer (Invitrogen) and transferred to
Immobilon-P polyvinylidene difluoride (PVDF) membranes (Milli-
pore). The membranes were blocked for 1 h in PBS containing 0.1%
Tween 20 (PBST) and 2% ECL blocking reagent (GE Healthcare) and
then incubated overnight at 4°C with a mouse monoclonal antibody
directed against synaphophysin (Synaptic Systems) diluted 1:20,000 in
blocking buffer. After washing with PBST, the blots were probed with
anti-mouse horseradish peroxidase-conjugated antiserum (GE Health-
care) diluted 1:15,000 in PBST plus 2% ECL blocking reagent. After
extensive washing with PBST, the peroxidase activity was detected by
chemiluminescence using the ECL detection system (GE Healthcare) and
Kodak BioMax MR films. �-Actin expression was used for normaliza-
tion. The PVDF membranes used for synaptophysin expression were
stripped for 30 min at 50°C in buffer containing 62 mM Tris-HCl, pH 6.8,
100 mM �-mercaptoethanol, and 2% SDS. Membranes were washed sev-
eral times with PBST and probed as described above using a mouse
monoclonal antibody against �-actin diluted 1:75,000 (Sigma Aldrich).
Western blots films were digitized using a CoolSNAP cf CCD camera
(Photometrics) and quantified using the MCID Basic 7.0 imaging soft-
ware using the density profile function. Background correction was ap-
plied to each lane individually and density � area values were used for
statistical analyses.

Statistical analysis. All results are presented as the mean � SEM. Data
were analyzed for statistical significance with Student’s t test or by
ANOVA with multiple comparisons using either Dunnett’s or Bonferro-
ni’s test using InStat 3.0 software (GraphPad).

Results
Metabolic effects of A� in cultured astrocytes
To explore the impact of A� on the main pathways of glucose
metabolism in cultured astrocytes, we used the A�25-35 fragment.
This peptide is known to reproduce the aggregation and toxic
properties of the naturally occurring A�1-42 isoform and is thus
widely used to mimic A�1-42 effects in in vitro models (Yankner et
al., 1990; Pike et al., 1995; Frozza et al., 2009). Interestingly,
A�25-35 was also identified in vivo in brains of patients suffering
from AD (Kubo et al., 2002, 2003). The proteolytic cleavage path-
way leading to A�25-35 formation is not known, but some evi-
dence suggest that its occurrence most likely results from A�1-40

degradation (Kubo et al., 2003). Since—as will be developed be-
low—A� peptide causes an increase in cellular protein content
independent of cell counts, all biochemical results are expressed
per cell culture dish (see below; protein content is typically 200
�g per control dish).

A� peptide increases glucose utilization in cultured mouse
cortical astrocytes in a concentration-dependent manner with a
maximum effect at 25 �M (Fig. 1A), as revealed by the [ 3H]-2-
DG uptake technique. Quantitatively, after 48 h of treatment with
25 �M A�25-35 (the working concentration and treatment dura-
tion we chose for subsequent experiments), [ 3H]-2-DG uptake
was increased to 158.0 � 8.6% of control, whereas in the same
conditions the reverse peptide A�35-25 did not cause any signifi-
cant increase in cell glucose utilization (99.5 � 7.3% of control).
The time course experiment shows that A�25-35 induces a signif-
icant increase in glucose utilization as early as 12 h following
stimulation (149.2 � 10.7% of control) (Fig. 1B). This increase in
[ 3H]-2-DG uptake is sustained up to 48 h, and a further increase
in glucose utilization is observed at 72 h (243.9 � 18.9% of con-
trol). The control peptide A�35-25 causes no significant increase
of glucose utilization after up to 72 h (data not shown). A� pep-
tide did not significantly alter astrocytic viability following stim-
ulation for 48 h at a concentration of 25 �M as determined by the
MTT reduction assay (data not shown).

The observed increase in cell glucose utilization is coupled to
an increase of glucose metabolism in all its main metabolic path-
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ways. Indeed, A�25-35 increases lactate release and glycogen stor-
age by 24.6 � 6.5 and 27.8 � 7.9%, respectively (Fig. 2A,B), while
A�35-25 was without effect on these metabolic parameters (data
not shown).

Modulation by A� of the activities of the TCA cycle and the
PPP was determined by measuring CO2 production from 14C-
labeled glucose. In basal conditions, astrocytes release 0.0302 �
0.0075 nmol of CO2/dish/min, 57.1% being produced by PPP
activity and the remaining 42.9% through TCA cycle activity (Fig.
2C). As shown in Figure 2C, A�25-35 produces an overall increase
in glucose oxidation through TCA cycle and PPP, with total CO2

production from glucose being significantly increased to 222.5 �
10.9% of control values and TCA cycle and PPP activities being
increased by 84.7 and 151.0%, respectively.

With regard to the oxidative stress status, we observed that A�
treatment leads to an increase in reactive oxygen species (ROS)
production as shown by the 104% increase in H2O2 produc-
tion (Fig. 2 D). However, 48 h of incubation with A�25-35

causes no significant change of intracellular glutathione stores
(Fig. 2 E), and it was observed that the oxidized form of gluta-

A

B

Figure 1. A� causes a concentration- and time-dependent increase in glucose utiliza-
tion. A, Astrocytes were stimulated with A�25-35 (0.3, 1, 3, 10, 25, or 50 �M) or A�35-25

(25 �M) for 48 h and glucose utilization was determined using the [ 3H]-2-DG technique.
[ 3H]-2-DG uptake in the control (Ctrl) group was 89.8 � 12.0 fmol/dish. B, Astrocytes
were stimulated with A�25-35 (25 �M) for 12, 24, 48, or 72 h and glucose utilization was
determined using the [ 3H]-2-DG technique. [ 3H]-2-DG uptake in the Ctrl group was
73.8 � 5.6 fmol/dish. Results obtained in A and B are expressed as percentage of Ctrl
values and are means of at least eight determinations from three independent experi-
ments. Data were statistically analyzed with ANOVA followed by Dunett’s test (**p � 0.01
vs Ctrl; *p � 0.05 vs Ctrl).

A B

C D

E F

Figure 2. Effects of A� on astrocyte metabolism. A–F, Astrocytes were stimulated with 25
�M A�25-35 for 48 h and the following metabolic parameters were evaluated: A, Lactate re-
lease. Results are expressed as percentage of control (Ctrl) values (140.1� 15.2 nmol/dish) and
are means � SEM of at least 23 determinations from at least eight independent experiments.
B, Glycogen levels. Results are expressed as percentage of Ctrl values (35.9 � 2.2 nmol/ dish)
and are means � SEM of at least 12 determinations from at least four independent experi-
ments. C, CO2 production in the PPP and the TCA cycle. Results are expressed as percentage of
Ctrl values for the total production of CO2 (0.0302 � 0.0075 nmol of CO2 per dish per min) and
are means � SEM of at least six determinations from at least three independent experiments.
D, Hydrogen peroxide production. Results are expressed as percentage of Ctrl values (0.75 �
0.08 �M) and are means � SEM of at least 20 determinations from at least four independent
experiments. E, Intracellular glutathione (GSH) content. Results are expressed as percentage of
Ctrl values (17.1 � 1.3 nmol/dish) and are means � SEM of 12 determinations from four
independent experiments. F, Extracellular glutathione (GSx) content. When indicated, the
�-glutamyl-transpeptidase inhibitor acivicin (100 �M) was added 1 h before A�25-35 and
maintained throughout the whole incubation. Results are expressed as percentage of Ctrl values
without acivicin (0.76 � 0.12 nmol/dish) and are means � SEM of at least eight determina-
tions from at least three independent experiments. All data were statistically analyzed with t
test (** and ��p � 0.01; *** and ���p � 0.001; ns, not significantly different from Ctrl).
For C and F, asterisks refer to total CO2 production and acivicin conditions, respectively; cross
marks refer to CO2 production in TCA cycle and basal condition (without acivicin), respectively.
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thione, GSSG, is virtually undetectable
in the control and amyloid-treated con-
ditions, demonstrating that the amounts
of intracellular glutathione represent
almost exclusively the reduced form of
glutathione, GSH (data not shown). As-
trocytes are known to release large
amounts of glutathione in the extracellu-
lar space where it is metabolized by the
ectoenzyme �-glutamyl transpeptidase
(�GT), which gives rise to the production
of GSH precursors that can be used by
neurons for the synthesis of their own
GSH pool (Dringen, 2000). Thus, we next
determined the amount of extracellular
glutathione released by astrocytes follow-
ing 48 h of treatment with A�25-35 in the
presence or absence of acivicin (100 �M),
a �GT inhibitor. Acivicin increased the
amount of glutathione present in the me-
dium by 5.75-fold, demonstrating an ac-
tive cleavage of GSH by the ectopeptidase
(Fig. 2F). Interestingly, A�25-35 treatment
increases GSx levels measured in the ex-
tracellular space to 332.7 � 31.0% of con-
trol values (Fig. 2F). This increase is also
observed in the presence of acivicin but to
a lesser extent (1.8-fold increase vs control
with acivicin) (Fig. 2F). This result sug-
gests that amyloid treatment effectively
increases astrocytic glutathione release in
the extracellular space. Nevertheless, since
the increase of GSx in the extracellular
space is more pronounced in the absence
of acivicin, one cannot exclude a partial
inhibitory effect of the amyloid peptide on
�GT activity, in addition to the stimula-
tion of glutathione release, to fully ac-
count for the extracellular increase of GSx
levels.

Dependence upon protein synthesis
To determine whether transcriptional
events are involved in the metabolic effect
of A�25-35, we tested the effect of the pro-
tein synthesis inhibitor CHX on A�25-35-
induced glucose utilization. In a first set of
experiments, it was established that CHX
(10 �M) completely abolished protein
synthesis in a 24 h incubation paradigm as
assessed by incorporation of [ 35S]methi-
onine. It does so to a comparable extent in
the absence or presence of amyloid-
peptide (25 �M) (supplemental Fig. 1A,
available at www.jneurosci.org as supple-
mental material). We observed that the
stimulation of astrocyte glucose utiliza-
tion by A� is prevented in the presence of
CHX, demonstrating the requirement for
the synthesis of specific proteins in this
process (supplemental Fig. 1B, available
at www.jneurosci.org as supplemental
material).

Figure 3. Effect of the aggregation state of amyloid peptides on glucose utilization. A, B, Aggregation state was assessed by EM.
A�25-35 was first dissolved as stock solution in deionized water (A) or in DMSO (B) and then diluted to a final concentration of 25
�M in deionized water. After 4 h of incubation at 37°C, 5 �l aliquots were processed for EM and observed. Scales are shown in the
lower left corner. The pictures exhibited here are representative examples of three independent sets of experiments. C, E, Thioflavin
T binding assay. A�25-35 was first dissolved in deionized water or DMSO as above (C) and A�1-42 or A�1-40 peptides were dissolved
in deionized water (E). The peptides were then diluted to the final working concentration, 25 �M for A�25-35 and 6 �M for A�1-42

and A�1-40, in the culture medium and incubated in culture conditions for different times. Aliquots of the medium were used to
determine amyloid aggregation state using thioflavin T binding assay. A sample of pure culture medium was used as the control
(Ctrl). Results are expressed as fluorescence arbitrary units and are means�SEM of at least nine determinations from at least three
independent experiments. D, F, Effect on glucose utilization. Astrocyte cultures were exposed for 48 h to 25 �M A�25-35 initially
dissolved in deionized water (A�25-35/H2O) or DMSO (A�25-35/DMSO) (D) or to 6 �M A�1-42 or A�1-40 initially dissolved in
deionized water (F ). Glucose utilization was determined using the [ 3H]-2-DG technique. Results are expressed as percentage of
Ctrl values (59.9 � 4.7 fmol/dish for D and 59.0 � 5.1 fmol/dish for F ) and are means � SEM of at least seven determinations
from three independent experiments. Data obtained in C–F were statistically analyzed with ANOVA followed by Dunett’s test
(**p � 0.01 vs Ctrl).
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Role of aggregation status
�� peptides exert different biological effects based on their ag-
gregation states (Pike et al., 1993; Dahlgren et al., 2002; White et
al., 2005; Haass and Selkoe, 2007). To test the role of aggregation,
we took advantage of the observation that amyloid peptides are
less prone to form fibrillar aggregates in DMSO stock solution,
even after further dilution in an aqueous medium (Dahlgren et
al., 2002; Stine et al., 2003). For instance, A�25-35 at 25 �M con-
centration in aqueous solution instantly forms typical fibrillar
aggregates as assessed by electron microscopy (EM) (Fig. 3A). In
contrast, A�25-35 first dissolved in DMSO as stock solution and
then diluted to 25 �M in deionized water shows mostly mono-
meric or small oligomeric forms (Fig. 3B).

These observations were confirmed using the thioflavin T
binding assay, which stains �-sheet structure found mostly in
amyloid aggregated states (fibrils and protofibrils; fibrillar A�)
but not in monomeric/small oligomeric structures (nonfibrillar
A�) (Walsh et al., 1999). Time course determinations indeed
show that at 25 �M, A�25-35 forms fibrillar aggregates immedi-
ately after solubilization in the culture medium as illustrated by in
the increase in thioflavin T-associated fluorescence (Fig. 3C).
Moreover these aggregates are stable for at least 48 h in culture
medium under the cell culture conditions used in the present
study. In agreement with EM imaging, DMSO-solubilized
A�25-35 does not form amyloid aggregates in the same conditions
even after 48 h incubation (Fig. 3C). It was also observed that the
reverse peptide A�35-25, used as a negative control, did not pro-
duce any observable aggregate states by EM or by thioflavin T assay
experiments, even after 48 h of incubation (data not shown).

When comparing the two types of A�25-35 preparations (aque-
ous or DMSO stock solutions), we observed that A�25-35 in the
aggregated state caused an increase in glucose utilization
(149.2 � 16.0% of control) whereas the nonfibrillar species are
not effective (106.9 � 6.8 of control), demonstrating that aggre-
gation is an important process to account for the metabolic effect
of A� (Fig. 3D).

We then explored the metabolic effects of the naturally occur-
ring human amyloid isoforms A�1-40 and A�1-42. A�1-42 was
tested at a concentration of 6 �M, which is equivalent in terms of
protein weight to the quantity added with 25 �M A�25-35. Since
both species are known to possess different aggregation proper-
ties, we first assessed their aggregation states in our culture con-
ditions using the thioflavin T binding assay as described above
(Snyder et al., 1994; Dahlgren et al., 2002; Stine Jr. et al., 2003). As
shown in Figure 3E, A�1-42 readily forms stable fibrillar aggre-
gates whereas A�1-40 does not. A�1-42 causes a significant increase
in glucose utilization to a similar extent as that observed for
A�25-35 (146.6 � 6.2% of control values, Fig. 3F). In contrast, the
A�1-40 does not stimulate [ 3H]-2-DG uptake in astrocytes
(109.1 � 3.7% of control, Fig. 3F), demonstrating an isoform
specificity of amyloid effect on glucose utilization that is in
accordance with its aggregation status. In addition to its effect
on glucose utilization, A�1-42 also causes, similarly as A�25-35, a
significant increase in glycogen levels (54%), glutathione release
(30%), and hydrogen peroxide production (60%), whereas
A�1-40 was without any effect on these parameters (supplemental
Fig. 2, available at www.jneurosci.org as supplemental material).

A� internalization is correlated to its biological effects
Astrocytes can bind and internalize A� in vitro and in vivo and in
particular in its aggregated forms (Nagele et al., 2003; Wyss-
Coray et al., 2003; Alarcon et al., 2005). A first piece of evidence
implicating this phenomenon in A� effects comes from the ob-

servation that A�25-35 increases cell protein content in astrocytes,
as measured by the BCA assay (see below). For instance, follow-
ing 48 h of stimulation with 25 �M A�25-35, the protein content
per dish increases by 51.0 � 5.0 �g, which correlates with the
absolute quantity of peptide added (representing 62.5 �g per cell
culture dish) (Fig. 4A). Moreover, we observed that the effect (or
lack thereof) of the various A� species tested on glucose utiliza-
tion (Figs. 1A, 3D,F) correlates well with their capacity to in-
crease astrocytic protein content and aggregation propensity.
Indeed, A�1-42 reproduces the effect of A�25-35, both in terms of
glucose utilization and protein content, while the control peptide
A�35-25, A�1-40, and A�25-35 solubilized in DMSO (all of which
have no effects on glucose utilization) did not significantly in-
crease the protein content per dish (Fig. 4A). These observations
not only suggest that amyloid activity depends on its internaliza-
tion but also that when active, internalized amyloid peptides are
not degraded for up to 48 h. Nevertheless, to exclude the possi-

A

B

Figure 4. Effects of A� peptides on the cellular protein content. A, Isoform specificity. Astrocyte
cultures were exposed to A�35-25 (25 �M), A�25-35 (25 �M), A�1-40 (6 �M), A�1-42 (6 �M) (stock
solutions in water), or A�25-35 (25 �M) (stock solution in DMSO) (A�25-35/DMSO) for 48 h and cell
protein content was determined using the BCA assay. Results are expressed as the difference in mi-
crograms from the mean protein content of control (Ctrl) values and are means � SEM of at least
seven determinations from three independent experiments. Data were statistically analyzed with
ANOVA followed by Bonferroni’s test (***p � 0.001 vs Ctrl; ns, not significantly different from
A�25-35; p � 0.001 for A�25-35 vs A�25-35/DMSO and for A�1-42 vs A�1-40). The mean protein
content in the Ctrl condition was 200.4�12.6 �g/dish. B, Independency of de novo protein synthe-
sis. Astrocyte cell cultures were exposed to A�25-35 (25�M) in presence or absence of CHX (10�M) for
24 h. When indicated, CHX was added 1 h before amyloid peptide and maintained throughout the
entire incubation. Cell protein content was then determined using the BCA assay. Results are ex-
pressed as the difference in micrograms from the mean protein content of the respective basal condi-
tions (Ctrl or CHX) and are means � SEM of at least eight determinations from three independent
experiments. Data were statistically analyzed with ANOVA followed by Bonferroni’s test (***p �
0.001 vs Ctrl; ���p�0.001 vs CHX; ns, not significantly different from A�25-35). The mean protein
content in basal conditions were: 230.9 � 27.6 �g/dish (Ctrl) and 196.5 � 22.0 �g/dish (CHX).
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bility that this increase in protein content could be the conse-
quence of an increase in the number of cells and/or a global and
massive increase in protein synthesis, additional experiments
were performed. As a first control, we determined the number of
cells per dish following cell dissociation by trypsinization. Results
obtained demonstrate that A�25-35 treatment at 25 �M for 48 h
does not significantly alter cell number [100 � 8.4% (control)
and 93.5 � 3.4% (A�25-35) of control values (409166 � 51773
cells/dish); mean � SEM; at least seven determinations from
three independent experiments]. In the same conditions, manual
cell counting of GFAP-positive cells following immunohisto-
chemistry was also performed with no difference being observed
between the two conditions (data not shown). Both methods dem-
onstrate that there is no significant change in cell number after
A�25-35 exposure in the experimental conditions used in this study
and that the increase in protein amount therefore cannot be attrib-
uted to an increase in cell number.

Moreover, [35S]methionine incorporation is not significantly al-
tered by A�25-35 treatment (supplemental Fig. 1A, available at www.

jneurosci.org as supplemental material),
indicating that the increase in protein con-
tent cannot be attributed to de novo protein
synthesis. It was additionally observed that
the increase in protein content in amyloid-
treated astrocytes in the presence or absence
of CHX is equivalent following a 24 h period
incubation (Fig. 4B) in conditions in which
protein synthesis was shown to be almost
completely abolished by CHX (supplemen-
tal Fig. 1A, available at www.jneurosci.org
as supplemental material). Thus, while the
synthesis of selected proteins involved in en-
ergy metabolism is induced by A�, the con-
siderable increase in protein content in the
presence of A� is not due to a massive and
global synthesis of new proteins but rather
to the internalization of A�.

Finally, the demonstration that astro-
cytes internalize the amyloid peptide was
obtained by confocal imaging using
FITC-labeled A�1-42. As shown in Figure
5A, the amyloid peptide (green dots) was
clearly shown to be present inside the cel-
lular compartment identified by a cellular
membrane dye shown in red (DiD) fol-
lowing a 2 h incubation period. Our re-
sults clearly demonstrate that amyloid-
treated astrocytes contain significantly
more proteins than respective control
cells and that this is neither attributable to
an increase in cell proliferation nor to an
increase in cell protein synthesis, but to
the internalization of A�.

Implication of scavenger receptors for
the internalization of A�
Previous studies have described a particu-
lar role of receptor-mediated endocytosis
through the type A scavenger receptors fam-
ily (SR-A) in the clearance of amyloid aggre-
gates by astrocytes (Wyss-Coray et al., 2003;
Alarcon et al., 2005). The scavenger receptor
type A family is composed of five different

functional receptors: SR-AI, SR-AII, MARCO, SCARA5, and SRCL
(Pluddemann et al., 2007). Using quantitative reverse transcrip-
tion PCR, we confirmed that SR-AI/II, MARCO, and SRCL are
expressed in our cultured astrocytes (data not shown). To deter-
mine whether this class of receptors is involved in the effects of
A�, we tested the impact of polyinosinic acid, poly(I), a widely
used synthetic ligand of SR-A (Husemann et al., 2002; Alarcon et
al., 2005), on the amyloid-induced change in protein content in
astrocytes. Figure 5D shows that in the presence of poly(I), the
increase in cellular protein content induced by A�25-35 after 24 h
of incubation is significantly reduced (by 48%), suggesting that
poly(I) acts as a competitive inhibitor of amyloid peptides on
SR-A receptors. Similar results were obtained with fucoidan, an-
other ligand of the SR-A family (data not shown). In contrast,
polycytidylic acid, poly(C), the inactive counterpart of poly(I),
did not show any effect (Fig. 5D). The implication of SR-A recep-
tors was further confirmed using confocal microscopy by the
observation that A�1-42 peptide internalization is prevented by
poly(I) but not by poly(C) (Figs. 5B,C). While the internaliza-

A B

C D

Figure 5. Inhibition of A� internalization by the SR-A receptor agonist poly(I). A–D, Astrocyte cultures were exposed to 6 �M

FITC-labeled A�1-42 for 2 h (A, B, C) or to 25 �M A�25-35 for 24 h (D), in the presence or absence of 500 �g/ml poly(I) or poly(C).
When indicated, poly(I) and poly(C) were added 1 h before amyloid peptide and maintained during the entire incubation period.
A, Internalization of FITC-A�1-42 in green demonstrated by confocal microscopy using DiD for cell-membrane-labeling (here in
red). B, C, Poly(I) completely inhibited FITC-A�1-42 internalization (B), whereas poly(C) was without effect (C). At the bottom and
the right of pictures (A, B, C), in an orthogonal view, are cross sections of the x and y axes to the z axis, demonstrating that green
dots are inside cells (cell membrane in red). Scales are shown in the lower left corner of the pictures (5 �m for A; 10 �m for B and
C). D, Inhibition of protein accumulation. Cell protein content was determined using the BCA assay. Results are expressed as
difference in micrograms from the mean protein content of the respective basal conditions [control (Ctrl), poly(I) and poly(C)] and
are means � SEM of at least eight determinations from three independent experiments. Data were statistically analyzed with
ANOVA followed by Bonferroni’s test [***p � 0.001 vs respective basal conditions, Ctrl and poly(C); *p � 0.05 vs poly(I); �p �
0.05 vs A�25-35; ns, not significantly different from A�25-35]. In this set of experiments the mean protein content in basal
conditions were as follows: 109.0 � 7.7 �g/dish (Ctrl), 81.7 � 5.4 �g/dish [poly(I)], and 85.0 � 11.7 �g/dish [poly(C)].
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tion of A� was completely blocked by poly(I) at 2 h as assessed
by confocal microscopy (Fig. 5B), the increase in protein con-
tent was only partially inhibited after 24 h (Fig. 5D). This
discrepancy may be explained by a decrease in poly(I) avail-
ability and/or increased degradation over time.

Intracellular signaling mediating the effects of A�
The scavenger receptor family, including SR-A receptors, is
linked to several downstream signaling cascades including the
p38 and p42/44 mitogen-activated protein kinases (MAP ki-
nases) as well as the phosphoinositide 3-kinase (PI3-kinase)
pathways (Hsu et al., 2001; Murphy et al., 2005). To determine
whether activation of these pathways could be related to the effect
of A� on glucose utilization, we used the following inhibitors of
these signaling cascades: U0126 (for p42/44-MAP kinase, 20 �M),
SB202190 (for p38-MAP kinase, 20 �M), and LY294002 (for PI3-
kinase, 10 �M). None of these inhibitors significantly affects basal
glucose utilization in astrocytes following a 24 h period of incu-
bation (Fig. 6). However, in the presence of A�25-35, it was ob-
served that the stimulating effect on glucose utilization was
abolished by LY294002 (Fig. 6) and by another structurally un-
related inhibitor of PI3-kinase, wortmannin (data not shown). In
contrast U0126 and SB202190 were without effect.

Impact on neuronal viability
Considering the numerous interactions between neurons and as-
trocytes (Dringen, 2000; Bak et al., 2006; Magistretti, 2006;
Barres, 2008), the profound changes in the astrocytic metabolic
phenotype observed in response to amyloid peptides could po-
tentially result either in neuroprotection (e.g., via GSH or lactate
release) or neurotoxicity (e.g., ROS production) (Schurr et al.,
1988, 2006; Ben Yoseph et al., 1996; Izumi et al., 1997; Dringen et
al., 1999; Dringen, 2000; Ros et al., 2001).

We thus investigated the impact of the overall change in as-
trocytic metabolism induced by A� on neuronal viability. To this
end we used a laminar coculture model in which neurons seeded
on glass coverslips lay on a monolayer of astrocytes. Astrocytes
were pretreated with different amyloid peptide preparations for

24 h. After changing the culture medium (to remove A� pep-
tides), neurons were cocultured for another 24 h period after
which cell viability was assessed using the MTT assay. As shown in
Figure 7A, in the presence of astrocytes pre-exposed to either
A�25-35 or A�1-42, neuronal viability was significantly de-
creased (by 17.9 and 25.7% compared to control values, re-
spectively). In contrast, astrocytes pre-exposed to either
A�1-40 or A�1-42 first dissolved in DMSO did not affect neu-
ronal viability (Fig. 7A). Interestingly, these results reproduce
the pattern observed for the effect of these amyloid peptide
preparations on glucose metabolism (Figs. 3 D, F ) and amy-
loid internalization (Fig. 4 A), arguing for a correlation be-
tween these events. Similar results on neuronal viability were
also obtained with a distinct cell viability test, the calcein-AM
assay (supplemental Fig. 3, available at www.jneurosci.org as
supplemental material). Astrocyte-mediated A� toxicity is
further supported by the observation that neurotoxicity is ex-
acerbated when neurons are directly exposed to A� in the
presence of astrocytes (cocultures) compared with neurons in
primary cultures (supplemental Fig. 4, available at www.
jneurosci.org as supplemental material).

In addition, it was observed that in the same conditions pre-
exposure of astrocytes to the agonist of the type A scavenger
receptors, poly(I), mimicked the effects of A�25-35 and A�1-42 on
neuronal viability (	29.5% compared to control values) whereas
its inactive counterpart, poly(C), was without effect (Fig. 7B).
Finally, the decrease of neuronal viability induced by pre-
exposure of astrocytes to A�1-42 is abolished by the PI-3kinase
inhibitor LY294002 (Fig. 7B), pointing to a pivotal role of type A
scavenger receptors and the PI-3kinase signaling cascade in med-
itating the deleterious effect of amyloid peptide-treated astro-
cytes on neuronal viability.

Interestingly, PI3-kinase is known to be a key downstream
signaling cascade mediating the effect of insulin in peripheral
tissues and in particular those related to glucose metabolism
(Saltiel and Kahn, 2001). In line with this, its implication in the
control of glucose utilization and glycogen storage has also been
demonstrated in astrocytes (Hamai et al., 1999; Vega et al., 2002;
Gavillet et al., 2008). This suggests a direct correlation between
activation of PI3-kinase and changes of glucose metabolism ob-
served following A� treatment. The observed increase in ROS
production and the regulation of oxidative stress defense mech-
anisms with regard to glutathione metabolism may thus be
downstream events following increase of glucose oxidation. Al-
ternatively, PI3-kinase activation may also directly lead to an
increase in ROS formation (Gao et al., 2004) or to the activation
of defense mechanisms against oxidative stress (Bahia et al.,
2008).

Finally, we evaluated the possible impact of pre-exposure of
astrocytes to A� on neuronal functionality by using the protein
expression level of synaptophysin, a presynaptic vesicular protein
routinely used as a marker of synaptic function (Valtorta et al.,
2004). Synaptophysin expression was assessed in neurons follow-
ing 24 h of coculture with astrocytes that had been pretreated
with different A� species for 24 h and rinsed. As shown in Figure
7C, in these conditions synaptophysin expression is strongly de-
creased by A�25-35 (	47%) and A�1-42 (	27%), whereas A�1-40

is without effect.

Discussion
In the present report, we demonstrate that aggregated forms of
A� strongly modify glucose metabolism and oxidative stress sta-
tus in astrocytes and that these effects are mediated through their

Figure 6. Signaling cascades involved in the stimulation of glucose utilization by A�. Astro-
cytes were stimulated with 25 �M A�25-35 for 24 h and glucose utilization was determined
using the [ 3H]-2-DG technique. When indicated, U0126 (20 �M), SB202190 (20 �M), and
LY294002 (10 �M), inhibitors of the p42/44 MAP kinase, p38 MAP kinase and the PI3-kinase
cascades, respectively, were added 30 min before A�25-35 and maintained throughout the
whole incubation. Results are expressed as percentage of control (Ctrl) values (60.9 � 5.7
fmol/dish) and are means � SEM of at least eight determinations from three independent
experiments. Data were statistically analyzed with ANOVA followed by Bonferroni’s test
(***p � 0.001 vs respective basal conditions, Ctrl, U0126, and SB202190; ns, not significantly
different from LY294002; U0126, SB202190, and LY294002, not significantly different from
Ctrl).
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binding to scavenger receptors of the class A family and the PI-3
kinase pathway. Moreover, we provide evidence that these mod-
ifications have functional consequences for neighboring neu-
rons, since A�-treated astrocytes impaired neuronal viability in a
coculture model.

Previous studies evaluating the impact of A� on glucose me-
tabolism in cultured neural cells have reported conflicting results
(Mark et al., 1997; Parpura-Gill et al., 1997; Patel and Brewer,
2003; Soucek et al., 2003). Here, we report a detailed characteriza-
tion of the effects of A� on glucose metabolism, demonstrating that
A�25-35—but not the control peptide A�35-25—significantly in-
creases astrocyte glucose utilization coupled to an increase in all
the main glucose metabolic pathways: glycolysis and lactate re-
lease, TCA cycle, PPP, and storage as glycogen. These results
contrast with reports showing that A� decreases glucose utiliza-
tion in astrocytes (Parpura-Gill et al., 1997; Soucek et al., 2003;
Schubert et al., 2009). Reasons for such discrepancies are un-
known but may arise from different stimulation paradigms, no-
tably a rigorous determination of aggregation states of A�.

Besides A� aggregation, oxidative stress is another hallmark of
AD that has been linked to A� toxicity (Behl et al., 1994; Miranda
et al., 2000; Canevari et al., 2004). Astrocytes have been proposed
to take part in this process, since A� stimulates ROS production
and decreases glutathione levels in these cells (Abramov et al.,
2004; Canevari et al., 2004). Indeed, oxidative stress occurs as a
consequence of a disequilibrium between the production of ROS
and antioxidant processes. PPP represents a direct link between
energy metabolism and oxidative stress protection, since it is the
main metabolic pathway recycling the reducing cofactor
NADPH, which is involved—in a coordinated manner with
GSH—in the most important cellular ROS detoxifying pathway
in the brain (Dringen, 2000). These observations suggest that
A�-induced changes in glucose metabolism and the associated
increase in PPP activity may be related to an increase in oxidative
stress in astrocytes. Interestingly, a similar A�-induced upregu-
lation of PPP, but without a concomitant increase in glucose
utilization, has previously been observed in cultured astrocytes
(Soucek et al., 2003). In agreement with this, we observed an
increase in H2O2 production following A� treatment. Neverthe-
less, astrocytes do not show signs of overt oxidative stress in our
conditions, since neither an increase in the intracellular oxidized
form of GSH, a change in the total intracellular GSH content, nor
a loss of cellular viability could be observed. In contrast, these
observations argue in favor of a cellular response mounted
against pro-oxidative stimuli to provide sufficient NADPH-
reducing equivalents (Ben Yoseph et al., 1994; Rahman et al.,
2000). Interestingly, we have recently described a similar mecha-
nism following proinflammatory cytokines treatment of astro-
cytes (Gavillet et al., 2008).

A

B

C

Figure 7. Impact of amyloid peptide treatment in astrocytes on neuronal viability in cocul-
ture. A–C, Astrocytes were stimulated with A�25-35 (25 �M), A�1-40 (10 �M), A�1-42 (10 �M),
poly(I) (500 �g/ml), or poly(C) (500 �g/ml) (stock solutions in water) or with A�1-42 (10 �M)
(stock solution in DMSO) (A�1-42/DMSO) for 24 h. Cells were then rinsed and the coculture was
initiated by adding neurons seeded on glass coverslips on top of the astrocytic layer. Twenty-
four hours later neuronal viability was determined using the MTT reduction assay (A, B) or
neuronal proteins were harvested and synaptophysin expression was assessed by Western
blotting (C). A, Isoform and structure dependency. Results are expressed as percentage of control

4

(Ctrl) values and are means � SEM of at least eight determinations from three independent
experiments. B, Implication of SR-A receptors and the PI3-kinase cascade. When indicated, 10
�M LY294002 (LY) was added 1 h before and maintained throughout the whole incubation with
A�1-42. Results are expressed as percentage of Ctrl values and are means � SEM of at least 11
determinations from four independent experiments. C, Impact of amyloid peptides pretreat-
ment in astrocytes on neuronal synaptophysin expression in cocultures. Representative West-
ern blot bands are shown. Optical density measurements were used for quantification and
values for synaptophysin were normalized using the corresponding �-actin value for each lane.
Results are expressed as percentage of Ctrl values and are means � SEM of at least five deter-
minations from at least three independent experiments. Data obtained in A–C were statistically
analyzed with ANOVA followed by Bonferroni’s test (***p � 0.001 vs Ctrl; **p � 0.01 vs Ctrl;
*p � 0.05 vs Ctrl; ��p � 0.01 vs A�1-42; ns, not significantly different from Ctrl).
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A� toxicity has been initially attributed to its aggregation state
(Pike et al., 1995; Hardy and Selkoe, 2002). However, evidence
also shows that soluble oligomers may exert neurotoxic effects
(Dahlgren et al., 2002; Haass and Selkoe, 2007). Our results
clearly demonstrate that aggregation of A� is necessary to pro-
mote its effect on glucose metabolism in astrocytes (Fig. 3).

Astrocytes, along with microglia, are involved in the clearance
of A� from the extracellular space. These cells have the capacity to
internalize and degrade A� peptides and thus may exert a protec-
tive mechanism by preventing accumulation of extracellular A�
(Rogers et al., 2002; Wyss-Coray et al., 2003; Pihlaja et al., 2007).
Compared to shorter forms of the peptide such as A�1-40, A�1-42

is particularly resistant to degradation as exemplified by the ob-
servation that intracellular deposits of A�1-42 are stable for at least
3 d in cell cultures (Burdick et al., 1997; Chung et al., 1999). In
line with this, accumulation of A�1-42-positive material in astro-
cytes can be observed in vivo in AD brains (Akiyama et al., 1999;
Nagele et al., 2004). Our results demonstrating the internaliza-
tion of A�1-42 and associated increase in cellular protein content
are in good agreement with these observations. Moreover, they
show that similarly as A�1-42, A�25-35 accumulates in astrocytes
and is not degraded for up to 48 h in our cell culture preparation.

A�1-42 internalization in glial cells is mediated through the
binding of a variety of cell surface receptors (LaDu et al., 2000;
Husemann et al., 2002; Verdier et al., 2004), several of which are
expressed by astrocytes (Koistinaho et al., 2004; Alarcon et al.,
2005; Nakamura et al., 2006). Among them, SR-A type receptors
appear to play a central role in the clearance of amyloid aggre-
gates by astrocytes (Wyss-Coray et al., 2003; Alarcon et al., 2005).
Scavenger receptors are integral membrane proteins that bind a
wide variety of ligands, including modified or oxidized low-
density lipoproteins, apoptotic cells, pathogens, and fibrillar A�
(Murphy et al., 2005; Pluddemann et al., 2007). Our results using
the SR-A agonists poly(I) and fucoidan clearly identify this class
of receptor as the mediator of the internalization and accumulation
of A� (A�25-35 and A�1-42) (Wyss-Coray et al., 2003; Alarcon et al.,
2005).

In agreement with the role of SR-A in host defense against
pathogens, ligand binding to SR-A engages a wide range of cellu-
lar responses, including cytokine secretion and ROS production
(El Khoury et al., 1996; Murphy et al., 2005)—the latter observa-
tion being consistent with the increased production of H2O2 ob-
served in this study. This raises the question of the impact of the
A�-induced metabolic changes observed in astrocytes on neuro-
nal viability. Using an astrocyte-neuron coculture model in
which astrocytes are pretreated with A� and are not in direct
contact with neurons (thus avoiding any direct exposure of neu-
rons to A�), we demonstrate that treatment of astrocytes with
fibrillar forms of A� (either A�1-42 or A�25-35) significantly im-
pairs neuronal viability and functionality (as assessed by synap-
tophysin expression). Moreover, we provide evidence that
activation of the SR-A receptors by poly(I) is sufficient per se to
reproduce the deleterious effects of A�, demonstrating the cru-
cial role played by SR-A activation in these processes. This view is
further strengthened by our observation that both A�-induced
increase in glucose utilization and the deleterious effects on neu-
ronal survival are prevented by pharmacological inhibition of the
PI3-kinase pathway, one of the downstream signaling cascades of
the SR-A receptor family (Hsu et al., 2001; Murphy et al., 2005),
suggesting a direct correlation between SR-receptor activation, PI3-
kinase activation, phenotypic metabolic changes, and neurotoxicity.

Hypometabolism of glucose in specific brain regions has been
shown to be a hallmark of AD, appearing as early as preclinical

stages (Mosconi et al., 2008). How can these observations be recon-
ciled with our data showing increased astrocytic glucose me-
tabolism? A current explanation for the decrease of glucose
metabolism in AD is that glucose utilization by neural cells in
the affected brain areas is impaired (Blass, 2001; Gibson, 2002), as
supported by observations of deficient activity of some enzymes
involved in energy metabolism in AD brain extracts (Rapoport,
1999; Blass et al., 2000; Liang et al., 2008). In contrast, other
reports have described an increase in the activity of enzymes
linked to glucose metabolism (Bigl et al., 1999; Soucek et al.,
2003). If these observations appear antagonistic, it is of interest to
note that these changes generally appear to affect distinct glucose
metabolic pathways: decreased enzymatic activities consistently
involve enzymes related to mitochondrial activity, whereas in-
creases in enzymatic activities are more related to glycolysis and
the PPP. A possible way to reconcile these apparent discrepancies
is to interpret them either as compensatory mechanisms taking
place in the same cellular compartment or as opposite regulation
of glucose metabolism in different cell types (e.g., neurons and
astrocytes) differentially contributing to the overall hypometab-
olism observed in AD. In support of the latter hypothesis, an
increase in phosphofructokinase activity in brains of patients
with AD, correlating with the severity of the disease, has been
attributed to the astroglial compartment (Bigl et al., 1996, 1999).
Interestingly, the same authors, using an animal model of AD,
demonstrated an upregulation of phosphofructokinase expression
in astrocytes surrounding A� deposits while plaque-associated neu-
rons had decreased phosphofructokinase expression (Bigl et al.,
2003), suggesting that two opposite metabolic processes may occur
in AD brains: a reduction of neuronal glucose metabolism and an
increase of astroglial metabolism.

As a whole, the present report demonstrates that in astrocytes,
the process of A� aggregation and fibrillogenesis initiates a dele-
terious cascade of events through its internalization and modu-
lation of astrocyte metabolism, which impacts neuronal viability
and functionality. Interestingly, the amount of A�1-42-positive
material accumulated in astrocytes in AD brain appears both
spatially and temporally correlated to the extent of local AD
pathology (Nagele et al., 2003, 2004). Our observations place
astrocytes as a target of A� action, and support the notion that
A�-astrocyte interaction adversely affects neurons and may
contribute to neuronal cell damage observed in AD.
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