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The assessment of sediment transfer processes is necessary to understand the hydro-geomorphological
functioning of small alpine watersheds prone to channelised debris flows because their occurrence often
depends on the amount of debris available in the gully systems. Therefore, sediment budgets should be studied
through the identification of erosion, transport and deposition processes. Sediment transfer processes were
investigated in a small catchment by field measurements and, more specifically, through the application of a
process-based geomorphological mapping method. The proposed methodology is based on data directly
derived from GIS analysis using high-resolution DEM, field measurements and aerial photograph
interpretations. It has been conceived to estimate sediment transfer dynamics, taking into account the role
of different sediment stores in the torrential system. The proposed geomorphological mappingmethodology is
quite innovative in comparisonwithmost legend systems that are not adequate formapping comprehensively
active and complex geomorphological systems such as debris-flow catchments. Maps representing the various
sediment storages and their relationships can be used for hydro-geomorphological hazard mitigation.
ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Debris flows are one of the most important vectors of sediment
transfer in mountainous areas (Sterling and Slaymaker, 2007) and
they often occur in small alpine torrential catchments. Their hydro-
geomorphological behaviour is conditioned by geological, geomor-
phological, topographical, hydrological, climatic and anthropic factors.
European research in torrential systems has focused more on
hydrological processes (e.g. magnitude–frequency analyses, Zimmer-
mann et al., 1997; Hungr et al., 2008) than on geomorphological
processes acting as debris flow triggers (Johnson and Warburton,
2002, 2006).

Nevertheless, the identification of sediment volumes that have the
potential to be mobilised in small torrential systems, as well as the
recognition of processes responsible for their mobilisation and
transfer within the torrential system, are important in terms of
land-use planning and natural hazard management. Since the end of
the Little Ice Age, the lower part of most torrential systems in the Alps
has been channelised and human infrastructures and buildings have
intensively occupied the alluvial fans developed at their mouth. The
vulnerability of such human settlements may be quite high even if
intensive control measurements are applied as dams, dykes, refores-
tation (e.g. Gutiérrez et al., 1998).
A correlation between rainfall and debris-flow occurrence is not
always established and a number of debris flows seems to occur when
a poorly understood geomorphological threshold is reached (Bovis
and Jakob, 1999; Sterling and Slaymaker, 2007). This fact reveals the
high uncertainty when modelling this kind of system, called by Stiny
(1910) “weathering” or “supply-limited systems”, which are charac-
terised by sediment transport directly depending on the amount of
debris available in themain channel. This kind of system is common in
the Alps (Veyrat-Charvillon, 2005).

The estimation of sediment volumes that have the potential to be
mobilised and transported by debris flows has been studied with the
concept of “sediment cascades” that allows the calculation of sediment
budgets of several subsystems of the whole torrential system (Barsch
and Caine, 1984; Schrott et al. 2002, 2003; Otto andDikau, 2004; Becht
et al., 2005). According to Reid and Dunne (1996) and Beylich and
Warburton (2007), the calculation of a sediment budget necessitates
the identification of the processes of erosion, transportation and
deposition acting within the catchment, and assessing their rates and
controls. Moreover, the identification of themain sediment storages is
essential for conceptualising torrential systems as a succession of
connected reservoirs with variable storage periods and emptying
velocities. In this context, geomorphological mapping may be a useful
tool for characterizing the processes responsible for the formation of
sediment stores in the upper part of the catchment.

This article presents a simple geomorphological method for
mapping sediment storages that may constitute source zone of bed
load transport and debris flows. It aims at identifying andmapping the
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deposits that may be mobilised during a hydro-meteorological event
as a preliminary step before quantifying their volumes. The method,
conceived mainly for small and steep catchments, is based on both
field mapping and classical GIS tools applied to high accuracy DEMs.
The proposed approach applies the concept of “sediment cascade” in a
cartographic point of view. It focuses especially on short-term
processes (e.g. channel recharging) acting as debris flow triggers.
The mapping method and preliminary results obtained for the Bruchi
torrent (Western Swiss Alps) are presented and discussed in this
paper.

2. Developing a dynamic geomorphological mapping method

2.1. Scientific background

Geomorphological mapping is a classical tool for representing the
spatial distribution of landforms and processes. However, the classical
methods suffer from a certain number of limitations. For instance,
geomorphological mapping is time-consuming work that may be quite
difficult in steep mountain areas and regions densely covered by
vegetation (Kienholz 1978; Klimaszewski, 1982; Otto and Dikau, 2004;
VandenEeckhaut et al., 2004;Gustavsson et al., 2006, 2008;VanAsselen
and Seijmonsbergen, 2006). In addition, geomorphological maps
provide an instantaneous image of complex and dynamic geomorpho-
logical systems and may be affected by the subjectivity of the
cartographer (Van Asselen and Seijmonsbergen, 2006). These are
some of the reasons why the activity of geomorphologists in this
domain has decreased since the end of the 1980s, after the very active
1960–1980 period when numerous mapping systems were developed
and, sometimes, adopted at the official level. This decline coincideswith
the development of Geographical Information Systems (GIS) that
allowed the development of new approaches to represent landforms
(Vitek et al., 1996). Nevertheless, the combination of the two ap-
proaches (GIS and field mapping) is considered to have great potential
in the analysis of complex systems and to be particularly appropriate to
the study of active geomorphological systems (Gustavsson et al., 2006).

Classical geomorphological maps are generally insufficient to
satisfactorily represent dynamic environments like torrential catch-
ments, especially because their related landforms (natural levees,
gullies, landslide features, etc.) may change very quickly over a short
temporal and spatial scale (Bonnet-Staub, 2001; Bardou, 2002; Theler
and Reynard, 2008). Moreover, on a large scale (1:10,000, 1:5000 or
higher), active processes increase the difficulty of precisely delineat-
ing landforms and distinguishing their erosional or depositional
nature (Fig. 1). This distinction is, however, the basis of numerous
geomorphological legends designed to produce the so-called mor-
phogenetic maps, with significant limitations for process analysis,
natural hazard prevention and land-use planning.

Tricart (1971) was one of the precursors who proposed a system
representing geomorphological dynamics by mapping the susceptibil-
ity of slopes to erosion. The development of GIS, and especially the
possibility of working with various layers of information (slope, aspect,
lithology etc.), allows susceptibility maps to be produced quite quickly
(e.g. Parise, 2001; Moreias, 2005; Fall et al., 2006; Kamp et al., 2008).
Most of the research on susceptibility mapping of debris flows has been
developed at a small scale (e.g. Latulippe and Peiry, 1996; Bonnet-
Staub, 2001; Kneisel et al. 2007; Carrara et al., 2008) and have provided
good results for identifying triggering sources of debris flows.

At a larger scale, Veyrat-Charvillon (2005) developed a procedure
for mapping the intensity of sediment production based on the
geological classification of terrains proposed by Marie (1992) and
applicable in lithological contexts dominated by clays. Other authors
(e.g. Pasuto and Soldati, 1999; May, 2008) used specific symbols to
represent morphodynamic processes in geomorphological maps at
various scales. From the point of view of susceptibility zonation, it is
important that the resulting map contains the maximum information
necessary for modelling debris-flow propagation, like the spatial
distribution of sediment available.

In Switzerland, the “phenomena legend” (Kienholz and Krumme-
nacher, 1995) used for susceptibility mapping provides a wide range
of symbols aimed at representing the dynamics of processes. It must
be redrawn after each new event and all the maps should finally be
superposed to have a comprehensive view of the hazardous areas
(Bardou, 2002; Theler et al. 2008). Bardou (2002) proposed adapta-
tions of the legend by integrating a distinction between effective and
potential sediment supply to a debris channel (Theler et al. 2007).
Mapping sediment transfers in mountain watersheds necessitates
identifying all the processes and landforms included in the erosion–
deposition system, as well as their relationships. The combination of
different processes, depending on the scale, may be very complex and
difficult to map. As was proposed by Lee (2001), an approach
combining GIS processing, field mapping and surveying is to be
preferred. The proposed method follows such recommendation.

2.2. Identification and mapping of sediment storages

The proposed approach is organised in six steps (Fig. 1). The first
stage consists in localizing potential sediment sources within the
torrential system. This phase is based on the analysis of geomorpho-
logical features identifiable by means of aerial photograph interpre-
tation, processing the Digital Elevation Model (DEM) and field survey.
In theory, the supply area corresponds to the reception basin of the
torrent. In practice, due to the strong heterogeneity of the slopes
(Johnson and Warburton, 2002), some parts of the reception basin
may be completely inactive, whereas supply zones may be identified
along the transport channel, and even on the upper part of the alluvial
fan.

A key issue is to determine if the sediment storages are connected or
not with active channels and/or the main channel (step 2). This task is
done by simulating the hydrographic network using classical ArcGIS®
hydrologic tools onpreciseDEM(1–5 mof resolution), already inuse for
more than two decades (Mark, 1984; Vogt et al. 2003), and bymeans of
field observations. Based on the assumption that sedimentary transfers
correspond to hydrological fluxes, this step (step 3) allows areas that
contribute runoff and sediments to a common outlet to be determined
and permits the detection of secondary channels, their connection point
with the main channel and the delineation of several subcatchments
(Theler and Reynard, 2008; Theler et al., 2008). Drainage areas
corresponding to preferential channels are then delineated after
verification of the connection points in the field. The approach allows
the delimitation of small geomorphological units in the same way as
proposed by Pasuto and Soldati (1999) for landslides or by Bartsch et al.
(2009) for periglacial processes. The properties of the subcatchments,
which may be composed of various sediment storages, are then
described and mapped (step 2).

2.3. Mapping sediment storages as geomorphological units

2.3.1. Morphogenesis of sediment storages
The geotechnical characteristics of non-consolidated deposits are a

key element in the triggering process of debris flows (e.g. Sitar, 1994;
Cannon and Reneau, 2000). Several authors (e.g. Sanchez, 2002; Otto,
2006) have proposed classifications of sediment storages. In this
study, seven types of storages corresponding to seven groups of
processes typical for alpine contexts were differentiated (glacial,
fluvio-glacial, fluvial, gravitational, organic, structural and periglacial)
and mapped in the fourth step. Glacial deposits may be dominated by
sand, gravel and boulder fractions (lateral moraines) or by clays
(lodgement till). Fluvio-glacial and fluvial sediments are generally
quite porous, with a dominant gravel fraction. Talus slopes are
dominated by gravel- and boulder-sized clasts of crystalline and
limestone rocks, and may be quite cohesive and impervious where



Fig. 1. Flow chart illustrating the procedure used in the presented mapping method for small alpine catchments.
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derived from some fine-grained metamorphic and shale lithologies.
We consider structural surfaces – i.e. free faces or rock escarpments on
fractured or folded rocks – as storage surfaces, because they can have
a quite similar behaviour to unconsolidated materials. Periglacial
sediments are often cemented by seasonal or perennial ice (e.g. rock
glaciers, frozen talus slopes or protalus ramparts). Although perigla-
cial landforms are not present in the investigated site, some studies
were conducted in other sites and more specifically on rock glaciers
and other periglacial depositional landforms.

In morphogenetic mapping legends, processes are generally
represented by different colours. In this study, we used a typical
panel of colours in reference to principles established by Joly (1962)
and adopted in the legend of Lausanne University (Schoeneich, 1993)
that relate to different types of processes (glacial, periglacial,
gravitational, fluvial, etc.) responsible for the accumulation.

2.3.2. Activity of sediment storages
According to Beylich and Warburton (2007), the storage is

unstable when contemporary geomorphological processes frequently
modify the sediment. Active sediment storages are devoid of any
vegetation or lichens. Sediment storages are “semi-active” when they
are only modified during events with a return period between 10 and
100 years and contain pioneer vegetation species. Sediment storages
are considered stable when deposition processes are no longer active.
These inactive sediment storages are covered by old vegetation
(optimal or climatic level) and only extreme events (return period
between 100 and 1000 years) can modify the deposit (high fluvial
terraces, vegetated scree cones, Holocene moraines).

Each contributing zone (subcatchment) is mapped by using two
simplematrixes (Fig. 1, step 5, Fig. 2) inspired by the legend for hazard
mapping in Switzerland (OFAT et al., 1997). Four characteristics are
described (slope, vegetation, connection with the main channel, and
genetic processes responsible for the storage). The first matrix
combines information on slope and vegetation cover, directly derived
from the DEM, and allows zones that are sensitive to erosion to be
distinguished. Three classes of intensity are derived (high, latent and
inactive). The second matrix takes up the information of the first
matrix (intensity of the process acting on depositional landform or



Fig. 2. Matrixes depicting the importance of storage in the global sediment dynamics of a torrential catchment. Colour and its intensity reflect the morphogenesis and the erosion
potential of sediment storages.
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sediment storage) and crosses it with the connection of the storage
with themain channel. This allows the role of the storage on sediment
transfer to be defined in three classes (low, medium, and high).
Homogeneous polygons within the different subcatchments compos-
ing the whole torrential system can then be determined by combining
the two matrixes by spatial analysis in a Geographical Information
System (GIS). Three colour intensity levels (shading) were used to
depict the morphodynamics and, more specifically, the role of the
storage in the global sediment dynamics of the sub-watershed.

2.3.2.1. Slope gradient. Information on slope gradient is essential in the
creation of debris-flow susceptibility maps. According to Bonnet-
Staub (2001), the minimal gradient for debris-flow initiation in slopes
is 25°, and 11–12° for remobilisation of sediments accumulated in the
channels. In morainic deposits – more cohesive than other non-
consolidated sediments – the minimum triggering slope is comprised
between 27 and 38° for events launched by runoff concentration at
the foot of hillslopes (Rickenmann, 1995). Based on these values,
three classes of slope were defined (b15°, 15–30°, N30°). These values
corresponds to the average slope of fans (b15°) and the lower bound
of the friction angle of scree deposits (N30°).

2.3.2.2. Vegetation. The role of vegetation in slope stability is variable
but can be of a great importance (Greenway, 1987) by diminishing
rain-drop impact and runoff and by stabilising non-consolidated
sediments through the effect of the root system. Hence, vegetation
may contribute to disconnect sediment transfer between upstream and
downstream areas (Borselli et al., 2008). Generally, alpine watersheds
span from densely forested areas to vegetation-free slopes and
channels, passing through sparsely vegetated areas. The geomorpho-
logical activity of the catchment may be approached through the
mapping of these vegetation units (e.g. Bardou et al., 2007).

The vegetation landcover can be mapped on the basis of aerial
photographs or by using the differences of two high accuracy LiDAR
(Light Detection And Ranging) airborne DEMs (Gachet, 2009); one
replicating the land surface with soil cover, vegetation and buildings,
and the other showing gross topography. In this study, we combined
the first approach and the second option by using two DEMs provided
by the Swiss topographical survey (the so-called MNS — surface
elevation model — and MNO — ground topography model, see Theler
and Reynard, 2008). The precision is about ±150 cm for the first
model and ±50 cm for the second one, with a density of points of 1/
m2 (Swisstopo, 2007). By spatial analyses, three classes of landcover
(N70%, 30–70%, and b30%) were defined. These density ranges were
proposed by Veyrat-Charvillon and Mémier (2006), who considered
the works conducted in different lithological contexts by Rogers and
Schumm (1991), Mc Ivor et al. (1995) and Rey et al. (2004). The type
of vegetation is important too; bushes and trees have varying root
depths and also provide varying loading on the slope. These
parameters were considered implicitly in the landcover classification.

2.3.3. Connectivity
Sediment connectivity was recently studied by Heckmann et al.

(2009) and Borselli et al. (2008), who developed two connectivity
indices based on a GIS and raster-based approach and on field survey,
respectively. The connectivity of the sediment sources with the main
channel has a relevant importance in the evaluation of the volume of
sediments potentially mobilised during a debris-flow event (Zimmer-
mann et al., 1997) and is often correlated with the hydrological
connectivity (Croke et al., 2005; Borselli et al., 2008; Michaelides and
Chappell, 2008). According toHooke (2003) and Croke et al. (2005), the
sediment connectivity may be direct, through secondary gullies and
new gullies created during an event, or diffuse, through surface runoff.
Connectivity defines a system inwhich coarse particles move easily and
frequently through the system, transported by ‘normal’ flood events, i.e.
with recurrence intervals of ca. 0.5–5 years. The analysis of the
connectivity allows the selection of the geomorphological units that
may feed directly the main channel (step 6). Four classes of connection
(high, partial, potential, and no connection)were defined. Only the first
three are used in mapping sediment storages. High connectivity
indicates that the sediment storage is directly connected to the main
channel. The connectivity is considered “partial” when the stored
material is partially connected to the channel, for instance, because of
low slope angle. The connection is potential when it has not yet been
established but could be achieved through the modification of the
current topography. Finally, no sign of connectivity is indicated when
the connection between the unit and the main channel has not been
established. However, this situation is likely to evolve over the short to
medium term, depending on the geomorphological changes that could
occur in the system. In our situation, certain zones are “not connected”
due to large levees (Fig. 4G) that prevent the sediment transfer from
reaching the main channel.

Although the interfluves contribute also to the sediment supply, the
processes involved, mainly mass movements and superficial runoff,
do not have a strong influence in the sediment dynamics of the Bruchi
torrent. Thus, we consider that they can be neglected at this scale and
for this case study, although landslidesmay be sometimes an important
triggering factor of debris flows (e.g. Gabbet and Mudd, 2006).

image of Fig.�2
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2.3.4. Symbology
Specific symbols adapted to small torrential watersheds were

created. They integrate generic hydrographical elements (lakes,
springs), artificial structures that may disturb the flow (bridges,
hydropower infrastructures as dams), as well as dead wood debris
accumulations that may have a high impact on flow by damming the
channel, increasing sedimentation upslope, and developing pendant
bars downstream of the log accumulation due to flow dissipation when
the obstacle does not occupy the whole river bed (Maridet et al., 1996).
However, dammingby vegetationdebrismay alsohavepositive impacts
by limiting the sediment transfers and reducing the hydraulic energy.

The activity of the process acting on the sediment store is
represented by an arrow, whose size is proportional to the intensity/
frequency of the process involved. The principal processes acting in the
transfer of sediments from the stores to themain channel are the fall of
individual blocks from the scarped channel margins, gullying, talus
creation and channel deepening and widening by the main flow
(Veyrat-Charvillon, 2005).

3. Example of application in the Bruchi torrent

3.1. Geomorphological setting

Themethodwas applied in the Bruchi torrent, a complex torrential
system in the Swiss Alps. This perennial watercourse (7.5 km in
length) constitutes the main tributary of the Kelchbach torrent, which
flows from the west of the Massa River basin. Its source is situated at
about 2800 m a.s.l., in a depression located at the foot of the Hohstock
Mountain (3226 m) (Fig. 4). The upper part of the stream is
characterised by a meandering channel that flows through pastures
developed on granitic and gneissic rocks of the Aar Massif (Steck,
1966) on which “roches moutonnées” have been sculptured by
glaciers. The complex configuration of the drainage network near
Belalp is related to infiltration feeding springs that are situated in the
Bruchi catchment downwards. These underground flows increase the
weathering of the gneisses. Moreover, gullies occur in slopes
characterised by mass movements fostering gneiss erosion and
rockfalls. The summit of the catchment is located at 2000 m a.s.l.,
which is well below the lower limit of discontinuous permafrost.

Traditional geomorphological mappingwith the geomorphological
legend of the University of Lausanne (Schoeneich, 1993) conducted on
the whole valley and analysis of geomorphological features using a
high accuracy DEM, allowed us to map the geomorphology of the area
(Theler et al., 2008; Fig. 3), which is typical of an alpine valley shaped
by glaciers. The Aletsch Glacier, the largest glacier in the alpine range,
deposited erratic boulders andwell preservedmoraine ridges, like the
lateral Late-glacial moraine of Egga village. The retreat of the Aletsch
Glacier involved debuttressing in the oversteepened slopes, triggering
rockslides and landslides as in most formerly glaciated alpine valleys.
Thesemovements affect particularly a slope located near the village of
Tchuggen. The slope shows large gullies inherited from geomorpho-
logical processes more active in the past, after deglaciation. Erosion
processes were then dominated by watercourses like the Massa River,
which incised deep gorges downstream from the Gebidem dam, or by
snow avalanches that transport periodically rocky debris to the
Kelchbach River. Slope gradient ruptures down from high glacial
escarpments, corresponding to the Last Glacial Maximum trimline,
accelerated regressive erosion and provoked intensive gullying by
small and temporary watercourses whose bed load transport capacity
may be high (Theler and Reynard, 2008).

3.2. General overview

In the Bruchi torrent, the largest part of the sediment load is
transported periodically by channelised debris flows and comes from
a large gully system (gulling zone) west of Egga settlement (1600–
2000 m a.s.l, “GZ” in the geomorphological map). This situation is not
typical of torrential systemswhere the erosion zone, fromwhichmost
of the sediment load is derived, is situated in the upper part of the
system. The gullying zone (4.2 km2) is very active and the perimeter
evolved rapidly between 1940 and 1999 (Bollschweiler, 2003),
especially near the Blatten–Tschuggen–Belalp road, where regressive
erosion has reached about 70 m in 30 years (Theler and Reynard,
2008). Debris flows developed in this unstable zone have built a large
alluvial fan above the Blatten settlement and sometimes passed
through the small Blindtälli valley, where old inactive channels and
frontal lobes are still visible. Dendrogeomorphological analyses
(Bollschweiler et al., 2007) and mapping of 53 natural levees and
164 debris flow lobes in the alluvial fan, allowed the reconstitution of
more than 40 debris flow events between 1867 and 2005. Eleven
channels that were active in the past were identified (Bollschweiler
et al., 2007). To prevent damage, protection measures were applied in
the 1970s including the construction of a dam and a retention basin,
and the reinforcement of the sides of the main channel. After the
event of 4 July 2001, the dam and the retention basin had to be
reinforced, and new embankmentworks began at the alluvial fan apex
in the summer of 2008.

3.2.1. Sediment storages
The geomorphic activity varies spatially as illustrated in Fig. 4. In

the upper part of the main gully system (GZ), talus accumulation due
to gelifraction processes acting on the subvertical cliffs is dominant, as
revealed by the sharp shape and the fresh appearance of the rock
fragments visible in the channels. Some clasts are stored temporarily
at the foot of the cliffs as thin debris accumulations. Localised small
rockslides (b100 m2) are also visible in the north-eastern part of the
gullying zone. In the north-western side of the gully system, material
is transported and accumulated preferentially by fluvial processes in a
network of secondary gullies that are active only during severe rainfall
events. Downvalley, the sediment transport is higher and follows a
well-defined network of lateral channels whose functioning is similar
to a small hydrological catchment. Those main potential sediment
sources are described below.

Important stocks of older fluvial sediments corresponding to
levees (sediment store No 10 in Fig. 4) and covering the bank are also
visible along the main channel of the Bruchi torrent. The absence of
trees and lichens shows that the store is unstable and is affected by
erosion processes during flow events. Downstream, the banks have
been reinforced by ripraps but they show abundant evidence of
erosion and destabilisation, which is a supplementary indication of
the high erosional activity along the main channel.

Two geomorphological units (respectively in the right and left
sides of the Bruchi channel, 1 and 3 in Fig. 4) correspond to a landslide
affected by shallow debris slides. This is a complex case for several
reasons. Landslides are a major source of sediments in numerous
torrential systems and the spatial and temporal variability of their
activity is difficult to estimate (Korup, 2004; Mathys and Poesen,
2005; Schuerch et al., 2006). Landslides situated near the water-
courses interact with the flow by increasing the sediment load or by
forming an obstacle to the water circulation (Schuerch et al., 2006),
and even by favouring large debris-flow events (Malet et al., 2005).
The volumes involved can vary radically from one landslide to
another, and also seasonally, with the maximum mobilised volumes
generally in spring and winter (Schuerch et al., 2006). In our case, the
sediment supply is mainly due to regular shallow debris slides
occurring at the surface of the landslide that turn into debris flows.
The contribution of debris flows depends on the situation of the
supply zone with respect to the main channel. Here the gullies are
perpendicular to the main channel. The mobilisation of sediment
occurs in two phases; debris flows accumulate deposits near the main
channel, and this material is thenmobilised during larger flow events.
Geomorphological units 7 and 8 (on Fig. 4) were difficult to reach in



Fig. 3. Location of the Bruchi torrent (A and B) and excerpt of the geomorphological map (C). Limits of the mapped area (C) are indicated with a red rectangle on map B.
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the field. The high hierarchy of the gully network, the steep slopes and
the scarce vegetation cover reveal that these units are very active
sediment supply zones. They produce heterometric material coming
from temporary talus slopes, rockslides and moraine deposits. This
sector corresponds to the triggering zone of most debris-flow events
due to the convergence of runoff coming from the cliffs and water
emerging at springs.

The final map (Fig. 5, on right) illustrates the application of the
methodology in the Bruchi torrent. Colours that depict morphogen-
esis – fluvial (alluvial deposits, natural levees) in green, gravitational
(landslides, scree accumulations) in beige, structural (rocks escarp-
ments) in red and glacial (moraine deposits) in violet – of the
sediment storages correspond to those in Fig. 3. The variable intensity
of the colour (shading) was used to depict the morphodynamics and,
more specifically, the relative role of the storage in the global
sediment dynamics of the sub-watershed. Surfaces hatched in white
and black have no influence in the sediment dynamics of the torrential
system (Fig. 2).

The map illustrates the spatial distribution of active sediment
storages in the supply zone, its geomorphological behaviour and the
type of deposits that could be eroded during a pluviometric event
(Fig. 5). This map is more precise and comprehensive than themap on
the left, produced with a classical “IGUL” geomorphological mapping
system.

3.2.2. Field measurements
In addition to aerial photograph interpretation and DEM analysis,

thorough field geomorphologicalmapping coupledwith complementary

image of Fig.�3


Fig. 4. Different sediment storages present in the studied area: A: Main channel of Bruchi torrent; B: Lateral landslide affected by debris slides; C: Fractured rock cliff at the top of the
gullying zone; D: General view downstream from the top of the basin; E and F: Scree corridor; G: Recent natural levee on the left side of the Bruchi Torrent and H: Lateral bank
erosion/collapse (Pictures: April and July 2007). Superimposed map on picture D showing the location of these 10 storages connected to the main channel.
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measurements was conducted to estimate sediment fluxes and de-
nudation rates, using various methods (reference coloured lines,
wooden markers and terrestrial LiDAR) proposed for debris-flow
prospection (e.g. Delannoy and Rovera, 1996; Schrott et al. 2003; Otto
and Dikau, 2004; Krautblatter and Dikau, 2007). Reference coloured
lines and wooden markers were installed in July 2007 respectively in
three lateral channels and on two landslides to check the existence of
transfer processes. The sites were checked twice a year between
Summer 2007 and Autumn 2009. Such measurements cover a short
period but are in agreement with the results of geomorphological
mapping. In some places (e.g. unit 2, Fig. 4), no signs of displacement of
coarse elements were detected during one year. In units 1 and 3,
reference lines revealed that in the two cases, the channel was activated
in most pluviometric events. In November 2007, the majority of the
wooden markers were destroyed by mass wasting.

Terrestrial LiDar scanning was also used in two places. Three field
campaigns were carried out at the top of the gullying zone in June
2008, November 2008 and August 2009. Two campaigns were also
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conducted in two different sediment stores (lateral levee, unit 10 and
landslide, unit 1, Fig. 4) in August 2008 and 2009. Preliminary results
obtained for unit 8 confirm the intensive erosion of the area and show
that between June and November 2008 a localised rockslide of several
tens of cubic meters occurred and reached the main channel.

In our opinion these measurements have a high representative-
ness as we consider that the interannual variability in sediment
supply for this catchment is low. Sediment supply varies in the
different seasons. Gelifraction is pronounced during spring and
autumn and feed temporary deposition zones through scree accumu-
lations while snow avalanches are mainly active during spring in
some corridors where clasts and wood are transported. The purging of
the higher gullies by runoff – which can trigger small shallow
landslides – called a “fire hose effect” (Coe et al., 1997), mainly occurs
during summer storms. Nonetheless, connectivity should be checked
after each torrential event. Impacts of a landslide directly connected to
the main channel could be the mobilisation of part of the sediment
store, the acceleration of sediment transfer through basal undercut-
ting, or the modification of the connectivity of the lateral channels
with the main one because of the accumulation of sediments in the
main channel.

4. Discussion

4.1. Advantages of the method

The method proposed here integrates field observations, aerial
photographs interpretation and GIS processing. With respect to
classical geomorphological mapping it is focused on the delineation
and characterisation of the sediment storages that have the potential
to contribute material to future debris-flow events. It is a process-
oriented cartographic method, whereas most geomorphological
mapping systems developed in the past were much more based on
landform-oriented legends aiming at classifying the landforms
according to their genesis and relative chronology. Nevertheless, the
proposed approach does not completely abandon the genetic
approach as it classifies the sediment storages according to the
genetic processes. One improvement is the use of colour intensities
(shading) for representing the susceptibility of sediment storages to
reach the main channel. In this sense, the proposedmethodology tries
to combine morphogenetic and morphodynamic information. The
final aim is to give a preliminary semi-quantitative evaluation of the
sediment that can be potentially mobilised by a hydro-meteorological
event (Fig. 5).

The second advantage of the method is that it implements the
sediment cascade concept in a cartographic system. Not only the
different interconnected sediment reservoirs are defined but they are
also mapped, with an indication of the genetic type of deposits. These
maps provide a better understanding of the spatial relationships of the
sediment reservoirs at different scales.

The use of GIS hydrographic tools allows a quick delineation of the
different subcatchments corresponding to units in the map. The
combination of two of the key factors— slope gradient and vegetation
cover— superposed on the map of deposits— allows us to identify the
areas most susceptible to erosional processes. The second matrix that
combines the connectivity and the degree of activity of geomorpho-
logical processes aims at delineating the parts of the sediment
storages that are susceptible to contribute to the sediment transfer
during an event.

4.2. Limitations of the method and perspectives

Thepresentedmappingmethod canbe considered as an interesting
tool for a preliminary analysis of a torrential system where the main
sediment supply zones are morphologically well defined. Neverthe-
less, the method is still not sufficient to quantify the volumes that
could be mobilised during a sediment transfer event. Based only on
field observations and topographic data processing, the results remain
semi-quantitative for the moment. They give more of a cartographic
viewof the spatial distribution of the different types of sediment stores
in the supply zone that could be potentially eroded during a
pluviometric event. The temporal validity of these documents is
limited due to the highly dynamic nature of such environments.
Moreover, the frequency of the processes involved in the deposition of
sediments in the main channel is also approached in a qualitative way
based essentially on simplefieldmeasurements. This is the reasonwhy
the cartographic information must be completed by field measure-
ments carried out in the most sensitive areas defined by the mapping
method and why the data have to be re-measured after each
geomorphologic disturbance event, such as a debris flow.

At the moment, the proposed method does not take into account
the secondary repositories and considers only the original supply
process and the connection between the several stores within a
hydro-geomorphological unit. Although sediment transfer starts
generally from the hill slopes – where physical weathering followed
by gravitational processes are predominant – the time of residence of
sediments in the upper catchment is very variable depending on the
topographic setting and the intensity of processes (Smith and
Dragovich, 2008). Moreover, in drainage basins sediments may
often have a second repository when they reach the main active
channel where the time of residence largely depends on water runoff.
Indeed, the sediment transfer from the upper part of the catchment to
the alluvial fan is a very discontinuous process, characterised by long
periods of quiescence separated by short intense hydrological events
(Blair and McPherson, 1994) with high geomorphic effectiveness. It
has been argued that the main channel can supply 70 to 100% of the
sediments transported during an event (Gutiérrez et al., 1998;
Johnson and Warburton, 2002; Veyrat-Charvillon, 2005).

The next steps of this approach will be to distinguish the various
types of deposits in a cartographic manner. Sedimentary transfers will
be quantitatively estimated based on already published values (e.g.
Curry et al., 2006; De Vente and Poesen, 2005; Matsuoka, 2008) and
terrestrial surveys carried out with terrestrial LiDAR. In fact, the case
study showed that the sediment transfer evaluation should be, when
possible, validated by field survey. In watersheds affected by mass
wasting, terrestrial survey (LiDar, differential GPS) and remote
sensing methods may be used and their results can be confronted
with the cartographic results.

In this study the lithological information was deliberately not
taken into account because the Bruchi area is composed of only one
rock type; highly fractured gneisses. The second reason was to avoid
the excess of information on the map to make it readable.
Nevertheless, the total amount of material furnished by the source
area may be very different depending on the bedrock lithology. Some
materials (e.g. loess, alluvial deposits, clays etc.) are very sensitive to
erosion. Investigations on the way of including lithological informa-
tion in the procedure will be carried out in the future. Finally, the type
of vegetation (parameters as root depths, weight on the slope) should
be taken into account in some cases.

5. Conclusions

The aim of this study was to improve the traditional genetic-based
geomorphologicalmappingmethod by developing an approachwith a
higher utility for the study of geomorphological hazards like debris
flows. The scope was reached by developing a field mapping with GIS
hydro-topographical processing. A novel methodology consisting of
six steps is proposed.Most of them are developed by GIS processing on
high-resolution DEM. The whole source area (reception basin) of a
torrential system is divided – by using the hydrological tools of a GIS
software – into several hydro-geomorphological units (subcatch-
ments). In each unit the sediment stores are mapped by using a
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morphogenetic legend. Each unit is thendivided into subunits by using
two matrixes that combine slope gradient and vegetation cover
(matrix 1) and connectivity with the main channel and type of store
(matrix 2). This step allows the subcatchments that contribute
sediment to the main channel to be determined. These are the
geomorphological units where further field investigations can be
carried out in order to determine their contribution to the sediment
transferred during a hydro-geomorphological event.

The interest of this mappingmethod is that it allows the concept of
sediment cascade to be spatially implemented. By allowing the
various sediment storages and their relationships to be viewed on a
map it can be used for hydro-geomorphological hazard mitigation.
The map cannot be used directly for the creation of hazard or risk
maps, focused on the deposition areas, but for the design of correction
measures and the implementation of monitoring and warning
systems (e.g. Hegg et al., 2007).
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