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ABSTRACT

Summary: A top scoring pair (TSP) classifier consists of a pair
of variables whose relative ordering can be used for accurately
predicting the class label of a sample. This classification rule has
the advantage of being easily interpretable and more robust against
technical variations in data, as those due to different microarray
platforms. Here we describe a parallel implementation of this
classifier which significantly reduces the training time, and a number
of extensions, including a multi-class approach, which has the
potential of improving the classification performance.
Availability and Implementation: Full C++ source code and
R package Rgtsp are freely available from http://lausanne.isb-
sib.ch/~vpopovic/research/. The implementation relies on existing
OpenMP libraries.
Contact: vlad.popovici@isb-sib.ch
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1 INTRODUCTION
Top scoring pairs (TSPs; Geman et al., 2004) are simple two-
variables binary classifiers, in which the prediction of the class label
is based solely on the relative ranking of the expression levels of
the two genes. The rank-based approach to classification ensures a
higher degree of robustness to technical variations and makes the
rule easily portable across platforms. Also, the direct comparison of
the expression level of the genes is easily interpretable in the clinical
context, making the TSPs attractive for medical tests.

Let x=[xi]i=1,...,m ∈R
m be a vector of measurements (e.g. gene

expression) representing a sample and let the corresponding class
label be y, with two classes denoted by 0 and 1. Then, for all pairs
of variables i and j, a score is computed,

si,j =P(xi <xj|y=1)−P(xi <xj|y=0),1≤ i,j≤m (1)

where P are conditional probabilities estimated from the data, and
the corresponding decision rule is: if sign(si,j)xi <sign(si,j)xj then
predict y=1, otherwise y=0. The pairs are ordered by the absolute
values of their scores and the top t pairs (t ≥1) are then considered for
the final model (Geman et al., 2004; Tan et al., 2005; Xu et al., 2005).
Remarkably, training a TSP does not require the optimization of any
parameter and does not depend on any threshold. Selecting a suitable
value for t should be done following the usual machine learning
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Fig. 1. Predicting estrogen receptor status: if GSTP1 < ESR1, then the
sample is considered ER+ (circles), otherwise ER− (triangles).

paradigm for optimizing meta-parameters (see, for example, Hastie
et al., 2001). Figure 1 shows an example of a TSP predicting the
estrogen receptor status. The decision boundary (in grey) is always
a line with a slope of 1.

2 IMPLEMENTATION
While the method briefly described above is simple and poses
no implementation problems, using it in the context of highly
dimensional data requires the evaluation of an extremely large
number of pairs of variables making its usage impractical, especially
in the context of resampling techniques for performance estimation.
However, most if not all of the modern desktop computers are multi-
core machines, making parallel programs a feasible alternative to
classical serial ones.

Our implementation in C++ exploits the multi-core architecture
by using the OpenMP libraries of the system (Chapman et al.,
2007), and is wrapped in an R package – Rgtsp. The full source
code and the R package are available from http://lausanne.isb-
sib.ch/~vpopovic/research/. As C++ is the main implementation
language, the library can easily be extended and integrated with
other software libraries. Also, the R functions are independent of
the domain of application so they could be applied to any kind of
data.
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3 USAGE EXAMPLES
We present a typical case of using Rgtsp package. These examples
represent solely some code snippets and not the full process of
developing and assessing the performance of a classifier.

The data used in these examples consists of 130 samples stage I
to III breast cancer (Hess et al., 2006) and the goal is to predict the
estrogen receptor status (positive or negative coded with ‘+1’ and
‘0’, respectively). For illustration purposes we use only a subset of
full dataset available from GEO repository under accession number
GSE16716.

Before starting R, the user has the option of choosing the
number of processing units that will be used, by setting the
environment variable OMP_NUM_THREADS. If not set, it defaults
to the maximum number of processing units available.

The first steps load the library and the data and build a list of TSPs
(note that the matrix X contains the variables as columns):

> library(Rgtsp)
> data(mdabr)
> tsp.list = tsp.n(X, y.erpos, 500)
> str(tsp.list)
> print(tsp.list)

The function tsp.n() returns at most n TSPs as a list with three
components: the first two correspond to the indexes of the selected
variables and the third one contains the associated scores. A similar
function, tsp.s(), returns all the TSPs that have a score larger
than a specified value.

For the p-th TSP, the prediction rule can be written as: predict
class ‘+1’ if X[,tsp.list$I[p]] < X[,tsp.list$J[p]]
and this forms the core of the predict function. The decision
function for p=1 in the above example is shown in Figure 1.
Given a list of TSPs one has different choices on how to obtain
the final predicted labels. Currently, Rgtsp proposes two means
of combining the predictions of individual TSPs: either by majority
voting or by weighting the votes with the correspoding scores—
giving more weight to the TSPs with better scores. This functionality
is available through the predict() generic function:

> yp = predict(tsp.list, X, combiner="majority")
> sum(yp != y.erpos) # count the errors
[1] 3

By inspecting the list of TSPs, it becomes clear that there are
variables that are selected many times as having always either higher
or lower value than all its pairing variables. We call such a structure
a TSP hub and we can construct all the hubs larger than a specified
size (25 pairs for example) using

> h = tsp.hub(tsp.list, min.hub.size=25)
> print(h)
Hub 1: 194 pairs

Center: 953 >
14 25 42 43 44 45 54 105 140 146 149 150 152 202 ...

This corresponds to a TSP hub in which the probeset
colnames(X)[953] (205225_at, ESR1) has a higher

expression than all other probesets in the list tsp.list. The TSP
hubs can also be used in predicting the labels, through the same
mechanism as above:

> yph = predict(h, X, combiner="majority")
> sum(yph != y.erpos) # no. of errors: 6

We see that in this particular case the prediction by TSP hubs is
slightly less accurate than the combined predictions of the individual
TSPs.

The generalization performance of the TSPs classifiers can be
estimated by various methods. The Rgtsp package provides a
function for k-fold cross-validation of the binary TSP classifiers
(either tsp.n() or tsp.s() functions), cv.tsp(), which
returns the training and validation performance of the classifier (it
defaults to 5-fold cross-validation).

> r = cv.tsp(X, y.erpos)
> print(r)
$tr.m
Error.rate Sensitivity Specificity AUC
0.02884615 0.97812500 0.96000000 0.96906250

In the case of a multi-class problem, we propose to use
classification trees built on top of TSPs predictions. For C >2
classes, one can train TSPs to solve each of the C(C−1)/2 pairwise
binary classification problems [called one-versus-one (Hsu and Lin,
2002) or round robin (Fürnkranz , 2002) strategy] and then combine
the predictions of the TSPs through a classification tree to predict
the original classes. For more details the reader is referred to the
package web page. This approach is implemented in the function
mtsp() and makes use of the ctree() function in the party R
package (y4 is an artificial 4–class label vector):

> m = mtsp(X, y4)
> yp = predict(m, X)
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