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Abstract: Nanoparticles (NPs) are in clinical use or under development for therapeutic imag-

ing and drug delivery. However, relatively little information exists concerning the uptake and 

transport of NPs across human colon cell layers, or their potential to invade three-dimensional 

models of human colon cells that better mimic the tissue structures of normal and tumoral colon. 

In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic 

iron oxide nanoparticles (USPIO NPs) (iron oxide core 9–10 nm) coated with either cationic 

polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells 

was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the 

anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in 

HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA 

USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas 

oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA 

USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels 

across the tight CacoReady™ intestinal barrier model or the more permeable mucus-secreting 

CacoGoblet™ model.

Keywords: iron oxide nanoparticles, human colon cells, spheroids, transport, gastrointestinal 

barrier

Introduction
Recent developments of diagnostic and therapeutic technologies in medicine include 

nanotechnologies to improve the early detection and treatment of human diseases.1,2 

However, there is an urgent need to better understand the mechanisms of the interaction 

of nanomaterials, including nanoparticles (NPs), with living tissues, and to define the 

consequences of these interactions in order to assess the potential risks associated 

with nanotechnologies. In particular, there is a need to define the potential of NPs to 

be internalized by representative cells of tissues, or to be transported across biological 

cell barriers or inside three-dimensional models of either normal or diseased tissues for 

drug delivery and/or theranostic procedures. The development and use of nanomaterials 

by industry and for therapeutic purposes elevates the potential of human exposure 

through various routes, including the gastrointestinal tract.

Ultrasmall super paramagnetic iron oxide nanoparticles (USPIO NPs) were 

developed for magnetic resonance imaging (MRI) of the reticuloendothelial system 

such as the liver, spleen and lymph nodes, for perfusion imaging of the brain, 

myocardium, and kidney, and for angiography and tumor vascular imaging.3–5 

Dextran-coated USPIO NPs are now in clinical use for disease detection by MRI. 
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However, there are few reported precedents of the evaluation 

of the uptake and transport of USPIO NPs by human colon 

cells in two-dimensional barrier models or three-dimensional 

cellular models, the intracellular localization of these USPIO 

NPs following uptake, or their effect on the intestinal barrier 

following exposure.6

Multiple applications of USPIO NPs with different 

coatings are under development as new contrast and 

theranostic agents for colon and especially colon cancer 

imaging and treatment.7–9 The imaging purpose that these NPs 

will be used for determines whether they will be required to 

be able to cross biological barriers. To transport therapeutic 

agents and achieve intracellular drug delivery, USPIO NPs 

must be able to be internalized and transported by colon 

cells into deep layers of the tissue. Surface properties, 

charge, size, shape, and the engineered surface functional-

ization of NPs are important for their interactions (such as 

cell uptake, transport, or stress reactions) with cells.10,11 In 

particular, surface charges and biochemical properties of 

NPs will determine the adsorption of biological molecules, 

the “corona.”12

The present study focused on the interactions between 

USPIO NPs possessing cationic or anionic surface coat-

ings and human colon carcinoma cells. The USPIO NPs’ 

potential to be taken up by monolayers of the colon cells was 

investigated, as was their ability to invade three-dimensional 

cell spheroid structures of the colon cells. Using electron 

microscopy to detect the NPs’ iron oxide cores, it was pos-

sible to determine their cellular localization. The effect of 

USPIO NPs on colon barrier integrity was demonstrated 

using two different models of the gastrointestinal barrier, 

and the probability of their transport across these intestinal 

barrier models was evaluated.

Methods
USPIO NPs
Oleic acid-coated ultrasmall superparamagnetic iron oxide 

USPIO NPs (oleic acid-coated USPIO NPs) are commer-

cially available and were provided with physicochemical 

characterization by the provider. Oleic acid-coated USPIO 

NPs (Fe
3
O

4
, 3% oleic acid coating) were obtained from 

PlasmaChem (PlasmaChem GmbH, Berlin, Germany) as 

an approximately 7% nanosuspension in water, with average 

particle iron oxide core size 8 ± 3 nm, hydrodynamic size 

14–15 nm (determined by DLS), and zeta potential -30 mV 

at pH 7 (values provided by PlasmaChem). The size of the 

iron oxide core was confirmed by transmission electron 

microscopy (data not shown). The size of oleic acid-coated 

NPs in DMEM plus FCS cell culture medium displayed a 

bimodal size distribution of 25 and 150 nm as determined by 

DLS, and this size was stable toward further agglomeration 

for 3  days (information provided by D Bilanicova and G 

Pojana, University of Venice, Italy; M Dusinska and the 

NanoTEST Consortium, manuscript in preparation).

The preparation and physicochemical characterization of 

polyvinylalcohol/polyvinylamine USPIO NPs (aminoPVA 

USPIO NPs) has previously been described.13–15 Briefly, 

ferrofluid was prepared by alkaline co-precipitation of ferric 

and ferrous chlorides, reflux in nitric oxide-ferrous nitrate, 

and dialysis providing iron oxide nanoparticles (ferrofluid) of 

9 nm. To obtain aminoPVA-coated USPIO NPs the ferrofluid 

was mixed with poly(vinylalcohol) (PVA), poly(vinylalcohol/

vinylamine)(aminoPVA) at a 10:1 ratio of polymer to iron 

and a 45:1 ratio of PVA to aminoPVA copolymer (by mass), 

resulting in USPIO NPs of an hydrodynamic diameter of 

25–30 nm and a zeta potential of +25 mV. The iron content 

of the preparations of aminoPVA-coated USPIO NPs and 

oleic acid-coated USPIO NPs was determined by quantitative 

Prussian blue reaction according to a previously described 

protocol.15,16 The size of aminoPVA USPIO NPs size was 

determined in DMEM plus FCS cell culture medium by 

turbidity and photon correlation spectroscopy (PCS)17 show-

ing that their size remained stable at their initial 40 nm for up 

to 9 days in this medium. No agglomeration was observed. 

AminoPVA-coated and oleic acid-coated USPIO NPs in 

suspension in water were diluted immediately before use in 

cell culture medium and then serially diluted in cell culture 

medium.

Uncoated USPIO NPs immediately agglomerate in 

culture medium containing FCS, resulting in agglomerates 

of large dispersion size with an average size of 910 nm, as 

determined by DLS and electron microscopy.16 Preliminary 

experiments in the absence of cells (empty Transwells) using 

Transwell devices of different membrane pore size and 

composition have shown that these agglomerates are trapped 

on and in the membrane, and cannot be transported even in 

the absence of cells or in the presence of a strong dynamic 

magnetic field. Thus these USPIO NPs were not evaluated 

in the present report.

Cell models and culture conditions
Human HT-29 and Caco-2 colon carcinoma cells from 

the American Type Culture Collection (ATCC, Manassas, 

VA) were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) containing 4.5 g/l glucose, 10% FCS, and antibi-

otics as monolayer cultures (all cell culture reagents were 
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purchased from Gibco, Invitrogen, Basel, Switzerland). 

For three-dimensional cell cultures (spheroids), HT-29 or 

Caco-2 cells were grown in 75 cm2 flasks (Nunclon, Milian, 

Geneva, Switzerland) until 90% confluent. Cells were 

detached in trypsin-EDTA (Gibco) and grown in complete 

medium in 10 cm diameter low-adherence bacterial-grade 

Petri dishes (Sarstedt, Sevelen, Switzerland) to give three-

dimensional spheroids after 3–4 days of culture. For transport 

experiments using the CacoReady™ model (Readycell, 

Barcelona, Spain), the HT-29 and Caco-2 cells used by the 

company Advancell (Barcelona, Spain) to develop the bar-

rier model were initially obtained from Dr FX Real (Institut 

Municipal d’Investigació Mèdica, Barcelona). Caco-2 cells 

(82.5 × 104 cells/cm2 in 0.3 mL of complete medium in the 

apical upper compartment and 0.9 mL of complete medium 

in the basal chamber of Transwells® inserts) were cultured 

on 24-well polycarbonate filters (Costar, polycarbonate 

membrane, pore diameter = 3 µm, 24 inserts per plate) for 

14 days in DMEM 1 g/l glucose supplemented with 10% 

FCS, 2  mM glutamine, 1  U/mL penicillin, and 1  U/mL 

streptomycin, then for 4 days of culture in semi-solid shipping 

medium, and again for 3 days in regular culture medium (for 

a total of 21 days of culture). For the CacoGoblet™ model 

(Readycell, Barcelona, Spain), a mix of equal volumes of 

Caco-2 and HT-29-M6 goblet cells (metothrexate-adapted 

HT-29-M6 clone) were cultured under the same conditions.

Cell uptake of USPIO NPs
Cells were grown in 48-well plates (Costar) until 75% conflu-

ent, then exposed to USPIO NPs at the concentration and for 

the time indicated. The plates were washed three times with 

saline (0.9% NaCl (w/v)) and cell-associated iron quantified 

as previously described.14–16 Briefly, to quantify cellular iron 

content cell layers were dissolved at room temperature for 

1 hour in 6 N HCl (125 µL/well of a 48-well plate), then 

125  µL of a 5% solution of K
4
[Fe(CN)

6
] ⋅ 3H

2
O (Merck, 

VWR international, Nyon, Switzerland) in H
2
O was added 

for 10 minutes, and the absorbance was read at 690 nm in 

a multiwell plate reader (iEMS Labsystems, BioConcepts, 

Allschwil, Switzerland). A standard curve of iron chloride 

in 6 N HCl treated under the same conditions was used to 

quantify the amount of cell-bound iron. All experiments were 

performed in triplicate wells, and repeated at least twice.

On the day of the experiment, the spheroids were centrifuged 

for five minutes at 1000 rpm at room temperature and gently 

mixed with fresh complete medium containing aminoPVA 

USPIO NPs (final iron concentration = 21 µg/mL) or oleic 

acid-coated USPIO NPs (final iron concentration = 45 µg/mL), 

and incubated with the USPIO NPs in a 10 cm diameter dish 

for either 2 hours or 24 hours, centrifuged for 5 minutes at 

1000 rpm, washed twice with 5 mL phosphate-buffered saline, 

and then centrifuged for 5 minutes at 1000 rpm. The spher-

oid pellet was fixed in 4% buffered formaldehyde (Merck, 

Darmstadt, Germany) for 30 minutes at room temperature, 

centrifuged for 10 minutes at 1000 rpm, and then fixed in 

the cell block preparation system (Shandon Cytoblock® Kit, 

Thermo Scientific, Pittsburgh, PA), centrifuged for 5 minutes 

at 1500 rpm (Cytospin 3, Shandon), dehydrated and embed-

ded in paraffin, and then histological slides (5  µm) were 

prepared.

Histochemical determination of iron
After exposure to USPIO NPs the cell layers or the spher-

oids were washed with saline, f ixed in 4% buffered 

paraformaldehyde at 4°C for 30  minutes, and incubated 

for 20  minutes at room temperature with a 1:1  solution 

of 1 M HCl and 10% K
4
[Fe(CN)

6
] ⋅ 3H

2
O in H

2
O, washed 

with distilled water, counterstained with Nuclear Fast Red, 

dehydrated in graded ethanol to xylol, and mounted. Slides 

were photographed under a Nikon digital camera (DXM 

1200; Nikon Corporation, Tokyo, Japan).

Evaluation of cell viability
Cells were grown in 48-well cell culture plates (Costar, 

Corning, NY) until 75% confluent, exposed to USPIO 

NPs at the concentration and for the time indicated, then 

washed in saline. Cell viability was evaluated using the 

3,4,5-dimethylthiazol-yl-2,5-diphenyl tetrazolium bromide 

(MTT) assay (Sigma-Aldrich, Buchs, Switzerland) 

added to the cells in fresh complete culture medium at a 

250 µg/mL final concentration. After 2 hours the supernatant 

was removed, and the precipitated formazan was dissolved 

in 0.1 N HCl in isopropanol and quantified at 540 nm in a 

multiwell plate reader (iEMS Labsystems).

Transmission electron microscopy  
and elemental analysis
At the end of exposure to the USPIO NPs, the cells were 

washed twice with phosphate-buffered saline, fixed in 

2% glutaraldehyde buffered in 0.1 M cacodylate for 1 hour at 

4°C, then washed in 0.2 M cacodylate at 4°C (three times for 

10 minutes), gently scraped in 0.2 M cacodylate, and harvested 

by centrifugation (5 minutes at 1000 rpm). The pellets were 

coated with agarose (type III low gelling temperature, Sigma) 

and cut in small pieces. The samples were postfixed in 1%–2% 

buffered osmium tetroxide for 1 hour at room temperature, 
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washed in 0.2 M cacodylate (twice for 5 minutes), dehydrated 

in graded ethanol (twice for 10  minutes in 70% ethanol, 

twice for 10 minutes in 90% ethanol, and three times for 

20 minutes in 100% ethanol), dehydrated again in propylene 

oxide (twice for 30 minutes), embedded in equal volumes of 

propylene oxide and Epon (50% Epon 812 substitute, 26% 

dodecenylsuccinic anhydride, 23% methyl nadic anhydride, 

1% 2,4,6-tris(dimethylaminomethyl)phenol) (all figures w/w, 

all materials from Fluka, Buchs, Switzerland) for 1 hour, and 

then for 16 hours in Epon.

Specimens were embedded in Epon blocks that were 

cured for 48 hours at 60°C, and then trimmed and cut into 

100 nm sections and mounted on slides for post-visualization 

by methylene blue/azur blue staining. Thin sections (50 nm) 

were cut from the cured blocks using an ultramicrotome 

(Ultracut E, Reichert-Jung Optische Werke AG, Wien, 

Austria) and mounted on 3-mm 200-mesh copper grids. 

Grids were heavy-metal stained using a standard two-step 

uranyl acetate/lead citrate technique (Leica EM Stain) and 

then examined and photographed at 80 kV with a Philips 

CM12 transmission electron microscope (Amsterdam, The 

Netherlands) combined with a MegaView III, Soft Imaging 

System (Gloor Instruments, Uster, Switzerland). Elemental 

analysis of iron was performed by an electron detection 

X-ray (EDAX, EDX-4), coupled to the CM12 transmission 

electron microscope.

USPIO NPs transport
Evaluation of the transport of USPIO NPs by CacoReady 

and CacoGoblet was performed after 21  days of culture 

when the cells were completely differentiated as assessed 

by transepithelial electrical resistance measurements. Both 

the apical and basal chambers were washed twice with Ca2+/

Mg2+ Hank’s balanced salt solution (HBSS) buffer (Gibco) 

supplemented with 5 mM glucose. USPIO NPs (100 µg/mL 

or 70 µg/mL iron) diluted in HBSS buffer were applied to 

the apical chambers while basal chambers were filled with 

HBSS buffer without USPIO NPs. After 0, 2, 6, and 24 hours 

of incubation, 50 µL of medium was removed from the basal 

chambers and analyzed for iron content with the Prussian 

blue reaction (see above). The volume in the basal chamber 

was maintained by adding 50 µL of fresh medium after each 

sampling point. Parallel experiments were performed in the 

absence of cells (empty membranes). The effect of USPIO 

NPs on CacoReady and CacoGoblet barriers was assessed 

by Lucifer yellow permeability measurement after the end 

of the assay (24 hours of exposure to USPIO NPs). Lucifer 

Yellow-HD (Sigma-Aldrich) solution at a final concentration 

of 200 µM in HBSS buffer was added to the apical chamber 

and incubated for 1 hour at 37°C, and 100 µL of the medium 

in the basal compartment was analyzed in a multiwell plate 

fluorescence reader at 485 nm/530 nm excitation/emission 

wavelength, respectively.

Statistical analysis
Each experiment was repeated in triplicate wells at least 

twice. Means and standard deviations (SDs) were calculated, 

and statistical significance was assessed using Student’s 

t-test.

Results
Uptake of USPIO NPs by monolayers  
of human colon cells
Previous research has shown that positive charges at the surface 

of aminoPVA-USPIO NPs are necessary for their uptake by 

cells, including human cells, since aminoPVA-coated (but 

not carboxylate-PVA-coated or PVA-coated) USPIO NPs 

were internalized by the cells.14,16 Therefore, the association 

of these previously described cationic aminoPVA USPIO NPs 

(Figure 1) with HT-29 and Caco-2 human colon cells was 

compared to their association with anionic oleic acid-coated 

USPIO NPs (Figure 2), as determined through the evaluation 

of cell-associated iron by histological or quantitative Prussian 

blue reaction. In both cell lines, the association of aminoPVA 

USPIO NPs dose-dependently increased with time (Figure 1), 

while anionic USPIO NPs were only poorly associated with 

colon cells and this association did not increase with longer 

exposure time (Figure 2). For these USPIO NPs, the iron 

content in the cell layers was below the detection limit of 

the Prussian blue method. Therefore, cationic USPIO NPs 

associated with human colon cells to a larger extent than 

anionic USPIO NPs. Similar results were obtained in both 

cell lines (data of the histological Prussian blue reaction are 

not shown for HT-29 cells).

An MTT test was used to evaluate cell metabolic activity 

to determine whether uptake resulted in a cytotoxic effect for 

the cells. Neither aminoPVA nor oleic acid-coated USPIO NPs 

inhibited cell metabolic activity except for the highest con-

centrations of oleic acid-coated USPIO NPs tested (Figure 3A 

and B) in both cell lines after 24 hours of exposure.

It was demonstrated through the use of transmission 

electron microscopy that the iron oxide core of these 

aminoPVA USPIOs was localized in granular structures 

inside HT-29 cells, with microscopy performed after either 

6 hours (Figure 4A) or 24 hours (Figure 4B). The presence 
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of iron was confirmed after 24 hours by elemental analysis 

(Figure 4D), and it was found that more iron was associ-

ated with HT-29  cells and that this was located closer to 

the nucleus after 24 hours. For the purpose of comparison, 

cell-associated iron was quantified by quantitative Prussian 

blue reaction (Figure 4C).

Uptake of USPIO NPs by spheroids  
of human colon cells
HT-29 cells form well-structured spheroids.  After 2 or 24 hours’ 

exposure, it was determined whether aminoPVA USPIO NPs 

have the potential to invade three-dimensional spheroids of 

HT-29. The results showed that the iron oxide core of very 
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Figure 1 Time-dependent uptake of aminoPVA-coated USPIO NPs by Caco-2 and HT-29 cells. (A) Caco-2 cells were grown to 75% confluence, then were exposed for 6 or 
24 hours in complete culture medium to 20 µg/mL aminoPVA USPIO NPs. Then cells were stained with Prussian blue and Nuclear Red histological stains (iron blue, nucleus 
red, cytoplasm pink). (B) Caco-2 and HT-29 cells were grown to 90% confluence, then they were exposed for 6 hours (grey line) or 24 hours (black line) in complete culture 
medium to increasing concentrations of aminoPVA USPIO NPs and the cell-associated iron content of the cell layer was quantified using the Prussian blue reaction.
Abbreviations: aminoPVA, polyvinylamine; USPIO NPs, ultrasmall superparamagnetic iron oxide nanoparticles.
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few aminoPVA USPIO NPs could be detected by the Prussian 

blue reaction at the surface of the spheroids after 2 hours’ 

exposure, whereas after 24 hours’ exposure a large number of 

aminoPVA USPIO NPs could be demonstrated at the surface 

as well as in deeper layers of the spheroids (Figure 5A). This 

demonstrated their potential to invade three-dimensional 

colon tissue structures.

The invasion of spheroids of either HT-29 or Caco-2 cells 

was compared after 24  hours by aminoPVA USPIO NPs 

and oleic acid-coated USPIO NPs (Figure 5B). Caco-2 cells 

Oleic acid-USPIO NPs
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Figure 2 Time-dependent uptake of oleic acid-coated ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) by Caco-2 and HT-29 cells. (A) Caco-2 cells were 
grown to 75% confluence, then were exposed for 6 or 24 hours in complete culture medium to 20 µg/mL oleic acid-coated USPIO NPs. Then cells were stained with Prussian 
blue and Nuclear Red histological stains (iron blue, nucleus red, cytoplasm pink). (B) Caco-2 and HT-29 cells were grown to 90% confluence, then they were exposed for 
6 hours (grey line) or 24 hours (black line) in complete culture medium to increasing concentrations of oleic acid-coated USPIO NPs and the cell-associated iron content of 
the cell layer was quantified using the Prussian blue reaction.
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Figure 3 Cytotoxicity of aminoPVA- and oleic acid-coated USPIO NPs for colon 
carcinoma cells. Caco-2 cells (black line) and HT-29 cells (grey line) were exposed 
for 24 hours to aminoPVA-coated (A) and oleic acid-coated (B) USPIO NPs, then 
an MTT test was performed to ascertain cytotoxicity.
Notes: Means ± standard deviation were calculated, and statistical significance was 
assessed using Student’s t-test; *P , 0.05, exposed cells compared to control cells
Abbreviations: aminoPVA, polyvinylamine; USPIO NPs, ultrasmall superpara
magnetic iron oxide nanoparticles.

form smaller and less cohesive spheroids than HT-29 cells. 

Whereas the presence of the iron oxide core of aminoPVA 

USPIO NPs was observed inside spheroids of both cells, the 

presence of the iron oxide core of oleic acid-coated USPIO 

NPs was observed only in spheroids of Caco-2 cells.

Transport of USPIO NPs by colon cells
The ability of two different cellular experimental models of 

the gastrointestinal barrier (the tight CacoReady model and 

the more permeable mucus-secreting CacoGoblet model) to 

transport cationic and anionic USPIO NPs was evaluated. 

Cells were exposed to the USPIO NPs for 24 hours after which 

LY permeability was assessed, and this demonstrated that the 

presence of USPIO NPs did not affect the integrity of the 

CacoReady and CacoGoblet barriers (results not shown). The 

transport experiments performed for a 24-hour time-course 

showed that whereas the USPIO NPs were transported across 

empty Transwell membranes, neither gastrointestinal barrier 

models efficiently transported the USPIO NPs (Figure 6). The 

noncumulated amount of USPIO NPs in the basal compart-

ment of the device showed that oleic acid-coated USPIO NPs 

transfer less across the membrane than the aminoPVA USPIO 

NPs, with most of the transfer of oleic acid-coated USPIO 

NPs being achieved within 2 hours.

Discussion
The success of a nanoparticle-based therapy depends largely 

on the behavior of the NPs in the tissue microenvironment and 

their interactions with cells forming the tissue. The present 

study focused on the mechanisms of uptake and transport 

of cationic and anionic ultrasmall superparamagnetic iron 

oxide NPs (USPIO NPs) by human colon cells. USPIO 

NPs composed of a 9 nm monocrystalline core coated with 

polyvinylamine/polyvinylalcohol (aminoPVA USPIO NPs) 

for biological compatibility and stability had previously been 

developed.13,14 These cationic aminoPVA USPIO NPs with 

a defined number of positive amino groups at their surface 

have been shown to have the potential to be internalized by 

cells with their polymers15 even when the polymers were 

chemically functionalized with anti-cancer drugs,18,19 and 

that internalization was dependent on the positive charges at 

their surface. In the current study, the behavior toward human 

colon cancer cells of these cationic aminoPVA USPIO NPs 

was compared with anionic oleic acid-coated USPIO NPs 

with comparable core and hydrodynamic sizes. Whereas 

human colon cells efficiently internalized the cationic 

USPIO NPs in a time- and concentration-dependent man-

ner, the uptake of the anionic USPIO NPs was very low (to 

the extent that it was hardly detectable by the Prussian blue 

method) and did not increase with longer exposure times. 

Electron microscopy images of HT-29 cells suggested that 

aminoPVA USPIO NPs were localized intracellularly in the 

endosomal/lysosomal compartment and that they retained 

their initial nanometric dimension for 24 hours. A number of 

recent in vitro and in vivo studies highlight the importance 

of NP surface charge for cellular uptake and biodistribu-

tion,20–22 indicating that for most particles a positive charge 

at their surface enhances cellular internalization,22–24 which 

is very likely linked to the adsorption of different biological 

molecules at the surface of NPs (the corona) dependent on 

surface charge and chemical characteristics.12

Another important issue when considering NPs for 

therapeutic purposes is their potential to penetrate tissues. 

Three-dimensional cell culture models have been developed 

in order to mimic tissue structure better than is possible with 

two-dimensional monolayer cell cultures. Three-dimensional 
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Figure 4 Cellular localization of aminoPVA-coated USPIO NPs in HT-29 cells. (A) After 6 hours of exposure, transmission electron microscopy images demonstrated that 
the iron oxide core of aminoPVA USPIO NPs (21 µg Fe/mL) was localized in intracellular organelles of HT-29 cells. (B) After 24 hours of exposure the iron oxide core of 
aminoPVA USPIO NPs (21 µg Fe/mL) was localized closer to the nucleus. (C) For the purpose of comparison, cell-associated iron was quantified by quantitative Prussian blue 
reaction. (D) Elemental analysis (dotted arrow) performed confirmed the presence of iron in the area defined by the black square of the transmission electron microscopy 
images (lower panel, right).
Abbreviations: aminoPVA, polyvinylamine; USPIO NPs, ultrasmall superparamagnetic iron oxide nanoparticles.

cell models, such as normal cell aggregates or tumor 

spheroids, allow researchers to study drug penetration and 

cell-cell interactions.25–29 It has previously been shown that 

aminoPVA USPIO NPs localize exclusively in the first layer 

of nontumoral three-dimensional aggregates of differentiated 

rat brain cells,15 whereas NPs were able to penetrate into 

deeper layers of spheroids of human melanoma cells, likely 

through the use of vasculogenic mimicry structures.30

In the present study, a three-dimensional spheroid model 

system was obtained by growing HT-29 or Caco-2 cells under 

static conditions which resulted in rounded, compacted, 

and regularly shaped spheroids, for all spheroids, however, 
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Figure 5 Polyvinylamine (aminoPVA)- and oleic acid-coated ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) selectively invade three-dimensional spheroids 
of human HT-29 and Caco-2 colon carcinoma cells. (A) Human HT-29 cells in three-dimensional spheroid cultures form well-structured spheroids after 3 days. The spheroids were 
exposed to aminoPVA USPIO NPs (21 µg Fe/mL) for 2 or 24 hours, recovered, fixed, then cell-associated iron was determined on histological slides by the histological Prussian blue 
reaction (iron, blue staining; cell cytoplasm, pink; cell nuclei, red). After 2 hours aminoPVA USPIO NPs were found in very few cells (arrow) of the first layer of the spheroids, but after 
24 hours’ exposure of the spheroids they were more widely found in many cells, including in cells localized more deeply in the spheroids. (left, 100× ; right, 400× magnification). (B) 
Human HT-29 and Caco-2 cells in three-dimensional spheroid cultures were exposed to aminoPVA-coated USPIO NPs (21 µg iron/mL, left panels) and oleic acid-coated USPIO NPs  
(45 µg iron/mL, right panels) for 24 hours, recovered, fixed, then cell-associated iron (arrows) was determined on histological slides by the histological Prussian blue reaction 
(iron, blue staining; cell cytoplasm, pink; cell nuclei, red).
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Figure 6 Transport of ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) by human colon cells. Transport of polyvinylamine (aminoPVA) USPIO NPs  
(A) and oleic acid-coated USPIO NPs (B) across CacoReady™ (white bars) and CacoGobletTM (grey bars) colon barriers and across empty membrane (black bars). The initial 
concentration of iron in apical chamber was 100 µg/mL (A) or 70 µg/mL (B). Iron concentration in the basal chamber was quantified with the Prussian blue reaction. 
Note: The results represent noncumulated amounts of iron in the basal compartments at each time-point, without addition of USPIO NPs in the apical compartment.

spheroids from Caco-2 cells were less well structured and 

less cohesive than spheroids from HT-29 cells. Penetration 

of HT-29 cell spheroids was limited to the first cell layers 

after 2  hours of exposure to aminoPVA USPIO NPs, but 

after 24 hours of exposure the aminoPVA USPIO NPs were 

localized in the lower layers of the spheroids. The aminoPVA 

USPIO NPs were also able to invade deep layers of Caco-2 

cell spheroids after 24 hours of exposure. However, oleic 

acid-coated USPIO NPs could only be found in spheroids 

of Caco-2  cells, which were generally smaller and less 

cohesive than HT-29 spheroids. Thus, the uptake by the 

spheroids of oleic acid-coated USPIO NPs was dependent on 

the cancer cells considered. Therefore, for interactions with 

biological structures both the surface properties of NPs and 

the characteristics of the tissue are important.

However, neither aminoPVA-coated nor oleic acid-

coated USPIO NPs were transported across gastrointestinal 

barriers such as the CacoReady (Caco-2 cells only) or the 

CacoGoblet (Caco-2 cells and HT-29-M6 cells in co-culture) 

colon barrier models. CacoReady represents a tight bar-

rier model while CacoGoblet represents a more permeable 

mucus-secreting barrier model that mimics normal physi-

ological conditions. The differentiated Caco-2 cells alone 

or in co-culture are well characterized cellular models of 
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normal intestinal epithelium.31,32 Monolayers of these cells 

have been widely used to study the unidirectional transport 

of diverse drugs and particles from the apical to the baso-

lateral side, and these results correlate with in vivo experi-

ments.33,34 The major mechanism for drug uptake across 

the intestinal mucosa is passive diffusion where the driving 

force is a concentration gradient. The ionization state of 

the agents is important for transport. The transport of the 

drug valdecoxib entrapped in microspheres was determined 

using this model, but only the drug was analyzed in the 

basolateral side of the Transwell, and the authors postu-

lated drug release prior to transport. No attempt was made 

to evaluate whether the microspheres were transported by 

the cells.35 The current study shows that neither cationic 

aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO 

NPs were transported across these colon barriers during a 

24-hour evaluation. Thus, the ability of NPs to penetrate 

three-dimensional tissue does not predict their potential to 

cross cellular barriers such as the intestinal barrier. In the 

few available studies dealing with transport issues only a 

small number of the tested NPs (such as lipid nanocapsules 

or chitosan NPs) were successfully transported across the 

intestinal barrier model in vitro.36–38 The mobility of poly-

styrene NPs in the gastrointestinal mucus was shown to be 

strongly dependent on their surface charge and chemistry.39 

The interactions of uncoated, aminoPVA-coated, and oleic 

acid-coated USPIO NPs have been evaluated with human 

brain endothelial cells as a blood–brain barrier (BBB) model, 

with this work showing that while the cells could internalize 

the NPs, none were transported across the BBB model, even 

in the presence of a strong magnetic field.16 Thus, the BBB 

and the gastrointestinal barrier models provided comparable 

information regarding USPIO NPs transport.

Conclusion
USPIO NPs are useful MRI agents in vivo, and when 

functionalized with therapeutic or diagnostic agents – the 

so-called theranostic agents – the distribution of theranostics-

USPIO NPs in a living human will provide information on 

the biodistribution of the theranostics and their ability to 

reach their targets. Thus, the present project aimed to evalu-

ate the surface characteristics of USPIO NPs that allow or 

prevent their uptake by and transport across human colon 

cells. This would allow their potential as drug-delivering 

agents to be evaluated, as well as their potential for invading 

three-dimensional models of human colon cells, which better 

mimic the tissue structures of normal and tumoral colon than 

the two-dimensional models used in the past.

The results presented here show that cationic USPIO 

NPs are more promising than anionic USPIO NPs for their 

intracellular delivery into human colon cells, but these 

NPs will not cross an intact intestinal barrier whatever 

their charge. Nevertheless, depending on their surface 

charge and the physiological characteristics of the three-

dimensional tissue, they have the potential to invade 

three-dimensional spheroids of human colon carcinoma 

cells (which act as models of human colon cancer). These 

observations are important for the development of either 

therapeutic and theranostic NPs for the extracellular or 

intracellular delivery of therapeutic agents, or of diagnostic 

NPs for the imaging of diseases of the human gastrointes-

tinal tract.

Acknowledgments
This work was supported by grants from the Swiss National 

Scientific Research Foundation (grant no. 3152 A0-105705), 

the Swiss League and Research against Cancer (grant no. 

KLS-01308-02-2003) and the European Community FP7 

project “NanoTEST” (grant no 2007-201335).

Disclosure
The authors declare no conflicts of interest in this work.

References
	 1.	 Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med. 

2008;59:251–265.
	 2.	 Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications 

in medicine. Curr Opin Biotechnol. 2007;18(1):26–30.
	 3.	 Wang YXJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide 

contrast agents: physicochemical characteristics and applications in 
MR imaging. Eur Radiol. 2001;11(11):2319–2331.

	 4.	 Wu EX, Tang H, Jensen JH. Applications of ultrasmall superparamagnetic 
iron oxide contrast agents in the MR study of animal models. 
NMR Biomed. 2004;17(7):478–483.

	 5.	 Corot C, Robert P, Idée JM, Port M. Recent advances in iron oxide 
nanocrystal technology for medical imaging. Adv Drug Delivery Rev. 
2006;58(14):1471–1504.

	 6.	 Zhang W, Kalive M, Capco DG, Chen Y. Adsorption of hematite 
nanoparticles onto Caco-2 cells and the cellular impairments: effect of 
particle size. Nanotechnology. 2010;21(35):355103.

	 7.	 Gambarota G, van Laarhoven HW, Philippens M, et  al. Assessment 
of blood hemodynamics by USPIO-induced R(1) changes in 
MRI of murine colon carcinoma. Appl Magn Reson. 2010;38(3): 
349–360.

	 8.	 Kumagai M, Sarma TK, Cabral H, et al. Enhanced in vivo magnetic 
resonance imaging of tumors by PEGylated iron-oxide-gold core-shell 
nanoparticles with prolonged blood circulation properties. Macromol 
Rapid Commun. 2010;31(17):1521–1528.

	 9.	 Zou P, Yu Y, Wang YA, et al. Superparamagnetic iron oxide nanothera-
nostics for targeted cancer cell imaging and pH-dependent intracellular 
drug release. Mol Pharm. 2010;7(6):1974–1984.

	10.	 Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell 
interactions. Small. 2010;6(1):12–21.

	11.	 Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance 
to drug delivery. Cell Mol Life Sci. 2009;66(17):2873–2896.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1285

Interactions of USPIO NPs with human colon cells

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-nanomedicine-journal

The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology 
in diagnostics, therapeutics, and drug delivery systems throughout 
the biomedical field. This journal is indexed on PubMed Central, 
MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, 

Journal Citation Reports/Science Edition, EMBase, Scopus and the 
Elsevier Bibliographic databases. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

International Journal of Nanomedicine 2012:7

	12.	 Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 
Nanoparticle size and surface properties determine the protein corona 
with possible implications for biological impact. Proc Nat Acad Sci 
U S A. 2008;105(38):14265–14270.

	13.	 Chastellain M, Petri A, Hofmann H. Particle size investigations of a 
multistep synthesis of PVA coated superparamagnetic nanoparticles. 
J Colloid Interface Sci. 2004;278(2);353–360.

	14.	 Petri-Fink A, Chastellain M, Juillerat-Jeanneret, L, Ferrari A, 
Hofmann H. Development of functionalized superparamagnetic 
iron oxide nanoparticles for interaction with human cancer cells. 
Biomaterials. 2005;26(15):2685–2694.

	15.	 Cengelli F, Maysinger D, Tschudi-Monnet F, et  al. Interaction of 
functionalized superparamagnetic iron oxide nanoparticles with brain 
structures. J Pharm Exp Therap. 2006;318(1):108–116.

	16.	 Halamoda Kenzaoui, B, Chapuis Bernasconi C, Hofmann H, 
Juillerat-Jeanneret L. Evaluation of uptake and transport of ultrasmall 
superparamagnetic iron oxide nanoparticles by human brain-derived 
endothelial cells. Nanomedicine. 2012;7(1):39–53.

	17.	 Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H. Effect of cell 
media on polymer coated superparamagnetic iron oxide nanoparticles 
(SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. 
Eur J Pharm Biopharm. 2008;68(1):129–137.

	18.	 Hanessian S, Grzyb JA, Cengelli F, Juillerat-Jeanneret L. Synthesis 
of chemically functionalized superparamagnetic nanoparticles as 
delivery vectors for chemotherapeutic drugs. Bioorg Med Chem. 
2008;16(6):2921–2931.

	19.	 Cengelli F, Grzyb JA, Montoro A, Hofmann H, Hanessian S, 
Juillerat-Jeanneret L. Surface-functionalized ultrasmall superpara-
magnetic nanoparticles as magnetic delivery vectors for camptothecin.  
Chem Med Chem. 2009;4(6):988–997.

	20.	 He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface 
charge on cellular uptake and biodistribution of polymeric nanoparticles. 
Biomaterials. 2010;31(13):3657–3666.

	21.	 Xiao K, Li Y, Luo J, et  al. The effect of surface charge on in vivo 
biodistribution of PEG-oligocholic acid based micellar nanoparticles. 
Biomaterials. 2011;32(13):3435–3446.

	22.	 Yue ZG, Wei W, Lv PP, et al. Surface charge affects cellular uptake 
and intracellular trafficking of chitosan-based nanoparticles. Biomac-
romolecules. 2011;12(7):2440–2446.

	23.	 Kelf TA, Sreenivasan VK, Sun J, Kim EJ, Goldys EM, Zvyagin AV. 
Non-specific cellular uptake of surface-functionalized quantum dots. 
Nanotechnology. 2010;21(28):285105.

	24.	 Chen L, McCrate JM, Lee JC, Li H. The role of surface charge on 
the uptake and biocompatibility of hydroxyapatite nanoparticles with 
osteoblast cells. Nanotechnology. 2011;22(10):105708.

	25.	 Mueller-Klieser W. Three-dimensional cell cultures: from 
molecular mechanisms to clinical applications. Am J Physiol. 
1997;273(4 Pt 1):1109–1123.

	26.	 Juillerat-Jeanneret L, Tschudi-Monnet F, Zürich MG, Lohm S, 
Duijvestijn AM, Honegger P. Regulation of peptidase activity in a 
three-dimensional aggregate model of brain tumor vasculature. Cell 
Tissue Res. 2003;311(1):53–59.

	27.	 Sutherland R, Carlsson J, Durand R, Yuhas J. Spheroids in cancer 
research. Cancer Res. 1981;41:2980–2984.

	28.	 Kunz-Schughart LA. Multicellular tumor spheroids: intermediates 
between monolayer culture and in vivo tumor. Cell Biol Int. 1999;23(3): 
157–161.

	29.	 Santini MT, Rainaldi G. Three-dimensional spheroid model in tumor 
biology. Pathobiology. 1999;67(3):148–157.

	30.	 Cengelli F, Voinesco F, Juillerat-Jeanneret L. Interaction of cationic 
ultrasmall superparamagnetic iron oxide nanoparticles with human 
melanoma cells. Nanomedicine (Lond). 2010;5(7):1075–1087.

	31.	 Delie F, Rubas W. A human colonic cell line sharing similarities with 
enterocytes, as a model to examine oral absorption: advantages and 
limitations of the Caco-2  model. Crit Rev Ther Drug Carrier Syst. 
1997;14(3):221–286.

	32.	 Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, 
Zucco F. The Caco-2 cell line as a model of the intestinal barrier: 
influence of cell and culture related factors on Caco-2 cell functional 
characteristics. Cell Biol Toxicol. 2005;21(1):1–26.

	33.	 Artursson P. Epithelial transport of drugs in cell culture. I. A model 
for studying the passive diffusion of drugs over intestinal absorptive 
(Caco-2) cells. J Pharm Sci. 1990;79(6):476–482.

	34.	 Artursson P, Karlsson J. Correlation between oral drug absorption 
in humans and apparent drug permeability coefficients in human 
intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 
1991;175(3):880–885.

	35.	 Thakral NK, Ray AR, Bar-Shalom D, Eriksson AH, Majumdar DK. The 
quest for targeted delivery in colon cancer: mucoadhesive valdecoxib 
microspheres. Int J Nanomedicine. 2011;6:1057–1068.

	36.	 Behrens I, Pena AI, Alonso MJ, Kissel T. Comparative uptake studies of 
bioadhesive and non-bioadhesive nanoparticles in human intestinal cell 
lines and rats: the effect of mucus on particle adsorption and transport. 
Pharm Res. 2002;19(8):1185–1193.

	37.	 Roger E, Lagarce F, Garcion E, Benoit JP. Lipid nanocarriers 
improve paclitaxel transport throughout human intestinal epithelial 
cells by using vesicle-mediated transcytosis. J Control Release. 
2009;140(2):174–181.

	38.	 Kadiyala I, Loo Y, Roy K, Rice J, Leong KW. Transport of chitosan-
DNA nanoparticles in human intestinal M-cell model versus normal 
intestinal enterocytes. Eur J Pharm Sci. 2010;39(1–3):103–109.

	39.	 Crater JS, Carrier RL. Barrier properties of gastrointestinal mucus to 
nanoparticle transport. Macromol Biosci. 2010;10(12):1473–1483.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

1286

Halamoda Kenzaoui et al

http://www.dovepress.com/international-journal-of-nanomedicine-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


