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ABSTRACT

Motivation: Genome-wide association studies have become widely
used tools to study effects of genetic variants on complex diseases.
While it is of great interest to extend existing analysis methods
by considering interaction effects between pairs of loci, the large
number of possible tests presents a significant computational
challenge. The number of computations is further multiplied in the
study of gene expression quantitative trait mapping, in which tests
are performed for thousands of gene phenotypes simultaneously.
Results: We present FastEpistasis, an efficient parallel solution
extending the PLINK epistasis module, designed to test for epistasis
effects when analyzing continuous phenotypes. Our results show
that the algorithm scales with the number of processors and offers a
reduction in computation time when several phenotypes are analyzed
simultaneously. FastEpistasis is capable of testing the association of
a continuous trait with all single nucleotide polymorphism (SNP) pairs
from 500 000 SNPs, totaling 125 billion tests, in a population of 5000
individuals in 29, 4 or 0.5 days using 8, 64 or 512 processors.
Availability: FastEpistasis is open source and available free
of charge only for non-commercial users from http://www.vital-
it.ch/software/FastEpistasis

Contact: karen.kapur@unil.ch

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Genome-wide association studies (GWASs) have been instrumental
in identifying genetic variants associated with complex traits such
as human disease or gene expression phenotypes (Hirschhorn
et al., 2005). While many GWAS results have been reported
analyzing single nucleotide polymorphisms (SNPs) one-at-a-time,
only recently have studies begun to extend analysis methods to
consider interaction effects between pairs of loci (Cordell, 2009;
Curtis, 2007; Emily et al., 2009; Gayan et al., 2008; Herold et al.,
2009).

Although interactions may yield new insight into the effect
of genetics on complex traits (Manolio et al., 2009), a major
challenge to studying interactions is due to the large number of
possible tests, which need to be considered. Examining all pair-
wise interactions between two SNP loci using a 500000 SNP chip
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equates to performing 125 billion tests. Additionally, carrying out
permutation tests or studying epistasis in the context of quantitative
trait mapping of gene expression, in which genetic variants are tested
for association with each of thousands of phenotypes simultaneously
(Franke et al., 2009), further increases the number of epistasis tests.

Efficient software is needed to carry out the large number of
tests of interaction using quantitative responses. Although several
software programs have been proposed to search for interactions
in case—control data (Greene et al., 2010; Zhang et al., 2009), few
have been optimized to handle continuous responses. In this article,
we describe FastEpistasis, an optimized software suite designed for
quantitative responses, which extends PLINK (Purcell et al., 2007)
epistasis functionality. FastEpistasis uses a parallel algorithm that is
capable of computing tests for all pairs of genome-wide SNPs and
efficiently handles tests given multiple phenotypes.

2 METHODS

FastEpistasis, a software tool capable of computing tests of epistasis for a
large number of SNP pairs, is an efficient parallel extension to the PLINK
epistasis module. It tests epistatic effects in the normal linear regression of
a quantitative response on marginal effects of each SNP and an interaction
effect of the SNP pair, where SNPs are coded as additive effects, taking values
0,1 or 2. The test for epistasis reduces to testing whether the interaction term
is significantly different from zero.

FastEpistasis methods are briefly outlined, with further details provided
in the Supplementary Material. The computations are optimized by splitting
the analysis tasks into three separate applications: pre-, core- and post-
computation. The pre-computation phase loads PLINK binary format
data files, reformats the data for faster computations and reduces the
number of conditions to check in the core phase. The core computational
phase is designed to embarrassingly parallelize the computations, iterating
through SNP pairs and efficiently carrying out the tests for epistasis. The
computations are based on applying the QR decomposition to derive least
squares estimates of the interaction coefficient and its standard error. The
core computation software comes in several versions to take advantage
of different high-performance architectures—a Symmetric Multiprocessing
(SMP) version and a clustered Message Passing Interface (MPI) version. An
optional post-computation phase is provided to aggregate results from each
processor or core, include detailed SNP information, compute P-values from
each test, and convert to text files.

We assessed the performance of our software using International HapMap
Project genotypes (Frazer et al., 2007) and random phenotypes (see
supplementary material for details). Unless stated otherwise, results from
all SNP pair epistasis tests are output.

3 RESULTS

We compared the performance of FastEpistasis and PLINK epistasis
tests for several sets of SNP pairs, using a single core to enable
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Table 1. Epistasis tests per second completed by FastEpistasis core
computation phase for several population sizes, using eight cores

Individuals 103 tests (s) Individuals 103 tests (s)
60 1393.14 (82.7) 1000 289.44 (3.7)
100 1214.15 (38.4) 3000 81.00 (0.7)
500 538.59 (3.9) 5000 45.56 (0.4)

Averages are taken over 10 runs with SDs in parentheses. SNP pairs are derived from
disjoint sets A, B containing 19999 and 2596 SNPs.

a fair comparison. FastEpistasis ran almost 15 times faster than
PLINK, completing 81376 epistasis tests per second compared to
5696 tests per second computed by PLINK (see Supplementary
Table 1). In the event that only SNP pair results below a
P-value threshold are needed, requiring a negligible time for post-
computation, FastEpistasis computes about 120000 epistasis tests
per second, ~20 times faster than PLINK (also see below for output
size effect in multiple phenotype analysis). However, the gain in
performance depends on the number of individuals in the population
as shown in Table 1 and Supplementary Figure 1. With the exception
of Not A Number PLINK output, all FastEpistasis results agree
perfectly with PLINK.

The speed of FastEpistasis scales linearly with the number of
processors at 93% asymptotical efficiency, using either SMP or
MPI architecture (see Supplementary Fig. 2). At this rate, the
computational time required to test all pairs of 500000 SNPs,
totaling 125 billion tests, using a population of 5000 individuals
is about 29, 4 or 0.5 days using 8, 64 or 512 MPI-bound processors.

FastEpistasis is capable of analyzing several different phenotypes
simultaneously, using the same genotypes. By performing the
QR decomposition of the covariate matrix once and applying the
result to several phenotypes, the total number of computations is
reduced compared to carrying out the computations separately for
each phenotype. Although we observe a significant speed-up with
multiple phenotypes, the performance reaches a peak and then
collapses, and becomes a penalty as the number of phenotypes
grows (Supplementary Fig. 3). The problem occurs during the
core-computation phase and is due to the size of the results.
The processors are able to compute the test statistics faster than
the results can be buffered and transferred to the hard drive.
Completely omitting to output the results removes the performance
collapse. The reduction in computational time analyzing several
phenotypes simultaneously depends on several factors including
the speed of the epistasis tests (which in turn depends on the
number of individuals) and the number of results to be output.
For example, using 8 processors, a population size of 171 MKK
individuals, 10 phenotypes, and outputting all epistasis results, the
computations are 1.06 times faster than analyzing each phenotype
separately whereas outputting results for P < 0.01, ~ 1% of tests,
the computations are 4.77 times faster. Therefore, restricting the
output to P-values below a relatively small threshold, or increasing

storage throughput using a striped disk RAID array, for example,
can decrease computational demands when analyzing multiple
phenotypes.

4 DISCUSSION

Epistasis is fundamental to understanding the structure and function
of genetic pathways (Phillips, 2008). Recent studies have reported
epistatic effects that confer susceptibility to common diseases
(Emily et al., 2009; Wu et al., 2010). Genetic interactions may also
be able to explain a larger proportion of phenotypic variance for
common diseases or related traits (Manolio et al., 2009) or reveal
information about gene function (Franke et al., 2009). FastEpistasis
is capable of computing fast tests of epistasis for quantitative
phenotypes, enabling researchers to study interaction effects of pairs
of genetic loci.
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