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Abstract: Monitoring the performance is a crucial task for elite sports during both training 

and competition. Velocity is the key parameter of performance in swimming, but swimming 

performance evaluation remains immature due to the complexities of measurements in 

water. The purpose of this study is to use a single inertial measurement unit (IMU) to 

estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each 

performed four different velocity trials of 25 m in ascending order. A tethered speedometer 

was used as the velocity measurement reference. Deployment of biomechanical constraints 

of front crawl locomotion and change detection framework on acceleration signal paved 

the way for a drift-free integration of forward acceleration using IMU to estimate the 

swimmers velocity. A difference of 0.6 ± 5.4 cm·s
−1

 on mean cycle velocity and an RMS 

difference of 11.3 cm·s
−1

 in instantaneous velocity estimation were observed between IMU 

and the reference. The most important contribution of the study is a new practical tool for 

objective evaluation of swimming performance. A single body-worn IMU provides timely 

feedback for coaches and sport scientists without any complicated setup or restraining the 

swimmer’s natural technique. 

Keywords: accelerometer; gyroscope; biomechanical constraint; strap-down integration; 

swimming velocity 
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1. Introduction 

The advent of new technologies has changed the perception of athletic achievement. In swimming, 

the narrow gap between record holders, points to the growing importance of devising new tools to 

assess self-improvement and optimize the training process. However, the biomechanical analysis of 

swimming remains inadequately explored due to complications of kinematics measurements in water.  

To date, the most common practice for performance monitoring in swimming is using video-based 

systems. A video sequence is captured and post-processed through digitization [1,2]. The main 

downside of such systems is being excessively time consuming and problematic to fully automate. The 

application of this class of methods can be severely restricted by factors such as light refraction in 

water or bubbles generated around the swimmers’ bodies [3]. Recently a markerless 3D analysis 

method was proposed [4] based on extraction of a swimmer’s silhouette. This method reduced the 

video processing time, while still being sensitive to different lighting condition that leads to 

misidentification of features [5]. 

The second category of techniques uses tethered monitoring. An early version of such a system was 

developed by Craig et al. [6]. Velocity is directly measured by a cord attached to the swimmer. The 

cord is tethered to a poolside shaft-encoder [7,8]. Although this system is considered as reference to 

assess swimming velocity, the device disturbs the swimmers’ technique and measures the velocity only 

in the forward direction. Moreover, the system requires a resisting force to tighten the cord during the 

decelerations of swimmer for an accurate measurement. Hence, this force is constantly applied to  

the swimmer. 

During the past two decades inertial measurement units (IMUs) have been proven to be powerful 

tools in human movement analysis [9]. First and foremost the portability of IMUs made them a viable 

system in daily life measurements, contrary to most other measurement systems which are restricted to 

laboratory conditions. Besides, the technological developments in microelectromechanical systems 

(MEMS) have made IMUs a low cost option compared to in-laboratory settings. The application of 

IMUs for sport analysis is a new trend in sport biomechanics [10–12]. A considerable number of 

studies have been conducted on the application of IMUs in the swimming context. Chronologically, 

Ohgi et al. [13] were probably the first to use a wrist-worn IMU to detect front crawl and breast stroke 

swimming phases automatically. A sacrum mounted 3D accelerometer was used by Davey et al. [14] 

to automatically extract simple metrics such as lap time and stroke rate. An IMU comprising a 3D 

accelerometer, 2D gyroscope and RF transceiver was used by Le Sage et al. [15] to characterize 

swimming strokes in real time. However, none of aforementioned works involved kinematic 

measurements using IMUs. Recently, Stamm et al. [16] published a method using a 3D accelerometer 

on the lower back to measure the front crawl velocity. However, a single 3D accelerometer generally is 

not capable of measuring the orientation of the body during dynamic movement. Consequently, the 

effect of lateral and vertical acceleration of swimmer’s body cannot be removed from acceleration in 

the forward direction of swimming, therefore, calculating the integral of the acceleration signal in [16] 

to evaluate the velocity can be misleading. Besides, it is well known that the accuracy of IMU-based 

systems in velocity measurement rapidly degrades over time due to inherent sensor noises [17]. Hence 

special considerations are needed for a reliable assessment of velocity. 
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Considering the velocity as the most intuitive metric of swimmers’ performance, this study aimed to 

propose a new method to measure swimming velocity in front crawl, using a single body-worn inertial 

sensor. We hypothesize that the swimmer’s instantaneous velocity can be estimated accurately from 

IMU measurements when the average velocity of the swimmer over the trial is known. Drift-free 

integration of acceleration was certified in this study by assuming some simple locomotion constraints 

of the front crawl. Experimental protocols and statistical tools are introduced to assess the validity of 

the cycle and instantaneous velocity estimation method. 

2. Experimental Section  

2.1. Participants and Protocol 

Eleven elite and nineteen recreational swimmers took part in this study. Their attributes are shown 

in Table 1. Each participant was informed of the procedures and risks associated with study 

participation and gave written informed consent prior to participation. This study was performed in 

accordance with the Declaration of Helsinki and was approved by the Ethics Committee of the Faculty 

of Biology and Medicine, University of Lausanne (protocol #87/10). 

Each swimmer performed consecutive 25 m front-crawl trials in four different increasing velocity 

trials from 70% to 100% of their best personal 100 m timing recorded one month before the 

measurement. In case the performance time was different more than ±5% from the targeted time, the 

swimmer repeated the trial. They were asked to position in the water at the edge of the pool for starts. 

Table 1. Statistics of the measurement population. All variables are presented as  

mean ± standard deviation. V100 shows the average of best personal 100 m timing. 

Group Male Female Age (yrs) Height (cm) Weight (kg) V100 (m/s) 

Elite 6 5 20.3 ± 3.3 177.8 ± 9.6 69.2 ± 10.5 1.68 ± 0.17 

Recreational 12 7 15.5 ± 2.8 171.3 ± 11.5 60.2 ± 12.2 1.34 ± 0.27 

2.2. Data Acquisition and Calibration 

The swimmers were equipped with one waterproofed inertial sensor (Physilog
®

, BioAGM,  

La Tour-de-Peilz, Switzerland) including a 3D accelerometer (±11 g) and a 3D gyroscope (±900 °/s) 

and embedded data logger recording at 500 Hz. The sensor was worn on the sacrum inside the pocket 

of a custom designed swimming suit with a Velcro closing as shown in Figure 1. According to the 

feedback from swimmers, by wearing the sensor attachment in our study they did not feel the IMU 

imposed a noticeable drag during their training. The sensor was calibrated for offset, scale and  

non-orthogonality using in-field calibration procedure [18]. 

As reference system, a tethered apparatus (SpeedRT
®

, ApLab, Rome, Italy) [8] was attached to the 

waist of swimmers just beneath the lower end of the sensor with a belt. The system calculates the 

velocity by measuring the cord displacement through time at 100 Hz recording. The resistance applied 

to keep the cord tight is adjustable via a clutch on the pulley compartment of the apparatus. In our 

measurement, the resistance was set to 500 g [19]. Since the tethered reference is installed on the 

starting block above the swimming level, the SpeedRT
®

 cord is not parallel to the direction of 
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swimming and imposes the parallax problem [15]. By knowing the cord displacement at each time 

instant and the fact that the reference pulley was positioned 72 ± 1 cm above still pool water level, we 

calculated the instantaneous velocity measured by the reference in the swimming direction. 

2.3. Estimation of Swimming Orientation Using IMU 

Instantaneous velocity is estimated by integrating the forward acceleration signal in the global 

frame (GF: X, Y, Z) (Figure 1). Among the axes of GF the Z is assumed to be vertically upward and Y 

in parallel with the longitudinal edge of the pool. The acceleration in GF can be calculated from the 

acceleration measured in sensor frame (SF: x, y, z) by considering the orientation of SF relative to GF 

at each time sample. The following paragraphs describe the required steps.  

Figure 1. The inertial sensor with water proofing box and its placement. The global frame 

(GF: X, Y, Z) and the sensor frame (SF: x, y, z) and relative quaternion SF GF

tq  that 

represents sensor frame data in the global frame is also shown. 

 

By starting the trials from a relatively motionless posture in water, the initial sacrum acceleration 

0 0 0 0, ,
T

SF x y za a a a    has a magnitude equal to the gravity. Using quaternion based algebra to represent 

the orientation, the initial quaternion which aligns the z axis to Z, is given by: 

0 0 0
0

0

cos , sin
2 2

SF GF u
q

u

 
 

  
 

 (1)  

where, ||.|| represents Euclidian norm, θ0 is the initial inclination and u0 represents the horizontal axis 

around which the rotation is done. Supposing that azimuth angle at start of trial is null, θ0 and u0 can be 

calculated as in Equation (2) and Equation (3), respectively: 
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1

0 0cos ( . )SF GFa Z    (2)  

0 0 0 0, ,0SF GF y xu a Z a a        (3)  

where × represents the normal cross product. 

At each time step t, the orientation of SF relative to GF, SF GF

tq   is updated using the previous 

orientation by integrating the angular velocity , ,
T

SF x y z

t t t t        [20]: 

1cos , sin
2 2

SF SFSF
t tSF GF SF GFt

t tSF

t

q q
f f

 



 



    
     

        

 (4)  

where f is sampling frequency and   indicates quaternion multiplication.  

The time integration in Equation (4) suffers from an accumulative drift [17] due to gyroscopic 

noise. In order to reduce the effect of this drift we applied a dynamic biomechanical constraint, namely 

considering the swimmer sacrum rolls in average about forward direction Y. Therefore, for the data 

samples from cycle k to k + 1 (denoted by kC and Ck+1 respectively), the principal component of 

angular velocity in GF (represented by     

  ) should be aligned to Y. This can be mathematically 

written as:  

      
1

10,1,0 :
k

GF SF GF SF SF GF

C t t t k kP principle component q q t C t C 


 

        (5)  

Figure 2. Angular velocity in GF and representation of biomechanical constraint for 

orientation correction. Principle component of angular velocity in the global frame (    

  ) 

and its deviation from forward axis of the movement (    
) are shown. 

 

Any deviation from the conditions of Equation (5) was assumed to be the effect of the orientation 

drift. Figure 2 shows the deviation of one cycle from this condition. The amplitude of the drifted angle 

is given by Equation (6): 
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Accordingly the rotation axis is presented as in Equation (7): 

 0,1,0
k

k

k

GF
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C
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  (7)  

So if we suppose that the drift is linearly increased through one cycle with n data points, for the t
th

 

sample we can compute the corrective quaternion as in Equation (8): 

1cos ( 1) , sin ( 1) :
2( 1) 2( 1)

k k k

k

C C C

t k k

C

u
q t t t C t C

n nu

 
 

     
         

      

 (8)  

Therefore, the corrected orientation of SF relative to GF, , k

SF GF

t Cq 
 can be calculated from Equation (9): 

 , k

SF GF SF GF

t C t tq q q    (9)  

The instantaneous forward acceleration in global frame can be calculated according to Equation (10), 

where     shows the gravity vector: 

    
1

, ,

0

. 1

0
k k

Y SF GF SF SF GF

t t C t t Ca q a q g


 

 
 

     
 
 

 (10)  

2.4. Instantaneous and Cycle Velocity Estimation 

The instantaneous velocity Vt can be obtained by trapezoidal integration of a
Y 

t . Nevertheless, this 

operation is not drift-free and results in a slow gradual trend in the cycle mean velocity     
. This 

velocity drift should be discriminated from the actual change originating from body action which 

accompanies a change in acceleration amplitude. Therefore, the forward acceleration a
Y 

t  is divided into 

segments where the range of acceleration remains within the same interval. Subsequently, at each 

segment we filter out the velocity drift. 

We used the geometric moving average (GMA) change detection algorithm [21] for a
Y 

t  

segmentation. The algorithm is based on recursive estimation of signal variance and detecting if the 

variance change exceeds a predefined threshold. The threshold was selected empirically as 20% of the 

a
Y 

t  variance. Much smaller thresholds end up to detection of spurious signal segments while higher 

thresholds cannot recognize any changes of swimming regime. Figure 3(a) illustrates the result of  

this segmentation.  

For velocity drift removal, we assumed the average trend of Vt peaks within each segment is  

quasi-constant due to the steady regime of swimming. Therefore, at each segment, cycle minimum and 

maximum peaks of Vt were extracted and a shape preserving spline [22] was fitted to these peaks [23]. 

De-trending was done by subtracting the average of upper and lower trend curves from the original 

velocity curve. Figure 3(b) depicts the extraction of the trend pattern. The instantaneous velocity curve 

then will be corrected for trial mean velocity by assuming that the average velocity of the trial is 

known from length of the pool and the duration of each trial. Finally,     
 was estimated as the mean 
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value of Vt for each cycle Ck. The algorithm development phase was completed by using the data of 

only 10 swimmers and then our algorithm was applied to the entire data set (30 swimmers). 

Figure 3. Intermediate steps of velocity profile calculation (a) Geometric moving average 

(GMA) change detection on forward acceleration variance. The acceleration signal is 

segmented in three parts and correction is applied separately to each part. (b) Spline fitting 

on upper and lower peaks of the first segment acceleration (dash-dot lines) and velocity 

drift pattern (dashed line). 

 

2.5. Statistical Analysis 

A twofold validation of the proposed velocity estimation method is presented in this section. In the 

first step, we provided the statistics to assess the cycle mean velocity estimated using our system  

(    

   ). To this end, the mean (accuracy) and standard deviation (precision) of the difference between 

    

    measured by SpeedRT system and obtained from IMU,     

   , was calculated for different trials 

of each subject. Spearman’s rank correlation was also used to verify the association between the two 

systems. Agreement between the two systems in     
 measurement was assessed by use of Bland-Altman 

plot [24] and normalized pairwise variability index (nPVI) [25] as calculated by Equation (11): 

 1

100%
2

C Ck k

k
C Ck k

SRT IMU
N

SRT IMU
C

V V
nPVI N

V V

 
  
 
  

  (11)  

where N is the total number of studied cycles. The Bland-Altman plot was inspected with correlation 

exploration for existence of heteroscedasticity [26].  

In the second step we investigated the efficiency of our method in measuring the instantaneous 

velocity. The root mean squared (RMS), maximum and corresponding relative error of instantaneous 

velocity was calculated. As these calculations require similar time sampling of proposed and reference 

systems, the instantaneous velocity curve calculated by our method was downsampled to 100 Hz prior 

to error calculations. Besides, an indirect measure of accuracy of our system in instantaneous velocity 

measurement was provided by assessment of intra-cyclic velocity variation (IVV). In fact, the 

concurrent validity of our method was assessed by investigating IVV of the two groups of swimmers 

(Elite and Recreational), estimated by the two systems. IVV is computed as in Equation (12): 
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 (12)  

where    
 represents cycle frequency, C is the number of cycles in the trial and n is the number of trial 

samples [27]. We performed a three-way repeated ANOVA (significance level of p < 0.01) to examine 

the effect of trial, group and measurement device on IVV.  

3. Results and Discussion 

We have proposed a new wearable system and dedicated algorithms to measure front crawl velocity 

and described its validation procedure against a reference tethered device. Figure 4 illustrates a typical 

result of the instantaneous velocity obtained with our method and the reference system. A total number 

of N = 1,448 cycles were compared between the two systems.  

Figure 4. A typical result of velocity calculation using IMU (Solid line) compared to the 

reference tethered apparatus (dotted line). 

 

A significant correlation was observed between the two systems (Spearman’s rho = 0.94, p < 0.001) 

in     
 assessment. The     

    and the     

    differed by 0.6 cm·s
−1

 and the precision was 5.4 cm·s
−1

  

(    

    range [0.91, 1.95] cm·s
−1

). Table 2 summarizes the     
 comparison between the two systems for 

all four different ranges of mean velocity (as measured by the reference and IMU). The results 

demonstrate that the proposed system is capable of measuring front-crawl velocity with acceptable 

accuracy (below 1.1 cm·s
−1

) and precision (below 5.8 cm·s
−1

) suggesting that our method can be 

reliably used for cycle mean velocity measurements. This accurate estimation of stroke cycle velocity 

was possible thanks to: (i) sensor orientation drift removal in GF using the principal component of 

swimming kinematics; (ii) velocity drift removal by introducing an appropriate segmentation of forward 

acceleration and by a spline shape modeling of the drift at each segment after integration of acceleration.  

The two systems differed by 3.5% in assessment of     
 variations as presented by nPVI in Table 2. 

The nPVI values in Table 2 shows that the difference in variability assessment of     
 between the two 
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systems in four ranges of velocity is less than 3.9%. This result as well as high     
 correlation between 

the two systems confirms that our method detects the     
 changes similar to the reference and supports 

the validity of our estimation. 

Table 2. Average velocity of the trials as measured by the two systems are shown under 

Measured Mean Velocity column. Cycle mean velocity (    
) difference between the 

reference and IMU in different trials is shown in column labeled Evaluation of     
. The 

    
 variation difference with the reference is presented in terms of normalized Pairwise 

Variability Index (nPVI). 

 Number of   Measured Mean Velocity   Evaluation of 
kCV   

 Cycles  Reference (m·s−1) IMU (m·s−1)  Error (cm·s−1) nPVI (%)  

Trial1 333  1.1 ± 0.1 1.1 ± 0.1   0.8 ± 5.2 3.9  

Trial2 347  1.2 ± 0.1 1.2 ± 0.1   1.1 ± 5.4 3.6  

Trial3 370  1.4 ± 0.2 1.4 ± 0.2   0.7 ± 4.9 3.1  

Trial4 398  1.6 ± 0.2 1.6 ± 0.2  −0.1 ± 5.8 3.4  

Total 1448  1.4 ± 0.2 1.4 ± 0.2   0.6 ± 5.4 3.5  

Figure 5. Bland-Altman plot, representing mean (x-axis) and difference (y-axis) between 

the     
 values estimated by body-worn IMU and reference tethered apparatus (SpeedRT). 

Limits of agreement (dot lines) are located at mean difference ±1.96 standard deviation of 

the difference. 

 

The Bland–Altman plot showed the 95% limits of agreement lower than 10.8 cm·s
−1

 between the 

two systems in     
 assessment as depicted in Figure 5, where no significant difference and no 

heteroscedasticity (correlation = 0.03) were found. This finding, implies uniform performance of the 

method throughout the studied range of     
. It is noteworthy that by using the prior information about 

pool length to correct the velocity profile an error of 10.4 ± 39.7 cm is observed in estimating the 

sacrum’s displacement. This error was expected since the sacrum does not necessarily travel a 

complete length of the swimming pool. 
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As regards validation of instantaneous velocity, an RMS difference of 11.3 cm·s
−1

 was observed 

that is comparable to the precision of the reference system. The maximum instantaneous error was  

18.2 cm·s
−1

 that corresponds to a relative error of 9.7%. One source of the difference between the 

velocity estimated by our method and the velocity measured by the reference is a small artifact due to 

the non-rigidness of the swimming suit. Nevertheless, the custom designed swimming suit used to fix 

the sensor did not allow the sensor to move drastically and kept the artifact within a tolerable range. 

Moreover, during high accelerations when the artifact is more pronounced, the random bias of 

accelerometer is less significant (higher signal to noise ratio) which leads to acceptable results [28]. 

Indirect validation of instantaneous velocity by IVV in Table 3 through four different velocity 

ranges and the two different groups of participants, suggests that the IMU can be used for the study of 

instantaneous velocity variations. Indeed, our system, in accordance with the reference, showed a 

significant difference (p < 0.01, p < 0.001) to discriminate elite and recreational group based on IVV 

values (in different ranges of velocity). The reference showed an IVV change from 13.7% to 17.5% for 

the elite group and from 19.6% to 23.3% for the recreational group. Our method in accordance with 

the reference, showed significantly lower IVV values for elite swimmers (Table 3) that is consistent 

with previous studies [7,29].  

Table 3. Comparison of intra-cyclic velocity variation (IVV) between the two systems for 

elite and recreational groups in different trials. 
a
 p < 0.01 and 

b 
p < 0.001: significant 

difference between IVV of the two groups for the same measurement system. * p < 0.001: 

significant difference between the two systems in IVV assessment. 

 
Group 

Number of   Reference (%)  Inertial (%)  IVV Error (%) 

 Cycles  Mean  Std  Mean  Std  Accuracy  Precision  

Trial1 Elite 109  14.4 
a 

3.9  11.8 
a 

3.7  2.6 *
 

1.7 

 Recreational 224  19.7 
a 

6.2  17.8 
a 

7.1  1.8 4.5 

Trial2 Elite 111  17.5 
b 

2.7  12.3 
b 

4.2  5.1 *
 

2.3 

 Recreational 236  23.3 
b 

4.6  20.6 
b 

4.9  2.7 *
 

3.5 

Trial3 Elite 117  17.2 3.7  12.7 4.6  4.6 *
 

3.1 

 Recreational 253  20.6 3.6  18.5 5.1  2.0
 

3.8 

Trial4 Elite 120  13.7 
b 

5.6  9.7 
b 

6.6  4.1 *
 

2.1 

 Recreational 278  19.6 
b 

3.4  15.4 
b 

6.2  4.2 *
 

4.0 

Another observation from Table 3 is that the IMU tends to underestimate the IVV as presented by 

positive error values. However, the ANOVA shows that the small systematic difference between the 

two systems is not affected by group factor (p > 0.3). In a nutshell, using IMU the same systematic 

error can be seen for different groups of swimmers and can be compensated.  

The ability of the inertial sensor to distinguish the variability of the movement of the subjects with 

different performance levels propounds the application of the inertial system in the study of swimming 

velocity. The capacity of our system to detect IVV changes also provides important evidence that our 

velocity drift removal method does not cancel out the velocity variations. Indeed, different swimming 

trial regimes were recognized based on changes of acceleration magnitude. These regimes are treated 

separately to mitigate the effect of the velocity drift and thereof variation of velocity signal was  

well maintained.  
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Signal segmentation using GMA is the core of drift removal in our method. Therefore, investigating 

the effect of changing the segmentation threshold in GMA can be illustrative of the method’s 

robustness. To this end, the threshold in the GMA algorithm was shifted 5%. The effect of this change 

on the estimation is shown in Table 4. It can be seen that a decrement of 5% in the threshold led to a 

bigger error in the estimated velocity than equal increment. The small threshold caused many spurious 

segments on the a
Y 

t  signal which resulted in excessive localized correction on the velocity pattern; on 

the contrary, since during 25 m laps the actual acceleration profile of the swimmers does not change 

frequently, the higher threshold did not notably cut down on the algorithm performance. 

Table 4. The effect of changing the segmentation threshold of geometric moving average 

(GMA) by a factor of 5% on velocity estimation. Estimation error in the cycle mean 

velocity (MEAN ± SD) and instantaneous velocity (RMS) are presented. 

GMA Threshold 
 Velocity Estimation Error (cm·s

−1
) 

 Cycle Mean (    
)  Instantaneous  

0.15 var(a
Y 

t )  0.3 ± 8.2  16.8 

0.25 var(a
Y 

t )  0.5 ± 6.8  12.9 

Our dataset includes only one type of initial condition (swimming starts from a relatively 

motionless posture in water followed by a wall push) that is a subset of possible initial conditions in 

swimming. However, the study of other initial condition was not feasible within the scope of our 

experiment for practical reasons. Since the tethered reference only measures the velocity in forward 

direction of swimming, comparison of the multi lap data with turns between the IMU and the tethered 

device was not realizable. Although diving from the start block was a possibility, we avoided it for two 

practical considerations. Firstly, during the diving period calculation of the parallax effect on the 

velocity measured by the tethered reference is not possible. Secondly, avoiding the dives we could 

collect more stroke cycles which augments the statistical power of our study. 

The algorithm we proposed in this paper, despite providing timely results, should not be 

misinterpreted as being real time. The data stream of one complete lap serves as the input of our 

algorithm since the correction is performed per lap. For a near real-time implementation of our method a 

crucial step is to determine the cycle mean velocity without using prior information about pool length. 

4. Conclusions 

The proposed method presents a reliable IMU-based system that can be practically used to measure 

the swimming velocity as the most intuitive metric of the athlete’s performance. The system is  

user-centric meaning that several athletes can wear their own sensor at a time without interfering with 

the other athletes’ measurements. Development of such a tool can help coaches pinpoint the strengths 

and weaknesses of the athletes during workout sessions and design an optimal personal training plan 

for athletes to improve their performance.  

Accurate measurement of swimming velocity allowed the assessment of intra-cycle variability, an 

important determinant of swimming efficiency. Analysis of swimming velocity along with other 

parameters such as coordination [11] and energy expenditure can shed a new light on the biomechanics 
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of locomotion in water. Further studies towards developing signal processing techniques for accurate 

assessment of velocity in the other swimming strokes are required. Estimation of cycle mean velocity 

independent of pool length information is also an interesting open problem in the future perspective of 

the study. 
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