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 Mais d’abord je ferai quelques expériences, avant d’avancer plus 
loin, car mon intention est d’abord d’alléguer l’expérience et 
ensuite de démontrer par la raison pourquoi cette expérience se 
produit nécessairement ainsi, et telle est la véritable règle que 
ceux qui explorent les manifestations de la nature doivent 
appliquer. 

Léonard de Vinci, vers 1513 
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RESUME 

 

Le neuroblastome (NB) est la tumeur maligne extra-crânienne la plus fréquente chez le nourrisson et 
le jeune enfant. Elle se développe tout le long du système nerveux sympathique et dans la partie 
interne de la glande surrénale, et se caractérise par une grande diversité de phénotypes cliniques et 
biologiques. Dans les cas les plus sévères, la maladie est d’emblée métastatique et manifeste une 
résistance multiple aux traitements.  
Des études récentes ont proposé un nouveau modèle d’évolution du cancer basé sur l’existence de 
cellules souches cancéreuses (CSC), qui partagent avec les cellules souches normales des propriétés 
d’auto-renouvellement et de résistance aux agents cytotoxiques. Ces cellules seraient seules 
capables d’initier le développement de la tumeur primaire comme celui des métastases. Des CSC ont 
été identifiées dans les leucémies, les mélanomes ainsi que dans les cancers du sein, du système 
nerveux central et du colon. La validité d’un tel modèle pour d’autres tumeurs, dont les NBs, reste à 
démontrer. Nous avons identifié au sein d’échantillons cliniques de NB, des cellules isolées exprimant 
des marqueurs connus de cellules souches de la crête neurale et de leurs lignages, conduisant à 
l’hypothèse de l’existence de CSC dans les NB. 
 
Leur capacité à proliférer indépendamment de l’attachement à un substrat sous forme de sphères 
illustre la fonction d’auto-renouvellement, et représente une des caractéristiques typiques des CSC.  
Afin de mettre en évidence l’existence de CSC de NB, et de décrire leur phénotype, nous avons 
exploité cette propriété, et établi à l’aide de puces micro-array un profil d’expression génique associé 
à la fonction d’auto-renouvellement. Des neuroblastes métastatiques isolés à partir d’échantillons 
cliniques de NB ont été sélectionnés par cultures en sphères et leur profil d’expression génique 
comparé à celui de la population initiale. La comparaison des listes de gènes différentiellement 
exprimés dans les sphères de NB et celles d’autres types de cellules souches apparentées, nous a 
permis d’établir une liste de gènes communs, qualifiée de profil d’expression de neurosphères. 
Cette liste comprend notamment les gènes de la prominin-1 (CD133), de transporteurs « ATP-binding 
cassette » (MDR1), des voies WNT et NOTCH. Ces gènes impliqués dans les processus du 
développement embryonnaire sont surexprimés dans les sphères de la majorité des échantillons de 
NB analysés.  
Le potentiel tumorigène in vivo des sphères de NB a été comparé à celui des échantillons originaux 
par greffes orthotopiques (glande surrénale) dans la souris immunodéprimée (nude), puis analyse de 
la croissance tumorale. La fréquence de la prise tumorale était significativement plus élevée après 
greffe des sphères comparée à la greffe de la population cellulaire originale. Une modification de ce 
caractère hautement tumorigène des sphères de NB métastatiques a été observée après 
modification du site d’injection ou sélection directe des cellules de NB sur la bases de combinaisons 
de marqueurs de la SAR.  
Notre étude a permis de mettre en évidence un profil d’expression de gènes associé à une fonction 
caractéristique des CSC. Nos résultats démontrent l’hétérogénéité des populations initiatrices de NB 
et le caractère complexe de la fonction tumorigène associée aux CSC. Les CSC de NB correspondent 
vraisemblablement à une population cellulaire dynamique, contrôlée par des signaux provenant du 
microenvironnement. Les CSC de NB sont décrites dans cette étude comme une fraction de cellules 
exprimant des combinaisons de marqueurs qui représentent de potentielles cibles thérapeutiques. 
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SUMMARY 

 

Neuroblastoma (NB) is the most common extracranial malignant tumor in young children and arises 
at any site of the sympathetic nervous system. The disease exhibits a remarkable phenotypic 
diversity ranging from spontaneous regression to fatal disease. Poor outcome results from a rapidly 
progressive, metastatic and drug-resistant disease. Recent studies have suggested that solid tumors 
may arise from a minor population of cancer stem cells (CSCs) with stem cell markers and typical 
properties such as self-renewal ability, asymmetric division and drug resistance. In this model, CSCs 
possess the exclusive ability to initiate and maintain the tumor, and to produce distant metastases. 
Tumor cell subpopulations with stem-like phenotypes have indeed been identified in several cancer 
including leukemia, breast, brain and colon cancers. CSC hypothesis still needs to be validated in the 
other cancers including NB. 
NB originates from neural crest-derived malignant sympatho-adrenal cells. We have identified rare 
cells that express markers in conformity with neural crest stem cells and their derived lineages within 
primary NB tissue and cell lines, leading us to postulate the existence of CSCs in NB tumors. 
 
In the absence of specific markers to isolate CSCs, we adapted to NB tumor cells the sphere 
functional assay, based on the ability of stem cells to grow as spheres in non-adherent conditions. By 
serial passages of spheres from bone marrow NB metastases, a subset of cells was gradually selected 
and its specific gene expression profile identified by micro-array time-course analysis. The 
differentially expressed genes in spheres are enriched in genes implicated in development including 
CD133, ABC-transporters, WNT and NOTCH genes, identified in others solid cancers as CSCs markers, 
and other new markers, all referred by us as the Neurosphere Expression Profile (NEP). We 
confirmed the presence of a cell subpopulation expressing a combination of the NEP markers within 
a few primary NB samples.  
The tumorigenic potential of NB spheres was assayed by in vivo tumor growth analyses using 
orthotopic (adrenal glands) implantations of tumor cells into immune-compromised mice. Tumors 
derived from the sphere cells were significantly more frequent and were detected earlier compared 
to whole tumor cells. However, NB cells expressing the neurosphere-associated genes and isolated 
from the bulk tumors did not recapitulate the CSC-like phenotype in the orthotopic model. In 
addition, the NB sphere cells lost their higher tumorigenic potential when implanted in a 
subcutaneaous heterotopic in vivo model.  
 
These results highlighted the complex behavior of CSC functions and led us to consider the stem-like 
NB cells as a dynamic and heterogeneous cell population influenced by microenvironment signals. 
Our approach identified for the first time candidate genes that may be associated with NB self-
renewal and tumorigenicity and therefore would establish specific functional targets for more 
effective therapies in aggressive NB. 
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ABC:  ATP-binding cassette 

ALDH:  aldehyde deshydrogenase 

Array-CGH: array-comparative genomic hybridization 

APC :  allophycocyanine 

ATP :  adenosine-5’-triphosphate 

bFGF:   basic fibroblast growth factor 

BSA:  bovine serum albumin 

CIG:  Center for Integrative Genomics 

CNR:  cannabidoid receptor 

CSC:  cancer stem cell 

CST:  childhood solid tumor 

DAFL:   DNA array facility Lausanne 

del:   deletion 

DMEM:  Dulbecco's Modified Eagle Medium   

dNTP:  deoxynucleotide triphosphate 

DNA:   deoxyribonucleic acid 

EDN:  endothelin 

EDNR:  endothelin receptor 

EDTA:   ethylene-diamine-tetra-acetic acid 

EGF:   epidermal growth factor 

EMT:  epithelial to mesenchymal transition 

FACS:   fluorescence activated cell sorting 

FCS:   fœtal calf serum 

FDR:  false detection rate 

FGFR:  fibroblast growth factor receptor 

FISH:   fluorescence in situ hybridization 

GAPDH: glyceraldehyde 3-phosphate dehydrogenase 

GD2:  diganglioside 

GO:  Gene Ontology 

GPR:  G-protein coupled receptor 

H/E:   haematoxylin / eosin 

HGF:  hepatocyte growth factor 
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INTRODUCTION 

 

The cellular origin of human cancers 

The human body: a multicellular organism 

The multicellular eukaryotic organisms constitute different levels of organization from the single cell 

to the functional systems. The 1015 cells of the human adult body, distributed among more than a 

hundred different cell types, are grouped into substructures called tissues that form organs that 

cooperate inside a systemic function. For instance, the mammary gland, part of the reproductive 

system, is an organ constituted of several cell tissues fulfilling different functions. Thus the mammary 

gland is comprised of milk-making alveolar lobes, milk-conducting lactiferous ducts, fat tissue and 

connective tissue. Each of these tissues functions thanks to differentiated cells that are specialized in 

one particular task: hormone production and secretion, milk production, duct formation, 

vascularization, etc.  

The epithelial tissue, like the alveoli of mammary lobules, is widely spread in human organs and is 

characteristic of an exchange surface zone between two compartments. Epithelia are found in the 

mammary gland but also in the lungs, the liver, the prostate, the skin, the intestine, the bladder, the 

ovary, and the colon. They are composed of a monolayer of bipolar cells tightly connected to each 

other by proteins forming a physical barrier between two extracellular spaces. Disruptions of their 

cell structure due to internal (mammary involution) or external (wound) causes lead to the faithful 

tissue renewal mobilizing specific multipotent stem cells that are able to regenerate the hierarchy of 

all the different cell types. The homeostasis of cell tissues is regulated by a number of intrinsic and 

extrinsic cellular mechanisms such as programmed cell death, telomere reparation, cytokine 

response, hypoxia, proliferation, and extracellular fluid mechanics. 

 

Carcinogenesis 

Research in the 20th century, especially since the disastrous radioactive fallout of the nuclear war in 

Japan and its affect on human health, has allowed for a significant increase in the understanding of 

cell homeostasis, revealing cancer to be a dynamic pathology of the genome. The systematic review 

of gene mutations found in leukemia and solid tumors showed these genes to be distributed into 

four classes: proto-oncogenes, tumor suppressor genes, “caretaker” genes which code DNA repair 

proteins, and “gatekeeper” genes. These mutations can result from the mutagenic action of 

endogenous chemical products generated during physiological processes such as cell death, or 

exogenous factors including chemicals, radiation, and viruses. In rare familial cancer syndromes, 

these mutations are inherited through the germinal cell lines. 
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The genetic mutations that occurred in cancerous cells lead to altered gene products and therefore 

are responsible for defects in regulatory circuits that govern normal cell proliferation and 

homeostasis. The malignant growth of a transformed cell has been described by the acquisition of six 

essential alterations affecting the cell physiology (1): 

- Self-sufficiency in growth signals 

- Insensitivity to antigrowth signals 

- Evasion of programmed cell death (apoptosis) 

- Limitless replicative potential 

- Sustained angiogenesis 

- Tissue invasion and metastasis  

These six capabilities are proposed to be shared by most if not all types of human tumors. 

 

Tumor microenvironment 

Tumors are no longer considered as a simple bulk of cancer cells proliferating independently from 

the surrounding tissue cells of the host organ. Indeed, past studies have shown that most solid 

tumors are composed not only of neoplastic cells but also of a variety of extracellular matrix 

components and cell types, notably fibroblasts, myofibroblasts, adipocytes, endothelial cells, 

pericytes, and immune cells which collectively form the tumor stroma (2-4). 

The most obvious evidence of a tumor-stroma interaction was supported by studies of tumor 

neovascularization resulting from the release of proangiogenic factors by the tumor cells (5-7). In 

addition, first assumed to attenuate tumor development, inflammatory cells such as lymphocytes, 

were shown to play a critical role in the malignant progression of many types of solid tumors (8-10). 

In carcinomas such as those found in breast cancer, the most abundant mesenchymal cells 

correspond to fibroblasts and myofibroblasts which promote tumor progression and are used as 

markers of invasiveness and poor progression by the pathologists (11-13). Finally, the extracellular 

matrix formed by mesenchymal cells is thought to regulate tumor cell growth and mobility. For 

instance, in the mammary gland, the composition and density of the extracellular matrix is a 

determinant of breast cancer risk (14). In neuroectodermal tumors, including neuroblastoma and 

melanoma, tumor cells cross-talk with stromal cells via chemokine secretion and thereby regulate 

angiogenesis, tumor growth, immune response, and metastasis (15). A large roster of cytokines, 

chemokines and growth factors have been found to promote tumor progression and thus highlight 

the critical role of paracrine signaling between tumor and host cells in the local microenvironment 

(16). Although normal stroma has been shown to delay or prevent tumorigenesis (17), abnormal 

stromal components can even promote tumor growth when mutations occured in the stromal cell 

genome but not in the tumor cells (18, 19). 
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Heterogeneity in tumor cells 

Since the 19th century, the studies of Müller, Virchow and many others up to the present, have 

confirmed and extended the earlier observations that heterogeneity among cancer cells was a 

common and prominent feature of most human solid tumors. In particular, the phenotypic and 

genetic heterogeneity of all types of cancers have been repeatedly demonstrated since the late 

1970s (20, 21). The different parameters of cellular heterogeneity have been catalogued and 

correspond to numerous phenotypic characteristics including cellular morphology or tumor 

histopathology, the expression of cell markers and the production of differentiated cell products, 

growth properties in vitro, the ability to be affected by a host immune response, the ability to invade 

and metastasize, sensitivity to chemotherapeutic agents and tumorigenicity in vivo (22, 23). 

 

 

Cancer paradigms 

 

Stochastic model 

Until recently, cancer has been considered as a genetic disease where inherited or somatic 

alterations in the genome of any cell of the body are selected for providing an uncontrolled cell 

growth, a sustained angiogenesis, a limitless replicative potential, and an evading from apoptosis to 

the transformed cells (1, 24). This clonal evolution model of tumorigenesis, referred as the 

“stochastic” model, was well accepted and explains not only the clinical observations but also the 

great intra- and inter-tumoral heterogeneity in term of proliferation, differentiation and tumorigenic 

potential (25). Cancer cells were assumed to be genetically unstable and it was proposed that as a 

population expands, the probability of mutations increases (26). 

However, although it was clear that such genetic mutations drive tumor formation, several 

observations were difficult to reconcile with the idea that transformation events can occur in 

differentiated cells. Indeed, the terminally differentiated cells within an epithelial tissue are unlikely 

to accumulate mutations as they rarely divide. Moreover, it was difficult to imagine how a well 

differentiated cell, even transformed could give rise to a heterogeneous tumor showing a large panel 

of cell differentiation degrees. Finally, it has been experimentally observed that the overall efficiency 

of obtaining cancer cell lines and even tumor xenograft from patient tumors was very low. In 

experimental models, the implantation of a large number of cells from most cancer cell lines was 

often required to induce tumor growth (27). These observations suggest that among the tumor bulk 

cells, only a cell subset has the ability to proliferate extensively and form new tumors. 
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Cancer stem cell model 

 

The historical emergence of the stem cell origin of cancer 

The stem cell origin of cancers is not a recent notion. In 1855, Rudolph Virchow, a German 

pathologist, proposed the “embryonal-rest hypothesis” of tumor formation, based on histological 

similarities between tumors and embryonic tissues (28). This theory, later expanded by other 

pathologists such as Julius Cohnheim who proposed in 1875 the hypothesis that stem cells 

“misplaced” during embryonic development were the source of tumors that formed later in life (29, 

30). In the early 1960s, human autotransplantation assays demonstrated a low frequency of tumor-

initiating cells in various solid-organ malignancies (31). Fortunately, such human in vivo studies have 

been completely forbidden today by ethical committees.  

Leukemia stem cell research first led the way in cancer stem cell research. The use of mice models 

allowed the demonstration in 1963 of the low in vivo clonogenic efficiency of mouse lymphoma cells 

(32). Between 1967 and 1981, Philip Fialkow and his coworkers showed the clonal origin of leukemic 

cells and indicated the involvement of en early stem or progenitor cell in myelogenous leukemia and 

acute myelogenous leukemia (33, 34). The development between 1968 and 1973 of the fluorescent-

activated cell sorting (FACS) by Leonard Herzenberg and coworkers (35) ratified the new era of in vivo 

single cell implantation in the SCID mice model which was refined in the early 1990s and allowed the 

isolation in 1994 of a leukemic cell capable of initiating human acute myeloid leukemia after 

transplantation into SCID mice (36). Finally, between 1985 and 1995, research has seen the arrival of 

the immunocompromised animal model with the characterization in 1992 of the NOD/SCID mouse. 

Together, the results obtained in leukemia studies led to the postulate that the leukemic cells can be 

considered as an aberrant hematopoietic system which would have arisen from the accumulation of 

mutations in the corresponding normal stem or progenitor cell. In this paradigm, the principles of 

normal stem cell biology can therefore be applied to understand better how tumors develop. 

 

CSC definition 

As described above, research on leukemia models first suggested that analogies between normal 

stem cells and tumorigenic cells may be appropriate (36-40). These observations led to the definition 

of the cancer stem cell (41) as a minor tumor cell subset which is critical for the tumor initiation and 

propagation, and fulfills functional criteria of normal stem cells such as: 

- Self-renewal: CSC can divide asymmetrically and produce another CSC and a more 

differentiated cancer cell thus driving tumorigenesis. 

- Indefinite proliferation potential: CSC can reactivate telomerase activity. 
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- Pluripotency: the presence of cells with various degree of differentiation within a tumor 

corresponds to the generation of different progeny by CSC and hence cellular heterogeneity. 

- Drug resistance: CSC, as normal stem cell, shows high resistance to drug-mediated toxicity. 

- Dependence on a specific micro-environment or “niche”. Tumor cells are interwoven with a 

heterogeneous stroma which could be the equivalent of the stem cell niche. 

 

CSCs are distinct from the cell of origin. The cell of origin specifically refers to the cell type that 

receives the first oncogenic hit(s). Moreover, CSCs do not necessarily originate from the 

transformation of normal stem cells. CSCs may arise from restricted progenitors or more 

differentiated cells that have acquired the capacity to self-renew (42-44). In studies in the field, the 

semantic has not been clarified. Thus some researchers would use the term “cancer stem cell” (CSC) 

as others would prefer “tumor-initiating cell” (TIC). “TIC” preferentially refers to the experimental 

observation of isolated tumor cells to propagate tumors in an in vivo model whereas “CSC” 

encompasses the theoretical properties of tumor cell populations to self-renew and to sustain a 

cancer for producing differentiated progeny that form the bulk of the cancer. However, the two 

terms will be considered equivalent in this study. 

 

CSC in solid tumors 

Solid tumors account for the major cancer burden; epithelial cancers arising in tissues that include 

breast, lung, colon, prostate and ovary constitute approximately 80% of all cancers. Thus, the CSCs 

hypothesis provided an attractive cellular mechanism to explain the chemotherapeutic resistance 

and the long-term relapses exhibited by many of these tumors.  

A decade following the pioneering work of leukemia stem cells studies (45), Al-Hajj and his colleagues 

showed that human breast cancers also adhere to the hierarchical or CSC model; as few as 200 

ESA+CD44+CD24-/lowLin- cells were able to generate tumors recapitulating the heterogeneity of the 

initial tumor in immunosuppressed nonobese diabetic/severe combined immunodeficient 

(NOD/SCID) mice, whereas 100-fold more cells without these markers isolated from the same tumors 

were nontumorigenic (46). Since then, many studies tried to characterize the breast CSC and 

identified alternative markers including the aldehyde dehydrogenase (ALDH) that could be use to 

enrich for tumor-initiating breast CSC populations (47). Interestingly, these sets of markers identified 

overlapping but nonidentical cell populations.  

Likewise, CSC populations were identified in brain tumors including glioblastoma and 

medulloblastoma (48-51). Brain CSC were reported on the basis of cell sorting for the neural stem 

cell marker CD133 on acutely dissociated brain tumor cell populations and were isolated from low-

grade and high-grade tumors from both children and adults (52, 53). However, in a recent study, 
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tumor-propagating cells were shown to express CD15 and not CD133 in a mouse model for 

medulloblastoma (54). 

In addition, the CSC concept was also investigated in colon cancer and melanoma which are two 

severe and frequent cancers and many markers were proposed as specific tools to identify functional 

CSC populations. Thus, CD133 have been first proposed as a colon CSC marker (55, 56) but its 

relevance has been challenged by further studies (57). In the same way, many different markers 

including ABCB5, CD133, ABCG2, CD271 (LNGFR/p75) were shown to be associated with putative 

melanoma CSC populations harboring self-renewing and tumorigenic properties (58-61). 

Finally, since the report of the breast CSC identification in 2003, the CSC hypothesis has been 

addressed in a very large panel of solid tumors. However, no consensus on its reliability has yet been 

found as experimental methods and specific markers have not been decided on. In the last four 

years, an important number of reviews addressed the numerous unresolved questions and nurtured 

the debate (62-71). 

 

CSC identification and clinical relevance 

Self-renewal 

Proliferation and self-renewal constitute two distinct cell processes. Self-renewal corresponds to a 

unique cell division in which the capacity of one or both progeny to proliferate and differentiate is 

similar to those of the parental cells. Although a committed progenitor cell might have an extensive 

ability to proliferate, it is destined to eventually become terminally differentiated and stop dividing. 

Self-renewal is a hallmark of any human stem cell such as hematopoietic stem cell. Indeed it has 

been shown that a single hematopoietic stem cell or a progeny that arose from a self-renewing cell 

division could be serially transplanted several times and restored blood production in lethally 

irradiated animals (72).  

The sphere assay, originally developed for neural cells (73), has formed an important basis for the 

development of an in vitro assay to study both normal stem and progenitor cells and CSCs in a variety 

of solid tumors including brain (51) and breast (74) cancers. In the context of sphere assays for tumor 

cells, a number of groups have found that glioblastomas efficiently form tumor spheres in a 

clonogenic manner (49, 51). CD133+ cells in the brain tumors have a greater potential to form 

neurospheres than CD133- cells (75). In addition, the most aggressive clinical samples of 

medulloblastoma demonstrated the highest secondary sphere-forming capacity (48). Moreover, this 

assay provides a useful and predictive model to test the therapeutic response of CSC-containing 

tumors to a specific drug or compound before testing in vivo. 

 

INTRODUCTION   
 

 
 

20 

tumor-propagating cells were shown to express CD15 and not CD133 in a mouse model for 

medulloblastoma (54). 

In addition, the CSC concept was also investigated in colon cancer and melanoma which are two 

severe and frequent cancers and many markers were proposed as specific tools to identify functional 

CSC populations. Thus, CD133 have been first proposed as a colon CSC marker (55, 56) but its 

relevance has been challenged by further studies (57). In the same way, many different markers 

including ABCB5, CD133, ABCG2, CD271 (LNGFR/p75) were shown to be associated with putative 

melanoma CSC populations harboring self-renewing and tumorigenic properties (58-61). 

Finally, since the report of the breast CSC identification in 2003, the CSC hypothesis has been 

addressed in a very large panel of solid tumors. However, no consensus on its reliability has yet been 

found as experimental methods and specific markers have not been decided on. In the last four 

years, an important number of reviews addressed the numerous unresolved questions and nurtured 

the debate (62-71). 

 

CSC identification and clinical relevance 

Self-renewal 

Proliferation and self-renewal constitute two distinct cell processes. Self-renewal corresponds to a 

unique cell division in which the capacity of one or both progeny to proliferate and differentiate is 

similar to those of the parental cells. Although a committed progenitor cell might have an extensive 

ability to proliferate, it is destined to eventually become terminally differentiated and stop dividing. 

Self-renewal is a hallmark of any human stem cell such as hematopoietic stem cell. Indeed it has 

been shown that a single hematopoietic stem cell or a progeny that arose from a self-renewing cell 

division could be serially transplanted several times and restored blood production in lethally 

irradiated animals (72).  

The sphere assay, originally developed for neural cells (73), has formed an important basis for the 

development of an in vitro assay to study both normal stem and progenitor cells and CSCs in a variety 

of solid tumors including brain (51) and breast (74) cancers. In the context of sphere assays for tumor 

cells, a number of groups have found that glioblastomas efficiently form tumor spheres in a 

clonogenic manner (49, 51). CD133+ cells in the brain tumors have a greater potential to form 

neurospheres than CD133- cells (75). In addition, the most aggressive clinical samples of 

medulloblastoma demonstrated the highest secondary sphere-forming capacity (48). Moreover, this 

assay provides a useful and predictive model to test the therapeutic response of CSC-containing 

tumors to a specific drug or compound before testing in vivo. 

 



  INTRODUCTION 
 

 
21 

Tumorigenicity 

CSCs refer to a subset of tumor cells that has the ability to continually sustain tumorigenesis. 

Experimentally, the putative CSC populations need to be evaluated for their potential to show tumor 

propagation. The gold standard assay that fulfills this criterion is serial orthotopic transplantation in 

animal models, which, although imperfect, is regarded as the best functional assay (41, 76). 

 

Metastasis 

Metastasis is the predominant cause of lethality in cancer patients. However, not every cell in a 

tumor has the ability to metastasize to other organs. Metastatic potential depends on multiple 

factors that determine overall tumor cell growth, survival, angiogenesis, and invasion. For epithelial 

malignancies, the epithelial-mesenchymal transition (EMT) is considered to be a crucial event during 

embryogenesis which may be misappropriated by cancer cells in the metastatic process, which 

involves disruption of epithelial cell homeostasis and the acquisition of a migratory mesenchymal 

phenotype (77, 78). Cells undergoing EMT could conceivably be the precursors to metastatic cells 

and correspond to metastatic CSCs (79). Recent data have supported the concept of a metastatic CSC 

in pancreas and liver cancers in particular and suggested that the SDF-1/CXCR4 axis could be involved 

in both the trafficking of normal stem cells and the metastasis of CSC (80-82). 

 

Drug resistance 

Normal stem cells have many properties that separate them from mature, differentiated cells. Thus, 

their drug resistance provides for a long lifespan through the expression of high levels of specific ABC 

transporters including ABCB1 (MDR1) and ABCG2 (83-85), the resistance to apoptosis, and the active 

DNA-repair capacity. It has been assumed that CSC could share many properties of the normal stem 

cells and therefore might also possess these resistance mechanisms. Evidence has emerged that CSCs 

represent a subpopulation of cells within cancers that is characterized by increased resistance to 

chemo- and radiotherapy, indicating that conventional anticancer approaches might frequently fail to 

eradicate the cell subset that perpetuates tumorigenesis. For example, CSC chemoresistance has 

been reported in human leukemias (86-89), in malignant melanoma (59, 61), and in brain (90), breast 

(91), pancreatic (80), and colorectal (92) cancers. Furthermore, CSC radioresistance has been 

identified in brain (93) and breast (94, 95) cancers. 

 

Angiogenesis and vascular mimicry 

It is now broadly accepted that cancer cells can induce angiogenesis (i.e. the formation of new 

vessels) from preexisting vessels via the secretion of paracrine factors or direct cell-cell contacts. A 

recent study in human brain cancers has shown that CD133+Nestin+ CSCs in medulloblastomas, 
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ependymas, oligodendrogliomas, and glioblastomas were preferentially located within a perivascular 

niche, where they interact closely with the endothelial cells. Moreover, cografting endothelial cells 

with human medulloblastoma tumor xenografts induced the expansion of the self-renewing CSC 

fraction and accelerated cancer initiation and growth (96). In addition, glioma stem cells have also 

been shown to promote angiogenesis through the vascular endothelial growth factor (VEGF) (97). 

With regard to vascular mimicry, this phenomenon was first described in 1999 and corresponds to an 

important mechanism in cancer cells which organize themselves as perfusable channels and express 

few endothelial markers (98). Vascular mimicry could explain the failure of currently available 

inhibitors of angiogenesis to fully effect tumor eradication. It has been shown that bone 

morphogenic proteins (BMPs) such as BMP4 are involved in the vascular mimicry of melanoma cells 

(99) and that BMP4 could regulate the size of the CSCs population in human glioblastoma (100). 

Moreover, ABCB5+ melanoma CSC were shown to preferentially express the vasculogenic markers 

TIE-1 and CD144 as well as BMPR1A (BMP receptor) (61). All together, these results suggest that it 

could be relevant to address the role of CSCs in vascular mimicry. 

 

Immune evasion and modulation 

Immunomodulatory functions are established properties of the physiologic stem cells in particular 

mesenchymal stem cells (101-104). Therefore, it has been hypothesized that CSC may foster tumor 

initiation and growth at least in part via attenuation of the antitumor immune response.  

The CD200 transmembrane glycoprotein has been shown to be an important player in 

immunoregulation, tolerance and cancer prognosis. In the putative CD44+ prostate CSCs derived from 

prostate cancer cell lines, the genomic expression of CD200 was increased (105). Moreover, the 

majority of CD200 expressing cells were found on the putative CD44+CD24- breast CSCs derived from 

the MDA-MB231 cell line (105). In more recent studies, the CD133 expressing and tumorigenic 

neurosphere cells derived from primary glioblastoma multiforme specimens were assessed for the 

expression of immunologic molecules and were found to lack proteins necessary for the antigen 

presentation, whereas the inhibitory costimulatory molecule B7-H1 was present. The glioma-

associated CSCs also produce immuno-suppressive cytokines including TGF-�1, the Treg chemokine 

attractant CCL-2, VEGF and prostaglandin E2 and thus inhibit T-cell activation and proliferation via 

STAT3 signaling pathway (106, 107). Finally, T-cell activation has also been shown to be modulated by 

the ABCB5+ malignant melanoma CSCs derived from established melanoma xenografts and clinical 

tumor specimens showed a low expression levels of immunogenic molecules and inhibited the 

proliferation of human peripheral blood mononuclear cell (PBMC) (108). These findings suggest 

specific roles of CSCs in the evasion of antitumor immunity and in cancer immunotherapeutic 

resistance. 
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Niche 

Normal stem cells of various tissues exist within protective “niches”. The niche corresponds to the 

immediate cell micro-environment comprising extra-cellular components and a variety of 

differentiated cell types such as immune, endothelial and mesenchymal cells (109, 110). These 

mature cells provide direct cell contacts and secreted factors that maintain stem cells primarily in a 

quiescent state or induce their symmetric or asymmetric self-renewal. For instance, mouse tissue 

studies suggested that neural stem cells were present within a vascular niche together with 

endothelial cells which regulate stem cell self-renewal (111-114). It has been reported that CSC might 

arise from normal stem cells that have acquired mutations that enable them to escape from niche 

control (115). Alternatively, one could imagine that deregulation of extrinsic factors within the niche 

might lead to uncontrolled proliferation of stem cells and tumorigenesis as shown by Clarke and 

Fuller (44). Recently, an increasing number of endothelial cells or blood vessels in orthotopic brain 

tumor xenografts has been shown to expand the fraction of self-renewing CD133+ brain CSCs and 

accelerated the initiation and growth of brain tumors (96). A molecular and cellular portrait of a CSC 

niche will be required in the future to identify components in the tumor microenvironment that are 

necessary for maintaining the functions of CSCs to use these components as therapeutic targets. 

 

Clinical Relevance 

CSC populations in many types of cancer are thought to be responsible for drug resistance, immune 

evasion, and dormancy, criteria that have severe consequences on the prognosis and the treatment 

of patients. Indeed, their relative abundance in clinical cancer specimens has been correlated with 

malignant disease progression in human patients. Conventional anticancer approaches are directed 

predominantly at bulk tumor populations and might frequently fail to eradicate the cancer stem cell 

subset that perpetuates tumorigenesis.  

Putative CSCs are prospectively isolated using methods based on either surface markers or 

intracellular enzyme activity that are also detected in normal stem cells. The challenge will be to 

characterize molecules and signaling pathways that are specifically associated with CSC biology to 

spare physiologic stem cells by targeted therapeutic treatment. Recent studies have carried out drug 

and RNAi screening to identify factors that could be targeted to specifically kill CSC. For example, a 

kinome-wide RNA interference screen in glioblastoma multiforme has been performed and showed 

that the knockdown of the adaptor protein TRRAP significantly increased differentiation of cultured 

brain CSCs, sensitized cells to apoptotic stimuli, and negatively affected cell cycle progression (116). 

In a chemical screen, compounds have be shown to be selectively toxic for breast CSCs, including 

salinomycin that reduced the proportion of CSC in mammosphere cell population 100-fold more than 

paclitaxel, a commonly used chemotherapy in breast cancer treatment (117). These screens 
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constitute promising strategies to discover complementary treatment to efficiently eliminate cancer 

cells. 

 

Neuroblastoma: biological and clinical data 

Neuroblastoma (NB) is the second most frequent and deadly solid tumor in children. It accounts for 

7-10% of all childhood malignancies, but for far more deaths (118).  The prevalence is about one case 

in 7,000 live births and there are about 700 new cases per year in the United States alone. This 

incidence is fairly uniform throughout the industrialized nations. For instance, about 10 new cases 

are diagnosed every year in Switzerland. Even though much progress has been achieved in 

understanding the biology of this cancer, its complex clinical and biological behavior remains 

enigmatic. 

 

Neuroblastoma, a pediatric neuroectodermal tumor 

In many forms of adult cancer, the original cell type is well defined based on the location of the 

tumor, the molecular markers expressed by tumor cells, and the histological and clinical features of 

the disease. For childhood solid tumors (CST), the cell of origin and the environment in which 

tumorigenesis occurs are much more difficult to define (119). In contrast to adult tumors, many CST 

are embryonal tumors as they originate from immature tissue. CST cells not only morphologically 

resemble embryonal cells, but they functionally mimic their behavior.  

Among CST, neuroectodermal tumors originate from the multipotent neural crest cells generated in 

the early embryo that give rise to the central and peripheral nervous systems. These malignancies 

include several pediatric examples such as NB, PNETS (Ewing sarcomas) and medulloblastomas, as 

well as melanomas and small cell lung carcinomas (120).  

 

NB is derived from pluripotent neural crest-derived precursor cells of the sympathoadrenal cell 

lineage. These cells develop a highly dynamic and growth factors-rich environment. 

In vivo and in vitro observations have shown that neuroblastic tumors strikingly recapitulate the 

development of differentiating sympathetic neurons and the chromaffin (neuroendocrine) cells of 

the sympathetic neural system. Thus, NB displays several typical characteristics and features of its 

originating cells, such as heterogeneity and pluripotential differentiation, and it also has a high 

potential for migration and distant metastasis formation (121-124). This indicates that in contrast to 

adult tumors, NB as well as other CST results from defects in mechanisms that control normal 

development, arresting the normal process of differentiation, and thus can be seen as a 

developmental disorder (122, 123).  
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International NB Staging System 

The origin and migration pattern of neuroblasts during fetal development explains the multiple 

anatomic sites where these tumors occur and the location of these tumors appears to vary with age. 

The median age at diagnosis for NB patients is about 18 months; so approximately 40% are 

diagnosed by one year of age, 75% by four years of age and 98% by ten years of age (125). Tumors 

can occur in the abdominal cavity (40% adrenal, 25% paraspinal ganglia) or involve other sites (15% 

thoracic, 5% pelvic, 3% cervical tumors, 12% miscellaneous). Infants are more likely to have thoracic 

and cervical tumors, whereas older children more frequently have abdominal tumors (126). 

According to the International Neuroblastoma Staging System, the tumors are divided into 4 

different stages (Figure 0-1). 

 

 
 
Figure 0-1: International Neuroblastoma Staging System (INSS) 
Stage 1  

� Localized tumor with complete gross excision and/or microscopic residual disease  

� Ipsilateral lymph nodes negative for tumor (nodes attached to the primary tumor may be positive for tumor.) 
Stage 2A  

� Localized tumor with incomplete gross resection  

� Representative ipsilateral nonadherent lymph nodes negative for tumor microscopically 
Stage 2B  

� Localized tumor and/or complete gross excision, with ipsilateral nonadherent lymph nodes positive for tumor  

� Enlarged contralateral lymph nodes, which are negative for tumor microscopically 
Stage 3  

� Unresectable unilateral tumor infiltrating across the midline and/or regional lymph node involvement  

� Alternately, localized unilateral tumor with contralateral regional lymph node involvement 
Stage 4  

� Any primary tumor with dissemination to distant lymph nodes, bone, bone marrow, liver, skin, and/or other 
organs (except as defined for stage 4S) 

Stage 4S  

� Localized primary tumor (as defined for stages 1, 2A, or 2B) with dissemination limited to skin, liver, and/or bone 
marrow (<10% involvement)  

� Limited to infants  
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The disease exhibits a remarkable clinical phenotype diversity reflected in the outcome, ranging from 

spontaneous regression to fatal disease. Whereas a favorable outcome, essentially due to 

spontaneous maturations and regressions is generally associated to low stages and localized tumors 

(stage1-2 and stage 4s), stage 3 (large, progressing tumors) and stage 4 (metastatic) NB are 

extremely difficult to treat and are thereby responsible for most deaths, due to a rapidly progressive, 

metastatic and drug-resistant disease. Interestingly, the spontaneous regression of NB is often 

observed in patients under one year of age (stage 4s) and mimics a developmentally regulated 

programmed cell death of sympathetic neurons during the perinatal period. Thus, stage 4s NB is 

associated with a good prognosis even if the patients present a unique and unexplained pattern of 

metastatic spread limited to bone marrow, liver, and skin. 

Patients older than one year with metastatic disease have very severe prognosis; fewer than half of 

these patients are cured, even with the use of high-dose therapy followed by autologous bone 

marrow or stem cell rescue (127). Metastatic dissemination of advanced stage tumors mainly occurs 

in the bone marrow, bone, liver and skin. Bone marrow involvement and clearing are key prognostic 

factors for NB (128). 

This classification has recently been redefined by the new International Neuroblastoma Risk Group 

(INRG) classification composed of four NB categories: L1/L2 for localized tumors, M for metastatic 

disease (stage 4), and MS for stage 4s (from the SIOPEN annual general meeting, 2007). 

 

Consequently, molecular and functional characterization of the cell populations that control NB 

tumor progression and metastasis is crucial to design effective therapies and improve the prognosis 

of these patients.  

 

Histology of NB tumors 

Histologically, neural crest tumors can be classified as NB, ganglioneuroblastoma (GGNB), and 

ganglioneuroma (GGN), depending on the degree of maturation/differentiation of the tumor (129).  

Most NB are undifferentiated tumors consisting of small, round, blue cells called neuroblasts and 

have little, if any evidence of neural differentiation. The typical tumor shows small uniform cells with 

scant cytoplasm and hyperchromatic nuclei. Neuron specific enolase (NSE), chromogranin, 

synaptophysin, and S-100 immunohistochemical stains usually are positive.  

In contrast, the most differentiated form consists in the completely benign GGN which is typically 

composed of clusters of mature neurons surrounded by a dense stroma of Schwann cells, whereas 

GGNB include the whole spectrum of differentiation between pure GGN and NB. Because of the 

presence of different histological components, the pathologist must evaluate the tumor thoroughly; 

the regions with different gross appearance may demonstrate a different histology. 
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Genomic and biologic markers in NB 

 

Chromosome alterations 

During the last 2 decades, the genetic alterations of NB tumors have been explored through a panel 

of techniques including array-CGH. Many chromosomal and molecular identified abnormalities have 

been evaluated to determine their value in assigning prognosis (130-133). NB can be classified into 

subtypes that are predictive of clinical behavior based on these patterns of genetic changes. Some of 

them have been incorporated into the strategies used for risk-assignment. Thus, the oncogene MYCN 

amplification, the first genetic alteration described in NB, is observed in 25-30% of cases and is 

strongly related to disease progression and poor outcome. Deletion of the short arm of chromosome 

1 is one of the most common chromosomal abnormalities present in NB, and is associated with a 

high risk of relapse and poor prognosis. The 1p chromosome region likely harbors tumor suppressor 

genes or genes that control neuroblast differentiation. Deletion of 1p is more common in near-

diploid tumors and is associated with a more advanced stage of the disease. Most of the deletions of 

1p are located in the 1p36 area of the chromosome (134-136). The other segmental copy number 

alterations mainly include deletions of chromome 3p, 4p, 9p, 11q, 18q and gain of 1q, 2p and 17q 

(137-139). Partial 17q gain is frequently observed in primary tumors in association with segmental 

alterations, whatever MYCN status. The recurrent segmental alterations are thought to lead to the 

loss of putative tumor suppressor genes and/or to the gain of oncogenes (140, 141). The expression 

profiles of these regions, where genetic alterations occur, suggest some candidate genes involved in 

NB progression (142, 143). 

Tumors from the youngest patients with lower stages of the disease are often hyperdiploid or near-

triploid and numerical chromosomal alterations without structural rearrangements are associated 

with a favorable outcome (144-146).  

 

Molecular markers for NB clinical features 

Abnormal patterns of expression for some markers can also distinguish different NB clinical groups. 

The three neurotrophin receptor gene products, NTRK1, NTRK2, and NTRK3, are tyrosine kinases that 

code for a receptor principally binding nerve growth factor (NGF), brain-derived neurotrophic factor 

(BDNF), and neurotrophin-3 (NT3), respectively. Interestingly, NTRK1 expression is correlated with 

lower age, lower stage and absence of MYCN amplification (147, 148), while the expression of the 

NTRK2 gene is strongly associated with MYCN-amplified tumors. As NTRK1/NGF signaling might have 

an important role in the differentiation of neuroblasts, the NTRK2/BDNF autocrine pathway seems to 

contribute to both enhanced angiogenesis and to drug resistance (149-152).  
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Other biological markers associated with poor prognosis include the increase of the multidrug 

resistance 1 transporter (MDR1), the multidrug resistance-related protein (MRP), and the 

telomerase, as well as the lack of expression of glycoprotein CD44 on the tumor cell surface (153-

157).  

 

Sporadic activating mutations in NB 

Recently, somatic and activating mutations in the ALK sequence have been identified and represent 

an important new insight into the NB pathogenesis. To date, 54 ALK mutations in 680 sporadic NB 

cases (8% of cases) have been analyzed and shown in some cases to be responsible for an in vitro 

cytokine-independent growth of cell lines (158-162). 

 

 

Normal biology of the neural crest cells 

The neural crest lineages 

The neural crest (NC) is a transient structure of the vertebrate embryo formed by the lateral borders 

of the neural tube and divided into four main functional (but overlapping) domains: cranial, trunk, 

vagal, and sacral NC. The constitutive NC stem cells, after losing their epithelial arrangement, migrate 

away through embryonic tissues to stop at elected sites where they generate a prodigious number of 

differentiated cell types [Table 0, adapted from (163)]. For instance, the trunk NC cells generate glia, 

neurons and melanocytes. 

 

 

 
Table 0: Cell types and structures that are derived from human neural crest stem cells derivatives. 

 

  

Derivative Cell type or structure derived
I-Peripheral nervous system Neurons, including sensory ganglia, sympathetic and parasympathetic ganglia

Neuroglial cells
Schwann cells

II-Endocrine and paraendocrine derivatives Adrenal medulla
Calcitonin-secreting cells
Carotid body type I cells

III-Pigment cells Melanocytes

III-Facial cartilage and bone Facial and anterior ventral skull cartilage and bones

IV-Connective tissues Corneal endothelium and strom
Tooth papillae
Dermis, smooth muscle and adipose tissue of skin of head and neck
Connective tisue of salivary, lachrymal, thymus, thyroid and pituitary glands
Connective tissue and smooth muscle in arteries of aortic arch origin
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The gene regulatory network of neural crest cells 

A complex gene regulatory network mediated the process of NC formation, which involves the early 

induction and maintenance of the precursor pool, emigration of the NC progenitors from the neural 

tube via an epithelial to mesenchymal transition (EMT), migration of progenitor cells along distinct 

pathways, and differentiation into diverse cell types. Several signaling pathways and transcription 

factors are involved in this succession of events (164). 

Thus, WNT, bone morphogenetic proteins (BMP), and fibroblast growth factor (FGF) are responsible 

for NC induction, while products of genes such as SNAIL1, SNAIL2, SOX8, SOX9, SOX10, FOXD3, AP-2, 

TWIST, c-MYC, and the ID family members are involved in the NC specification.  

The growth and survival factors present at the sites where NC cells migrate, are critical in choosing 

among the variety of differentiation potentialities of NC derivatives in each part of the body. Such 

factors include BMP2/4, which drive NC cells to an autonomic sympathetic-like neuronal fate (165-

167); neuroregulin-1 and Notch ligands, which favor gliogenesis (168-170); and endothelin 3 (EDN3), 

which promotes survival and proliferation of glial-melanocytic bipotent precursors as well as 

committed melanocytic and glial cells (171-173) (Figure 0-2). 

 

 

 

 

Figure 0-2: Molecular signals involved in fate determination and differentiation of the neural crest cells in 
human [from T. Sauka-Spengler and M. Bronner-Fraser (164)]. 
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During NC cell migration, the cells, that have acquired a signaling receptor toolkit, receive many 

external cues allowing them to interact with other cells and the environment through which they 

migrate (174-176). These cues sensors include the Eph receptor and their ligands that may have a 

role in guiding and restricting the fate of the cell (177-179). Other signaling pathways have been 

shown to be essential in NC migration regulation such as the neuropilin-1 (NPL1) receptor and the 

semaphorin-III (SEMA3) ligand (180, 181), SLIT, and ROBO1-2 signaling molecules (182), and the glial-

cell-derived neurotrophic factor (GDNF) (183). 

NC cells can be isolated in vitro; they therefore exhibit a striking heterogeneity in their development 

potentials and have the capacity to self-renew (184-187). 

 

CSC hypothesis suggests that CSC usurp the normal stem cell compartment pathways. These NC 

essential molecular signaling pathways may also be critical in the NB-CSC population gene networks. 

 

 

Neuroblastoma and CSC 

 

Stem-like NB cell subpopulations in NB cell lines 

More than thirty years ago, observation of the cell phenotype diversity among NB cell lines identified 

morphologically and biochemically distinct cell types: N (neuroblastic) cells with noradrenergic 

neuron phenotype, S (substrate-adherent) cells resembling epithelial or fibroblast cells with 

melanocytic, Schwannian and/or meningeal properties, and morphologically intermediate I-type cells 

(121, 188-190). The three NB cell-types have been shown to express distinct neural crest lineages. In 

particular, I-type cells including the SK-N-Be(2)c cloned cell line have biochemical features of both N 

and S cells, could generate multipotent I-type progeny indicating their capacity of self-renewal, 

initiated tumors in vivo, and were clonogenic in anchorage-independent growth in soft agar assay. 

Thus I-type cells were proposed to represent a malignant neural crest stem cell (121, 191-194). The 

clonogenic self-renewal capacity of I-type cells have been shown to require the Polycomb group 

family transcription repressor Bmi-1 in a concentration-dependent manner (195).  

These cells could represent a tool for in vitro assays alternative to primary NB samples to address the 

stem-like cell features in NB. 
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NB CSCs in primary NB tumors 

Based on the hypothesis that stem-like cells harbor drug resistance phenotype, a dye-exclusion assay 

has been performed on NB cell lines to address the existence of a “side population” (SP) 

corresponding to a tumor cell fraction which is able to efflux the Hoechst33342 fluorescent dye. A 

distinct SP was found in NB cells from 15 of 23 analyzed patients and in 5 NB cell lines ranging from 

4% to 37% of the total viable cells. Cells of the SP showed a higher expression level of the ABCG2 

transporter gene than the non-SP fraction (196). However, this study did not address the tumorigenic 

and self-renewing potentials of the SP cells in primary NB samples by relevant methodologies. 

 

More recently, Hansford and her colleagues were able to isolate sphere-forming cell populations by 

in vitro culture in a serum-free medium of dissociated tumors and bone marrow aspirates obtained 

from NB patients at diagnosis, remission or relapse (197). Primary sphere formation was observed 

within 2 to 8 weeks and all sphere cells expressed the NB84 marker, tyrosine hydroxylase (TH), 

fibronectin, nestin, and CD271 (p75 neurotrophin receptor) but were negative for CD133. No side 

population was observed in these cells. However, they were not able to confirm the presence of 

cytogenetic alterations typical of NB in all the primary cell lines. High-risk NB derived cell lines were 

shown to self-renew to a greater extent than tumor spheres from low-risk NB and to exhibit much 

less differentiation potential. In addition, 10 of the sphere cells were orthotopically grafted in the 

adrenal fat pad of immunocompromised mice and were able to develop a tumor that metastasized 

and could be serially transplanted. CD34+/CD24+ NB sphere cells were shown to be tumorigenic and 

to be responsible for a significantly higher morbidity in implanted animals compared to the non-

sorted sphere cell population. However, the expression of these markers was not addressed in NB 

primary samples and their relevance to identify NB CSCs was not discussed. 

The NB sphere lines established in this study were further used to identify selective NB-CSCs targets 

by small-molecule screens (198). In order to find chemical drugs that would also spare the normal 

pediatric stem cells, they included dermal stem cells, termed skin-derived progenitors (SKPs) in the 

screen. SKPs that have been isolated and cultured as spheres in serum-free media from neonatal 

skin, are non tumorigenic and exhibit properties similar to neural crest stem cells (199-201). Sixteen 

compounds were identified to specifically kill NB CSCs. In particular, DECA14 were shown to induce 

100-fold more cell death in the NB CSC population than in the SKP cells. However, NB cell lines such 

as SK-N-AS and SH-SY5Y had a very low sensitivity to DECA14. Smith et al. also addressed the 

cytotoxic effect of rapamycin, an m-Tor inhibitor that was previously shown to be a leukemic stem 

cell specific drug but was not found in their screen (202). Rapamycin decreased the NB CSC derived 

tumor growth in vivo. 
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Finally, a large-scale transcriptome analysis of the NB CSCs vs. SKPs was performed to determine 

enriched RNAs in NB CSCs (203). 321 genes were found to be over-expressed in NB CSCs compared to 

SKP cells. In particular, BRCA1 showed an elevated expression level in NB CSCs. In addition, the list of 

NB CSC associated genes was used to identify new potential specific treatments. Thus, the inhibition 

of AURKB, overexpressed in NB CSCs, by shRNA induced an 80% reduction of cell growth. 

 

These findings supported the hypothesis of NB CSCs existence. However, all results were obtained 

from the same samples in particular the NB12 sphere line described by Hansford et al. (197), and 

used SKP cells as a control. Moreover, the NB12 cell line has been shown to express CD20, a marker 

for hematopoietic stem cells, casting doubt on the phenotype of this putative NB CSC line. The 

truthfulness of the CSC model in NB tumors needs to be further investigated by increasing the 

number of patients and defining more reliable methodological strategies and controls. 
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AIM OF THE PROJECT 

 

Neuroblastoma (NB) remains one of the deadliest tumors in early childhood, for which new therapies 

are urgently needed. This neural crest-derived tumor displays a surprising heterogeneity at clinical 

and biological levels, which origin remains an enigma. There is increasing evidence that a fraction of 

cells called “cancer stem cells” (CSCs) present within the tumor is responsible for initiation and 

maintenance of many tumor types and represents a powerful potential therapeutic target.  

However, for several cancers, including NB and other childhood solid tumors, this population has not 

yet been identified nor characterized. Actually the identification and targeting of CSCs to definitively 

eradicate the disease represent an essential challenge for oncologists and researchers. 

In preliminary results, we identified cells within NB primary tumors which harbored markers of 

neural crest stem cells and neural crest lineages leading us to hypothesize that CSCs concept could 

explain the NB tumor cell heterogeneity and thus be relevant in NB tumors. 

In this project we proposed to address the existence of CSCs in NB by prospectively characterizing 

their self-renewal and in vivo tumorigenic properties by using novel and original combinations of 

sphere-forming assays, gene expression profiling and in vivo orthotopic implantations for 

tumorigenic assays. 

Stage 4 patients frequently show resistance to treatment and relapse. Thus they were elected as 

relevant material to address the presence of CSC fraction. Clinically, the identification of cells within 

this group of NB that could be responsible for tumor initiation and propagation, resistance to 

cytotoxic agents and metastases may offer new trails for therapeutic treatment targeting specifically 

the CSC population. Moreover, the results of this study may bring supplementary insights into the 

origin and development of NB that could also lead to new data for the comprehension of other 

related aggressive tumors.  
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MATERIALS AND METHODS 

 

Patients and genomic profiling by array-Comparative Genomic Hybridization 

(CGH) 

For this study, a cohort of 10 patients (referred to the CHUV hemato-oncology Unit for diagnosis 

and/or tumor biology assessment) with NB diagnosed between 2004 and 2009 were analyzed. The 

cohort includes five stage 4 patients (NB1-5), one stage 3 patient (NB6), three stage 4s patients (NB7-

9) and one patient with a post-chemotherapy differentiated ganglioneuroma (NB10). The biopsies 

and the bone aspirations were collected at diagnosis except for NB6 and NB10 whose primary tumors 

were removed after at least one course of chemotherapy, and NB4 which corresponds to the 

infiltrated bone marrow at relapse. For the two samples obtained after the chemotherapy, the 

patients were treated according to local and international protocols (SIOP, POG). The material was 

collected after informed consent and in agreement with local institutional ethical regulations.  

To determine the genetic type of the NB samples, array-CGH were performed either at the array-CGH 

platform of the Curie Institute in Paris (NB1 and NB9) or at the cytogenetic department of the 

hospital of Lausanne (Agilent) (NB2, NB3, NB6-8 and NB10) as described previously (204) with a 

resolution of approximately 1 Mb. Genomic pattern has been determined for NB4 and NB5 by 

Fluorescence In Situ Hybridization (FISH) on 1p, 2p, 17p and 17q chromosomal segments (Children’s 

Cancer Research Institute, Vienna and Inselspital, Bern respectively). Tumor cell content was greater 

than 60% in all analyzed samples and DNAs were extracted from the primary sample according to 

consensual DNA extraction protocol.  

 

Histopathological and immunohistochemical analyses 

Standard haematoxylin/eosin (H/E) staining procedures and immunostaining of p75 (CD271), CD44, 

CD31 and Ki67 were performed on paraffin-embedded tissues. 4 �������	
��������������	������	��

a xylol bath for 15 min and 5 times rinsed with xylol. Sections were rehydrated by transfers in alcohol 

baths for 5 min with descending concentration (100%, 95%, 70%, and 40%) and finally in H20. Then, 

they were washed for 5 min in 3% H2O2 to inhibit endogenous peroxydase. Slides were incubated in 

citrate buffered 10mM Tris at pH6 for 5 min and heated in a microwave oven for 15 min at 500W. 

Mouse monoclonal anti-human p75 [clone ME20.4, (205)], rabbit polyclonal anti-human CD31 

(Thermo Fisher Scientific, USA), and mouse monoclonal anti-human Ki67 (clone MIB-1, DAKO) 

primary antibodies were added in 1/5, 1/200, and 1/50 dilutions respectively, in citrate buffered 

10mM Tris at pH6 and incubated overnight. Incubation with secondary antibody was performed 
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than 60% in all analyzed samples and DNAs were extracted from the primary sample according to 

consensual DNA extraction protocol.  

 

Histopathological and immunohistochemical analyses 

Standard haematoxylin/eosin (H/E) staining procedures and immunostaining of p75 (CD271), CD44, 

CD31 and Ki67 were performed on paraffin-embedded tissues. 4 �������	
��������������	������	��

a xylol bath for 15 min and 5 times rinsed with xylol. Sections were rehydrated by transfers in alcohol 

baths for 5 min with descending concentration (100%, 95%, 70%, and 40%) and finally in H20. Then, 

they were washed for 5 min in 3% H2O2 to inhibit endogenous peroxydase. Slides were incubated in 

citrate buffered 10mM Tris at pH6 for 5 min and heated in a microwave oven for 15 min at 500W. 

Mouse monoclonal anti-human p75 [clone ME20.4, (205)], rabbit polyclonal anti-human CD31 

(Thermo Fisher Scientific, USA), and mouse monoclonal anti-human Ki67 (clone MIB-1, DAKO) 

primary antibodies were added in 1/5, 1/200, and 1/50 dilutions respectively, in citrate buffered 

10mM Tris at pH6 and incubated overnight. Incubation with secondary antibody was performed 
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using HRP EnVision anti-mouse antibodies (Dako, Glostrup, Denmark) for 30 min. Treatment with 

��������� (Dako, Glostrup, Denmark) at 1/50 dilution for 8min, was then performed and slides were 

mounted using Eukitt (EMS, Hatfield, PA). Washings between each step were done in TBS pH 7.6. 

 

Preparation of single cell suspensions of tumor cells 

Primary solid tumor samples were stored sterile in Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 

(Gibco, Paisley, UK) and processed within 10h after resection. Primary human tumors or xenograft 

tumors were washed, cut into fragments and further mechanically minced using sterile scissors. To 

obtain a single cell suspension, the minced tissues were incubated in PBS containing 0.01 mg/ml 

collagenaseII (Invitrogen, Grand Island, NY, USA) and 0.1 mg/ml DNaseI (Roche, Switzerland) for 30 

minutes at 37°C with frequent pipetting, followed by filtration through CellTricks® (50μm, Partek, 

Germany). Erythrocytes were lysed by incubating the cells in 0.88% NH4Cl for 15 min at 37°C and 

washing in PBS. Viable cells were counted after trypan blue staining.  

 

Cells and culture media 

Neuroblastoma cell lines, including LAN-1 (189) and SK-N-BE(2)C (121), were grown in DMEM  

containing 10% fetal calf serum (FCS) (Sigma, Taufkirchen, Germany), 100 U/ml penicillin and 

100ug/ml streptomycin (Invitrogen) and referred as FCS-medium. 

The NB1-FCS and NB1-NBM cell lines were established by plating the cell suspension of dissociated 

NB1-xenograft tumor in FCS-medium and Neural Basic Medium (NBM) respectively. NBM is a stem-

cell permissive medium, consisting in DMEM/F12 supplemented with penicillin/streptomycin, 2% B27 

(Gibco), human recombinant FGF-basic (20 ng/mL; Peprotech, USA) and EGF (20 ng/mL; Peprotech). 

Cells grown adherent were passed every 3-4 days using 0.05% trypsin-EDTA (Gibco). Enzymatic 

digestion was stopped using FCS-medium for all cell lines except NB1-NBM. For this cell line, we used 

trypsin inhibitor (from Glycin max, Sigma) at 1:1 with trypsin and washed cells once with PBS. 

For sphere culture, a neural crest sphere (NCS)-medium which was specifically defined to support the 

selected growth of neural-crest cell stem cells and progenitors was used. NCS-medium was adapted 

from (206) and contained DMEM-F12, 20 ng/ml FGF2, 20 ng/ml IGF1, 20 ng/ml EGF (all Peprotech), 

1% N2 supplement, 2% B27, 1% Penicill	�������
���	�� ����� ���	�
����!�"���#�$-mercaptoethanol, 

35 ng/mL retinoic acid (Sigma) and 15% chicken embryonic extract (CEE). CEE was prepared as 

described in (186). Briefly, for CEE preparation, fertilized eggs were incubated for 11 days. Embryo 

bodies were then passed through sterile syringes and enzymatically dissociated by a 10mg/ml 
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hyaluronidase solution for one hour at 4°C. Tissues were therefore centrifuged at 30’000g for 6 hours 

at 4°C, the supernatant was filtrated and kept at -80°C as aliquots.  

 

Sphere cultures 

For sphere culture, human NB tumor cells were transferred at the concentration of 30 to 80.105 

cells/ml into NCS-medium and cultured in poly(2-hydroxyethyl methylacrylate) (16 mg/mL in EtOH; 

Sigma) coated 6-well culture plates to eliminate adhesion of cells to the plastic surface, in 37°C/5% 

CO2 conditions. Spheres were passed every 7-10 days by dissociation in 0.05% trypsin-EDTA (Gibco). 

The enzymatic digestion was stopped by trypsin inhibitor (Sigma) and the cells were filtered in 

CellTricks® (50-μm, Partec) to obtain a single cell suspension.  

To assess self-renewal, sphere assays were performed by plating 5.103-104 tumor cells in NCS-

medium in coated 24-well culture plates in quadruplicates. Spheres were passaged every 7-10 days. 

Secondary spheres with a diameter>400 μm were counted in each well. To determine the ratio of 

sphere cell survival after each passage, the number of live cells obtained after passage of the spheres 

in one well was reported to the total number of cells from the previous passage that were plated in 

this well. 

 

Endothelin axis inhibition 

Bosentan, a specific antagonist of endothelin receptors (207), has been supplied by L. Juillerat-

Jeanneret, Pathology Institute of the University Hospital (Lausanne, Switzerland). An 8mM aqueous 

stock solution has been used for the self-renewal assay and was added in the sphere culture at the 

final concentration of 80 μM. 104 cells were seeded as previously described and secondary spheres 

were counted 7 days after plating. 

 

Cell viability assay 

To induce cell death, NB cells (1 to 2 × 104/well in 96-well-������&��������������������in FCS-medium 

or NBM (NB1-NBM) 24 hours before a 72h-treatment with 0-�$�� �# Bosentan. Cell viability was 

measured in quadruplicate using the MTS/PMS® cell proliferation kit from Promega (Madison, WI, 

USA) according to manufacturer's instructions. The percentage of viable cells in treated groups was 

compared to that in the untreated controls. 
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Total RNA extraction  

Dissociated tumor cells and trypsinized cell lines were collected and pelleted. The non-adherent 

spheres were collected by decantation for each passage. Cells were lysed by TRIZOL® Reagent 

(Invitrogen) and total RNAs were obtained by two extractions with UltraPureTM 

Phenol:Chloroform:Isoamyl Alcohol (25:24:1) (Invitrogen) and by purification using RNeasy MicroKit 

columns (Qiagen, Hilden, Germany). The quality of each RNA sample was verified by a Bioanalyser 

2100 of Agilent Technologies. 

 

Gene expression profiling 

GenechipTM hybridization 

Micro-array experiments were carried out at the DNA Array Facility Lausanne (DAFL), of the Center 

for Integrative Genomics (CIG), University of Lausanne, in collaboration with Dr. O. Hagenbüchle and 

Dr. K. Harshman. The DAFL provided support for the bioinformatics and data analysis. Expression 

profiling experiments were performed using the Human Genome U133Plus 2.0 Affymetrix GeneChip 

oligonucleotide array containing 47’000 probe sets.  

Each GeneChipTM was hybridized using targets synthesized from 100-250 ng starting material (total 

RNA). Target synthesis, hybridization, staining and washing were performed using standard protocols 

as recommended by the manufacturer (Affymetrix Santa Clara, CA, USA). 

 

Data analyses and statistical methods 

The Remote Analysis Computation for gene Expression data (RACE) system has been used (208). This 

suite of programs was developed by the DAFL bioinformatics group (UNIL) and allows for automated 

and batch-wise analysis of micro-array data. The system provides an interface that allows easily 

configuration of multi GeneChip data quality visualizations, multi GeneChip data normalizations and 

calculation of expression ratios. Expression values are measured using RMA algorihm, from the 

BioConductor “affy” package, comprising background correction, quantile normalization and probe 

set summary by robust regression (from DAFL data). The resulting expression values are on the log2 

scale and range from 0 to 16. 

The statistical analyses of differentially expressed genes were performed using the “R” statistical 

version 2.0.1.  The statistical value for the “step” gene analysis has been calculated by the formula: 

  with X=”step” statistics and mean(P1:P4)-P0 = “step” 

change. A cut-off has been defined as the absolute value of X=3. 
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The p-values associated to the fold change (fold-change *�$�������
�������
��@��	��������	���@�	���

the false discovery rate (FDR) method and the FDR cut-off level was set at 5%.  

The enrichment analysis in the neurosphere expression profile of genes for canonical pathway genes 

or GO annotations has been performed using the software MetaCore from GeneGo Inc. 

(http://www.genego.com). 

 

cDNA synthesis and semi-quantitative real-time PCR 

Reverse transcription of total RNAs was performed using random primers and SuperScript II reverse 

transcriptase, according to manufacturer’s instruction (Invitrogen). The relative expressions of 

sphere-associated genes were assessed by real-time semi-quantitative PCR using the ABI PRISM 7900 

HT real-time PCR system of Applied Biosystem with SYBR Green© detection (Qiagen). The expression 

levels of two or three independent experiments evaluating the expression levels of the CD133, 

EDNRB, GPR177, NOTCH3, MDR1, NOTCH2, ROBO1, ABCA1 and IGFBP5 transcripts for each sample 

were calculated relatively to the level of the housekeeping gene HPRTI. The \\Ct method was used to 

evaluate the relative gene expression.  Amplification reactions were performed with pairs of primers 

specific for human HPRT1 (5’-TGACACTGGCAAAACAATGCA-3’ and 5’-GGTCCTTTTCACCAGCAAGCT-3’), 

CD133 (5’-CATGGCAACAGCGATCAAG-3’ and 5’-AGCACAGAGGGTCATTGAG-3’), MDR1 (5’-

TTCTGGGAAGAT-3’ AND 5’-TATGGTACCTGCAAACTCTG-3’), EDNRB (5’-CGAAACGGTCCCAATATC-3’ 

and 5’-CCAGCTTACACATCTCAG-3’), NOTCH3 (5’-AGTGGCGACCTCACTTACGACT GTGCCTGTC-3’ and 5’-

GGGCACTGGCAGTTATAG-3’), SNAI2 (5’-CTACAGCGAACTGGACACACA-3’ and 5’-

TTGTGGTATGACAGGCATGG-3’), GPR177 (5’-CTGGATGCTGCTGTTTGG-3’ and 5’-

TACCCTGCGATGTGGTTC-3’), ROBO1 (5’-TTGCTTTGGGACGGACTG-3’ and 5’-ATCGGCTGGATGACTGTG-

3’), ABCA1 (5’-GACATCCTGAAGCCAATC-3’ and 5’-AGAGTCCCAAGACTATGC-3’). PCR program 

corresponded to: 2 min at 50°C for stabilization, 5 min at 95°C for SYBR activation, 40 cycles of three 

repeated steps of amplification (10 sec at 95°C, 30 sec at 60°C, 15 sec at 95°C) and 15 sec at 65°C. 

 

Endothelin axis PCR analysis of NB samples 

cDNA from NB samples were obtained as described above. Standard PCR amplifications of endothelin 

(EDNs) and endothelin receptor (EDNRA/B) sequences were performed using pairs of primers specific 

for EDN1 (5’-CTTCTGCCACCTGGACATCATTTGG-3’ and 5’-CAGTCTTTCTCCATAATGTCTTCAGC-3’), EDN2 

(5’-CTTCTGCCACTTGGACATCATCTGG-3’ and 5’-GGCCTCCTGTTGTCGCTTGGCAA-3’), EDN3 (5’-

CTATTGCCACCTGGACATCATTTGG-3’ and 5’-GAGGCAGCGGGGGCAGGTAGAT-3’), EDNRA (5’-

TTGCCCTCAGTGAACATC-3’ and 5’-CATCGGTTCTTGTCCATC-3’) and GAPDH (5’-
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AGATCATCAGCAATGCCTCC-3’ and 5’-GTGGCAGTGATGGCATGGAC-3’) as a control (EDNRB primers 

described above). The amplification reaction was performed in 20μl volume containing Hotstart 

Buffer 10X, 0.25mM of each dNTP, 1 μM of forward and reverse primers and 0.5U Hotstart-Taq DNA 

polymerase (Quiagen). All primers were used under standard PCR conditions (95°C 15 min; [94°C 30 

sec; 55°C 45 sec; 72°C 1 min]x35 cycles; 72°C 7 min). To visualize the amplification products, PCR 

reactions were loaded on 2% agarose gels. 

 

Cell staining for Fluorescent-Activated Cell Sorter (FACS) analysis 

Adherent cells were detached by 0.05% trypsin-EDTA (Gibco). Cells were counted and then 

transferred to a 5-ml tube, washed twice in PBS containing 0.5% bovine serum albumin (BSA) and 

2mmol/L-EDTA and stained with CD133/1-APC (Clone AC133, Miltenyi Biotech, Germany) and MDR1-

PE (P-glycoprotein, clone UIC2, Beckman Coulter, USA) conjugated monoclonal antibodies. 

Antibodies (appropriate dilution per antibody according to manufacturer’s instructions) were 

incubated for 20 min at 6°C and then washed twice with PBS/BSA-EDTA. For disialoganglioside 

staining, primary antibody used was anti-GD2 (Clone 14.G2a, BD Pharmingen, USA) and staining was 

visualized using anti-mouse AlexaFluor-488 (Molecular Probes) antibody conjugate. A total of 10 

millions cells were analyzed and sorted at 4°C in sterile conditions according to the appropriate cell 

marker by FACSAriaIITM cellsorter (BD Biosciences, USA) and then transferred in DMEM/F12 medium. 

Side scatter and forward scatter profiles were used to eliminate dead cells and cell doublets during 

the sorting. 

 

In vivo studies 

All animal experiments were carried out with athymic Swiss nude mice (Balb/C nu/nu), in accordance 

to the European Community guidelines (directive no. 86/609/CEE). For surgical and ultrasonic 

procedures, mice were anaesthetized using isoflurane and received paracetamol as analgesia the day 

before the surgery. 

Fresh NB specimens, either NB cells obtained from involved bone marrow aspirations after dead cells 

removal and Ficoll gradient separation or biopsies fragments were subcutaneously implanted in the 

mice left flanks. 

 

Tumorigenic assays 

For heterotopic assays, groups of 6 mice were subcutaneously injected in the flank with 104 cells 

suspended in 200 μl 1:1 mix of DMEM/F12 and BD MatrigelTM. Matrigel, used to enable cell grouping 
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and attachment in in vivo engraftments, contains extra-cellular matrix components (56% laminin, 

31% collagen IV and 8% entactin) and growth factors (0-0.1 pg/ml bFGF, 0.5-1.3 ng/ml EGF, 15.6 

ng/ml IGF-1, 12 pg/ml PDGF, <0.2 ng/ml and 2.3 ng/ml TGF-�). The grafted animals were then weekly 

monitored with calipers for tumor growth. The tumor volume was calculated using the formula: 

volume = (length×width2)/2.  

For orthotopic assays, cells were implanted in the adrenal gland of athymic Swiss nude mice as 

previously described (209). Briefly, the implantation was performed through a midline incision 

practiced under the microscope. A total of 104 NB cells in 15 μl PBS were injected in the left adrenal 

gland using a 22G needle connected to a Hamilton syringe. The abdominal wall and skin were closed 

with a continuous suture of 4.0 Safil Quick® (B/Braun). Tumor development and growth were 

assessed by ultrasound imaging every 15 days in the Lausanne animal imaging platform for a period 
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RESULTS 

 

Neuroblastoma patient samples 

Neuroblastoma (NB) is characterized by an important heterogeneity. In this study, we postulated 

that cells with stem-like characteristics (CSC) would be more likely detectable in high stage and 

progressing NBs, capable to generate serial spheres in particular culture conditions (197). We took 

advantage of this property to characterize a CSC-associated phenotype in clinically and biologically 

well characterized material. 

NB cell lines, although in majority established from stage 4 metastatic cells, may not always faithfully 

represent the aggressive features of clinical material. A surprisingly important population of 

tumorigenic and sphere-forming cells can be isolated with some cell lines, suggesting that a likely 

selection of self-renewable, tumorigenic functions over the time in culture has occurred (Morrison 

and personal observation). In contrast, some cell lines with a more differentiated phenotype 

produced very few spheres in identical conditions, and thus illustrated the heterogeneity observed 

with clinical material. Moreover, in vitro culture in serum-containing medium has been shown to 

induce additional chromosomic alteration in the cell genome and modification in the gene expression 

pattern (210). These observations suggested that NB cells derived from primary NB may be a more 

reliable model than many commonly used cancer cell lines to address the existence of CSCs 

population. Moreover, as metastatic population were also more likely to show CSC phenotype, we 

have in priority worked with metastatic cells isolated from involved bone-marrows at diagnosis. In 

isolated cases we also worked with cells dissociated from primary tissue. 

As shown in Table 1, 10 patient tumor samples and 4 cell lines were included in the study. Clinical 

characteristics such as age, stage, sample type, histology follow-up and genetic properties, MYCN 

and pan-genomic status are shown.  
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Table 1: Patients and cell lines characteristics. 
The tumor growth capacity of NB samples was assessed by subcutaneous engraftment in nude mice. The NB 
specimens were also tested for their sphere-forming capacity and in vitro growth in a serum-free medium. The 
genetic type has been determined using the published classification of NB according to overall genomic pattern 
(211). 
* indicates that the cells were non adherent and spontaneously grew as spheres. 
Abbreviations: GGN=ganglioneuroma, nd=not determined, bm=bone marrow, pt=primary tumor, pc=post-
chemotherapy, cut=cutaneous metastasis, rel=relapse, FH/UFH= favorable/unfavorable histology, NA=no 
amplification of NMYC locus, A=amplified NMYC locus, DOD = dead of disease, CR=complete remission, AD= 
alive with disease, VGPR=very good partial response, P=No. passage, HR=High risk group, LR: low risk group, 
IR=Intermediate risk group. 

 

 

Clinical/genetic features  

Five stage 4, two stage 3 (NB6 and NB10) and three stages 4s clinical samples were included. Tumor 

samples were isolated from the bone marrow in 5 cases (at relapse for NB4), from the primary tumor 

in 4 other cases (after chemotherapy for NB6 and NB10) and from a cutaneous nodule in NB8. 

Histology as defined by Shimada et al. was determined for all cases (129).  Histology at diagnosis was 

found favorable for NB7-9, while it was unfavorable for NB1-6.  MYCN amplification was observed in 

1 out of the 6 stage 4 samples.  Array-CGH was performed for most patient samples, allowing us to 

determine the genetic type, as proposed (211). All stage 4 samples showed segmental and /or 

numerical chromosomic alterations, and were types B to E. One stage 3 showed numerical and 

segmental alterations. The stage 3 NB10 sample, obtained after chemotherapy, had fully 

differentiated into a ganglioneuroma and presented a compatible flat profile. The 4s tumors, NB7 

and NB9, were type D (Table1).  

Four cell lines were also included. Two cell lines originated from the bone marrow of the single MYCN 

copy patient NB1. The NB1-NBM cell line was established in serum-free, EGF-, bFGF- and B27-

supplemented medium (NBM), while NB1-FCS cell line was established in 10% FCS-containing DMEM 

medium. The I-type SK-N-BE(2)C, and the N-type LAN-1 cell lines were propagated in classical 

medium in presence of serum. 
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Analysis of neural crest stem cell markers in NB samples: on the way to NB-

CSCs hypothesis 

NB tumors are composed of a heterogeneous population of tumor cells with respect to their ability 

to proliferate and differentiate and may contain cancer stem cells that are responsible for this 

diversity. Immortalized I-type NB cell lines such as SK-N-Be(2)c were shown to have neural crest stem 

cells (NCSC) features (191, 212) and in vitro studies in immortalized NB cell lines have shown that 

activation of distinct signal transduction pathways could generate cells with neuronal (213), 

chromaffin (214) or Schwannian (215) phenotypes, further supporting the evidence of a cell with 

stem cell properties in NB.  

 

Expression of NCSC and neural crest lineage progenitor markers in NB tumors and cell lines 

NB1-10, primary and xenograft tumors were analyzed by immunohistochemistry (IHC). They showed 

an inter-cellular heterogeneity regarding the expression of specific genes associated to neural crest 

stem cells and their derivatives, including the low affinity nerve growth factor receptor (p75), the 

smooth muscle actine (ACTA2), the glial fibrillary acidic protein (GFAP) and the neurofilament 160 

(NFEM) .  

Cells showing a positive staining for p75 in IHC, a recognized neural crest stem cell marker, were 

observed in the NB1, NB3 and NB4 tumors but not in NB5 (Figure 1). No primary sample for NB2 was 

available for the analysis. 
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Figure 1: Histology of neuroblastoma primary and xenograft tumors, and p75 tissue expression. 
To analyze the histology of the five stage 4 NB1-5, the stage 3 NB6 sample, the three stage 4s NB7-9 and the 
ganglioneuroma NB10 primary and xenograft tumor samples (cf. Table 1), tumor sections were stained by 
Hematoxylin/Eosin (H/E) reaction and observed with a microscope with a 40x magnification. The samples were 
also tested by immunohistochemistry (IHC) for their expression of the low-affinity NGF receptor p75. The 
derived xenograft tumors were established in nude mice (NB1-5-xeno). The passage number (P) of the 
xenograft tumor is indicated.  
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To indirectly address the existence within these NB samples of cells with glial, neuronal and 

connective features, GFAP, NEFM and ACTA2 expressions were analyzed (Figure 2). All tumor 

samples showed the expression of at least one or two markers for neural crest progenitor cells, 

highlighting the hierarchical organization of the tumors that mimics the physiological organization of 

the neural crest derived-tissues. 

 

 

 

Figure 2: Neuroblastoma primary and xenograft tumors express various markers of neural crest lineages. 
Analysis by RT-PCR for the presence of the GFAP, NFEM, ACTA2 and GAPDH gene transcripts in total RNAs 
extracted from the primary tumors NB1, NB3, NB5 and NB6, and the corresponding NB2, NB3, NB4 and NB5 
xenograft tumors. 

 

 

Finally, the cellular heterogeneity of NB tumors, their differential disease course related to patient 

age at diagnosis, the treatment response and their origin from the embryonic neural crest led us to 

consider the existence of NB-CSCs. 

The validation of the NB-CSCs hypothesis was therefore required and addressed by functional assays 

based on CSCs-properties, such as self-renewal and in vivo tumorigenicity,  in NB tumor samples.  
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High stage NB1 tumor as study model 

NB1 tumor, a model to study NB-CSCs 

The patient sample NB1 presented the highest capacities to form NS, and to induce serial tumor 

formation in the animal (Table 1). We hypothesized that NB1 tumor was the most likely to contain 

identifiable CSCs and was therefore selected for further thorough investigations.  

Two other high stage NB tumors, NB2 and NB4 (Table 1), have been analyzed to validate the results 

observed in the NB1 study model. 

 

In vivo maintenance of the NB1 sample and NB1 derived cell lines 

 In order to have available live tumor tissue throughout months, NB1 sample was maintained by 

serial in vivo tissue engraftments; the NB1 patient bone-marrow cells were initially used to establish 

a NB1-xenograft tumor by s.c. nude mouse engraftment (Figure 3A). The same procedure was 

applied on NB2 and NB4 samples to generate NB2-xenograft and NB4-xenograft tumors respectively 

(Figure 3B). These tumors were maintained alive by serial implantations of tissue fragments in nude 

mice. 

As shown in figure 3A, we also established NB1-NBM and NB1-FCS cell lines (Table 1) from 

dissociated NB1-xenograft tumor, by culture in a defined medium to support the growth of neural 

crest cells (NBM medium) and in classical FCS-supplemented medium respectively.  

 

 

Figure 3: Model for in vivo propagation of NB xenografts derived from stage4 NB1, NB2 and NB4 bone 
marrow cells 
Subcutaneous implantation of infiltrated bone marrow cells from NB1, NB2 and NB4 patients generated the 
heterotopic tumors NB1-xeno (A), NB2-xeno and NB4-xeno (B) in Swiss nude mice, respectively. 
NB1-NBM and NB1-FCS correspond to established cell lines from NB1-xeno in serum-free and 10%-FCS medium 
respectively.  
 
 

RESULTS   
 

 
 

48 

High stage NB1 tumor as study model 

NB1 tumor, a model to study NB-CSCs 

The patient sample NB1 presented the highest capacities to form NS, and to induce serial tumor 

formation in the animal (Table 1). We hypothesized that NB1 tumor was the most likely to contain 

identifiable CSCs and was therefore selected for further thorough investigations.  

Two other high stage NB tumors, NB2 and NB4 (Table 1), have been analyzed to validate the results 

observed in the NB1 study model. 

 

In vivo maintenance of the NB1 sample and NB1 derived cell lines 

 In order to have available live tumor tissue throughout months, NB1 sample was maintained by 

serial in vivo tissue engraftments; the NB1 patient bone-marrow cells were initially used to establish 

a NB1-xenograft tumor by s.c. nude mouse engraftment (Figure 3A). The same procedure was 

applied on NB2 and NB4 samples to generate NB2-xenograft and NB4-xenograft tumors respectively 

(Figure 3B). These tumors were maintained alive by serial implantations of tissue fragments in nude 

mice. 

As shown in figure 3A, we also established NB1-NBM and NB1-FCS cell lines (Table 1) from 

dissociated NB1-xenograft tumor, by culture in a defined medium to support the growth of neural 

crest cells (NBM medium) and in classical FCS-supplemented medium respectively.  

 

 

Figure 3: Model for in vivo propagation of NB xenografts derived from stage4 NB1, NB2 and NB4 bone 
marrow cells 
Subcutaneous implantation of infiltrated bone marrow cells from NB1, NB2 and NB4 patients generated the 
heterotopic tumors NB1-xeno (A), NB2-xeno and NB4-xeno (B) in Swiss nude mice, respectively. 
NB1-NBM and NB1-FCS correspond to established cell lines from NB1-xeno in serum-free and 10%-FCS medium 
respectively.  
 
 



  RESULTS 
 

 
49 

Stability of the NB phenotype in the xenograft tumors and derived cell lines 

NB specific marker expression  

To confirm the NB origin of the xenograft tumors derived from NB1 sample, the expression of NB-

specific markers was measured. NB cells can be easily identified by the expression of the 

disialoganglioside GD2, a specific and sensitive marker of tumors of neuroectodermal origin, or p75, 

the low affinity receptor for NGF associated with neural crest lineages. FACS analysis showed that 

95.1% cells from the dissociated NB xenografts were positive for GD2 (Figure 4A). NB1-NBM and 

NB1-FCS derived from this sample were also made up of a majority of GD2 positive cells (Figure 4A).  

Likewise, NB2-xenograft and NB4-xenograft tumors were also checked by FACS for GD2 positivity 

(Figure 4A). 

 

To rule out a possible subcutaneous growth of either transformed or fused hematopoietic 

progenitors from the NB1 bone marrow, we measured by FACS the surface expression of CD20, a 

typical B-cell marker, in NB1-NBM (Figure 4B). CD20 surface expression was detected neither in the 

NB1-xeno cells nor in the NB1 derived cell line, confirming the NB phenotype of the NB1-xenograft 

cells. 

 

 

 
Figure 4: NB origin of the NB xenograft tumors by FACS analysis. 
A. Cell surface expression of GD2 specific marker for NB cells in the NB1, NB2 and NB4 dissociated tumor 
xenografts and the NB1-NBM and NB1-FCS cell lines. B. Cell surface expression of CD20 marker in the NB1-
xenograft cells and its NB1-NBM derived cell line. Black lines represent the fluorescent signals for GD2 (A) and 
CD20 (B) specific antibodies and the grey line corresponds to control with secondary antibody alone (A) or 
isotype antibody (B). 
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Histology features  

To address the retention of original NB1 histology features in different passages of NB1-xenograft 

tumors, paraffin sections of these samples have been stained with Hematoxylin/Eosine (H/E) and 

checked for Ki67 proliferation marker and CD31 endothelial cell marker expression (Figure 5). As 

shown on H/E prints (left panel), the histology of NB1 tumor evaluated at diagnosis, revealed NB1 as 

a typical proliferative and stroma poor tumor, showing a high degree of vascularization, and was thus 

classified in the Unfavorable Histology (UFH) group (Table 1) (129). The NB1-xenograft tumor deriving 

from bone-marrow metastatic cells, showed typical poorly differentiated NB histology, with 

undifferentiated and highly proliferating small round blue cells, and an important vascularization 

(CD31 expressing cells) with infiltration of erythrocyte (H/E).  

The expression of p75 marker, as measured by IHC on NB1 and NB1-xenograft paraffin sections, 

remained stable over several in vivo passages (Figure 5). These results demonstrated the stability of 

patient tissue morphology and cellular phenotypes in the derived-xenografts. 

 

 

Figure 5 : The histology of the NB1 primary tumor is stable in its derived xenografts in nude mice 
NB1 primary tumor and 3 passages (P1, P6 and P12) of the derived NB1-xenograft were analyzed by H/E and 
IHC staining of p75, Ki67 and CD31 markers. 
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Genomic profiles 

NB tumors are characterized by several genetic alterations, recently shown to be strongly related to 

their clinical aggressive behavior. The pan-genomic analysis of the original NB1 tumor, and its 

derivatives, NB1-xenograft, NB1-xeno secondary spheres (NB1-T2), NB1-NBM and NB1-FCS cell lines, 

were analyzed by array-CGH. These derivatives (Figure 6B) possessed the same genomic alterations 

as the NB1 patient primary tumor (Figure 6A). Indeed, all NB1 samples showed identical array-CGH 

profiles with typical NB-associated segmental chromosomic alterations such as 1pdel, 1qgain, 

17qgain, 8qgain, 4qgain. No MYCN amplification or MYCN gain on 2p24 was detected in the NB1 

tumor, but a chromosomic gain in 8q, which was identified as a c-myc gain. Loci found on the 4q and 

8q amplicons in NB1 genome are shown in the Appendix 1. Interestingly, 4q amplicon carried the 

VEGFC coding sequence, this protein playing a key role in the regulation of angiogenesis. 

 

 

A.  

B.  

Figure 6: The genomic alterations of the NB1 primary tumor are conserved in the derived xenograft and cell 
lines. 
A. Array-based Comparative Genomic Hybridization (array-CGH) was carried out on the genome of the 
derivatives of the NB1 tumor cells and highlighted chromosomic alterations as a gain of the c-MYC locus on 
chromosome 8 and an amplification on the 4q (black arrow heads) in addition to specific stage4-associated 
translocations on chromosomes 1 and 17. B. Detailed array-CGH for the chromosome 1, 4, 8 and 17 in the 
genome of NB1-xenograft cells and the secondary derived spheres (NB1-T2). The same alterations than in NB1 
primary tumor are found in the xenograft, and the derived spheres and cell lines (black arrow heads). 
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Long-term in vivo maintenance of NB1-xeno tumor 

The tumorigenic potential of cells obtained from dissociated NB1-xenografts of early and late 

passages in mice was assessed by subcutaneous injections in nude mice (Figure 7). Cells from passage 

15 (15th xeno-transplantation in mice) of NB1-xenograft showed a decreased tumorigenicity 

compared to the passage 7 cells (7th xeno-transplantation in mice). Thus, early passages of NB1, NB2 

and NB4 xenograft tumors were preferentially used in this study.  

 

 

Figure 7: Late passage NB1-xenograft tumor cells showed decreased tumorigenic potential 
104 NB1-xeno cells at passages 7 (7th grafted mouse, P7) and 15 (15th grafted mouse, P15) were subcutaneously 
grafted in Matrigel in the back of 6 nude mice and the mean tumor volumes measured twice a week for at least 
50 days. 

 

 

All together, the above results confirmed that such vivo/vivo serial transplantation procedure allows 

maintaining NB tissue over months with fully stable histology, genetic and biological features. The 

particular properties of the NB1-xenograft tumor also support the suitability of such tumor model for 

the investigation of CSC in NB. Likewise, NB2 and NB4 xenografts were thus considered as faithful 

representative of the original NB2 and NB4 primary tumors. 

The terms NB1, NB2 and NB4 will therefore hereafter refer to the original patient tumors, while 

NB1-T, NB2-T, NB4-T will refer to any early passage (between 5 and 10) of the corresponding 

xenograft. 

 

 

Self renewal and in vivo tumorigenicity of the NB tumors and cell lines 

The ability of tumor cells to grow as spheres, to generate and propagate tumors in vivo (nude mice) 

are recognized as typical hallmarks of self-renewal and tumorigenicity, two essential properties of 

CSCs (41, 68). We thus assessed all the listed NB primary samples for in vitro sphere-forming capacity 

and in vivo tumor growth in nude mice. 

RESULTS   
 

 
 

52 

Long-term in vivo maintenance of NB1-xeno tumor 

The tumorigenic potential of cells obtained from dissociated NB1-xenografts of early and late 

passages in mice was assessed by subcutaneous injections in nude mice (Figure 7). Cells from passage 

15 (15th xeno-transplantation in mice) of NB1-xenograft showed a decreased tumorigenicity 

compared to the passage 7 cells (7th xeno-transplantation in mice). Thus, early passages of NB1, NB2 

and NB4 xenograft tumors were preferentially used in this study.  

 

 

Figure 7: Late passage NB1-xenograft tumor cells showed decreased tumorigenic potential 
104 NB1-xeno cells at passages 7 (7th grafted mouse, P7) and 15 (15th grafted mouse, P15) were subcutaneously 
grafted in Matrigel in the back of 6 nude mice and the mean tumor volumes measured twice a week for at least 
50 days. 

 

 

All together, the above results confirmed that such vivo/vivo serial transplantation procedure allows 

maintaining NB tissue over months with fully stable histology, genetic and biological features. The 

particular properties of the NB1-xenograft tumor also support the suitability of such tumor model for 

the investigation of CSC in NB. Likewise, NB2 and NB4 xenografts were thus considered as faithful 

representative of the original NB2 and NB4 primary tumors. 

The terms NB1, NB2 and NB4 will therefore hereafter refer to the original patient tumors, while 

NB1-T, NB2-T, NB4-T will refer to any early passage (between 5 and 10) of the corresponding 

xenograft. 

 

 

Self renewal and in vivo tumorigenicity of the NB tumors and cell lines 

The ability of tumor cells to grow as spheres, to generate and propagate tumors in vivo (nude mice) 

are recognized as typical hallmarks of self-renewal and tumorigenicity, two essential properties of 

CSCs (41, 68). We thus assessed all the listed NB primary samples for in vitro sphere-forming capacity 

and in vivo tumor growth in nude mice. 



  RESULTS 
 

 
53 

Self-renewal 

NB clinical samples and cell lines listed in Table 1 were analyzed for their ability to form serial 

spheres, when cultured in NCS-medium and non-adherent suspension, conditions that specifically 

support the growth of neural crest stem cells and assess self-renewal ability (Figure 8 and Table 1). 

NB1-T, NB2-T, NB3, NB4-T, NB5 and NB6 samples were able to grow as spheres up to passage 5 (NB1-

T), while in the group of stage 3 or stages 4s samples, only NB6 sample could form spheres up to 

passage 2. NB8 formed primary spheres which could not be passed. NB7-10 and NB1-FCS were not 

able to grow as sphere in serum-free medium. 

 

 

 
 
Figure 8: Sphere-forming capacity of NB tumors and cell lines. 
Microscopic observation (40x magnification) of the secondary spheres (tertiary for ACN and SJNB12) derived 
from three stage 4 NB samples (NB1, NB2 and NB4), NB1-NBM cell line established in the lab and eight well-
characterized NB cell lines.  
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Cell viability in sphere conditions was measured and found to be variable (Figure 9A). The highest 

viability was measured for NB1-T, NB5 and NB6 samples at first passage, and for NB1-T and NB3 at 

second passage.  As it is generally accepted that long-term passages assessment is more relevant to 

study self-renewal capacity, NB1-T was postulated to have the highest proportion of self-renewal 

cells. 

 

 

A.      B.  

 
 
Figure 9: Cell survival at primary and secondary sphere passages for NB primary samples and cell lines 
A. Cell survival at the first and second passages of NB tumor-derived spheres. B. Cell survival at the third 
passage of cell line-derived spheres. The reported ratio of cell survival has been calculated by using the number 
of living cells counted after dissociation divided by the number of initially plated cells. 

 

 

We tested a panel of well-characterized NB cell lines for their sphere-forming capacity and survival in 

NCS-medium.  

To measure the cell survival in sphere conditions, live cells were counted after each sphere passaging 

(Figure 9B). All cell lines were able to grow in NCS-medium at least until tertiary spheres, except SH-

SY5Y (N-type) and SHEP (S-type) which showed a limited survival in sphere conditions. LAN-1 and SK-

N-BE(2)C showed the highest survival after three passages in sphere conditions compared to other 

cell lines . Moreover, the number of secondary spheres derived from 10’000 plated cells in sphere 

culture was counted to determine the self-renewal potential of these cell lines (Figures 8 and 10). 

LAN-1 and SK-N-Be(2)c  showed the highest sphere-forming capacity. We therefore selected these 

two NB cell lines for further investigations. We included in the study NB1-NBM and NB1-FCS cell 

lines, both derived from NB1-T and harboring different self-renewal capacity in vitro. Interestingly, 

NB1-FCS did not survive in NCS-medium. 
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Figure 10: LAN-1 and SK-N-Be(2)c cell lines are in vitro models for NB cells with a high sphere-forming 
capacity 
Self-renewal assay for 8 different NB cell lines was performed. The number of secondary spheres was counted 
for 104 plated cells in sphere culture conditions. 

 

In vivo tumorigenicity 

The in vivo tumorigenic properties of the NB samples were evaluated. The ability to initiate serial 

tumors was measured in vivo, in a xenograft model (sub-cutaneous engrafting in immuno-

compromised Swiss nu/nu mice). Although NB1-NB5 samples were all able to initiate tumors in mice, 

the time required to initiate a detectable tumor varied from 40 (NB1) to 140 days (NB4), and the 

number of serial passages obtained was also variable, from 1 (NB3) to 16 (NB1). Sample NB1 showed 

the highest long-term in vivo serial passage capacity. No tumor growth in mice was obtained with 

samples NB6-NB10, even after 180 days observation (Table 1).  

 

Correlation with clinical aggressiveness 

The low-risk, intermediate-risk, and high-risk group assignments for the 10 patients were determined 

according to the criteria currently used by the Children’s Oncology Group (COG). The capacity of the 

different NB samples to form serial xenograft tumors and serial passage sphere was compared 

(Figure 11). The data clearly showed that long-term serial xenograft passaging and expanded sphere 

passages were realizable with the NB samples of the high-risk group but not with the less aggressive 

NBs. This indicated that tumorigenicity and self-renewal are associated to aggressive and metastatic 

tumors but not low/intermediate grade NB. 
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A.          B.  

 

Figure 11: In vivo tumorigenicity of the NB cells is associated with the clinical stage. 
In vivo tumor propagation (A) and in vitro sphere formation (B) capacities for the high-risk group (High) of NB 
samples were compared to the low- and intermediate-risk group (L/I). * indicates p<0.05 (Student’s t-test). 

 

Gene expression profiles of NB spheres: characterization of a NB neurosphere 

expression profile  

As a starting hypothesis, we postulated that NB spheres, generated by tumor cell culture in a defined 

serum-free medium, could be progressively enriched in self-renewing cells, one of few essential CSC 

features.  

To characterize this cell population, gene expression profiles of NB1-T, NB2-T and NB4-T, and their 

serially derived spheres were generated by micro-arrays. Differentially expressed genes were 

identified by two statistical analyses selecting genes with either a “linear” or a “step” evolution 

through the sphere passages. 

 

Time-course micro-array analyses of NB1-T sphere gene expression profile 

The detailed experimental protocol designed for identification by microarray of NB1-CSC associated 

genes is described in Figure 12: a time-course micro-array expression analysis was performed on 

NB1-T (T0) and NB1-NBM (C0) samples and on their serial sphere passages T1-T4 and C1-C4 samples 

using Affymetrix© Human Genome U133 Plus 2.0 array.  
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Figure 12: Gene expression profilings of four passages of spheres derived from NB1-T and NB1-NBM. 
Dissociated NB1-T cells (T0) and NB1-NBM cell line (C0) were grown as spheres in NCS-medium and serially 
passaged until quaternary spheres were obtained. Total RNAs were extracted from T1/C1 to T4/C4 with the 
parental sample T0/C0 and then hybridized on gene chips for time-course micro-array analysis.  

 

In our analysis, we envisaged two scenarios of cell selection in sphere cultures: either an increased 

number of self-renewing cells would appear as increased sphere passages were obtained (“linear” 

evolution model) or a drastic selection of self-renewing cells would occur at first passage in sphere 

conditions (“step” evolution model) (Figure 13).  

 

 

Figure 13: Linear regression and «step-genes» analysis of the spheres gene expression profiles. 
Directed analyses were carried out in R to statistically determine which group of genes are gradually over-
expressed (“linear”) or mostly enriched in the first passage (“step”) in cells through the sphere passages.  
Statistic values p (regression linear-associated p-value) and X (“step gene” statistic value) were obtained and 
threshold p-value was set at p_�`�"������{��|�*}`  P0, P1, P2, P3, and P4 stand either for T0, T1, T2, T3, and T4 
or for C0, C1, C2, C3, and C4. 
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The “linear” hypothesis designed in R program corresponded to a selection of the over- or under-

expressed genes which significantly followed a linear regression (p-value_�`�"�� �~
@�~� �~�� �	���

expression points T0 to T4 or C0 to C4, with a fold-change higher than 2 (Sylvain Pradervand, 

University of Lausanne).  

The “step” hypothesis designed in R program was based on the following formula to describe genes 

that were significantly over- or under-expressed at T1/C1: 

 

with X =”step” statistics, and mean (P1:P4)-P0 = “step” change, with P0 corresponding to the initial 

sample (T0/C0) and (P1: P4) to the first four passages of spheres (Thierry Sengstag, Swiss Institute of 

Bioinformatics in Lausanne). 

 

To in silico select differentially expressed genes with expression profile changes occurring with 

successive sphere passages, a cut-off has been defined at either p����� or abs(X) =4 in the “linear” 

and the “step” analyses respectively. 

The “linear” evolution analysis performed with NB1-T provided a list of 728 over-expressed and 545 

under-expressed probe sets. On the other hand, the “step” evolution analysis showed 232 over- and 

176 under-expressed probe sets in the NB1 spheres. By overlapping those two results, a global list of 

1601 deregulated genes in the spheres derived from NB1 was obtained, 700 down-regulated and 

901 up-regulated genes. 

We applied the same reasoning to NB1-NBM microarray analysis, which indicated 426 differentially 

expressed genes: 137 down-regulated genes vs. 289 up-regulated with either a “linear” or a “step” 

selection through C0 to C4. 

 

Gene expression profiles of NB2/NB4 secondary spheres 

NB1, NB2 and NB4 samples were all metastatic samples of NMYC non-amplified stage 4 NBs. 

Although we were not able to grow the NB2 and NB4 spheres until their quaternary passages, we 

nevertheless used these NB samples to validate the differentially expressed genes characterized in 

NB1-T and NB1-NBM experiments. A second microarray analysis was therefore performed on 

primary (T1) and secondary (T2) spheres derived from NB2-T and NB4-T tumors (T0) with the same 

gene-chip device (Figure 14A). Triplicates of T0 and T1 samples were statistically compared and a first 

set of differentially expressed genes were selected if their fold change absolute value in T1 vs.T0 was 

higher than 2. Then, only the genes that showed a persistent deregulation in T2 vs. T1 were definitely 

selected, as shown in Figure 14B. Thus, in NB2 secondary spheres, 545 differentially expressed 
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genes, 335 up- and 210 down-regulated, were identified. Likewise, 961 genes were deregulated in 

NB4 secondary spheres, 475 over- and 486 under-expressed. 

 

A.       B.   

 

Figure 14: Gene expression profiling of NB2-T and NB4-T tumors and the derived spheres.  
A. Total RNAs from the dissociated parental tumors as well as triplicates of the primary spheres (NB2-T1 and 
NB4-T1), and monoplicates of the secondary spheres (NB2-T2 and NB4-T2) were hybridized on genechips for 
gene expression profiles. B. NB2 and NB4 sphere profiles were determined by selecting over-expressed genes 
with a fold-change (FC) between T0 and T1 superior to 2 and superior to -2 in T2 vs. T1 (under-expressed genes: 
FC inferior to -2 and inferior to 2 respectively). 
 

 

Gene expression profiles of high stage NB derived spheres  

 

Gene lists overlapping  

In order to identify genes that were deregulated in two or more samples of NB spheres, we crossed 

the lists of deregulated genes found in NB1-T, NB2-T, NB4-T and NB1-NBM analyses. The number of 

overlapping genes is indicated in the Venn diagram (Figure 15).  
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Figure 15: Venn diagrams summarized the overlap of up- and down-regulated transcripts obtained in the 
NB1-T, NB2-T, NB4-T and NB1-NBM profiling experiments. 
The deregulated genes in white are detailed in the supplementary data (cf. Appendix 3). 

 

 

446 genes were found commonly deregulated in the various combinations of experiments. In 

particular, only 14 genes were commonly deregulated in NB1-T/ NB1-NBM quaternary spheres and 

NB2/NB4 secondary spheres (Table 2). When excluding the NB1-NBM list, and overlapping the lists of 

deregulated genes in NB1-T, NB2-T and NB4-T spheres, 64 common genes were identified, 
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Figure 15: Venn diagrams summarized the overlap of up- and down-regulated transcripts obtained in the 
NB1-T, NB2-T, NB4-T and NB1-NBM profiling experiments. 
The deregulated genes in white are detailed in the supplementary data (cf. Appendix 3). 
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Canonical pathways and biological functions enrichment 

To investigate whether any biological functions were over-represented in the combined gene 

expression profiles of NB1-T, NB2-T, NB4-T and NB1-NBM spheres, we analyzed the enrichment of 

canonical signaling pathways and Gene Ontology annotations for biological processes in these four 

lists. 

As shown in figure 16A, an enrichment of genes involved in canonical signaling pathways such as 

epithelial-mesenchymal transition (EMT), AP-1 pathway, VEGFC cascade, WNT pathway and cell 

adhesion was found. Moreover, the Gene Ontology annotation analysis revealed an over-

representation of genes playing a key role in several developmental processes such as embryonic 

development, nervous system development and cell differentiation (Figure 16B), comforting the 

stem-like phenotype of these self-renewing cell populations. 

 

A.  

B.  
 

Figure 16: GeneGo enrichment analysis for canonical pathways and Gene Ontology processes in the lists of 
sphere-associated genes 
The canonical pathways (A) and Gene Ontology processes (B) that were significantly enriched in NB1-T, NB1-
NBM, NB2-T and NB4-T spheres expression profiles are reported. The quoted maps (in red) of canonical 
pathways involving genes of the sphere s are shown in Appendix 2. The so-called maps correspond to graphic 
reprentation of the molecular pathway provided by the GeneGo portal. D: Development, R: Reproduction, T: 
Transcription, IR: Immune Response, CR: Cytoskeleton Remodeling, CA: Cell Adhesion. 
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As shown in figure 16A, an enrichment of genes involved in canonical signaling pathways such as 

epithelial-mesenchymal transition (EMT), AP-1 pathway, VEGFC cascade, WNT pathway and cell 

adhesion was found. Moreover, the Gene Ontology annotation analysis revealed an over-

representation of genes playing a key role in several developmental processes such as embryonic 

development, nervous system development and cell differentiation (Figure 16B), comforting the 

stem-like phenotype of these self-renewing cell populations. 

 

A.  

B.  
 

Figure 16: GeneGo enrichment analysis for canonical pathways and Gene Ontology processes in the lists of 
sphere-associated genes 
The canonical pathways (A) and Gene Ontology processes (B) that were significantly enriched in NB1-T, NB1-
NBM, NB2-T and NB4-T spheres expression profiles are reported. The quoted maps (in red) of canonical 
pathways involving genes of the sphere s are shown in Appendix 2. The so-called maps correspond to graphic 
reprentation of the molecular pathway provided by the GeneGo portal. D: Development, R: Reproduction, T: 
Transcription, IR: Immune Response, CR: Cytoskeleton Remodeling, CA: Cell Adhesion. 
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Enrichment of biological processes in the NB1-T model 

The NB1-T and NB1-NBM profiles seemed more relevant for the identification of a self-renewing 

associated  as they were established from quaternary spheres. Indeed, it is generally accepted that 

long-term passages are more representative of self-renewal capacity. We thus considered that the 

self-renewing population was stable at the fourth sphere passage and focused the analysis of 

canonical pathways enrichment on the NB1-T derived spheres expression profile (Figure 17).  

 

 

Figure 17: GeneGo enrichment analysis for canonical pathways and Gene Ontology processes in the list of 
NB1-T sphere associated genes 
Gene Ontology processes that were significantly enriched in NB1 spheres expression profile only are shown. 
The quoted map (in red) of canonical pathways involving genes of the sphere s are shown in Appendix 2. The 
so-called maps correspond to graphic reprentation of the molecular pathway provided by the GeneGo portal. 
D: Development, R: Reproduction, T: Transcription, IR: Immune Response, CR: Cytoskeleton Remodeling, CA: 
Cell Adhesion. 

 

The first ten more significant key pathways were found to be similar with the enrichment analysis of 

the four combined experiments of Figure 16A and underlined the over-representation of genes 

involved in EMT (maps 1, 4 and 10), Wnt signaling (maps 5 and 8) and interactions with the micro-

environment (maps 3, 6 and 7) in the sphere expression profiles. Detailed maps with the gene 

expression fold-change observed in spheres of the four experiments are shown in Appendix 2. 

We next addressed the enrichment in NB1-T spheres of genes involved in known essential attributes 

of stemness including the TGF�, JAK/STAT, NOTCH, WNT and YES signaling pathways, the capacity to 

sense growth hormone and the interaction with the extracellular matrix via integrins (219) or in the 

neural crests development and NB tumorigenesis. These genes are listed in Table 5. Several of these 

genes were also deregulated in NB2-T and/or NB4-T spheres.  

So, the gene expression analysis of NB1-T spheres supported by three other experiments in NB1-

NBM, NB2-T and NB4-T spheres provided a list of genes involved in key pathways such as EMT and 

Wnt signaling, extracellular matrix remodeling and immune response modulation. 
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Characterization of a Neurosphere Expression Profile (NEP) 

In order to determine the most relevant list of genes associated with the self-renewing phenotype of 

NB cells, we annotated the deregulated genes in NB1-T quaternary spheres for their characterization 

in previous published gene expression profiling. Thus, the list of 901 over-expressed genes in NB1-T 

spheres have been crossed with five lists of published genes over-expressed in neural crest stem cells 

(NCSC), neural crest derived progenitor cells (NCDC), neural stem cells, NB-TICs and induced 

pluripotent stem cells (iPS) (203, 218-220). Indeed, those five gene expression profiles were 

considered particularly relevant in the quest of self-renewing NB cells markers. Induced-PS (iPS) up-

regulated genes were added to the analysis as NB1-T cells over-expressed c-MYC which is one of the 

inducer for the re-programming of human fibroblasts into pluripotent cells. 

Common genes were summarized in Appendix 3 and referred below as the Neurosphere Expression 

Profile (NEP). In particular, 20 genes were found commonly up-regulated in NCSC and NB1-T spheres. 

Interestingly, the receptor PROM1 (CD133) was expressed with a 29-fold increase in NB1-T spheres 

expression profile. Expending evidence highlighted the role of CD133 as a marker of CSCs in various 

human tumors (221) such as brain and colon cancer stem cells (49, 55, 56, 222). In addition, CD133 

expression was reported to be induced in iPS cells (220). Among the genes with the highest fold-

change in NB1-T spheres, this overlap also identified the VEGFC growth factor (9x) involved in 

angiogenesis of the venous and lymphatic vascular systems during embryogenesis and nervous 

system development, the axon guidance receptor ROBO1 (6x) and the FGF receptor FGFR2 (3x) 

present on the iPS cell membrane.  

In addition, 13 genes were identically over-expressed in NCDC and NB1 spheres such as the GPR177 

gene that regulates WNT proteins sorting and secretion (223) and the receptor NOTCH3 which 

promotes cell self-renewal and tumor formation (224-226).  

Finally, a list of 100 up-regulated genes was identified in both NB1-T spheres and NSC gene 

expression profiles, among which two particularly relevant genes emerged: the EDNRB and ABCA1 

genes which showed 33- and 17-fold respective changes in NB1-T spheres. Indeed, the endothelin 

receptor B (EDNRB) located in 13q22, and its ligand, the endothelin 3 (EDN3), are involved in the 

neural crests development during embryogenesis, and promote cell growth and normal formation of 

peripheric nerves and melanocytes (227-229). EDNRA, receptor for endothelin-1 (EDN1), has also 

been found 11-fold over-expressed in NB1-T spheres. On the other hand, the ABCA1 transporter 

mediates the efflux of cholesterol and phospholipids. 

 

NB1-T tumor vs. NB1-NBM cell line sphere gene expression profiling 

Interestingly, a significant smaller number of up- or down-regulated genes was observed in spheres 

derived from NB1-NBM compared to NB1-T. We then reported the genechip signal for EDNRB, 
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CD133, ABCA1 and GPR177 genes described above. All transcripts were found to be over-expressed 

in NB1 spheres but not in NB1-NBM spheres (Figure 18). However, the expression level of these 

genes was already high in NB1-NBM-C0 whereas it was low in NB1-T0. This observation explained the 

lower number of upregulated genes in NB1-NBM spheres. Interestingly, a number of highly 

expressed genes in NB1-NBM are progressively increased in T1 to T4 NB1-T spheres up to the NB1-

NBM C4 level. These results indicate that the culture conditions for establishment of the NB1-NBM 

either selected a cell population with CSCs characteristics, or induced the expression of self-renewal 

genes. 

 

 

 

 

Figure 18: Genechip signals of five NEP selected genes in the NB1-T derived spheres: EDNRB, CD133, ABCA1, 
GPR177, and MDR1 
Expression profiles for a few selected genes overexpressed in the time-course micro-array analysis of NB1 
sphere. For EDNRB, CD133, ABCA1, GPR177, and MDR1 genes, the signal levels of mRNA hybridization on the 
genechips are represented for the NB1-NBM (blue) and NB1-T (black) experiments. 

 

 

The seven CD133, MDR1, EDNRB, NOTCH3, ABCA1, GPR177 and ROBO1 genes were identified from 

the first series of gene data (NB1-T and/or NB1-NBM) which was crossed with the list of neural crest 

stem cells and neural stem cells associated genes, further reduced by the enrichment analysis thus 

releasing this set of representative NEP markers to characterize their associated functional 

properties. 

 

 

Validation of the NEP in a panel of NB secondary spheres 

To validate the micro-array results, and confirm that such self-renewal phenotype was not specific of 

the NB1 patient tumor, the up-regulated expression of CD133, MDR1, EDNRB, NOTCH3, ABCA1, 

GPR177 and ROBO1 in the NB1-T and NB1-NBM spheres was checked on spheres derived from other 

patient tumors and cell lines by real-time PCR and/or FACS.  
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Messenger RNA was extracted from available NB1, NB2, NB4 and NB5-T xenograft tumors, and from 

SK-N-Be2C, LAN-1 and NB1-NBM cell lines and their derived secondary spheres (Table 6). The 

transcript levels of CD133, MDR1, EDNRB, GPR177, ROBO1, NOTCH3 and ABCA1 were measured by 

real-time PCR. 

Interestingly 4/7 NEP genes, CD133, MDR1, GPR177 and ROBO1, were significantly up-regulated or 

already highly expressed in 70-100% of the tested tumors and cell lines respectively.  EDNRB and 

NOTCH3 highly expressed in NB1-NBM were also over-expressed in 2/7 NB samples with a high 

expression in NB1-NBM. ABCA1 over-expression was restricted to NB1-T and NB1-NBM secondary 

spheres. 

 

 

 
Table 6: NEP validation in NB patient and cell lines by real-time PCR 
The over-expression of selected NEP genes in the secondary spheres derived from the four stage4 NB samples 
NB1-T, NB2-T, NB4-T and NB5-T, and the NB cell lines has been validated by real-time PCR. The relative 
expression was expressed by the mean ± SEM of measures from three independent experiments for NB1-T and 
cell lines, two for NB2-T and 1 for NB5-T. * indicates samples where the measured transcripts were already 
highly expressed in the tumor or the cell line. In three cases with the mention “nd” (i.e. no detection), the 
amount of total synthesized cDNA and the level of the transcript extracted from secondary spheres were too 
low to be detected and amplified in the experiments. 

 

 

As CD133 and MDR1 proteins appear to be almost universally increased in NB samples-derived 

spheres, their surface expression was checked by flow cytometry in several samples and derived 

spheres (Figure 19).  
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Figure 19: CD133 and MDR1 expression in NB patient and cell lines by FACS analysis 
Flow cytometry analysis of the CD133 and MDR1 expression in secondary sphere (T2 and C2 in tumors and cell 
lines respectively) derived from the NB1, NB2 and NB4-T (T0, left panel) and cell lines (C0, right panel). The 
percentage of positive cells for each marker is indicated by the mean ± SEM of three independent measures 
and is illustrated by a representative graph. 

 

 

CD133 was detected on 5% of NB1-T cells, but undetectable on NB2-T or NB4-T cells (left panel), 

whereas MDR1 was highly expressed by NB1, NB2 and NB4-T tumors with 31.1%, 71.6% and 27.2% of 

positive cells respectively. CD133 (30.9%) and MDR1 (70.2%) positive cells were found in NB1 

secondary sphere cells, confirming the transcript up-regulation of these markers. 

 

In cell lines, CD133 was highly expressed on the serum-free cultivated NB1-NBM cells (95.8%±3.7% 

positive cells), whereas it was almost nonexistent at the surface of LAN1 (2.9%) and SK-N-Be(2)c 

(0.2%). The mean of CD133 expression in NB1-FCS was 64.7±12.4% (5 independent experiments with 

1<P<40) but we observed a consistent decrease of CD133 positive cell percentage with the passages; 

at early passages (P<5) over 90% cells were CD133 positive whereas the number of positive cells 

dropped down to only 46% at P>20 in 10% serum-supplemented medium (data not shown). The up-

regulation of CD133 mRNA was confirmed by up-regulation of CD133 protein in LAN1 spheres, but 

not in NB1-NBM which already highly expressed this marker. No significant over-expression of CD133 

between C0 and C2 has been detected in SK-N-Be(2)c, neither at the RNA or protein level.  
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In contrast, MDR1 transporter was consistently detected on all cell lines, with up to 70.2% positive 

cells in LAN-1 and 98.9% in SK-N-Be(2)c. LAN1 spheres over-expressed MDR1 detected by FACS at C2 

(86.2%) confirming the real-time PCR analysis. In contrast, only 3.5% NB1-NBM cells were MDR1 

positive and no significant increase between C0 and C2 was detected, as opposed to the observed 

mRNA up-regulation.  

 

Genes such as MDR1 which expression is not elevated in the NB1-NBM, but increase in spheres, may 

be particularly relevant to further investigate, as the effect of the serum-free, growth factors and 

B27-supplemented medium can be excluded, and their increase may specifically reflect the increase 

in self-renewing cells. 

These findings validated the use of CD133, MDR1, GPR177 and ROBO1 as the restricted list of genes 

to further analyze the sphere cell population. 

 

 

The Neurosphere Expression Profile is associated with tumor 

microenvironment-related tumorigenic characteristics  

 

In the above section, we have analyzed the gene expression profile of tumors and neurospheres, and 

proposed a gene expression profile associated to NB sphere-forming cells, and hence to a self-

renewal property.  

We then investigated the capacity of different samples, NB1-T and derived secondary (T2) or tertiary 

(T3) sphere-forming cells, NB1-NBM and NB1-FCS, to induce tumors in vivo in either heterotypic 

(subcutaneous injections) or orthotopic (intra-adrenal injections) conditions as described (209). 

 

In vivo heterotopic tumor development and growth of NB1-T sphere cells 

To address the in vivo tumorigenicity of the self-renewing NB1-T cell population in a heterotopic 

model, groups of 6-10 nude mice were subcutaneously engrafted with decreasing amounts of NB1-T, 

NB1-T3, NB1-NBM and NB1-FCS cells (105 to 10) in the presence of 50% Matrigel. Tumor 

development and growth were followed every 3-4 days using calipers.  
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In contrast, MDR1 transporter was consistently detected on all cell lines, with up to 70.2% positive 
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In the groups implanted with lower number of cells (104, 103 and 10), no difference was observed 

between the different groups except for the group injected with 104 cells, at day 48 (p=0.03) where 

the mean of NB1-T tumor volume was bigger than NB1-T3 tumor volume (Figure 20).  

 

 

 

Figure 20: In vivo subcutaneous growth and tumor take of NB1-T tumor and spheres 
Mean and SEM tumor volumes has been measured every three days after subcutaneous implantations of 105, 
104, 103 and 10 NB1-T, NB1-T tertiary spheres (NB1-T3), NB1-NBM and NB1-FCS cells. The number of observed 
tumor takes is expressed as number of mice with tumor/total mice for each sample. * indicate p<0.05 (One-
way ANOVA). 

 

 

In addition, a mean of 5.6±0.4 (N=6) weeks for the first detection was observed in NB1-T group and 

was significantly higher than the detection in the NB1-T3 (3.8±0.4 weeks) and NB1-NBM groups 

(4.1±0.4 weeks). In the group of 104 cells, no significant difference for the first detection was 

observed; the tumors were detected in NB1-T and NB1-T3 groups at 6.1±0.3 and 6.4±0.4 weeks 

respectively (Figure 21). 
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Figure 21: In vivo subcutaneous tumor detection after grafting of NB1-T tumor and spheres 
Mean and S.E.M. of detection date of tumors with a volume exceeding 250mm3 are represented for mice 
groups injected with 105 (left) and 104 (right) cells of the indicated samples. *indicate p<0.05 (Mann-Whitney 
test). 

 

 

Thus, in heterotopic implantations, significant differences in tumorigenicity between NB1-T and NB1-

T3 cells were only observed when a high cell number, superior to 105, was implanted. 

 

NB1-T sphere cells tumorigenicity in orthotopic microenvironment 

We next addressed the question of the effect of the micro-environment on the NB1-T2 cell 

tumorigenicity. In this model, 104 cells of NB1-T and NB1-T2 cells in PBS, without matrigel, were 

implanted in the adrenal gland of 10 to 14 nude mice respectively. Measures of tumor volumes were 

performed every 2 weeks by ultrasound imaging to assess tumor burden and growth (Figure 22).  

 

The observed tumor take was 40% (4/10) vs. 79% (11/14) for NB1-T and NB1-T2 respectively, and the 

mean detection time (defined as disappearance of the adrenal gland structure) was 65.5±6.7 vs. 

61.4±4.5 days. In addition, 5/14 tumors exceeded 100 mm3 at 100 days in the NB1-T2 group vs. 1/10 

in the NB1-T group. These data indicate that NB1-T2 cells displayed significant enhanced tumor take 

and growth when implanted in an orthotopic environment, and also produced larger tumor volumes 

as compared with the NB-T cells. 
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Figure 22: In vivo orthotopic tumor detection after grafting of NB1-T tumor and spheres in nude mice 
Mean volumes of tumor and normal adrenal gland as measured are represented at the indicated days after 
implantation of 104 cells of NB1-T and derived secondary spheres (NB1-T2) in PBS into the adrenal gland of 
nude mice. The number of developed tumors is expressed as number of mice with tumor/total mice and 
percent mice with tumor. ** indicate p<0.01 (Two-way ANOVA). 

 

 

Heterotopic and orthotopic NB1-T tumors histology 

The histology of original patient tumor, NB1-T and NB1-T2/3 derived, subcutaneously or 

orthotopically grown tumors, was examined. The histology of all tumors with undifferentiated small 

blue round cells and large vascularized regions was very similar in either injection sites (Figure 23). 

 

 

 

Figure 23: Histology of the in vivo subcutaneous and orthotopic tumors derived from NB1-T tumor and 
spheres in nude mice 
The tumor micro-environment organization was evaluated by H/E staining on paraffin sections of the NB1, 
subcutaneous (left) and orthotopic (right) tumors obtained after implantation of 104 NB1-T (“NB1-T subcut” 
and “NB1-T ortho”) and NB1-T2 cells (“NB1-T3 subcut” and “NB1-T2 ortho”).  
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Subcutaneous engraftments of NB1-T/T2 cells without Matrigel 

To better address the influence of the medium and environment on tumor growth, the subcutaneous 

implantations were repeated without Matrigel, in similar conditions as for orthotopic engraftment. 

Indeed Matrigel contains growth factors which could influence the tumor cell growth and divert 

them from the original microenvironment pressure.  

Ten nude mice/group were therefore s.c. injected with 104 NB1-T and NB1-T2 cells respectively in 

PBS. Five mice died from independent causes in the 104 NB1-T cells group. In these conditions, no 

growth was observed in both groups up to 133 days, indicating that factors present in the Matrigel 

solution, and/or in the mouse adrenal tumor environment are essential to induce NB growth.  

 

So, the adrenal environment seemed to specifically support the growth of NB-CSCs. Orthotopic 

conditions may thus highlight the tumorigenic properties of the NB-CSC population.  

The above-described findings also suggested that serial NB sphere formation results in a progressive 

enrichment in cells with essential characteristics of cancer stem cells such as normal stem cells 

markers expression, self-renewal and tumorigenicity. In particular, the NB1-T model allowed us to 

define a neurosphere expression profile associated with enhanced microenvironment-related 

tumorigenic properties. 

 

 

Phenotypic heterogeneity of NB-CSCs 

The previous results allowed us to identify a self-renewing and tumorigenic population of cells 

defined by the specific NEP expression. In order to further characterize such cell sub-population 

responsible for NB1 tumorigenicity, we next addressed its putative heterogeneity. The functional 

relationship between cell subsets selected by differential NEP genes expression was investigated. 

 

Characterization of CD133 positive cells in NB1 tumor and spheres 

CD133 has been described for several adult tumors (brain, colon, pancreatic, Ewing) as a marker for 

cancer stem cells, capable to select for a tumorigenic sub-population (48-50, 52, 55, 56). CD133 

expression was very low or undetectable in all analyzed patient tumors: NB1 (5.5±0.8 % positive 

cells), NB2 (0.8±0.0%), NB3 (_�`"���������}���`�����Figure 19). In our NB1 model, CD133 was found 

to be over-expressed in NB1-T2 (30.9% positive cells) and NB1-NBM (95.8±3.7% positive cells) but 

significantly lower in NB1-FCS (64.7±12.4% positive cells) (Figure 19). Moreover, as shown in Table 6, 

CD133 expression was significantly increased in spheres derived from a majority of analyzed stage4 

patient tumors.  
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CD133 expression was highly variable in these different samples and cell lines, and dependent on the 

culture conditions. We therefore attempted to determine whether the cells expressing CD133 and 

the other NEP-associated genes corresponded to a single homogeneous CSC population, gradually 

selected by the serial sphere culture, or if CD133 and the other NEP genes could be independently 

induced in selected cells within the sphere population. 

 

CD133high/low cell sorting in NB1-T 

In this aim, CD133high and CD133low populations were sorted from dissociated NB1-T tumor and the 

expression of CD133, GPR177, EDNRB, MDR1 and ABCA1 NEP-genes was measured by real-time PCR 

(Figure 24A). GPR177, IGFBP5 and EDNRB transcripts were found co-expressed with CD133 gene in 

NB1-T cells whereas MDR1 and ABCA1 were equally expressed in both sub-populations.  

The same CD133 cell sorting experiment was carried out with the NB1-T2 cells. A similar 

heterogeneity in sphere genes expression was found, with the significant anti-correlated expression 

of CD133/GPR177/EDNRB and MDR1 genes. In these cells, ABCA1 was shown to be co-selected with 

the CD133high cells although the measured difference was not significative (Figure 24B). These results 

indicate that in NB1-T sample, at least two distinct cell sub-populations able to survive in sphere 

culture conditions could be identified, which were characterized by either CD133 or MDR1 

expression. 

 

 

A.   B.   

 

Figure 24: NEP gene expression in CD133high/low sorted cell populations in NB1-T and NB1-T2 
A. Expression level of the CD133, GPR177, IGFBP5, EDNRB, MDR1 and ABCA1 NEP associated genes were 
analyzed by real-time PCR in CD133high/low sorted cells from dissociated NB1-T tumor. B. Expression level of the 
CD133, GPR177, EDNRB, MDR1 and ABCA1 NEP associated genes were analyzed by real-time PCR in 
CD133high/low sorted cells from dissociated NB1 secondary spheres (NB1-T2). Two independent experiments 
were performed. *, ** and *** indicate p<0.05, p<0.01 and p<0.001 respectively (Student’s t-test). 
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Characterization of MDR1 positive cells in NB1 tumor and spheres 

The MDR1 transporter (also called ABCB1), responsible for multi-drug-resistance in NB cells, was 

another strongly and gradually increased gene in NB1-T spheres as shown in Table 4, Table 6 and 

Figure 19. Whereas its surface expression level in NB tumors and cell lines was variable (31.1±8.5%, 

71.6% and 0.3% positive cells in NB1, NB2 and NB4-T samples respectively), MDR1 transcripts level 

was uniformly enhanced in the spheres derived from all patient samples analyzed. This enhancement 

was confirmed by FACS analysis of NB1-T derived spheres with an increase up to 70% positive cells 

(Figure 19). In addition, while micro-array analysis showed a “linear” increase evolution of CD133 

expression, MDR1 expression in contrast showed a “step” increase evolution along serial sphere 

passages of NB1-T and NB2-T samples (Figure 18). 

 

MDR1high/low cell sorting in NB1-T and LAN-1 cells 

To confirm the mutually exclusive expression of the CD133 and MDR1 NEP genes, MDR1high and 

MDR1low expressing cell subsets were selected from LAN-1 and NB1-T cell populations. Data showed 

that CD133 and GPR177 expressing cells were indeed enriched in the NB1-T MDR1low subset whereas 

ABCA1 appeared to be co-expressed with MDR1 (Figure 25).  

 

 

 

 

Figure 25: NEP gene expression in MDR1high/low sorted cell populations in NB1-T 
Expression level of MDR1, ABCA1, NOTCH3, CD133, and GPR177 genes were analyzed by real-time PCR in 
MDR1high/low sorted cells from dissociated NB1-T tumor. “n.d.” stands for “non-detected”. * indicates p<0.05 
(Student’s t-test). 
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The same experiment performed with LAN-1 cells indicated a significant anti-correlation between the 

expression of CD133/NOTCH3 and MDR1 as illustrated in Figure 26. 

 

 

 

 

Figure 26: NEP gene expression in MDR1high/low sorted cell populations in LAN-1 cell line 
Expression level of MDR1, NOTCH3, CD133, NOCTH2, EDNRB, ROBO1, ABCA1, GPR177 and IGFBP5 genes were 
analyzed by real-time PCR in MDR1high/low sorted cells from LAN1. *, ** and *** indicate p<0.05, p<0.01 and 
p<0.001 respectively (Student’s t-test). 

 

 

To support these data, double MDR1/CD133 cell sorting of NB1 tumor was carried out. Three sorted 

CD133highMDR1low (1.2±0.2% gated cells), CD133lowMDR1high (15.4±1.2% gated cells) and 

CD133highMDR1high (0.4±0.0% gated cells) cell populations were obtained (Figure 27A). The expression 
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and on the unsorted population (Figure 27B). CD133/EDNRB/NOTCH3 expressing cells were clearly 

co-selected in the same sub-set, while MDR1 gene was selected in the MDR1highCD133low population. 

These data confirmed the anti-correlated expression of MDR1 and CD133 NEP genes. 
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Expression level of MDR1, NOTCH3, CD133, NOCTH2, EDNRB, ROBO1, ABCA1, GPR177 and IGFBP5 genes were 
analyzed by real-time PCR in MDR1high/low sorted cells from LAN1. *, ** and *** indicate p<0.05, p<0.01 and 
p<0.001 respectively (Student’s t-test). 
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A.              B.     

 

 

Figure 27: NEP gene expression in MDR1high/low sorted cell populations in LAN-1 cell line 
A. CD133/MDR1 FACS analysis on dissociated NB1-T tumor. The displayed dotplot is representative of the two 
independent experiments. B. Expression level of MDR1, CD133, EDNRB, NOTCH3, NOTCH2, ABCA1, GPR177, 
ROBO1 and IGFBP5 genes were analyzed by real-time PCR in MDR1high/low sorted cells from NB1-T. *, ** and *** 
indicate p<0.05, p<0.01 and p<0.001 respectively (Student’s t-test). 
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As shown in Figure 28, tumors were found in 2/6 (CD133high) vs. 1/6 (CD133low) mice after 110 days, 

revealing no significantly different tumor growth and take between CD133high and CD133low 

populations. One mouse in the CD133low group presented a big adrenal tumor which was detected as 

early as 34 days after implantation. Among the two adrenal tumors which developed in the CD133high 

group, one was rapidly invasive. Cells infiltrating the adrenal vessel could be detected by ultrasound 

imaging and led to the growth of a big ovarian tumor at 100 days. The NB origin of CD133high and 

CD133low grown tumors was confirmed by IHC and FACS analyses with an anti-GD2 antibody, which 

stained over 90% of cells. CD133 expression in tumors grown from CD133high and CD133low subsets 

was 5-7.5% and 20.5% positive cells respectively (Figure 28, right panel). Surprisingly, the tumor 

grown from CD133low subset contained more CD133+ cells than tumors grown from CD133high subset, 

confirming the high heterogeneity and plasticity of these cells. 

 

Histology of tumors developed from CD133high and CD133low populations did not reveal differences in 

morphology, vascularization or differentiation from the original NB1-T tumor (Figure 28, middle 

panel). 

 

These observations showed that CD133 expression was not able to select NB1-T cells with enhanced 

tumorigenic property. Therefore, although CD133 was included in the NEP, this marker did not alone 

represent a specific marker to identify NB-TICs. However, the infiltrative phenotype of CD133high cells 

observed in one mouse suggested a possible implication of the CD133 transmembrane protein or the 

specific CD133-associated cell subset in the observed pro-invasive behavior. This assumption would 

need further analyses to be validated with a greater number of mice per group and the orthotopic 

injection of the original NB1-T cells. 
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Figure 28: Orthotopic injections of CD133high and CD133low NB1-T cell populations 
Dissociated NB1-T tumor (IHC on the left) was sorted in CD133high and CD133low population and orthotopically 
injected into the adrenal gland of nude mice (6 mice per group). 2/6 and 1/6 tumors developed from the two 
former populations respectively. Middle panels show for each following tumor the macroscopic picture or the 
ultrasound imaging of the primary tumor and the metastasis and the H/E staining on paraffin section. The right 
panel indicates the CD133 expression level (% gated cells) measured by FACS on the dissociated samples: 
(1) Macroscopic adrenal tumor derived from the CD133high. 
(2) Microscopic primary tumor derived from the CD133high NB1-T cells on the left adrenal and the associated 
contralateral ovarian metastasis. 
(3) Macroscopic adrenal tumor derived from the CD133low. 
LA: Left Adrenal, LK: Left Kidney, LU: Left Uterus, RO: Right Ovary, RK: Right Kidney, RA: Right Adrenal, ROv: 
Right Oviduct, RU: Right Uterus. Black arrow head on the H/E staining of (2) shows invasive NB cells expanding 
out of the adrenal gland. 
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Tumorigenic properties of the MDR1high/low NB1-T cell populations 

To assay the tumorigenicity of the NB1-T MDR1 expressing cells, corresponding to the alternative 

sub-population enriched in NB spheres, 5.103 MDR1high, MDR1low and unsorted NB1-T cells were 

orthotopically injected in the mice adrenal glands (Figure 29). 

 

 

 

 

Figure 29: Orthotopic injections of MDR1high, MDR1low and non sorted NB1-T cell populations 
Dissociated NB1-T tumor (IHC on the left) was sorted in MDR1high, MDR1low and non sorted populations.  
5.103 cells of each population were orthotopically injected into the adrenal gland of nude mice (6, 4 and 5 mice 
respectively). 4/6, 1/4 and 1/5 tumors developed respectively from the three former injected populations. 
Middle panels show for each following tumor the macroscopic picture of the orthotopic tumor and the H/E 
staining on paraffin sections. Right panel indicates the CD133/MDR1 expression level (% gated cells) measured 
by FACS on the dissociated samples: 
1) «MDR1high» macroscopic adrenal gland tumor (pictures representative from the three tumors of this 
group).  
2)  «MDR1low» macroscopic adrenal gland tumor. 
3) «non sorted» macroscopic adrenal gland tumor. 
The percentage of CD133+MDR1-, CD133+MDR1+ and CD133-MDR1+ is indicated in each quadrant by the mean ± 
SEM measured in the orthotopic tumors. LA: Left Adrenal, LK: Left Kidney 
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The follow-up showed an increased tumor take at 105 days post-injection in the MDR1high group with 

67% of mice bearing adrenal tumors, compared to the MDRlow and non sorted group showing 25% 

and 20% of mice with adrenal tumors respectively (Figure30 A). Likewise, tumor volumes were higher 

in the MDR1high group as compared with the MDRlow or unsorted groups (Figure30 B). Although these 

data did not reach significance due to the low number of animals, it nevertheless suggested that 

highly tumorigenic cells were mostly included in the MDR1high group. 

 

 

A.           B.  

 

Figure 30: In vivo orthotopic tumor growth and volume derived from the MDR1high and MDR1low and non 
sorted populations 
A. Mean volumes of tumor and normal adrenal gland as measured are shown at indicated days after 
implantation of 5.103 cells of in PBS into the adrenal gland.  
B. Weights of tumors and normal adrenal gland at 105 days post injections of 5.103 cells NB1-T non sorted, 
MDR1high and MDR1low cells. Grey bars indicate the mean of weights in each group of injected mice. 

 

 

Phenotype of orthotopic tumors derived from the MDR1high/low NB1-T cells  

The dissociated orthotopic derived tumors (MDR1high, MDR1low and MDR1unsorted) were analyzed by 

FACS for cell surface expression of MDR1 and CD133 (Figure 29, right panel). Three different cell 

populations regarding their combined expression of the two markers: CD133+MDR1-, CD133+MDR1+ 

and CD133-MDR1+ cells were identified. In all groups of orthotopic tumors, the double positive cells 

were the smallest represented sub-population with a percentage of 0.6%, 0.5% and 2.2% of gated 

cells respectively. The majority of stained cells corresponded to CD133+MDR1- and CD133-MDR1+ 

cells. Interestingly, the orthotopic tumors reproduced the CD133/MDR1 initial expression 

phenotypes observed in the NB1-T injected cells except for the CD133+MDR1- sub-population which 

is almost absent in NB1-T (Figure 27A). Indeed less than 1% of the NB1-T cells were CD133+MDR1- 

whereas this subset represented between 5 and 15% of the MDR1high, MDR1low and MDR1unsorted 
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orthotopic derived tumor cells as shown in Figure 29. The variable CD133 expression observed in the 

CD133high/low orthotopic derived tumor was comforted by these data in MDR1high/low orthotopic 

tumors, and suggested a micro-environmental regulation of CD133 expression. 

In addition, the above observations support the CD133low/MDR1high cells as the most representative 

CSC population. 

 

 

Trails for therapeutic uses of NEP markers 

In our study, the NEP genes have been associated with self-renewal and tumorigenic property in the 

NB1 model and as such may represent a panel of potential therapeutic targets. 

 

Specific inhibition of the endothelin pathway in NB-CSCs 

The microarray analyses of NB spheres identified several upregulated NEP genes involved in the 

endothelin axis, including the endothelin receptors A (EDNRA) and B (EDNRB) as shown by the 

genechip signals of figure 31. The up-regulation of EDNRB gene in NB spheres has been validated in 

43% of analyzed NB samples (Table 6). In contrast, EDN ligands were not found to be deregulated in 

NB1-T, NB1-NBM, NB2-T or NB4-T spheres except for EDN3 which was weakly upregulated in the 

NB1-T spheres (Figure 31).  

 

 

 
Figure 31: Microarray gene expression profiles of EDNRA, EDNRB receptors and endothelin-3 (EDN3) genes in 
the NB1-T and NB1-NBM derived spheres 
The signal levels of mRNA hybridization on the GeneChips are represented for the NB1-NBM (blue) and NB1-T 
(black) experiments from the parental cells (P0) to their derived quaternary spheres (P4). The most relevant 
probe-set for each gene has been selected. EDN1 and EDN2 associated probe-sets showed neither any 
significant signal nor any variable expression in all the micro-array experiments (data not shown). 

 

 

0

2

4

6

8

10

12

P0 P1 P2 P3 P4

sig
na

l

spheres passages

EDNRA

NB1-NBM

NB1-T
0

2

4

6

8

10

12

P0 P1 P2 P3 P4

sig
na

l

spheres passages

EDNRB

NB1-NBM

NB1-T
0

2

4

6

8

10

12

P0 P1 P2 P3 P4

sig
na

l

spheres passages

EDN3

NB1-NBM

NB1-T

RESULTS   
 

 
 

86 

orthotopic derived tumor cells as shown in Figure 29. The variable CD133 expression observed in the 

CD133high/low orthotopic derived tumor was comforted by these data in MDR1high/low orthotopic 

tumors, and suggested a micro-environmental regulation of CD133 expression. 

In addition, the above observations support the CD133low/MDR1high cells as the most representative 

CSC population. 

 

 

Trails for therapeutic uses of NEP markers 

In our study, the NEP genes have been associated with self-renewal and tumorigenic property in the 

NB1 model and as such may represent a panel of potential therapeutic targets. 

 

Specific inhibition of the endothelin pathway in NB-CSCs 

The microarray analyses of NB spheres identified several upregulated NEP genes involved in the 

endothelin axis, including the endothelin receptors A (EDNRA) and B (EDNRB) as shown by the 

genechip signals of figure 31. The up-regulation of EDNRB gene in NB spheres has been validated in 

43% of analyzed NB samples (Table 6). In contrast, EDN ligands were not found to be deregulated in 

NB1-T, NB1-NBM, NB2-T or NB4-T spheres except for EDN3 which was weakly upregulated in the 

NB1-T spheres (Figure 31).  

 

 

 
Figure 31: Microarray gene expression profiles of EDNRA, EDNRB receptors and endothelin-3 (EDN3) genes in 
the NB1-T and NB1-NBM derived spheres 
The signal levels of mRNA hybridization on the GeneChips are represented for the NB1-NBM (blue) and NB1-T 
(black) experiments from the parental cells (P0) to their derived quaternary spheres (P4). The most relevant 
probe-set for each gene has been selected. EDN1 and EDN2 associated probe-sets showed neither any 
significant signal nor any variable expression in all the micro-array experiments (data not shown). 

 

 

0

2

4

6

8

10

12

P0 P1 P2 P3 P4

sig
na

l

spheres passages

EDNRA

NB1-NBM

NB1-T
0

2

4

6

8

10

12

P0 P1 P2 P3 P4

sig
na

l

spheres passages

EDNRB

NB1-NBM

NB1-T
0

2

4

6

8

10

12

P0 P1 P2 P3 P4

sig
na

l

spheres passages

EDN3

NB1-NBM

NB1-T



  RESULTS 
 

 
87 

Endothelin receptors are G-protein coupled receptors which have different affinity for their three 

ligands endothelin 1, 2 and 3 (EDN1, 2 and 3): EDN1 and EDN2 bind preferentially EDNRA with similar 

affinity, while EDN3 has a low affinity for EDNRA. EDNRB binds all three ligands with equal affinity 

(230). EDN1 is primarily expressed by endothelial cells, EDN2 in kidney and intestine, and EDN3 is 

found mainly in the brain (231). Endothelin axis has been implicated in the regulation of 

proliferation, differentiation and angiogenesis in a number of normal and cancer cell types (232-234). 

In particular, EDNRs and their ligands play a key role during neural crest development (171, 172, 227, 

228). 

 

In order to further investigate the implication of this pathway in the NB1-T sphere, we determined 

the expression of endothelin axis actors in NB samples. The expression of EDNRA, EDNRB, EDN1, 

EDN2 and EDN3 in eight NB cell lines was measured by PCR (Figure 32). NB cell-lines were shown to 

express high level of one or both endothelin receptors and at least one ligand was detected in all the 

NB cell lines. EDN1 was almost consistently expressed whereas EDN3 was detected only in 2/8 NB 

cell lines. 

These observations lead us to postulate that entothelin axis could represent a suitable therapeutic 

target for NB. 

 

 

 

Figure 32: Endothelins (EDN1, 2 and 3) and endothelin receptors (EDNRA and B) expression analysis by RT-
PCR in eight NB cell lines.  
GAPDH expression was used as a control in all NB samples (data not shown).  
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It has been recently shown that EDNRA and EDNRB antagonists can have antitumor activity in human 

melanoma and ovarian cancer cells (235-237). 

 Bosentan, a mixed EDNRA/B receptor antagonist has been shown to potentiate Fas-L-induced 

apoptosis in rat colon carcinoma cells (207). To address the sensitivity of NB cells to Bosentan, NB1-

NBM, LAN-1, SK-N-Be(2)c, SH-SY5Y, SH-EP, and LAN-5 NB cell lines were exposed to gradually 

increased doses of Bosentan (Figure 33). All tested NB cell lines were sensitive to Bosentan except 

SHEP and LAN-5 which showed a significant resistance to this drug. Interestingly, the NB cell lines 

showing higher sphere-forming capacity (LAN-1, SK-N-Be(2)c and NB1-NBM) were the most sensitive 

to Bosentan. 

 

 

 

Figure 33: Cell survival capacity analysis in a panel of NB cell lines in presence of Bosentan 
Bosentan cell cytotoxicity has been measured in 9 NB cell lines, in NB1-NBM and NB1-FCS which have been 
established in the lab by propagating NB1-T cells in serum-free and 10%serum medium respectively. LAN-R is a 
multi-drug resistant cell line derived from LAN-1 and previously described by Flahaut et al. (217). 

 

 

NB1-NBM cell line has previously been shown to express high level of both EDNRA and EDNRB 

(Figure 31) and to have a high capacity to form spheres (Figure 8 and 10). To test the effect of 

Bosentan on NB cell sphere-forming capacity, NB1-NBM cells were therefore seeded in sphere 

culture and exposed to 80 μM of Bosentan. As shown in Figure 34, after one week of exposure to 

Bosentan, a drastic decrease of the NB1-NBM sphere number was observed compared to the control. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%

0 50 100 150

ce
lls
ur
vi
va
l

Bosentan (uM)

SK-N-Be(2)c

SH-SY5Y

SHEP

LAN-1

NB1-NBM

LAN-5

LAN-R

NB1-FCS

RESULTS   
 

 
 

88 

It has been recently shown that EDNRA and EDNRB antagonists can have antitumor activity in human 

melanoma and ovarian cancer cells (235-237). 

 Bosentan, a mixed EDNRA/B receptor antagonist has been shown to potentiate Fas-L-induced 

apoptosis in rat colon carcinoma cells (207). To address the sensitivity of NB cells to Bosentan, NB1-

NBM, LAN-1, SK-N-Be(2)c, SH-SY5Y, SH-EP, and LAN-5 NB cell lines were exposed to gradually 

increased doses of Bosentan (Figure 33). All tested NB cell lines were sensitive to Bosentan except 

SHEP and LAN-5 which showed a significant resistance to this drug. Interestingly, the NB cell lines 

showing higher sphere-forming capacity (LAN-1, SK-N-Be(2)c and NB1-NBM) were the most sensitive 

to Bosentan. 

 

 

 

Figure 33: Cell survival capacity analysis in a panel of NB cell lines in presence of Bosentan 
Bosentan cell cytotoxicity has been measured in 9 NB cell lines, in NB1-NBM and NB1-FCS which have been 
established in the lab by propagating NB1-T cells in serum-free and 10%serum medium respectively. LAN-R is a 
multi-drug resistant cell line derived from LAN-1 and previously described by Flahaut et al. (217). 

 

 

NB1-NBM cell line has previously been shown to express high level of both EDNRA and EDNRB 

(Figure 31) and to have a high capacity to form spheres (Figure 8 and 10). To test the effect of 

Bosentan on NB cell sphere-forming capacity, NB1-NBM cells were therefore seeded in sphere 

culture and exposed to 80 μM of Bosentan. As shown in Figure 34, after one week of exposure to 

Bosentan, a drastic decrease of the NB1-NBM sphere number was observed compared to the control. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%

0 50 100 150

ce
lls
ur
vi
va
l

Bosentan (uM)

SK-N-Be(2)c

SH-SY5Y

SHEP

LAN-1

NB1-NBM

LAN-5

LAN-R

NB1-FCS



  RESULTS 
 

 
89 

A.    B.  

 

Figure 33: Bosentan inhibited the sphere-forming capacity of the EDNRA/B expressing NB1-NBM cells 

A. The Bosentan (BOS) inhibiting effect on the sphere-forming capacity of NB1-NBM cell line has been 
measured by self-renewal assay in sphere culture conditions. B. Pictures show self-renewal assay without (-
BOS) or with (+BOS) Bosentan in the culture medium. Cells were plated in triplicates and for each well, only 
spheres with a diameter > 400 μm were counted. *** indicate p<0.001 (Student’s t-test). 

 

 

In consequence, due to its essential role in neural crest development, its enrichment in NB1-T 

spheres and the availability of specific inhibitors, the endothelin axis constitutes a relevant biological 

target that would need further investigations for targeted NB treatments. 
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DISCUSSION 

  

Context of the project 

The present project was initiated in 2006, when we proposed to address the contemporary questions 

on the adult cancer stem cell (CSC) concept in neuroblastoma (NB), a model for pediatric solid 

tumors. The main goal was to first determine if CSC concept could have been applied to NB tumors 

and if so, to characterize specific cell surface markers and gene activity profiles that can reliably be 

used to identify these CSC. The intratumoral cell hierarchy observed in NB has comforted us in the 

hypothesis of the NB-CSC existence and led us to address the mechanisms of its origin. These 

investigations had to be accompanied by the development of in vivo and in vitro functional assays 

that confirmed the different properties of the CSC subset as tumorigenicity, self-renewal, cell 

differentiation and resistance to cytotoxic agents. 

 

Definitions in the CSC concept 

Genetic and phenotypic cell heterogeneity in neoplasms have long time been recognized (238-240), 

but has only recently been systematically investigated (241-243). In particular, the origin of the cell 

phenotypes diversity observed in many cancers was first explained by the accumulation of genetic 

and epigenetic changes occurring in tumor cell genome and leading to the selection of tumorigenic 

clones (25). However with the emergence of the cancer stem cell concept, it was then thought that 

the observed heterogeneity of cancer cells, and in our case NB cells, could be explained by the 

existence in tumors of a hierarchical cellular organization, including a subset of so-called cancer stem 

cells that « constitutes a reservoir of self-sustaining cells with the exclusive ability to self-renew and 

maintain the tumor ». These terms constituted the rigorous definition established after a critical 

discussion during the American Association for Cancer research (AACR) workshop in 2006 by the 

scientific community having faced the need for a semantics agreement (41).   

 

CSC hypothesis in NB 

In this context, we were interested in addressing the existence of a NB stem cell subset in the 

aggressive NB tumors. Indeed, NB seemed good models for CSC study as they are embryonic 

especially aggressive tumors which display great inter- and intra-tumoral heterogeneity.  

We studied a panel of NB samples of different stages, from differentiated benign phenotypes to 

more invasive and metastatic ones. The histological examination of the tissues confirmed the 

heterogeneous nature of NB tumors, with the coexistence of an array of different cell types. Indeed, 

in addition to the tumor stroma composed of immune cells, various mesenchymal and endothelial 
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cells, the malignant compartment included a variety of cells expressing specific neural crest lineages 

markers. These findings supported our hypothesis that cancer stem cells could exist in NB. 

 

Experimental model 

Therefore, among NB patient tumors and cell lines available in the pediatric oncology research 

laboratory, we selected samples which showed a high capacity to form xenograft tumors in 

immunocompromised mice and to grow as spheres in a serum-free medium, two experimental 

assessments of cell tumorigenicity and self-renewal respectively. A significant correlation between 

the stage of tumor aggressiveness in the patient and the stem-like phenotypes of the tumor cells was 

established. For most aggressive NB, stage4 NB1 tumor, as well as NB2 and NB4 samples, metastatic 

cells of the patient infiltrated bone marrows were primarily injected in the flanks of nude mice, and 

generated NB xenograft tumors recapitulating the primary tumor phenotype. NB xenografts were 

validated as NB study models and were preferentially chosen to identify NB tumorigenic cells. 

Indeed, genetic and biological cell phenotypes were conserved between the primary tumors and 

their derived xenografts. Other model previously applied for NB-TICs study have been proposed 

(Hansford et al 2007), isolating sphere forming cells from NB patient bone marrows cultivated after 

weeks even months in in vitro conditions. Genomic alterations of the NB sphere cell lines were 

determined and in some cases lacked the typical NB chromosomic alterations. Moreover, in a recent 

communication (ANR 2010), the author reported the CD20 expression for some derived NB sphere 

cells suggesting their pre-B cell phenotype. Thus, the biological relevance of their NB-TICs model 

needs to be discussed as compared to the use of NB derived tumors maintained in vivo. 

 

Neurosphere Expression Profile (NEP) characterization 

In the attempts to identify in NB tumors the putatively rare population of cells with TIC properties, 

we cultured the NB1-T tumor in specific sphere-forming conditions, as a representative assay for self-

renewal. Then, we performed a microarray analysis of the acquired sphere-forming cells expression 

profile to establish a sphere expression profile. We next functionally validated this sphere expression 

profile. 

To limit the bias of interpretation due to self-renewing cell population purity, we considered that the 

significant selection of cells capable of self-renew occurred at the fourth passage of spheres based on 

the accepted idea that stem cells have a long-term self-renewal capacity. The gene expression profile 

study of NB sphere cells provided, by an objective and original approach, a panel of up- and down-

regulated genes at the fourth generation of self-renewing cells that were subsequently termed 

“Neurosphere Expression Profile” (NEP). 
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A specific biological process enrichment analysis showed different families of genes specifically 

expressed in spheres and involved in molecular cascades important during embryogenesis, cell 

differentiation and stem cell homeostasis.  

 

Moreover, several genes that were previously shown to be associated to CSC phenotype were found 

in the NEP. For instance, the aldehyde deshydrogenases (ALDH) used as breast tumor (47, 244) and 

human thyroid (245) cancer stem cells markers, were over-expressed in most of the NB sphere cells. 

Likewise CD133, strongly over-expressed in the NB spheres, has been recognized in the literature as 

the most important marker inherent to a number of CSC identified to date (48, 55, 56, 246), although 

its physiological role is presently unknown, leading to focus on its potential use as a NB CSC marker. 

 

But most importantly, by overlapping our NB spheres micro-array analysis data with other published 

list of neural crest stem cells and progenitors markers, we were able to identify a new combination of 

neurosphere associated genes in aggressive NB cells. Among those candidates, we selected a 

combination of several transmembrane proteins that could be easily studied and characterized by 

experimental procedures such as fluorescent flow cytometry. 

 

Three ATP-binding cassette (ABC) transporter genes were found over-expressed in NB sphere cells: 

ABCB1 (MDR1) in NB1- and NB2-T spheres, ABCB4 and ABCA1 in NB1-T spheres were identified with 

a 6-fold, 9-fold and 17–fold increased expression respectively. In normal physiology, MDR1 is 

considered as a specific marker for early neural stem/progenitor cells and hematopoietic stem cells 

(247-249) and was found over-expressed in the “universal stem-cell ” (219). In disease, ABC 

transporters play major roles in the development of drug resistance in cancers (250, 251).  

The CSC hypothesis states that CSC possess some of the biological properties of normal stem cells 

including resistance to toxic agents, owing, in part, to elevated expression of ABC transporters.  Drug 

resistance has thus been reported to be associated with stem-like features of the cancer cells (252, 

253). In melanoma, MDR1 and ABCB5 transporters have been described as markers identifying 

melanoma initiating cells (61, 254), and ABCB5 was shown to mediate doxorubicin transport and 

chemoresistance in this human malignant neural crest derived tumor (59). 

 In NB, MDR1 was associated with multidrug resistance in NB cell lines and patient tumors at relapse 

after chemotherapy (217, 255, 256), whereas the expression level of the multidrug resistance genes 

MDR1, MRP1, MRP5 and LRP in advanced NB samples was not predictive of response, relapse or 

survival (257). Taken together, these data encouraged us to focus on the MDR1 transmembrane 

transporter as a potential functional NB-TICs marker. 
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Moreover, the canonical pathway enrichment analysis, revealed two principal signaling pathways 

involving many NEP genes.  

First, in addition to the NOTCH2 and NOTCH3 receptors, the ligands JAG1 and DLL1, the down-stream 

transcription factors HEY1 and HES1 found over-expressed in the NB1-T spheres, other Notch 

pathway regulators were also detected in the sphere gene expression profiling experiments such as 

MAML2 in NB2-T and DTX3L in both NB2-T and NB4-T experiments. 

In normal tissues, Notch regulates the cell-lineage decisions during embryogenesis (258), promotes 

the proliferation of non-neoplastic neural stem cells and inhibits their differentiation (259-261). 

NOTCH cascade is initiated when transmembrane ligands, on one cell, bind NOTCH receptors on an 

��������������������@����-secretase-mediated proteolytic release of the NOTCH intracellular domain 

(NICD). NICD then translocates into the nucleus and activates targets such as the HES and HEY genes 

(262). In a wide range of neoplasms including lung, breast, myeloma and melanoma, the Notch 

pathway has been implicated in the regulation of the main cellular functions associated with 

tumorigenesis, such as proliferation, angiogenesis, and cell migration (263-269).  

Recently, NOTCH signaling has also been related to the cancer stem cell phenotype. For instance, in 

breast tumors, it has been reported that breast cancer stem cell activity was governed specifically 

through NOTCH4 receptor signaling, offering new approaches to treat breast cancer recurrence (270, 

271). Moreover, Notch pathway inhibition in embryonal brain tumors, such as medulloblastoma, and 

in glioblastoma tumors lead to the depletion of the CD133-positive stem-like cell subpopulation 

preventing tumor spheres and xenograft (272, 273). 

In NB, activated Notch pathway was shown to prevent neuronal differentiation (274) and to induce 

dedifferentiation accompanied by more aggressive stem-cell phenotype characteristics under 

hypoxic conditions (275, 276). So, all these results seem consistent with our gene expression profiles 

of NB spheres that can be functionally considered as a stem-like subpopulation over-expressing 

development-involved pathways such as Notch signaling. In particular, specific Notch blocking in the 

NB stem-like cells could constitute a promising complementary therapy in NB (277). 

  

Wnt pathway key actors were significantly represented among the NEP. Interestingly, Wnt signaling 

cascades are involved in a variety of cellular processes during embryogenesis and their sustained 

activation is a major factor of oncogenesis in many cancers (278-280). This aberrant activation is 

often due to mutations in regulators such APC or AXIN ����������������
���	����-catenin gene (281), 

or to an overexpression of the FZD family members which are specific Wnt ligand receptors (282-

284)`� ��� ��!� �-catenin has been shown to be strongly expressed and aberrantly localized in the 

�@���@�� 	�� ~	�~��� ������	��� ��� ������ �	�~
@�� #���� ����	�	���	
�!� �~����� �
� �-catenin-specific 

mutations were identified (285). In the NB NEP, we observed, in addition to FZDs receptors and WNT 
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chaperon protein, an over-expression of the WNT5A gene (chr3p14) and of the WNT5B paralog gene 

(chr12p13). The WNT5A non-canonical signaling map and its legend are shown in the Appendix 2. 

The transcriptional mechanisms of WNT5A have recently been shown to be based on NF-��!�

Hedgehog, TGF� and Notch signaling cascades (286) and expressed in a variety of human tumors 

(287). In normal cells, WNT5A is an important regulator of morphogenetic movements during 

embryonic development of neural crest stem cells (288), whereas in malignant cells it is involved in 

invasion, peritoneal dissemination, and distant metastasis via RhoB and Snail (289, 290). In particular 

WNT5A initiates EMT in melanoma cells and promote metastases in this tumor (291, 292). Only one 

study addressed the function of WNT5A in NB tumors; WNT5A was found to be under-expressed in a 

model of xenograft primary tumor and metastasis derived from the human IGR-N91 NB cell line 

(293). Their results are consistent with the potential tumor suppressor function of WNT5A reported 

previously (294), although its pro-invasive activity has also been shown in many tumors. Thus, it is 

still unclear whether or not WNT5A signaling is involved in NB tumor progression. The 

microenvironment of the tumor cells could be one modulator of the different observed effects. 

 

Finally, the analysis of signaling pathways over-represented in sphere cells revealed a strong 

enrichment of EMT-associated genes. EMT takes place during embryogenesis, wound healing, 

carcinogenesis and metastatic process. It groups together complex signaling pathways which drive a 

series of events during which epithelial cells lose many of their epithelial characteristics and take on 

properties that are typical of the mesenchymal cells (295, 296). EMT is one of the processes usurped 

by oncogenically transformed cells during tumorigenesis (78).  

Interestingly, several recent studies showed that EMT can trigger reversion to a cancer stem cell-like 

phenotype (297, 298), providing an association between EMT and CSC. EMT mechanism is 

particularly interesting in the context of CSC given that it covers at the same time intracellular control 

of stem-like properties and extracellular influences on stem-like phenotype in response to micro-

environmental changes. Indeed, several well known EMT actors such as WNT ligands (299-301), 

Frizzled receptors, TGF-� receptor (302-304), endothelin receptors (305), vimentin (306), SLUG and 

SNAIL (307-309), NOTCH3 (310, 311) and HEY1 (312) have been found to be overexpressed in the NB 

sphere cells. Internal cascades involving these genes constitute direct response of extrinsic cues such 

as HGF signaling via c-MET binding, TGF-�1, 2 and 3-mediated pathways or NOTCH activation by 

secreted JAGGED1 (78).  

Thus, the NEP characterization highlighted genes associated with cell self-renewal in NB tumors 

involving a cross-talk between NOTCH, WNT, TGF-�� �	����	��� ��������� �~	�~� ��� �~��	
�
�	������

involved in the stem cell signaling network and playing a key role in the EMT regulation (313, 314). In 

the context of CSCs to be potentially conditioned by their micro-environment, the NB neurosphere 
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�
�	������

involved in the stem cell signaling network and playing a key role in the EMT regulation (313, 314). In 

the context of CSCs to be potentially conditioned by their micro-environment, the NB neurosphere 
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expression profile (NEP) will be very useful to identify both intrinsic and extrinsic key actors playing a 

key role in the self-renewing and tumorigenic phenotype of NB-CSCs. For instance, HGF secreted by 

myofibroblasts in colon cancers have been shown to activate WNT signaling via its c-MET receptor 

binding and to lead to a subsequent increased clonogenicity of colon cancer stem cells (315). 

Moreover, as it seems important to consider each cancer type separately to define specific targeted 

treatment, our findings provided an objective characterization of NB-specific expression profile of 

CSCs cells that could further provide new potential targets for complementary therapies. 

 

NEP Validation in NB patients and cell lines 

NEP was identified in quaternary NB spheres in one aggressive cell sample from a stage 4 patient. We 

therefore needed to validate the over-expression of several NEP gene candidates in spheres derived 

from the other available NB samples (Figure 5). Among the seven analyzed NEP markers, four of 

them, CD133, MDR1, GPR177 and ROBO1 were consistently over-expressed, already in secondary NB 

spheres derived from stage 4 tumors and NB cell lines. In contrast, EDNRB, NOTCH3 and ABCA1 were 

either stably expressed or even decreased. However, in these cases, the passage 2 rather than 

passage 4 spheres could represent too early passages to detect some gene expression increase.  

Moreover, due to their limited tumorigenic capacity, primary NB cells display a limited ability to grow 

as spheres, resulting in a low cell yield after sphere dissociation, leading to a small amount of 

extracted RNA. Indeed, except for NB1 and NB1-NBM, LAN1 and SK-N-BE(2)C cell lines, the yield of 

sphere cells after several passages was limiting. This observation confirmed the heterogeneity in the 

proportion of self-renewing cells between the different NB cell samples. Nevertheless, it is difficult to 

establish a correlation between the sphere-forming capacity of the NB cells and the CD133/MDR1 

expression, as shown by the fluorescent flow cytometry analyses. Although NB1 and NB1-NBM, LAN1 

and SK-N-BE(2)C cell lines showed the highest self-renewal capacity, there is no relationship with an 

increased CD133 and MDR1 combined expression. In the other way, NB2 and NB4 didn’t show an 

extended sphere-forming ability but they both expressed a relatively important amount of MDR1 

transporter. 

Therefore, although an increase in the sample panel size would release stronger results, our 

validation showed an enrichment of NEP candidates in spheres derived from several NB cell samples. 
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Enhanced tumorigenicity of the NB sphere cell populations 

In many studies, CSCs are referred to the tumor-initiating cell (TIC) population as these cells are 

experimentally identified by their ability to seed tumors in animal hosts and to recapitulate the 

cellular hierarchy of differentiated progeny observed in the parental tumor.  

In order to isolate the NB-TIC population, we addressed the in vivo tumorigenicity of NB sphere cell 

populations in a heteropic model of subcutaneous injections in nude mice in the presence of 

MatrigelTM (BD), a reconstituted basement membrane matrix (Figure 6). Matrigel, used to enable cell 

grouping and attachment for in vivo engraftment, contains extra-cellular matrix components and 

non-specific growth factors (see Material and Methods).  

Subcutaneous tumors were observed when 105 to as few as 10 dissociated NB1-T cells were injected. 

A significant increased tumor development was observed when 105 NB1-NBM and NB1-T3 cells were 

implanted, but when fewer cells were implanted, no significant difference in the tumorigenicity 

between these different cell populations was observed. Interestingly, NB1-FCS did not show any in 

vivo tumor-forming capacity, confirming the in vitro modifications that occurred in the presence of 

serum in this cell line. In all the cases, the derived subcutaneous tumors showed a similar histology 

and were identical to the parental tumor. 

On the other hand, for subcutaneous and orthotopic injections of NB1-T and NB1-T2/3 cells, we 

injected tertiary sphere cells. The difference in tumorigenicity for the four cell populations could 

have been attenuated by a non-optimal selection of the self-renewing cells that might occur after 

passage 3. We assumed that the enrichment in NB-TICs would be important enough to see an effect 

in vivo. 

So, the data obtained with 105 injected cells supported the hypothesis of NB-TICs enrichment in the 

NB1-NBM cell line and in the sphere cells derived from the dissociated NB1-T tumor. Most of the NEP 

genes identified in the NB1 spheres were shown to be already highly expressed in the serum-free 

established NB1-NBM cells which showed the most rapid tumor growth in subcutaneous 

implantation model, comforting the idea that this cell-line had conserved and enriched the stem-like 

phenotype in in vitro culture compared with its homologue NB1-FCS cell line which was grown in 10% 

serum and did not give any heterotopic tumor in vivo (even when up to 105 cells were injected). 

 

In the CSC concept, the CSC population resembles the normal stem or progenitor cells of the 

corresponding tissue of origin and would therefore also be influenced by its immediate 

microenvironment, the “niche”. To address the question of a physiologic micro-environment effect 

on the tumorigenic phenotype, we orthotopically injected the NB1-derived cells and their 

corresponding secondary spheres directly in the adrenal gland of nude mice without any exogenous 

growth factor supply like Matrigel. We observed a significant increase in the tumor take of the 

  DISCUSSION 
 

 
97 

Enhanced tumorigenicity of the NB sphere cell populations 

In many studies, CSCs are referred to the tumor-initiating cell (TIC) population as these cells are 

experimentally identified by their ability to seed tumors in animal hosts and to recapitulate the 

cellular hierarchy of differentiated progeny observed in the parental tumor.  

In order to isolate the NB-TIC population, we addressed the in vivo tumorigenicity of NB sphere cell 

populations in a heteropic model of subcutaneous injections in nude mice in the presence of 

MatrigelTM (BD), a reconstituted basement membrane matrix (Figure 6). Matrigel, used to enable cell 

grouping and attachment for in vivo engraftment, contains extra-cellular matrix components and 

non-specific growth factors (see Material and Methods).  

Subcutaneous tumors were observed when 105 to as few as 10 dissociated NB1-T cells were injected. 

A significant increased tumor development was observed when 105 NB1-NBM and NB1-T3 cells were 

implanted, but when fewer cells were implanted, no significant difference in the tumorigenicity 

between these different cell populations was observed. Interestingly, NB1-FCS did not show any in 

vivo tumor-forming capacity, confirming the in vitro modifications that occurred in the presence of 

serum in this cell line. In all the cases, the derived subcutaneous tumors showed a similar histology 

and were identical to the parental tumor. 

On the other hand, for subcutaneous and orthotopic injections of NB1-T and NB1-T2/3 cells, we 

injected tertiary sphere cells. The difference in tumorigenicity for the four cell populations could 

have been attenuated by a non-optimal selection of the self-renewing cells that might occur after 

passage 3. We assumed that the enrichment in NB-TICs would be important enough to see an effect 

in vivo. 

So, the data obtained with 105 injected cells supported the hypothesis of NB-TICs enrichment in the 

NB1-NBM cell line and in the sphere cells derived from the dissociated NB1-T tumor. Most of the NEP 

genes identified in the NB1 spheres were shown to be already highly expressed in the serum-free 

established NB1-NBM cells which showed the most rapid tumor growth in subcutaneous 

implantation model, comforting the idea that this cell-line had conserved and enriched the stem-like 

phenotype in in vitro culture compared with its homologue NB1-FCS cell line which was grown in 10% 

serum and did not give any heterotopic tumor in vivo (even when up to 105 cells were injected). 

 

In the CSC concept, the CSC population resembles the normal stem or progenitor cells of the 

corresponding tissue of origin and would therefore also be influenced by its immediate 

microenvironment, the “niche”. To address the question of a physiologic micro-environment effect 

on the tumorigenic phenotype, we orthotopically injected the NB1-derived cells and their 

corresponding secondary spheres directly in the adrenal gland of nude mice without any exogenous 

growth factor supply like Matrigel. We observed a significant increase in the tumor take of the 



DISCUSSION   
 

 
 

98 

sphere cell group where 79% of the mice developed an adrenal tumor compared to 40% for the 

animals injected with the parental cells.  

When the same amount of cells from both populations were injected in identical conditions, but in a 

heterotopic site, no tumor growth was observed up to three months post-injection.  

These results allowed us to strongly associate the NEP with the two CSC functions: self-renewal 

and tumorigenicity. Moreover, we confirmed that the tumor-initiating capacity and growth of the 

putative NB-CSCs cells is directly influenced by their “niche” (i.e. their micro-environment). 

 

However, it is still unclear to which extent the existence of a NB-CSCs niche is dependent on the 

presence of the NB-CSCs themselves. Indeed, the biochemical identity of the NB-CSCs may shift as 

the niche changes, and vice-versa making even more difficult the NB-CSCs identification. So, the 

correlation between the gene expression profile of in vitro selected self-renewing cells and the in 

vivo function of tumorigenicity seemed a relevant approach to search for a cell function associated to 

aggressiveness and not for an unstable cell entity.  

 

NB sphere heterogeneity and plasticity  

Intriguingly, when the NEP expressing cells were identified directly within the NB xenograft tumor, 

we were not able to identify a single cell population co-expressing all the NEP markers and 

exclusively recapitulating the functional CSCs features. Indeed, CD133high cells were positive for 

EDNRB, GPR177 and IGFBP5 but not MDR1 and ABCA1 expression. Conversely, sorted MDR1high cells 

coexpressed ABCA1 but not CD133 and GPR177, thus confirming an anti-correlation between CD133 

and MDR1. Consequently, the different NEP markers were expressed within the tumor but were 

expressed on different cell sub-populations. This heterogeneity was likewise observed in the spheres 

derived from the same tumor. Indeed the sorting of CD133high cells included EDNRB/GPR177 positive 

cells with an MDR1low phenotype.  The double CD133/ MDR1 sorting confirmed the existence in the 

xenograft tumor of different population of cells with either CD133/EDNRB/NOTCH3 expression or 

MDR1 exclusive expression. In summary, we identified in the NB1 tumor, at least two cell 

populations, CD133highMDR1low and CD133lowMDR1high, which were selected in the derived spheres. 

 

It has already been shown that a panel of cell phenotypes can be identified in different culture 

conditions. For instance, a heterogeneous activation, i.e. nuclear translocation, of the �-catenin has 

been observed in the colon cancer sphere cell population (315). Concerning the normal breast stem 

cells, most of the cells of clonal mammosphere have been shown to express cytokeratin of either 

basal or luminal epithelium (297). A minority of bipotential precursor cells co-expressing both basal 

and luminal markers has also been found in these mammospheres.  
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In the context of neuroectodermic tumors, the CD34+p75-, CD44-p75+ and CD34-p75- melanoma cell 

populations were shown to have distinct self-renewal and in vivo tumorigenicity capacities (316). In 

particular, CD34-p75- subset was enriched for individual cell that could self-renew in vitro by forming 

spheres and reestablish cellular heterogeneity both in vitro and in vivo, whereas CD34+p75-, on the 

other hand, underwent self-renewal almost exclusively, in vitro and in vivo. A recent study proposed 

another model of melanoma-propagating cells where a temporarily distinct subpopulation of slow-

cycling melanoma cells expressing the H3K4 demethylase JARID1B is essential for continuous tumor 

growth (317). They namely showed that JARID1B was dynamically regulated and that JARID1B 

negative cells could become positive and sustain tumor growth.  

Finally, distinct pools of glioblastoma stem cells have been described on the basis of their CD133 

expression (318).  PTEN-deficient glioblastoma cells showed a high sphere-forming capacity and 

derived spheres constituted a mixed population of CD133+ and CD133- cells that were equally 

clonogenic. It has been proposed that the different CD133 expression patterns in glioblastoma sub-

population with diverse tumorigenic potential recapitulated hierarchical lineages of self-renewing 

cells. Thus, it is likely that NB-CSC population does not correspond to a single phenotypic subset but 

rather to a variety of NB cell sub-populations expressing different markers and able to self-renew. 

These results strengthen our findings that either in a normal or a malignant context, a clonal sphere 

could support the expression of different early precursor cell markers and that the self-renewing 

properties are not characteristic of a unique sub-population. It also suggested that NB-CSC cells could 

constitute a dynamic heterogeneous population within a single tumor sample. 

 

CD133 is not a NB-TIC marker, MDR maybe? 

In order to address the tumorigenic capacity of the two cell populations CD133high and MDR1high 

found in NB1-T derived spheres, we measured their in vivo tumorigenicity by orthotopically 

implantation of both sorted populations in nude mice. 

C133high and CD133low cells were isolated from NB1-T and did not reveal significantly different 

tumorigenicity (33% vs. 17% tumor takes respectively). Surprisingly, one animal in the CD133high 

group developed an ovarian metastasis, an atypical metastatic site in human NB. Furthermore, the 

single CD133low derived tumor grew much faster than tumors in the other group. Moreover the 

CD133 expression level measured in the orthotopic tumors was higher in the CD133low derived 

tumors compared to the CD133high derived tumor (20.5% vs. 5-7.5% of the tumor cells respectively) 

confirming the plastic behavior of CD133 expressing cells. We thus concluded that although CD133 

was included in the NEP, it was not alone a reliable marker to select the tumorigenic NB cell subset.  

This conclusion is comforted by recent progresses suggesting that CD133 was not restricted to 

somatic stem cells and cancer stem cells (319). Indeed CD133 expression did not always reliably 
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distinguish melanoma-initiating cells (316) or brain tumor stem cells (75, 320, 321) as opposed to 

older reported findings (48-50).  

The observation in one animal of in vivo metastasis formation after injection of NB CD133high cells 

could eventually suggest that CD133 expression might be associated with an invasive cell phenotype 

rather than a strict tumorigenic capacity. In recent studies, CD133+ glioblastoma stem-like cell lines 

selected in vitro have been shown to generate highly invasive orthotopic tumors in vivo whereas the 

selected CD133- cells, enriched for extracellular matrix-related genes, were far less tumorigenic and 

showed a more restricted differentiation capacity (322). In melanoma cells, CD133 expression has 

been associated with their metastatic potential and, in particular, the abrogation of CD133 

expression at the cell surface of metastatic melanoma cell line resulted in the severe reduction of in 

vivo metastases (323-325). Finally, chemoresistant CD133+CXCR4+ melanoma cells were also shown 

to be stimulated and metastasize in presence of SDF1 secreted by lymphatic endothelial cells (326). 

These published results together indicate that, in glioblastoma and in melanoma, CD133 might select 

for a small cell subset, or be itself, involved in rapid growth or/and cell dissemination to specific sites 

but not in specific tumor-initiating capacity. These findings could lead to new investigation trails for 

CD133 function in NB. 

 

We therefore addressed the in vivo tumorigenicity of the alternative NB sphere cell subset expressing 

MDR1 but negative for CD133. 104 MDR1high, MDR1low and MDR1non sorted NB1-T cells were 

orthotopically grafted and showed a difference in tumor take. 67% vs. 25% tumor takes were 

observed in the MDR1high and MDR1low groups respectively, while 20% of the mice injected with the 

MDR1non sorted developed an adrenal tumor detected by ultrasound imaging. As described above, CSCs 

may consist in a dynamic cell population expressing markers induced by the in vitro culture and/or 

the micro-environment. To determine whether we selected all the cells that could potentially express 

MDR1 transporter and be tumorigenic, it would be relevant to sort MDR1-positive and -negative cells 

from late passages NB spheres, such as the stable NB1-T4 cell population that already underwent 

self-renewal selection or “conditioning”. 

Our results suggested that the direct selection, in NB primary tumors, of NB cell subset on the basis 

of a single marker may not be sufficient to isolate the NB cell population responsible for tumor 

initiation and growth even if MDR1 expressing NB cells were shown to be enriched for the putative 

NB-CSC population. The functional study of NB sphere cells, selected from aggressive NB tumors by 

their ability to self-renew and the expression of a combination of NEP markers seems the most 

pertinent procedure to address the NB-CSCs biological characterization. 
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Major impediments in NB CSC study 

At this point, it is important to underline the pitfalls of the tumorigenic assay by in vivo implantation 

of sorted cells suspension. Indeed, for solid cancers, we faced the difficulty of getting a viable single-

cell suspension as we observed the rapid death of the cells following the enzymatic and mechanical 

treatments. The duration of the sorting procedure, the pressure conditions and the effect of the 

antibody itself on the cell viability constitute parameters susceptible to alter the efficiency of the 

sorting and the purity of the sorted populations unevenly which was additionally compromised by 

the very low frequency of the CD133high/ low cell populations. In consequence, to avoid such bias as 

much as possible, we increased the number of animals and injected sites to work with reliable 

statistics. 

 

On the other hand, we discussed the essential role of the microenvironment in the observation of 

the TICs phenotype. In this purpose, it is essential to determine the more accurate host model for 

xenotransplantations. Indeed, a recent report addressed the host effect on the tumorigenicity of 

grafted tumor cells and concluded that as many as 25% of the cancer cells within certain tumors have 

properties of CSCs (327). They raised the question of the CSCs model applicability, although their 

choice of mouse model, the more highly immunocompromised NOD/SCID interleukin-2 receptor 

gamma chain null (Il2rg-/-) mice, could have drastically influenced the CSC phenotype of the 

melanoma cells. Indeed, host biological characteristics such as vascularization at the site of 

implantation, extracellular matrix constitution, growth availability and host immunocompetence can 

affect cancer cell engraftment rate. Moreover, such model does not allow addressing the capacity of 

putative CSCs to escape from the immune response as it has been reported for glioma stem cells 

(328, 329). So, the lack of immune selective pressure in the Il2rg-/- , as opposed to the less 

immunocompromised athymic nude mice, did not reproduce the cancer cell micro-environment 

observed in a human primary tumor and playing a key role in tumor progression. The most relevant 

model would be a syngenic model of mouse NB cells orthotopically engrafted in animals of the same 

strain. The use of Swiss nu/nu mice hosting model seemed to us the best compromise to allow the 

tumor growth of human NB cells in vivo and to conserve a minimal immune response in the tumor 

micro-environment. The residual immune system of nude mice did not interfere with the 

tumorigenicity efficiency as we were able to measure tumor propagation in this host after 

subcutaneous implantation of as few as 10 NB1-T cells. 

In addition, when orthotopically injected in the adrenal gland of nude mice, NB1-T sphere cells over-

expressing CD133 and MDR1 markers showed a significant increased tumor take compared to the 

NB1-T cells, whereas the CD133 and MDR1-positive NB1-T cells did not significantly reproduce the 

selection of the tumorigenic cell subset. This observation led us to question the effect of the cells 
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“conditioning” that occurs in the sphere culture conditions. We refer as a “conditioning” the serum-

free medium exposure or the non-adherent sphere culture conditions as well as the tumor micro-

environment in in vivo implantations. It remains unclear whether the sphere cells corresponded to 

selected cell populations among the bulk tumor cells or potential cells which were able to “turn on” 

intrinsic signaling pathway in adaptation to the external signals. For instance, it has been shown that 

sphere culture conditions activated the EMT leading to the TICs phenotype (297). So, the stem cell 

phenotype (function and not entity) may evolve with the changing cues in the in vivo 

microenvironment constituted by immune, mesenchymal and endothelial cells or the in vitro culture. 

We could tentatively define an aggressive tumor as a tumor that contains a high proportion of cells 

able to respond positively to extrinsic and intrinsic cues leading toward a stemness conversion. 

However, whether acquired or induced in NB spheres, the sphere associated molecular signaling 

described in this study should be explored as potential targets for complementary therapies to 

prevent NB progression and relapse.  
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The stage 4 NB1 model presented in this study showed high sphere-forming and tumorigenic 

properties, and were used to define a neurosphere expression profile (NEP) associated to CSCs 

feature in this tumor. This has been compared with the gene expression analysis of two other NMYC 

non amplified NB tumors which provided secondary sphere cells. However, the self-renewal capacity 

of these two samples was more limited than NB1 model and did not allow us to define a reliable list 

of commonly expressed NB sphere associated genes. So, it would be relevant to increase the number 

of stage 4 NB derived spheres analyzed by time-course microarray profiling and especially samples 

that can produce long-term passaging spheres. 

The NEP identified many candidates such as ABC transporters, endothelin ligands and receptors, and 

WNT actors that were found over-expressed in the NB spheres. The functional analysis of sphere cells 

would need further investigations to determine whether or not these signaling cascades are 

activated in NB spheres compared to the tumor bulk cells. For those which are activated, a targeted 

drug screening using specific inhibitors of the NB-CSCs associated markers, especially if they are more 

critical for self-renewal in NB-CSCs than in physiologic stem cells to spare the pool of normal stem 

cells, would be carried out to provide new potential therapeutic treatments against NB. 

We have shown that ABC transporters, especially MDR1, could play an essential role in NB tumor 

initiation. They are known to be responsible for multidrug resistance in this malignant childhood 

tumor. The multimodal identification of the NB-CSCs via their drug resistance, self-renewal and 

tumorigenic capacities, in association with their gene expression profiles would be addressed in a 

panel of NB tumors and cell lines to narrow the net around the cellular culprit of NB progression and 

relapse. In order to avoid the risk to bias the enrichment of CSCs population by selecting cell with the 

tumor bulk on the basis of marker expression, we would propose to work with the “conditioned” NB 

sphere populations which have been propagated in serum-free medium from fresh NB tumor 

sample. 
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Appendix 1-1: Genomic map of the 4q gain measured by arrayCGH in the NB1 tumor genome  
Refseq genes located in the gained portion of the chr4 long arm in NB1 tumor are listed in blue. 
 
 
 

 

Appendix 1-2: Genomic map of the 8q gain measured by arrayCGH in the NB1 tumor genome  
Refseq genes located in the gained portion of the chr8 long arm in NB1 tumor are listed in blue. 
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Appendix 1-2: Genomic map of the 8q gain measured by arrayCGH in the NB1 tumor genome  
Refseq genes located in the gained portion of the chr8 long arm in NB1 tumor are listed in blue. 
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Appendix 2-1: Canonical map of epithelial to mesenchymal transition (EMT) signaling in human cells (from 
GeneGo, map 1) 
Thermometers at the right of each molecule indicate the level of deregulation for genes that were differentially 
expressed in NB1-T (1), NB1-NBM (2), NB2-T (3) and NB4-T (4) spheres. Upregulated genes appear in red and 
downregulated in blue. 
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GeneGo, map 1) 
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Appendix 2-2: Canonical map of WNT signaling pathway in human cells (from GeneGo, map 8) 
Thermometers at the right of each molecule indicate the level of deregulation for genes that were differentially 
expressed in NB1-T (1), NB1-NBM (2), NB2-T (3) and NB4-T (4) spheres. Upregulated genes appear in red and 
downregulated in blue. 
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Appendix 2-2: Canonical map of WNT signaling pathway in human cells (from GeneGo, map 8) 
Thermometers at the right of each molecule indicate the level of deregulation for genes that were differentially 
expressed in NB1-T (1), NB1-NBM (2), NB2-T (3) and NB4-T (4) spheres. Upregulated genes appear in red and 
downregulated in blue. 
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Appendix 2-3: Canonical map of WNT5A signaling pathway in human cells (from GeneGo) 
Thermometers at the right of each molecule indicate the level of deregulation for genes that were differentially 
expressed in NB1-T (1), NB1-NBM (2), NB2-T (3) and NB4-T (4) spheres. Upregulated genes appear in red and 
downregulated in blue. 
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Appendix 2-3: Canonical map of WNT5A signaling pathway in human cells (from GeneGo) 
Thermometers at the right of each molecule indicate the level of deregulation for genes that were differentially 
expressed in NB1-T (1), NB1-NBM (2), NB2-T (3) and NB4-T (4) spheres. Upregulated genes appear in red and 
downregulated in blue. 
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Tel: 00 41 (0)21 544 626 08/ 00 41 (0)76 206 64 54 
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09.2006-02.2011  PhD project entitled « Molecular and functional characterization of neuroblastoma-

tumor initiating cells ». Group of Dr Nicole Gross, Pediatric Oncology Research Unit, 
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SCIENTIFIC SKILLS 

 

Transcriptom analysis: Array-based Comparative Genomic Hybridization (array-CGH), analysis of genechips 

based on Affymetrix technology and pathway enrichment study (GeneGo© program), gene clustering analysis 

(Cluster© and Treeview© software) 

Molecular biology: Protein, RNA and DNA extractions, DNA cloning, Polymerase Chain reaction (PCR), gene 

expression analysis by real-time PCR (TaqMan© technology) and SDS2.2© software, DNA migration and 

observation with AlphaImager©, DNA purification, primer design with SECentral©, Western Blot 

Cell biology: Primary cell and cell line cultures, immuno-fluorescence staining on living cells and fixed cells, flow 

cytometry and cell sorting (WinMDI2.8© software), drug resistance assay, soft agar assay 

In vivo experimentation: Sub-cutaneous implantation of cancer cells in mice, sub-cutaneous and orthotopic 

tumor resection, preparation of paraffin embedded sections, tumor dissociation 

Microscopic analysis: Confocal microscopy using Leica© SP5 microscope, Leica© DM2000 microscope for 

natural and fluorescence conditions, camera imaging and analysis with LAS 6000 AF software 

 

GRANTS 

09.2009-02.2011 Research grant from the National Found for Research (FNS) (CH) 

09.2006-08.2009    PhD Fellowship in Life Science from the University of Lausanne (CH) 

 

PUBLICATIONS 

2009    The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the 

Wnt/beta-catenin pathway. Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D, 

Beckmann JS, Joseph JM, Mühlethaler-Mottet A, Gross N.Oncogene. 2009 May 4. 

2007    The chemokine receptor CXCR4 strongly promotes neuroblastoma primary tumour and 

metastatic growth, but not invasion. Meier R, Mühlethaler-Mottet A, Flahaut M, Coulon A, Fusco 

C, Louache F, Auderset K, Bourloud KB, Daudigeos E, Ruegg C, Vassal G, Gross N, Joseph JM. PLoS 

ONE, 2007 Oct 10; 2(10):e1016. 

 

CONGRESS PARTICIPATIONS 

Abstracts selected for oral presentations: 

2010 7th Swiss Stem Cell Network annual meeting (SSCN), Lausanne, Switzerland. “Heterogeneity and 

plasticity of neuroblastoma tumour-initiating cells” A. Coulon, M. Flahaut, A. Mülhethaler-Mottet, 

J.Liberman, K. Bourloud-Balmas, K. Nardou, J.-M. Joseph, L. Sommer and N. Gross 

2010 International Congress of Advances in Neuroblastoma Research (ANR), Stockholm, Sweden. 

“Identification and molecular characterization of human Neuroblastoma tumor-initiating cells” A. 

Coulon, M. Flahaut, A. Mülhethaler-Mottet, J.Liberman, G. Kiowski, L. Sommer and N. Gross 
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2010 Annual Research day of Pediatrics Young Scientists, Montana, Switzerland. “Molecular and 

Functional Characterization of Neuroblastoma Initiating Cells: Methods and Issues” A. Coulon, M. 

Flahaut, A. Mülhethaler-Mottet, J.Liberman, G. Kiowski, L. Sommer and N. Gross 

2009 Swiss Pediatric Oncology group (SPOG) Scientific Meeting, Lugano, Suisse. “Identification of 

neuroblastoma tumor-initiating cells by micro-array time-course analysis of neurospheres” 

A.Coulon 

2009 PhD Research Day, University of Lausanne, Switzerland. “Identification of neuroblastoma tumour-

initiating cells by micro-array time-course analysis of neurospheres” A. Coulon, M. Flahaut, A. 

Mülhethaler-Mottet, J.Liberman, S. Fuchs, G. Kiowski, L. Sommer and N. Gross 

2008 International Congress of Advances in Neuroblastoma Research (ANR), Chiba, Japan. 

“Identification of neuroblastoma specific stem cell markers by micro-array time-course analysis of 

neurospheres” A. Coulon, M. Flahaut, G. Kiowski, A. Mülhethaler-Mottet, R. Meier, S. Fuchs, J.-M. 

Joseph, L. Sommer and N. Gross 

2008 8th International Congress of the Integrative Biology Research Unit of Paris VI University: « The 
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2007 Annual research day of the Pediatric Department, University Hospital of Lausanne, 

Switzerland. “Identification of neuroblastoma progenitor gene expression profile by micro-array 
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TEACHING  

 

01.2007-2.2011 160 hours of scientific mediation for children (8-12 years old), teenagers and adults 

(curricular and extra-curricular audience). Public laboratory “Eprouvette” of the Science-

Society Interface, University of Lausanne (http://www.unil.ch/interface/page14152.html) and 

Musée de la Main, Claude Verdan Foundation, Lausanne (CH) 

 

11.2010  “Genetics and Pathogenesis” course for 2nd year student nurses, Clinique de la Source, 

Lausanne (CH) 

 

09.2008-2010  “Cell life and death” course for 4th year medical students, pediatric program of the University 

Hospital of Lausanne (CH) 

 

11/12.2003  Professional training of teaching for 3rd year students. Department of Bio-Engineering, 

University Institute of Technology, Créteil (F) 
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