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Abstract Although contributing to inflammatory respon-

ses and to the development of certain autoimmune

pathologies, type I interferons (IFNs) are used for the

treatment of viral, malignant, and even inflammatory

diseases. Interleukin-1 (IL-1) is a strongly pyrogenic

cytokine and its importance in the development of several

inflammatory diseases is clearly established. While the

therapeutic use of IL-1 blocking agents is particularly

successful in the treatment of innate-driven inflammatory

disorders, IFN treatment has mostly been appreciated in the

management of multiple sclerosis. Interestingly, type I

IFNs exert multifaceted immunomodulatory effects,

including the reduction of IL-1 production, an outcome that

could contribute to its efficacy in the treatment of inflam-

matory diseases. In this review, we summarize the current

knowledge on IL-1 and IFN effects in different inflam-

matory disorders, the influence of IFNs on IL-1 production,

and discuss possible therapeutic avenues based on these

observations.

Keywords Type I IFN � IL-1 � Inflammasome �
Inflammatory disorders � Autoimmunity �
Multiple sclerosis � Anti-IL-1 therapy

Introduction

In this review, we focus on IFNs and give a background on

their biological functions, emphasizing their anti-inflam-

matory effects in infections as well as in their therapeutic

use. We summarize the knowledge on the complex mech-

anisms leading to IL-1 production and on its role in the

development of various inflammatory disorders. Increasing

evidence underlines the ability of IFNs to affect IL-1

production, and these findings potentially impact the man-

agement of infectious and inflammatory disorders. Here, we

concentrate on the interplay between these two cytokines

and possible clinical implications.

Inflammation

An inflammatory reaction is initiated whenever the normal

equilibrium of the tissue is altered. Inflammation is

required to remove the agent that caused the damage and to

restore normality [1]. This is mainly achieved by cells of

the immune system and by the action of different factors

found in blood plasma and in extracellular fluids.

The classical signs of inflammation were already recog-

nized by Celsus at the time of Ancient Greece and are

described as the characteristic redness (rubor), swelling

(tumor), increased temperature (calor), and pain (dolor) in

the inflamed area. In fact, the primary goal of inflammatory

responses is to increase blood supply and vessel permeability

within the damaged tissues, thus promoting plasma protein

and immune cell exudation. This facilitates tissue repair
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processes and minimizes the risk of infection. Indeed, when

tightly controlled and actively terminated, inflammation

represents a protective response, which coordinates tissue

healing as well as immune cell activation and migration.

However, if not properly held in check, overriding

inflammatory reactions can be detrimental to the tissue and

lead to important collateral damage. This is the reason why

a fifth hallmark, the ‘Functio laesa’ (i.e., loss of fuction),

attributed to the Roman physician Galen, has been added to

the four cardinal signs of inflammation. Importantly,

chronic inflammation-driven diseases are a major health

issue, particularly in developed countries, and selected

examples are discussed later.

Mechanisms inducing innate-driven inflammation

Classical triggers of inflammatory responses are tissue

damage and infectious agents. Innate immune cells, being

strategically located at the site of injury, propagate the first

alarm signal to recruit immune cells and to coordinate local

tissue repair. Cells of the innate immune system have the

ability to immediately respond to pathogen- and danger-

associated molecular patterns (PAMPs and DAMPs,

respectively) through dedicated germ-line encoded recep-

tors, the so-called pattern recognition receptors (PRRs).

Whilst PRRs lack the specificity and plasticity of their

more sophisticated adaptive counterparts (T and B cell

receptors), they mediate rapid and robust innate immune

responses. Upon engagement, these receptors activate

multiple signaling pathways that orchestrate the overall

immune response, including the adaptive system.

To date, several classes of innate receptors have been

defined [2–5]. We mainly focus on Toll-, Retinoic acid-

inducible gene (RIG)-, and Nucleotide-binding oligomeri-

zation domain (NOD)-like receptors (TLRs, RLRs, and

NLRs, respectively), that are particularly relevant to the

induction of IFNs and IL-1.

Interleukin-1

The IL-1 family consists of 11 related ligands. Although a

few members have been extensively investigated, others

are neglected and await more in depth analysis. The most

studied family members are the functionally related IL-1a
and IL-1b (IL-1a and IL-1b are referred here as to ‘IL-1’),

IL-1 receptor antagonist (IL-1Ra), and the IFN- c-inducing

cytokine IL-18.

Biological effects of IL-1

IL-1a and IL-1b, which share 26 % sequence homology,

exert pleiotropic activities. Interleukin-1 represents an

important mediator linking the immune, the endocrine, and

the central nervous system, therefore affecting several

physiological functions [6–8]. Yet, IL-1 is best known for

its ability to induce fever and for this reason was formerly

called ‘endogenous pyrogen’ [7].

In fact, this cytokine is instrumental in inducing

inflammation through activation of the nuclear factor-jB

(NF-jB) pathway. Both IL-1a and IL-1b signal via a

common IL-1 receptor (IL-1R) that is formed by the

association of IL-1RI and the IL-1R accessory protein [9].

Interleukin-1R represents the prototypical NF-jB activat-

ing Toll/Interleukin-1 receptor (TIR) domain-containing

receptor and engages the NF-jB signaling cascade through

the adapter myeloid differentiation factor 88 (MyD88) and

the IL-1 receptor-associated kinases (IRAKs) [10–13].

Interleukin-1 induces a variety of inflammatory media-

tors, such as the neutrophil chemoattractant CXCL1, and

promotes growth/activation of hematopoietic cells by

inducing cytokines such as IL-6 or the granulocyte–mac-

rophage colony-stimulating factor [14–18]. In the early

1990s, the properties of IL-1 in helping hematopoietic

reconstitution in bone marrow-transplanted patients have

been evaluated, as summarized by Dinarello [15]. Unfor-

tunately, side effects such as inflammation and hypotension

were too severe to pursue the use of IL-1 as a therapeutic

agent. However, IL-1a and IL-1b were efficacious in

reducing thrombocytopenia and leucopenia, in particular

with regard to neutrophil counts. Another name that has

been assigned to IL-1 in the past was ‘lymphocyte acti-

vating factor’, due to its ability to promote lymphocyte

proliferation [19]. The interest in this field was recently

revitalized, as it was shown that IL-1 plays a crucial role in

promoting CD4? T cell polarization towards a T helper

type 17-phenotype (Th17) [20, 21]. These are helper T

cells secreting IL-17 (also known as IL-17A), which are

mainly involved in autoimmune diseases and antifungal

responses. Furthermore, another report demonstrated that

IL-1 had the property of opposing the function of regula-

tory T cells, thus restoring the response of conventional T

lymphocytes [22]. Altogether, these studies highlight the

contribution of IL-1 in both innate and adaptive immune

responses.

Such important inflammatory effects require tight reg-

ulation of IL-1 production and signaling. As discussed in

more detail in the next paragraph, the generation of bio-

active IL-1 is a complex process controlled at multiple

levels. In addition, IL-1 signaling is held in check by its

antagonist IL-1Ra, which is a protein sharing 26 %

homology with IL-1b and 18 % with IL-1a. This naturally

occurring inhibitor strongly binds IL-1RI without activat-

ing it and defects in its production lead to early onset life-

threatening inflammatory diseases [23–26]. The crucial

role of IL-1 in the development of inflammatory

3396 K. Ludigs et al.

123



pathologies has been increasingly studied and recognized

over the past few years (reviewed in [14, 27]).

Multilevel control of bioactive IL-1 production

Interleukin-1 is mainly, but not exclusively, produced by

myeloid cells. Given its strong and complex effects, its

production is regulated at the transcriptional, translational,

and posttranslational levels (Fig. 1). In fact, IL-1a and the

inactive precursor of IL-1b (called pro-IL-1b) are virtually

undetectable in blood cells under normal conditions, and

their induction needs the presence of stress signals [28]. In

well-studied myeloid immune cells, IL-1 transcription

relies on NF-jB activating signals, such as tumor necrosis

factor (TNF) or lipopolysaccharide (LPS) [29]. This

‘priming’ step is thus essential to raise intracellular levels

of IL-1a and pro-IL-1b, along with enhancing the compe-

tence of the cell to proteolytically activate and secrete

IL-1b [30–32].

Interleukin-1b mRNA is short-lived, giving rise to a

tightly controlled burst of protein [33, 34]. Moreover, dis-

sociation between the transcriptional and the translational

regulation of this gene has been observed. Whereas, the

stimulation of peripheral blood mononuclear cells with LPS

increased both IL-1b mRNA and protein, the adhesion of

these cells to plastic surface or exposure to the complement

system factor C5a augmented transcript abundance, lead-

ing, however, to abortive translation [35–37]. Under such

conditions, IL-1b transcripts assemble into large polyribo-

somes without giving rise to substantial protein levels.

Whereas IL-1a is biologically active as it is synthesized,

IL-1b is produced as a precursor protein, which is per se

inactive; proteolytic processing is required to convert the

precursor protein into its active counterpart [38]. Several

years ago, caspase-1 was identified as the crucial protease

responsible for pro-IL-1b maturation and was called

‘IL-1b-converting enzyme’ thereafter [39–41]. However,

the molecular mechanism leading to caspase-1 activation

has only been described recently [42]. Its activation is

accomplished upon formation of multiprotein complexes,

called inflammasomes, which are able to bring caspases in

close proximity to promote their autoactivation (discussed

in more detail in the next section). A second member of the

IL-1 family, IL-18, also requires caspase-1-dependent pro-

cessing in order to be bioactive. Notably, although IL-1a
activity is independent of its cleavage, its secretion has

often been observed in association with inflammasome

function [17, 40, 43, 44].

NLRs and inflammasomes

NOD-like receptors are mainly recognized for their

important role in the activation of inflammatory cascades in

response to different PAMPs and DAMPs [4, 45, 46]. This

family of proteins is characterized by a tripartite structure.

The N-terminus, which is also called ‘effector domain’, is

responsible for the recruitment of downstream executioner

proteins and consists in most cases of a caspase recruitment

or a pyrin domain (CARD or PYD, respectively). In

addition, NLRs have a central NOD domain and a C-ter-

minal tail of leucine-rich repeats (LRRs) [45].

Amongst the best-characterized NLRs, we find NLRP3

(previously called NALP3 or cryopyrin), NLRP1, and NLR

family CARD-containing (NLRC) 4 (previously known as

IPAF). These three family members share the ability to

form inflammasome platforms, which have been studied in

Fig. 1 The production of

bioactive IL-1. Pattern

recognition receptor

engagement enhances NLRP3

expression and induces IL-1a
and pro-IL-1b. Upon sensing

specific inflammasome-

activating stimuli, NLRP3

assembles into and recruits

ASC and procaspase-1 to the

inflammasome complex. This

multi-protein platform leads to

the activation of caspase-1,

which proteolytically converts

pro-IL-1b into bioactive IL-1b.

In contrast, pro-IL-1a does not

require cleavage for its activity.

The release of both cytokines

triggers NF-jB signaling by

binding to IL-1R
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detail by means of biochemical and genetic approaches.

Upon activation, NLRP3 recruits caspase-1 into the inflam-

masome complex via the adaptor protein ASC (apoptosis-

associated speck-like protein containing a CARD), which is

a bipartite protein formed by a CARD and a PYD domain.

ASC joins the oligomerized NLRP3 proteins through PYD–

PYD interactions, while its CARD is available for homotypic

interaction with the N-terminal CARD of caspase-1. In

contrast to NLRP3, NLRC4 bears an N-terminal CARD,

whereby caspase-1 can be directly recruited into the complex

via homotypic CARD–CARD interactions. Nonetheless, the

presence of ASC has been shown to favor NLRC4 inflam-

masome activity [47].

NOD-like receptor family CARD-containing protein 4

(NLRC4) with the assistance of neuronal apoptosis inhib-

itory proteins (NAIPs), another subgroup of NLR proteins,

senses distinct Gram-negative bacteria. In particular, the

role of NLRC4 in the response to flagellin has been

investigated (Table 1) [46, 48–50]. The NLRP1 inflam-

masome was historically the first to be described, and the

NLRP1b murine paralog activates caspase-1 upon expo-

sure to lethal toxin of Bacillus anthracis [42, 51]

(Table 1). To date, the activation of the NLRP3 inflam-

masome remains the most enigmatic. Indeed, this

cytoplasmic protein leads to inflammasome assembly upon

an ever-growing number of triggers, which belong to

completely different chemical and physical categories (as

summarized in Table 1, and reviewed in several articles

[46, 52–54]). For example, NLRP3 can respond to stimu-

lation with extracellular ATP, with pathogens and PAMPs,

or to particulate stimuli such as monosodium urate crystals

and asbestos fibers. How such diverse stimuli activate

inflammasome formation specifically through NLRP3 is

subject of intense research, and proposed models suggest

the activation or induction of a common secondary effector

molecule [31, 53]. Recent reports on Nlrp6-knockout ani-

mals and on human NLRP12 variants support the idea that

these NLRs may be similarly involved in inflammasome

complex formation [55–57].

Finally, also absent in melanoma 2 (AIM2), not

belonging to the NLR family, has been shown to form an

inflammasome. This protein of the IFI200 family of pro-

teins recruits and activates caspase-1 upon binding to

double-stranded (ds) DNA in the cytoplasm (Table 1) [58].

Interferons

IFNs were discovered over half a century ago as endoge-

nous antiviral effector molecules. These cytokines were

named after their ability to ‘interfere’ with viral replication

in the host cell. However, IFNs mediate a variety of

biological functions not limited to the defense against viral

infections, extending to antitumor and immunomodulatory

effects [59]. According to their amino acid sequence,

chromosomal location, and receptor specificity, IFNs are

further subdivided into three groups, which we describe

below.

IFN subtypes

Introduction to type I IFNs

Interferon-a and -b are the most studied and therefore best-

characterized members of this class. Interferon-b is enco-

ded by a single gene in human and mouse, and more than

20 different genes code for IFN-a, thereof 13 give rise to

a functional protein in humans and 14 in mice. Whereas

IFN-a and -b regulate a widely overlapping set of genes,

these two cytokines are described as slightly differing in

their downstream effects and in their expression pattern,

which varies depending on the stimulation, on the cell type,

and among individuals [60–63].

Table 1 List of inflammasome activators

Origin Trigger Sensor protein

Sterile activators

Endogenous signals ATP NLRP3

MSU crystals NLRP3

CPPD crystals NLRP3

BCP crystals NLRP3

Cholesterol crystals NLRP3

Glucose/hyperglycemia NLRP3

Amyloid-b NLRP3

Hyaluronan NLRP3

Environmental-

derived

Skin irritants NLRP3

UV NLRP3

Alum NLRP3

Asbestos NLRP3

Silica NLRP3

Microorganisms—PAMPs

Viral RNA NLRP3, AIM2

DNA AIM2

Bacterial RNA NLRP3

DNA AIM2

Flagellin NLRC4

Type III secretion system NLRC4, NLRP3

Cell wall components NLRP1, NLRP3

Pore-forming toxins NLRP1, NLRP3

Fungal Hyphae, b-glucan NLRP3

Protozoan-derived Haemozoin NLRP3

Helminth-derived (unknown) NLRP3
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Other type I subtypes are IFN-e, -j, -x, -d, and -s.

Interferon-d and -s are only found in pigs and cattle,

respectively, and have no human homologs. IFN-e, -j, and

-x exist in humans but are less well described and show

restricted tissue distribution [60]. Induction, signaling, and

downstream effects of IFN-a and -b are discussed in detail

in the following sections.

Type II IFN

The type II IFN subtype is constituted by a single gene

product, IFN-c. It is structurally different from type I IFNs,

but was classified in the IFN family due to its antiviral

effects [64, 65]. Interferon-c binds to the nearly ubiqui-

tously expressed IFN-c receptor (IFNGR), and signals

through Janus kinase 1 (JAK1) and JAK2 to phosphorylate

signal transducer and activator of transcription 1 (STAT1),

thereby allowing STAT1 homodimer formation and

nuclear translocation.

Interferon-c is involved in the modulation of immune

and inflammatory responses and is predominantly produced

by NK, NKT, and activated T cells. In the latter, IFN-c
leads to the upregulation of the transcription factor T-bet,

which is crucial for controlling commitment to the Th1

phenotype [66]. T helper 1 cells are characterized by IFN-c
production and suited to fight viral infections. In fact, T-bet

upregulation drives IFN-c expression and creates a positive

feedback loop, which forces undifferentiated CD4? cells to

Th1 polarization. Furthermore, IFN-c favors Th1 commit-

ment indirectly by suppressing polarization to Th17 and

Th2 [66, 67], the latter being a subtype of helper T cells

mainly involved in allergic and helminth responses, dis-

tinguished by the production of IL-4 and IL-13.

Interferon-c also exerts immunomodulatory effects on

innate immune cells, primarily by increasing lysosomal

enzymatic activity and bactericidal oxidative burst [68].

Moreover, type II IFN directly enhances antigen presen-

tation by promoting antigen processing and by inducing the

expression of major histocompatibility complex (MHC)

molecules [65, 68].

Type III IFNs

The third class of IFNs is composed of IFN-k1, -k2, and

-k3, or IL-28A, IL-28B, and IL-29, respectively. They are

produced by most cell types, but particularly by plasma-

cytoid dendritic cells (DCs) in response to viral or bacterial

infection [69, 70]. k-Interferons form a separate group as

they signal through a distinct receptor complex, consisting

of IL-10R2 and IL-28R, which is expressed on a limited

number of cells like hepatocytes and epithelial cells [70,

71]. However, type III IFNs activate similar signaling

pathways and partly induce the same genes as type I IFNs,

resulting in a potent antiviral response [72, 73].

Type I IFN production

Interferon-a and -b can be produced by almost all cell types

upon stimulation of PRRs. Constitutive expression of low

type I IFN levels is maintained by macrophages, skin DCs,

and thymic epithelial cells and is also found in organs like

liver, spleen, and kidney [74–77]. Basal IFN signaling is

important to keep immune cells in a ‘primed’ state to

rapidly and effectively mount an antiviral immune

response [78].

Cytoplasmic receptors

Most cell types can induce type I IFN in response to the

activation of cytoplasmic RLRs (Fig. 2a), which are nearly

ubiquitously expressed [5]. Importantly, the strategic

intracellular location of these PRRs allows infected cells to

activate the antiviral response. Retinoic acid-inducible

gene-like receptors detect microbial ribonucleic acids,

which can derive from the genome of RNA viruses or from

replication intermediates of DNA viruses [79]. These

receptors therefore enable infected cells to locally produce

antiviral type I IFNs, which are essential in opposing a

number of viral infections [5, 80].

Retinoic acid-inducible gene-like receptors include the

two DExD/H-box helicases RIG-I and melanoma differ-

entiation-associated gene 5 (MDA5), which are engaged by

distinct ribonucleic acid species. Retinoic acid-inducible

gene-I detects 50 triphosphate single-stranded (ss) RNA

with pairing at the 50 end and rather short dsRNA, while

MDA5 is activated by long dsRNA [5].

Retinoic acid-inducible gene-I and MDA5 have a

common downstream adaptor, called mitochondrial anti-

viral signaling protein (MAVS) (Fig. 2a) [5]. Engagement

of MAVS is followed by signaling through TBK1 [TNF

receptor-associated factor (TRAF) family member-asso-

ciated NF-jB activator (TANK)-binding kinase 1] and the

IjB kinase e (IKKe), leading to the activation of the

transcription factors interferon-regulatory factor (IRF) 3,

IRF7, and NF-jB [5, 80, 81]. Phosphorylation of IRFs

allows their homo- or heterodimerization and promotes

their subsequent localization to the nucleus, where they

cooperate with NF-jB to stimulate the transcription of

type I IFN genes [82] (Fig. 2a). In most cells, IRF3 is the

only constitutively expressed IRF. The phosphorylation of

IRF3 results in the induction of IFN-b and low levels of

IFN-a4 [83]. IRF3-triggered type I IFN increases IRF7

levels, which then lead to the proficient expression of

IFN-a [84].

IFN regulation of IL-1 production 3399
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In addition to RNA, sensing of cytoplasmic DNA also

results in the induction of type I IFNs. Proposed DNA

receptors are the DNA-dependent activator of IRFs (DAI)

and the DNA-dependent RNA polymerase III [85]. The

latter transcribes dsDNA into a 50triphosphate dsRNA,

which is recognized by RIG-I. More recently, the AIM2-

like molecule IFI16 and other members of the DExD/

H-box helicase superfamily have been described as contrib-

uting to the sensing of cytoplasmic DNA [85]. Downstream of

these DNA sensors, the ER-localized stimulator of IFN

genes (STING) serves as a recruitment platform to activate

TBK1, which in turn phosphorylates IRF3/7, resulting in the

induction of type I IFNs [86].

Transmembrane receptors

Interferon production in immune cells can also be induced

by the activation of transmembrane TLRs (Fig. 2a). The

expression of TLRs is mainly restricted to tissues and cell

types involved in innate immunity, such as macrophages

and dendritic cells (DCs) [87, 88]. Toll-like receptors

recognize structurally conserved molecules derived from

microbes through their LRRs. While TLR3 senses viral

dsRNA, TLR7 and TLR8 recognize ssRNA. Toll-like

receptor 9 detects unmethylated CpG-containing oligonu-

cleotides, typical of microbial DNA, and TLR4 responds to

LPS, a cell wall component of Gram-negative bacteria

(a detailed description of TLR ligands can be found in

[2, 88]). These receptors are localized either in endosomal

compartments (TLR3, 7, 8, 9,) or at the cell surface (TLR3,

4). They are thus devoted to the recognition of PAMPs

upon phagocytosis or after lysis and release of material by

a pathogen or an infected cell.

All TLRs except TLR3 trigger signaling cascades via

MyD88. TLR3 associates instead with TRIF (TIR-domain-

containing adapter inducing IFN-b), whereas TLR4 uses

both TRIF and MyD88 [2]. Similarly to RLRs, engagement

of the TRIF-dependent pathway downstream of TLR3 and

TLR4 activates TBK1 and IKKe, leading to the phos-

phorylation of IRFs. Type I IFN induction by endoplasmic

TLR7, TLR8, and TLR9 is instead mediated by an MyD88-

dependent complex including IRAK1 and IKKa, which

phosphorylate and thereby activate IRF7 [89].

The main producers of type I (and III) IFNs are plas-

macytoid DCs, a population of circulating DCs [90]. These

‘specialized IFN-producing cells’ are characterized by

rapid and potent IFN production, which is dependent on the

activation of TLR7 and TLR9. Indeed, high constitutive

expression of these TLRs and of the downstream signaling

molecule IRF7 leads to a very efficient coupling of ligand

detection to cytokine production [91]. Thus, plasmacytoid

DC are particularly important to produce systemic type I

IFN, which is crucial to alert the entire organism.

Type I IFN signaling

Interferon-a and -b share a common receptor, the IFN-a
receptor (IFNAR), composed of a IFNAR1 and a IFNAR2

subunit (Fig. 2b) [64]. These cytokines can signal in vir-

tually every cell, as the receptor is ubiquitously expressed.

Ligand-induced receptor dimerization leads to the auto-

and trans-phosphorylation of receptor-associated tyrosine

Fig. 2 Induction and effects of type I IFNs. a The best characterized

mechanisms leading to type I IFN induction are initiated by

cytoplasmic RLRs and transmembrane TLRs. Signaling pathways

activated by these receptors converge in the phosphorylation of IRFs,

which translocate into the nucleus and activate the transcription of

type I IFN genes. b Type I IFNs signal through a dimeric receptor and

activate JAK1 and TYK2. In turn, these kinases phosphorylate

STAT1 and STAT2, enabling recruitment of IRF9 to the so-called

ISGF3 complex. This trimeric complex binds to ISREs, thereby

modulating the expression of ISGs exerting antiviral, immunomod-

ulatory, proapoptotic, and anti-inflammatory functions
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kinases JAK1 (on IFNAR2) and TYK2 (on IFNAR1).

Janus kinase 1 and Tyrosine kinase 2 then phosphorylate

the intracellular domain of IFNAR, which creates docking

sites for STAT1 and STAT2. These two transcription fac-

tors heterodimerize, bind to IRF9, and translocate to the

nucleus (Fig. 2b) [92]. This heterotrimer [also known as

IFN-stimulated gene factor 3 (ISGF3)] binds to genomic

IFN-stimulated response elements (ISREs), thereby mod-

ulating the expression of numerous IFN-stimulated genes

(ISGs). Interferon-stimulated genes encode factors

involved in the antiviral and anti-inflammatory response, in

immunomodulation, and factors endowed with pro-apop-

totic and anti-proliferative activities (Fig. 2b) [61, 93].

Importantly, ISGs also code for proteins that augment

IFN signaling by a positive feedback loop. Firstly, the

expression of the nucleic acid receptors RIG-I, MDA5, DAI,

and of TLRs is positively regulated by type I IFNs [94].

Secondly, ISGs encode signaling molecules involved in the

IFN pathway, such as IRF7 and STAT1. Furthermore, all

genes encoding type I IFNs contain ISREs in their promot-

ers, resulting in a self-amplifying loop (Fig. 2b) [61, 95].

Although ISGF3 mediates the most studied and proba-

bly the major effects of type I IFNs, other STAT family

members can participate in type I IFN signaling. Homo-

and heterodimers of STAT1, STAT3, STAT4, STAT5, and

STAT6 can play a role downstream of IFNAR [64].

Moreover, type I IFNs have also been described to activate

other signaling pathways such as mitogen-activated protein

and phosphatidylinositol-3 kinases [96].

Effects of type I IFNs

The following sections focus on the antiviral, pro-apoptotic,

immunomodulatory, and in particular anti-inflammatory

activities of type I IFNs. Emerging evidence indicates that

IFN-b and the different a-subtypes can vary in these effects

[97, 98]. This may be explained by the different binding

properties of IFN-a and -b to IFNAR, influencing down-

stream signaling [97, 99]. Therefore, in some cases, we

discuss the diverging activities of b- and a-IFNs.

Antiviral effects

Type I IFNs were initially discovered and best described as

effector molecules in the protection against viral infections.

They have the ability to induce an antiviral state in infec-

ted, but also in neighboring cells by autocrine and

paracrine effects. Interferon-stimulated genes code for

proteins that target virtually all steps of the virus life cycle,

including entry, transcription, and translation, and lead to

viral RNA degradation.

A prime example of an antiviral effector molecule is the

dsRNA-dependent protein kinase R (PKR). Upon PKR

activation, the a-subunit of the eukaryotic translational

initiation factor 2 (eIF2a) is phosphorylated, which results

in the inhibition of cellular as well as viral mRNA trans-

lation [100]. Further, the translational suppression triggered

by PKR is also linked to IFN-induced cell-cycle arrest and

apoptosis [101–103]. Not being central to this work, we

refer the reader to excellent reviews in which the antiviral

effects of IFNs have been summarized [103, 104].

Immunomodulation

In addition to their direct antiviral effects, type I IFNs play a

major role in modulating innate and adaptive immunity.

Notably, they are involved in regulating homeostasis, sur-

vival, differentiation, and trafficking of immune cells [105].

To start with, these cytokines play an important role in

promoting the maturation of DCs, which are required for

efficient activation of T cells [106, 107]. In fact, type I IFNs

enhance antigen presentation, in particular by increasing the

expression of costimulatory and MHC class I molecules

[108, 109].

Type I IFN signaling has also been described to directly

act on T cells as it can induce the production of IFN-c
through activation of STAT4, thereby favoring induction

and maintenance of Th1 cells [110, 111]. Some reports

claim that type I IFNs are, however, not sufficient to pro-

mote Th1 differentiation as the phosphorylation of STAT4

occurs only transiently. In both human and mouse cells,

IL-12 has been proven to be necessary to induce adequate

levels of the transcription factor T-bet, thereby leading to

Th1 polarization [112, 113]. Nevertheless, IL-18 has been

described to act with type I IFNs to activate STAT4 in the

absence of IL-12 [114]. Type I IFNs are likely to also

indirectly contribute to Th1 differentiation. They do so by

inhibiting the ability of IL-4 to promote Th2 commitment

and to antagonize Th1 development [115, 116]. Similarly,

IFNs are involved in the negative regulation of Th17

development [117, 118]. Interferon-b has been described to

induce the expression of IL-27 via STAT1. Interleukin-27

in turn downregulates IL-17 and IL-23, the latter being

required for Th17 maintenance [119, 120].

In addition, type I IFNs seem to play a role in the sur-

vival of activated CD4? T cells. Despite the fact that IFNs

have been described as promoting cell growth arrest and

even apoptosis [121, 122], these cytokines seem to protect

T cells from apoptosis induction upon antigen encounter

and enhance the development of central memory-like

CD4? T cells [123, 124].

Type I IFNs are also able to induce efficient CD8? T

cell responses by promoting DC cross-presentation. This

process defines the ability of DCs to take up extracellular

antigens by endocytosis and present them via MHCI to

CD8? T cells [107]. Furthermore, the augmented MHCI
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levels increase the presentation of peptides to cytotoxic T

cells, thus leading to augmented recognition and killing of

infected cells. Type I IFNs also support CD8? T cell

responses by directly enhancing effector functions,

including IFN-c secretion and expression of perforin and

granzymes [125, 126]. An increase in the cytotoxic

capacity has also been observed for NK cells and macro-

phages [127], highlighting the immunomodulatory effects

of type I IFNs on these cell types as well. Notably, high

levels of IL-15 induced in DCs by type I IFNs during their

maturation lead to a selective stimulation and maintenance

of memory CD8? T cells [128, 129] and also favor NK cell

development and differentiation [130]. Besides modulating

T cell activation, type I IFNs also influence their migration

by the induction of chemoattractants, such as CXCL10 and

CXCL11 [131].

Direct and indirect effects of type I IFNs have also been

described for B cells. These cytokines can enhance anti-

body production by promoting isotype switch and by

inducing two TNF-family members important for B cell

survival and homeostasis, namely B cell-activating factor

(BAFF) and a proliferation-inducing ligand (APRIL) [132,

133]. In addition, treatment with type I IFNs has been

shown to protect B cells from apoptosis [134]. Therefore,

these cytokines seem to also contribute to the induction and

maintenance of a potent humoral immune response [132].

Altogether, type I IFNs play a crucial role in the regulation

of immune responses, by directly affecting functions of

lymphocytes and antigen presentation.

Apoptosis

In contrast to the aforementioned anti-apoptotic effects in

lymphocytes, type I IFNs have often been described to

have anti-proliferative activity and to sensitize infected or

transformed cells to apoptosis [122, 135]. These anti-pro-

liferative effects were correlated with an inhibition of the

NF-jB pathway [136], which, however, requires higher

doses of IFNs than the induction of an antiviral state.

Although type I IFNs are insufficient per se to induce

death in most cell types, they can sensitize cells to apop-

tosis via upregulation of caspases, pro-apoptotic, and tumor

suppressor genes [137–139]. Furthermore, the induction of

multiple antiviral proteins affects viral replication by sig-

nificantly interfering with essential cellular processes. As

an example, several studies have assigned a pro-apoptotic

role to the IFN-inducible PKR, which is in part linked to

the translation blockade induced by this kinase [140–142].

Type I IFNs have also been shown to have in vivo anti-

tumor effects by promoting cell cycle arrest and apoptosis

in transformed cells [135, 143, 144].

Moreover, engagement of RIG-I and MDA5 is known to

induce pro-apoptotic signaling in addition to transcription

of IFNs themselves [145, 146]. Similarly, apoptosis

induction has been described downstream of TLR3 and 4

[142, 144, 147]. Interferons positively regulate the expres-

sion of these receptors, thereby rendering cells further

susceptible to death. Altogether, certain effects of type I

IFNs might cumulate, thereby sensitizing cells to apoptosis.

Autoimmunity and pro-inflammatory effects

Although beneficial for host immune responses, type I

IFNs are also involved in the pathogenesis of certain dis-

eases. Type I IFNs marry immuno-stimulatory to pro-

apoptotic effects, which together make these cytokines

particularly suited to favor autoimmune manifestations.

Indeed, elevated production of inflammatory cytokines,

such as type I IFNs, activates DCs. Moreover, these cyto-

kines can promote tissue damage, therefore inducing the

release of apoptotic material, which can be further

phagocytosed and presented by activated antigen-present-

ing cells. These effects might be detrimental in individuals

prone to develop autoimmunity due to an increased risk of

activating autoreactive lymphocytes [148–150].

First indications that type I IFNs might be key players in

autoimmunity came from the observation that the admin-

istration of these cytokines as antiviral or anti-proliferative

therapy was associated with autoimmune manifestations

[149, 151]. However, most of the time, symptoms resolved

when the therapy was stopped, indicating that type I IFNs

may initiate the development of autoimmunity but other

factors are required to sustain the disease [97, 149].

Administration of IFN-a more than IFN-b was found to be

associated with the onset of such autoimmune manifesta-

tions, which supports the hypothesis that there are

differences in the action of type I IFN subtypes. Accord-

ingly, reports suggest a more pronounced pathologic and

driving role for systemic IFN-a in the development of

autoimmunity [97, 98].

Indeed, an ‘IFN signature’, characterized by elevated

IFN-a levels and expression of type I IFN-regulated genes,

is found in systemic lupus erythematosus (SLE) patients

and correlates with immune cell activation and clinical

disease manifestations (Table 2). Systemic lupus erythe-

matosus is a systemic autoimmune disorder that can affect

any part of the body. This disease is characterized by the

deposition of immune complexes leading to inflammation,

and one of the pathologic features and diagnostic criteria of

SLE is the presence of anti-nuclear antibodies.

Dying cells release cellular material, which is then rec-

ognized by PRRs, inducing an inflammatory response.

Released intracellular components are also antigenic

determinants for B cells, triggering antibody production

against self-DNA and -RNA. This leads to the formation of

immune complexes, which may even promote delivery of
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nucleic acids to immune cells, therefore enhancing IFN

production [152–154]. The overproduction of type I IFNs

results in a chronic activation of DCs, which further sustains

the response of autoreactive lymphocytes in predisposed

individuals, thus promoting the vicious circle [133].

The specific nature of the autoantigens in SLE may be

instrumental in dictating the deleterious role of IFN-a in

this disease. Cytoplasmic delivery of nucleic acids leads to

activation of innate immune sensors, including the AIM2

inflammasome, whose components are further induced by

type I IFNs, as discussed below. Under these circum-

stances, AIM2 inflammasome engagement may lead to

enhanced IL-18 production, which has been involved in

disease progression [155]. Interestingly, AIM2 belongs to

the Ifi200 gene family, which in the mouse clusters within

the Nba2 lupus susceptibility locus [156].

Although the strongest genetic factor associated to SLE

is the human leukocyte antigen (HLA) region on chromo-

some 6 [157], many polymorphisms map to genes of the

type I IFN pathway, further suggesting that these cytokines

might play a detrimental role in this disease. In fact, IRF5

and TYK2 polymorphisms have been linked to increased

risk of SLE [97, 158]. Moreover, a pathological role of type

I IFNs is supported by studies from mouse lupus models

showing that genetic ablation of Ifnar1 leads to less severe

autoimmune manifestations [159, 160]. Against this com-

monly accepted view, few recent reports claim a protective

role for type I IFNs in SLE, a surprising finding that

requires more in-depth analysis [161, 162].

An IFN signature could also be detected in other auto-

immune diseases like Sjögren’s syndrome and in a subgroup

of rheumatoid arthritis patients [97, 163, 164]. Rheumatoid

arthritis is mainly characterized by inflammation of the

joints and autoantibody production, while Sjögren’s

syndrome is a lymphoproliferative disease characterized by

xerostomia (dry mouth) and xerophtalmia (dry eyes).

Whereas, in SLE, a pathologic role for type I IFNs is

established, a causative role for these cytokines in rheuma-

toid arthritis and Sjögren’s syndrome has not been

determined, leaving open the possibility that they are pro-

duced in the inflammatory context as anti-inflammatory

mediators [97, 163, 164]. In the case of Sjögren’s syndrome,

this is supported by the fact that elevated levels of IL-1Ra

have been detected in the cerebrospinal fluid of patients, and

that oromucosal administration of IFN-a significantly

increased unstimulated whole saliva flow, thus having a

modest therapeutic effect [165, 166]. In the case of rheu-

matoid arthritis, a possible anti-inflammatory function of

type I IFN is suggested by the protective role of IFN-b in

animal models of collagen-induced as well as antigen-

induced arthritis [167–169]. Moreover, an open phase I

study, in which 12 patients with rheumatoid arthritis were

treated with IFN-b subcutaneously, demonstrated modest

clinical improvement [170]. However, a double-blinded

placebo-controlled trial of IFN-b-1a (recombinant IFN-b
produced in mammalian cells) in rheumatoid arthritis

patients did not show any significant difference in radio-

logical scores or clinical outcomes [171].

Anti-inflammatory effects of type I IFNs

Experimental evidence

Anti-inflammatory effects in sterile and infectious models

Multiple lines of evidence indicate that type I IFNs also

exert anti-inflammatory functions. It has been known for a

Table 2 Current understanding of the role of IL-1 and type I IFNs in selected inflammatory disorders

Disease Main trigger, involved genes Role for IL-1 IL-1-blocking

agents in

patients

Refs Rec. IFN

therapy

Refs

Monogenic

auto-inflammatory

diseases

FMF MEFV mutations a a [288–295] a [296]

Polygenic

auto-inflammatory

diseases

IBD NOD2, ATG16L1, IRGM,

IL-12Rb, IL-23R, STAT3,

IL-10Rb mutations

a n.d. [304], [306] a [310–312]

Mixed pattern

diseases

Behçet HLA-B51 association, IL-

12Rb, IL-23R, IL-10

variants

b a [295], [318] a [319]

Atopic disorders Allergy Allergens, complex a n.d. [322–332] a [336]

Autoimmune

diseases

SLE IRF5, STAT4, TLR7, TYK2,

IRAK1, IKK-e variants

b b [344–347] n.d. (pathological role)

MS Specific HLA alleles, complex a n.d. [20], [241–244] a [228, 229]

refs references, rec recombinant, n.d. not determined, a established, b potential role

IFN regulation of IL-1 production 3403

123



long time that type I IFN administration can be beneficial

in a number of sterile inflammatory models, such as skin

reactivity test, collagen-induced arthritis, or allotransplant

rejection [59, 172–174]. Interferon-b also leads to a

reduced reaction upon neutrophil-induced blood–brain

barrier rupture [175] and in experimental autoimmune

encephalomyelitis (EAE) [176], both models mimicking

inflammatory aspects of the central nervous system found

in MS. Interestingly, IFN has a direct stabilizing effect on

cerebral endothelial cells lining the blood–brain barrier in

in vitro and EAE models [176, 177]. These data suggest

that the decreased passage of autoreactive lymphocytes

through the endothelium might be one of the modes of

action of IFN-b in MS, as discussed later.

In addition, while in virtually all viral and most bacterial

infections type I IFNs are advantageous or even required

for resistance [178], recent evidence shows that in some

instances IFN induction can also have unfavorable out-

comes. On the one hand, these effects can be due to a

disproportionate production of type I IFN leading to an

excessive inflammation, such as for cerebral malaria [179].

On the other hand, anti-inflammatory effects can dampen

the immune response, which results in an exacerbated

infection. This is the case for Francisella tularensis [180]

and Listeria monocytogenes, as well as for the protozoan

Leishmania amazonensis [181–183]. These infections were

found to be less detrimental and also have reduced infec-

tious burden in Ifnar-/- mice, showing that IFNs can

indirectly favor microbial outgrowth.

Mycobacterium tuberculosis infection was also shown to

be less severe in Ifnar-/- mice, with similar or reduced

bacterial burdens as compared to control mice [184, 185].

Of note, patients infected with M. tuberculosis show an

IFN signature, which might therefore have a pathogenic

role during infection [186].

Finally, another line of evidence for the anti-inflamma-

tory effects of IFNs comes from superinfections. In most

cases, influenza-related deaths do not derive from the viral

infection per se but from bacterial superinfections. A recent

study revealed that secondary Streptococcus pneumoniae

infections are worsened by the anti-inflammatory effects of

influenza-induced type I IFNs [187]. Similarly, fungal

infections can be exacerbated by type I IFNs. Mice pre-

treated with type I IFN-inducing RNAs are more suscep-

tible to candidiasis than untreated controls, an effect

abolished in Ifnar-/- mice [188–190].

Type I IFN-dependent inhibition of IL-1 production

The first molecular mechanisms for these anti-inflamma-

tory phenomena was proposed in 1990 when Schindler

et al. showed that IFN-a has the ability to reduce IL-1

production [191, 192]. As discussed above, production of

active IL-1 has to fulfill several conditions, and its activity

is further regulated by the existence of a natural antagonist

and a decoy receptor, IL-1RII. Additionally, IL-1 synthesis

and inflammasome function are targeted by several nega-

tive regulatory mechanisms (reviewed in [46, 193]).

Interestingly, type I IFNs have the ability to suppress pro-

IL-1 levels and decrease the activity of NLRP1 and NLRP3

inflammasomes [188]. The effects of type I IFNs on IL-1

production have been known for decades, and several

studies contributed to the understanding of the underlying

mechanisms, as schematically illustrated in Fig. 3 [59, 188,

192, 194–196]. Of note, both IFN-a and -b are able to exert

this anti-inflammatory effect.

In addition to reducing the expression of a number of

inflammatory genes, including TNF and the IL-12/IL-23

subunit p40, type I IFNs reduce the levels of IL-1a and pro-

IL-1b [120, 188, 192, 194–198]. Suppression of IL-1a and

-b has been reported to occur both at the transcriptional as

well as at the translational level [199, 200].

It recently became clear that this mechanism is relevant

to infectious diseases. In fact, IL-1 is instrumental for

resistance to both M. tuberculosis infection and systemic

candidiasis, suggesting that IFN-dependent suppression of

IL-1 production might be one mechanism explaining the

detrimental effects of type I IFN in these models [184, 199,

201–204]. Interestingly, in the context of M. tuberculosis

infection, adaptive immune cell-derived type II IFN has

also been found to suppress IL-1 production [184].

Although the anti-inflammatory contribution by IFN-c is

controversial, emerging evidence highlights an inhibitory

role of type II IFN on IL-1 levels, which seems to be

dependent on the context and on the target cell type [184,

188, 192, 205].

Additionally, type I IFNs induce the expression of anti-

inflammatory genes, such as IL-1Ra and IL-10 (Fig. 3)

[194, 195, 206]. In fact, type I IFNs synergize with LPS to

induce IL-10 [188, 207–210]. In the human system, this

effect is thought to occur through the transcription factor

STAT3 or the PI3K pathway [211, 212]. However, the use

of macrophages derived from different knockout mice

indicated that IL-10 induction downstream of type I IFNs

depends on STAT1, most likely as part of the canonical

signaling complex comprising STAT2 and IRF9 [188].

Interleukin-10 is one of the major anti-inflammatory

cytokines, which increases IL-1Ra transcription and neg-

atively regulates IL-1a and pro-IL-1b levels (Fig. 3) [188,

208, 209, 213, 214]. We found that the inhibitory effects of

type I IFNs on pro-IL-1 levels in macrophages are in part

achieved through autocrine IL-10 signaling [188]. Inter-

leukin-10-dependent regulation of pro-IL-1 has been

shown to mainly occur at the transcriptional level [208,

213, 214]. Furthermore, as IL-10 induces IL-1Ra [214], the

question arises as to which extent the IFN-dependent
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IL-1Ra induction could also be mediated by autocrine IL-

10 signaling.

Emphasizing their highly complex role in the balance

between inflammatory and anti-inflammatory effects, it has

been shown that type I IFNs have the ability to both pos-

itively and negatively regulate inflammasome activity. In

fact, IFNs play an important pro-inflammatory role, for

instance in sensitizing cells to certain bacterial inflamma-

some activators such as F. tularensis, and in the

maintenance of AIM2 expression [215, 216]. Interferons

are thus favoring the activity of the DNA-sensing AIM2

inflammasome, which is important upon infection by

cytosolic bacteria and DNA viruses [215, 216]. In addition,

caspase-1 itself, although being constitutively expressed, is

a transcriptional target of type I IFN [155, 217]. Interest-

ingly, IFNs not only seem to alter the activity of different

inflammasomes but also the abundance of their substrates;

while IL-1a and pro-IL-1b levels are decreased, the amount

of pro-IL-18 is augmented [155, 198].

In contrast, exogenous type I IFNs are clearly anti-

inflammatory, suppressing the activity of the NLRP3 in-

flammasome, which is a sensor for a broad range of stimuli

[188]. This effect is transient and requires higher doses of

IFNs than the one on pro-IL-1, at least in macrophages

[188]. Although experimental data indicate that this

inhibitory effect requires the transcription factor STAT1,

the underlying mechanisms currently remain unclear.

Interestingly, it was recently suggested that IFI16, which is

strongly induced by type I IFN treatment, might be

involved in this process [218]. In fact, knockdown of this

DNA-binding protein in THP1 cells, a monocytic myeloid

cell line, clearly increased the basal caspase-1 processing,

indicating an augmented inflammasome activity.

Altogether, the complex effects of type I IFNs on

inflammasome activity suggest that these cytokines favor

the activity of the AIM2 inflammasome, possibly in concert

with the production of IL-18, while impairing the activity

of the NLRP3 inflammasome along with the production of

IL-1. In the case of a viral infection, this might hinder

development of a Th17 and favor a tailored Th1 type of

response.

Established type I IFN-based clinical treatments

Therapeutic use of type I IFNs in viral and neoplastic

diseases

Type I interferons are classical antiviral effector molecules.

It is therefore not surprising that they have been studied as

potential therapies for a number of viral diseases. Inter-

feron-a is currently used in combination with other

medications as a standard treatment for hepatitis B and C

infections and may also reduce the occurrence of associ-

ated hepatocellular carcinoma [219–221]. Moreover, IFN-a
was shown to be effective against human herpesvirus

8-driven Kaposi sarcoma and genital warts caused by

papilloma viruses [222, 223]. Although its antiviral prop-

erties could per se explain the beneficial effects of IFN-a in

these virus-associated neoplasms, the synergy with its

ability to promote apoptosis, modulate immune functions,

Fig. 3 Type I IFNs inhibit IL-1

production. Type I IFN

signaling suppresses caspase-1-

dependent IL-1b maturation by

a STAT1-dependent

mechanism, which might

involve de novo transcription of

a target protein. In addition,

type I IFNs induce the

expression of IL-1Ra, the

natural IL-1R antagonist, and

the anti-inflammatory cytokine

IL-10. In murine macrophages,

enhancement of IL-10

production by type I IFNs also

requires the transcription factor

STAT1. Interleukin-10, in turn,

contributes to the induction of

IL-1Ra and to the decrease of

pro-IL-1 levels in a STAT3-

dependent manner
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and alter tumor microenvironment is likely to contribute to

this outcome [224]. On the one hand, IFN-dependent

reduction of viral load could alone decrease inflammation

by removing viral-derived PAMPs. On the other hand,

IFN-a has also been successfully used in the therapy of

malignancies, which are not considered to be associated

with viral infections, where its effects are not mediated by

the control of viral load. In particular, beneficial effects

were observed in hairy cell leukemia, chronic myeloid

leukemia, and melanoma [224–226].

Therapeutic use of type I IFNs in multiple sclerosis

Furthermore, for almost 20 years, IFN has been known to

reduce inflammation in MS (Table 2) [97]. Multiple scle-

rosis is an inflammatory autoimmune disorder of the brain

and the spinal cord and represents the second most com-

mon cause of neurological disability in young adults,

exceeded only by trauma [227]. Affected patients suffer

from relapses of neurological deficits that affect the white

matter of the brain and the spinal cord. These are caused by

autoreactive T cells that attack the myelin sheath, resulting

in defective neural transmission. At least in the early stage

of the disease, there is a more or less full recovery after

each relapse, a form named relapsing-remitting phase (RR-

MS). However, more than 80 % of patients with RR-MS,

after 10–15 years, see their neurological symptoms pro-

gress unremittingly, without any relapses. At this stage, one

speaks of secondary-progressive MS.

Interferon-b is used for the treatment of patients suf-

fering from a first episode suggestive of MS (clinically

isolated syndrome) and of patients with RR-MS. Pivotal

studies have shown a reduction in the frequency of relapses

by about 30 % over 2–3 years of treatment with IFN

(reviewed in [228]). In a large clinical trial, administration

of IFN-b was shown to marginally, but still significantly,

decrease the rate of accumulation of disability over 3 years

[229]. However, once the secondary progressive stage of

the disease is reached, these therapies lose their efficacy,

suggesting that IFN-b acts more on the inflammatory than

on the neurodegenerative phase of the disease.

Interferon-a has also been studied as a treatment

modality in MS. In one small study, IFN-a-2a (recombinant

IFN-a produced in Escherichia coli) has been found to be

effective in reducing exacerbations in MS patients as

compared to placebo [230]. Additional encouraging find-

ings have been reported in a trial of natural human

leukocyte IFN-a in MS patients [231]. However, several

reports have appeared on the potential of recombinant

IFN-a to exacerbate the course of MS, including in patients

with the progressive form of the disease [232, 233]. An

MS-like syndrome has also been reported in a patient with

chronic myeloid leukemia treated with IFN-a [234]. Thus,

currently, IFN-a is not recommended as a treatment for MS.

Autoreactive lymphocytes are traditionally considered

to be the primary immuno-pathogenic mechanism in MS

for several reasons: (1) the adoptive transfer of myelin-

specific autoreactive T cells induces EAE in mice [235],

(2) perivascular cuffs of T lymphocytes are found in the

center of demyelinating lesions in the white matter in

human MS [236], (3) there is an oligo-clonal expansion of

CD8? T cells in brain lesions of MS patients, suggesting

that these cells recognize an antigen in the central nervous

system [237], (4) the central role of T cells is supported by

genetic association of specific HLA alleles with MS [228],

and (5) B cell infiltration and immunoglobulins are detec-

ted in MS lesions [238].

However, despite a sustained effort in research, the

precise etiology(ies) of MS remain(s) to be established.

Comprehensive studies of the adaptive immunity have not

provided the whole picture of its immuno pathogenesis,

which points to the fact that MS is a complex and/or het-

erogeneous disease. In particular, no consistent auto-

antigen has been found. Therefore, an alternative model

proposes a pivotal role of a dysregulated innate immune

response that may impact the adaptive immune system by

the generation of autoreactive T and B cells [239, 240].

Interestingly, experimental evidence highlights a role for

inflammasome components and IL-1 in EAE progression,

as mice deficient for caspase-1, ASC, NLRP3, IL-1RI, or

IL-1a/b were significantly protected, while EAE in animals

deficient for IL-1Ra showed exacerbated progression [20,

241–244]. The fact that IFN-b targets the innate at least as

much as the adaptive arm of the immune system supports

the aforementioned hypothesis [245].

Proposed mechanisms of IFN-b efficacy in multiple

sclerosis

Originally, the efficacy of IFN-b in MS was attributed to its

ability to decrease inflammatory cytokine production while

increasing the expression of anti-inflammatory mediators

[191, 192, 194–198, 206]. Of note, monocytes derived

from IFN-b-treated MS patients produced significantly

lower amounts of IL-1b upon ex vivo challenge with

inflammasome activators, as compared to monocytes from

healthy donors [188]. This suggests that the efficacy of

IFN-b treatment might in part be caused by this anti-

inflammatory mechanism. Moreover, the pro-apoptotic

effects on activated autoreactive T cells, which cause

damage in the central nervous system, were believed

to contribute to IFN-b effectiveness in MS treatment

[192, 194, 195, 246]. Later studies added IFN-b-activated

STAT3 signaling as a main player in the anti-inflammatory
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effects. It does so by promoting the expression of Src

homology phosphatase-1, an inhibitor of cytokine signal-

ing, and blocking the activation of inflammatory mediators,

such as NF-jB and STAT6 [247–249].

Moreover, IFN-b has been proposed to negatively

influence trafficking of immune cells to the inflamed cen-

tral nervous system. One mechanism involves the

inhibition of lymphocyte egress from lymph nodes.

Sphingosine 1-phosphate receptor-1 is required for this

process and is negatively regulated by type I IFNs, thus

reducing the number of circulating effector T cells [250].

In addition, IFN-b also decreases the ability of T cells to

migrate to the central nervous system by stabilizing the

blood–brain barrier, downregulating integrin expression on

T cells, and affecting the function of matrix metallopro-

teases, which are important for cell migration and adhesion

[177, 251–254].

More recently, the Th17-opposing effects of type I IFNs

have gained attention. In fact, studies in MS patients and

EAE have shown that Th17 cells are involved in these

autoimmune manifestations [255]. Interferons could

therefore also exert their beneficial effects in the treatment

of MS by hindering the development of Th17, a possible

mechanism being the reduction of IL-1 levels [120].

Only about two-thirds of MS patients respond well to

treatment with IFN-b in terms of decreased relapse rates

and fewer new brain and spinal cord lesions [256].

Identifying so-called ‘non-responders’ prior to the initia-

tion of therapy is of obvious clinical interest, and multiple

studies have looked at ways to predict a patient’s

‘responder’ status. One study of MS patients treated with

IFN-b demonstrated that non-responder and responder

phenotypes differ in their ex vivo gene expression profiles

as assessed by magnetic resonance imaging scanning and

clinical disease activity. In particular, IL-8, an important

chemotactic mediator recruiting neutrophils to sites of

inflammation, was found to be significantly downregu-

lated ex vivo and in vitro in IFN-b treated responders but

not in non-responders. In addition, expression of a num-

ber of genes involved in either regulation of proliferation

or apoptosis were modified in responders towards an anti-

proliferative pro-apoptotic state. In non-responders, how-

ever, this shift was either absent or observed to a

significantly lesser degree [257]. Another study has sug-

gested that high concentration of IL-17F, another member

of the IL-17 family, in the serum of patients with RR-MS

is associated with non-responsiveness to IFN-b therapy

[258]. Furthermore, it has been proposed that, in certain

subpopulations of MS patients, IFN-b treatment could

worsen the disease [259]. This differential response to

therapy highlights the fact that MS is a heterogeneous

disease and that other factors, such as genetic ones, are

important players in the susceptibility to the treatment

[238].

Adverse effects and drawbacks of IFN treatment

Just as any treatment, type I IFNs can have side effects. Up

to 75 % of patients treated with IFN-b experience flu-like

symptoms such as fever, headache, muscle pain, fatigue,

and chills [260]. The most common observed laboratory

abnormalities are elevation of liver enzymes and leuko-

penia. These changes are seldom serious, generally

reversible, and rarely warrant the discontinuation of the

treatment [261–267]. However, reports on fulminant liver

failure as well as on unmasking of pre-existing autoim-

mune hepatitis or psoriasis do exist [268–270]. Hence, the

regular monitoring of liver enzymes is recommended.

Reports of depression associated with IFN therapy (both

IFN-a and -b) are well known. However, controversy still

exists on whether it is caused by IFN. For instance,

depression is quite common in MS patients irrespective of

the treatment they are undergoing. A recent review has

described 11 cases of severe depression with suicide

attempts among patients treated with IFN-b who had no

prior psychiatric history [271]. Yet, other studies found no

evidence to support the claim that IFN-b can cause or

exacerbate depression [272].

Occasionally, IFN therapy can lead to the development of

autoimmune manifestations in the form of SLE, arthritis, and

diabetes [97, 149, 151]. However, most of these complica-

tions resolve upon discontinuation of treatment. Rarely, a

syndrome resembling thrombotic thrombocytopenic pur-

pura with fever, thrombocytopenia, and renal failure has

been reported in MS patients treated with IFN-b-1a [260].

In addition, chronic therapy with IFN-b can be associ-

ated with development of antibodies neutralizing IFN. In

initial trials of different IFN-b preparations in MS patients,

frequencies of neutralizing antibodies varied from 7 to

42 % [262, 273–275]. However, these percentages often

depend on the method used to detect antibodies. It has

previously been reported that up to 80 % of serum samples

from patients treated with IFN-b for more than 1 year

contained measurable amounts of neutralizing antibodies

when assessed with an optimized assay [276]. It has been

demonstrated that the presence of antibodies against IFN-b
in the sera of MS patients may reduce the clinical efficacy

of this medication as manifested by increased relapse rates

[277]. Switching the therapy is recommended for neu-

tralizing antibody-positive patients that have experienced

worsening of their disease course. However, provided that

the patient is without exacerbations on IFN-b treatment, it

is generally not necessary to check the neutralizing anti-

body status.
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Potential clinical treatments based on type I IFN

Excessive inflammatory reactions can originate from a

disproportioned inflammatory response or from a mal-

functioning control mechanism, and can have an acquired

or a genetic origin. In fact, we define a wide range of

pathological manifestations with the term ‘inflammatory

disorders’, all sharing inflammatory features, but resulting

from profoundly different causes [278]. Thus, the spectrum

of inflammatory diseases spans from pure ‘auto-inflam-

matory’ ones, which are disorders without any involvement

of the adaptive immune system, to classical autoimmune

pathologies.

The origin of several auto-inflammatory diseases can

be solely attributed to deregulated IL-1 signaling [27].

This is the case for diseases such as cryopyrin-associated

periodic syndromes (CAPS; which include: familial cold

auto-inflammatory syndrome, Muckle–Wells syndrome,

and neonatal-onset multisystem inflammatory disease),

where activating mutations within the NLRP3 gene lead

to constitutive inflammasome activity [279]. The patho-

logical role of excessive inflammasome activity and IL-1

signaling in this disorder has been irrevocably proven by

the therapeutic efficacy of agents blocking IL-1 [280–

285]. Given the clear molecular basis and the straight-

forward therapeutic approaches, we do not discuss such

auto-inflammatory disorders in this review. Instead, we

focus on diseases with more complex origin, with IL-1

being involved but not being the unique cause of the

pathogenesis, and where novel therapeutic approaches are

needed.

In the following paragraphs, we therefore discuss rep-

resentative disorders with regard to the role of type I IFNs,

inflammasomes and IL-1 (as summarized in Table 2).

Familial Mediterranean fever

Familial Mediterranean fever (FMF) is manifested by fever

episodes along with local inflammatory reactions such as

peritonitis, arthritis, skin rashes, and in some cases amy-

loidosis. Patients bear mutations in the Mediterranean fever

(MEFV) gene, also known as pyrin, and such variants are

encountered with higher frequency in populations from the

Mediterranean basin and the Middle East [286, 287].

Although to date an excessive IL-1 production in FMF

patients has not been consistently measured and the nature

of mutations affecting pyrin is not firmly established, it is

clear that these patients respond to IL-1 blocking biologics

[27, 288–295]. Interestingly, IFN-a treatment was also

found to be promising in the management of colchicine-

resistant FMF patients [296]. This suggests that the ability

of type I IFN to interfere with IL-1 production may be

relevant in this therapeutic context.

Inflammatory bowel disease

Inflammatory bowel disease (IBD) is a heterogeneous

group of inflammatory disorders of the intestinal tract,

including Crohn’s disease and ulcerative colitis. Crohn’s

disease is characterized by discontinuous and transmural

inflammatory manifestations. In 2001, two independent

studies showed a clear association of this disease with

variants of NOD2, a member of the NLR family [297, 298].

Later studies identified a number of other genes as hotspots

for mutations, including IL-23R, STAT3, immunity-related

GTPase family M (IRGM), and autophagy-related 16-like 1

(ATG16L1) [299–303]. Nucleotide-binding oligomerization

domain-containing protein 2 (NOD2), immunity-related

GTPase family M protein (IRGM) and autophagy-related

protein 16-1 (ATG16L1) control autophagy, which interest-

ingly seems to be an important negative regulator of

inflammasome activity as shown in IBD models [304–306].

Furthermore, Atg16L1-deficient mice show increased intes-

tinal inflammation and IL-1 secretion [304, 306].

Whereas in Crohn’s disease the inflammation can be

found anywhere in the digestive tract, ulcerative colitis is

characterized by an inflamed large intestine and rectum,

only in some cases spreading to the small intestine. A

direct cause of ulcerative colitis is so far not known, but

environmental factors, immune dysfunction, and a pre-

sumed genetic predisposition were proposed to contribute

to disease pathology. Interestingly, IL-23R, and STAT3 are

common risk loci associated with both ulcerative colitis

and Crohn’s disease. Interleukin-23R also signals through

the transcription factor STAT3, clearly identifying the

IL-23 pathway as a key player in the development of IBD.

zInterleukin-23 plays a very important role in Th17 responses

and has been associated with autoimmune disorders, thus

highlighting the contribution of the adaptive immune branch

to this disease. However, STAT3 is also implicated in sig-

naling downstream of the anti-inflammatory IL-10, and

several reports strongly link IBD to mutations affecting IL-10

signaling [301, 307, 308].

Besides the classical anti-inflammatory treatments, anti-

TNF biologics have been successfully used in the man-

agement of IBD, and shown to prevent deleterious tissue

damage [309]. Interestingly, type I IFNs have been repor-

ted to be beneficial in the treatment of ulcerative colitis

[310, 311]. A proposed mechanism is the shift towards a

Th1 polarization mediated by type I IFNs in a Th2-pre-

dominant disease like ulcerative colitis [312].

Behçet disease

Behçet disease is a chronic multifocal inflammatory dis-

order with mucocutaneous, ocular, vascular, skeletal, and

central nervous system manifestations. Strong associations
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with specific HLA alleles have been identified, and also,

albeit less pronounced, with IL-10 and IL-23 signaling

pathways [313, 314]. Despite the strong link to certain

HLAs and the important presence of CD4? T cells in

inflamed areas, direct contribution by these HLAs to a

potential autoreactive response has not been determined

[315].

For patients refractory to traditional immunosuppressive

and anti-inflammatory therapies, encouraging results have

been observed using TNF and IL-1 antagonist, and, inter-

estingly, IFN-a [295, 316–319]. Therefore, both IL-1

inhibition and type I IFN treatment are helpful for the

management of Behçet disease, suggesting that part of type

I IFN efficacy in this context might be due to its suppres-

sion of IL-1 production.

Atopic disorders

Allergies are frequent inflammatory disorders originating

from both genetic and environmental factors. One of the

hypotheses to explain the widespread prevalence of these

disorders in developed countries relies on the hygienic

habits adopted by our society. Under these circumstances,

the immune system would compensate its inactivity

towards pathogens by attacking otherwise inert antigenic

determinants, such as pollen-derived ones [320]. None-

theless, several allergens are endowed with enzymatic

functions, thus having immuno-stimulatory properties

[321].

Atopic responses can be found in different tissues,

including skin, airway mucosa, and conjunctiva, and are

associated with Th2 polarization. In fact, Th2 inflammatory

cytokines promote all the typical features of allergic

reactions, such as excessive production of immunoglobulin

E, mast cell activation, and eosinophilia. Antibody-allergen

complexes are crucial to crosslink Fc-receptors on mast

cells, thus leading to the release of pre-stored granules

containing, among other substances, histamines.

Multiple links between IL-1 and allergy have been

reported. Firstly, IL-1 supports the production of several

chemokines and cytokines, which are involved in atopic

reactions, and can synergize with other Th2 cytokines to

activate mast cells [321–323]. Secondly, IL-1 is detected

upon allergen challenge, and mast cells are capable of

producing bioactive IL-1 [324, 325]. Besides their role in

Th17 differentiation, inflammasome activators have also

been suggested to promote Th2-biased polarization,

although a specific role for inflammasome or IL-1 in this

process has not been unambiguously shown [326–335].

Interestingly, IFN treatment alleviates asthma; this could

rely on a type I IFN-induced Th2 to Th1 shift, and the

suppression of IL-1 production could also contribute to this

effect [336].

Cancer

Our understanding of the interplay between inflammation

and cancer has profoundly changed. A decade ago, an

increased inflammation within tumor environment was

perceived as a potentially beneficial feature, able to attract

and activate immune cells. However, there is now

increasing evidence that inflammation can also exert det-

rimental effects, favoring tumor growth, angiogenic switch,

and metastasis [337]. This makes IL-1 a double-edged

sword, which in some settings favors tumor regression, but

in others helps its progression (for a more detailed dis-

cussion, see [46, 338]).

Interferon-a therapy has proven efficacious for treating

several virus-associated tumors, myeloproliferative disor-

ders, hairy cell leukemia, and melanomas, particularly

ulcerated ones, as discussed in the section ‘‘Therapeutic use

of type I IFNs in viral and neoplastic diseases’’ [224, 226].

Besides its pro-apoptotic features, the anti-angiogeneic

properties of type I IFNs could play an important role in the

case of solid tumors [339].

Interestingly, the properties of IL-1 in promoting

myeloproliferation through positive regulation of granulocyte–

macrophage colony-stimulating factor, and in induction of

vascular endothelial growth factor have been consistently

reported [14, 340–343]. This suggests that the action of

IFN-a on IL-1 production might also contribute to the

suppressive effects of IFNs on myeloproliferative disorders

and angiogenesis.

Concluding remarks

As discussed, IFN therapies are effective in the management

of viral, malignant, and autoimmune disorders. It goes

without saying that in diseases of viral origin, such as hep-

atitis, the contribution by IFNs in controlling viral load is

crucial. Nonetheless, suppression of certain inflammatory

components can be beneficial in all these diseases. Indeed,

the anti-inflammatory effects of IFN-a and -b have been

recognized in sterile and infectious experimental models as

well as in the clinic. The strongest evidence for the surprising

anti-inflammatory role of type I IFNs comes from the

treatment of MS, where pro-apoptotic, immunomodulatory,

and anti-inflammatory effects of IFN-b converge to a ben-

eficial outcome. Whereas IFN-b is virtually uniquely used in

the treatment of MS, the therapeutic administration of IFN-a
ranges from viral infections to tumors. However, a com-

prehensive analysis of the possible molecular mechanisms

behind this divergent use of type I IFNs is so far missing.

One important feature of inflammatory pathologies

resides in the nature of the inflammation; at one extreme,

we can place disorders of pure innate origin. In many of
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these pathologies, IL-1 plays an important role, as wit-

nessed by the efficacy of treatments targeting this cytokine.

It is, however, important to mention that in some auto-

inflammatory syndromes, a possible contribution of auto-

reactive T and B cells has so far been disregarded. At the

opposite end of the inflammatory disease spectrum are rare

monogenic autoimmune disorders affecting the adaptive

immune system, such as autoimmune polyendocrinopathy

syndrome. Inbetween these extremes, there are disorders

that involve both innate and adaptive immune cells.

Recently, the effectiveness of anti-IL-1 treatment is

becoming appreciated in disorders with such complex eti-

ology as Behçet or Type 2 diabetes. These observations

encourage extending the use of anti-IL-1 agents, which are

specific, safe, and well tolerated [283–285].

In addition, experimental results point to a crucial con-

tribution of IL-1 in a number of inflammatory syndromes,

including those currently treated with IFNs. Given the

strong ability of type I IFNs to dampen IL-1 production, it

is conceivable that IFNs might be considered as anti-

inflammatory agents in a broader range of complex

inflammatory diseases where a role for IL-1 has been

reported. The combined administration of type I IFNs

together with IL-1 neutralizing agents might enforce the

anti-inflammatory properties of IFNs, thus increasing

treatment efficacy. Possibly, this may also allow the

reduction of the administered dose of IFNs, thereby

improving tolerability.

However, the effects of IFNs are pleiotropic and their

use warrants caution because of their potential side effects.

Instead of broadening the use of type I IFNs in the clinic,

we might take advantage of the growing knowledge on the

multiple anti-inflammatory effects of type I IFNs and use

agents that specifically target selected pathways down-

stream of these cytokines. Such approaches might represent

valuable alternatives to the use of IFNs. We have high-

lighted how therapies targeting IL-1 signaling can mimic

one of the important anti-inflammatory effects of IFNs.

Another example are sphingosine analogs, which have

been recently approved for MS treatment and that act by

sequestering lymphocytes within lymph nodes. Finally, it is

possible that IL-1-blocking agents could be well comple-

mented by or even synergize with treatments that target

other specific aspects of inflammatory diseases and could

therefore provide an even more efficient therapy.
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