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One of the key innovations during the evolution of life on earth
has been the emergence of efficient communication systems, yet
little is known about the causes and consequences of the great
diversity within and between species. By conducting experimental
evolution in 20 independently evolving populations of coopera-
tively foraging simulated robots, we found that historical contin-
gency in the occurrence order of novel phenotypic traits resulted
in the emergence of two distinct communication strategies. The
more complex foraging strategy was less efficient than the sim-
pler strategy. However, when the 20 populations were placed
in competition with each other, the populations with the more
complex strategy outperformed the populations with the less
complex strategy. These results demonstrate a tradeoff between
communication efficiency and robustness and suggest that sto-
chastic events have important effects on signal evolution and the
outcome of competition between distinct populations.

The great variety of signaling systems within and between
species (1–3) plays a key role in regulating species’ co-

existence and speciation processes (4–6). Two main mecha-
nisms have been proposed to account for the evolution and
maintenance of alternative signaling systems. The first is sexual
selection, which can lead to variation in mating and premating
signals (4, 7, 8). The second is differential selection between
habitats as a result of abiotic or biotic factors influencing the
effectiveness of different modes of signaling (9–12). Accord-
ingly, the common view is that populations exposed to uniform
habitats without sexual selection should evolve similar com-
munication systems (13). However, comparative studies suggest
that the vagaries of evolution can also lead to signal variation
between species (14–17).
Both theoretical models (18–23) and empirical studies on

noncommunication traits (24–30) have shown that diverse phe-
notypes can emerge depending only on stochastic evolutionary
events when selection occurs under seemingly identical con-
ditions. This raises the question of whether historical contin-
gency, for example as a result of stochasticity in the occurrence
order of beneficial phenotypic traits (24, 31), may lead to vari-
ation among populations in signaling. The best way to address
this question would be to conduct experimental evolution over
many generations in several independently evolving populations
to investigate whether alternative communication may evolve.
Unfortunately, conducting experimental evolution on social traits
such as communication is complicated by the extreme difficulty
in assessing individual fitness within groups and selecting indi-
viduals according to their fitness from one generation to the next.
Further, studying the effects of historical contingencies requires
replicated evolution under controlled environmental conditions.
It is therefore unknown whether stochasticity in the occurrence
order of mutations or recombination events affecting signaling
systems may lead to the evolution of alternate strategies under
uniform habitats.
To address this issue, we used a simulated robotic model that

enabled us to link interindividual interactions and behavioral

effects to conduct unbiased analysis of the factors driving the
evolution of social behavior (32–34). The degree of realism
provided by such robotic systems greatly exceeds current analyt-
ical and game-theoretical models and allows experiments that
cannot be readily performed with real organisms (for an overview,
see ref. 35). This system also guaranteed identical habitats for all
populations, an essential requirement for investigating divergent
evolution of signaling under uniform ecological conditions.
In this study, we first investigated whether alternate commu-

nication systems can emerge in populations that evolved in the
same environment. Because we found that two main signaling
systems evolved in our 20 independent populations, we next
compared the evolutionary history of these populations to iden-
tify the causes underlying signal diversification. Finally, we com-
pared the efficiency of the two signaling strategies and also
conducted contests among all pairs of populations to investigate
whether stochastic events in the evolution of communication can
have consequences on the outcome of competition between
distinct populations.

Results
In the first experiment, we investigated the evolution of alter-
native communication strategies in a cooperative system where
groups of simulated robots were placed in an environment con-
taining one food source randomly located in an arena (Fig. 1).
The robots (Fig. S1) could perceive the food source with their
sensors only when they were above it. Their performance was
proportional to the number of the 1,200 time units of the exper-
iment spent on the food source. Additionally, robots had the
possibility of producing and perceiving blue and green light, which
potentially enabled them to transmit information about the food
location to other robots in the group. Experimental evolution was
conducted in populations of simulated robots using physics-based
computer simulations that precisely model the dynamical prop-
erties of real robots. Each population comprised 100 groups of 20
robots. Artificial genomes, each consisting of 36 “genes,” encoded
the specifications of the robots’ neural controllers that processed
the sensory information and produced the motor actions of the
individual robots (Materials and Methods). During each genera-
tion, 100 genomes out of the 2,000 genomes per population were
selected by fitness-proportionate selection and subjected to mu-
tation and recombination (i.e., sexual reproduction). Then, each
resultant genome was cloned 20 times to produce 100 groups, each
consisting of 20 genetically identical robots (Materials and Meth-
ods). Because the 36 genes were initially set to random values, the
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behavior of the robots was random in the first generation. Due to
selection, however, the behavior of the robots rapidly evolved and
their performance greatly increased over the 1,000 generations of
selection. We repeated the experiments in 20 independent pop-
ulations exposed to the same starting conditions and identical
environments. No gene flow was allowed between the 20 distinct
populations.
An inherent property of this foraging system was that robots

could increase the performance of other robots by signaling
when they were on the food source. To study how communica-
tion between robots evolved across the 20 independent pop-
ulations, we quantified the proportion of time steps where the
robots emitted green or blue light on the food source or some-
where else in the arena. In all 20 populations, the robots emitted
one of the two colors on the food after 1,000 generations of
selection (this color was labeled “primary” color and the other
“secondary” color). There was low variance among the 20 pop-
ulations in the rate of emission of the primary color on food
(�x ¼ 0:860; σ2 = 0.063). Similarly, in all populations, robots
rarely emitted the secondary color on food or the primary color
in the environment (�x ¼ 0:056; σ2 = 0.070 and �x ¼ 0:059; σ2 =
0.032, respectively). By contrast, there was high variation among
populations in the production of the secondary color in the en-
vironment (�x ¼ 0:412; σ2 = 0.458), with the variance being sig-
nificantly higher than for the emission of the secondary color on
food, primary color on food, and primary color in the environ-
ment (two-sample F test, all P < 0.001). A principal component
analysis on all four measured signaling traits (Fig. S2A) revealed
that the emission of the secondary color in the environment
contributed most (loading = 0.99) to the first principal compo-
nent, which explained up to 96.5% of the between-population
variance in signaling (other loadings of the first principal com-
ponent were –0.05 and 0.09 for the primary and secondary color
on food and –0.02 for the primary color in the environment).
A hierarchical clustering on the scores of the first two principal

components revealed two major clusters (Fig. S2). The first
contained 11 populations in which robots intensively emitted the
primary color on the food, but did not signal in the foraging
arena (one-signal populations; Fig. 2). The other cluster com-
prised the remaining 9 populations, in which robots similarly
emitted the primary color on food, but also produced a signifi-
cant amount of the secondary color in the foraging arena (two-
signal populations; Fig. 2). Overall, the one-signal populations
had a mean performance of 0.196, which was 15.3% higher than
the mean performance (0.168) of the two-signal populations
(Wilcoxon rank-sum test, P < 0.001).
An analysis of the evolutionary history of light production over

time revealed different trajectories between the one- and two-
signal populations. In the one-signal populations, the emission
of the primary color on food became more frequent than the

emission of the secondary color in the environment within the
first 10 generations (Fig. 3A). Thereafter, the emission of the
secondary color in the environment quickly decreased and was
close to zero in all generations after generation 50. In these
populations, the performance was positively correlated with the
emission of the primary color on food over the 1,000 generations
of selection (Pearson’s correlation, r = 0.98, P < 0.001) and
negatively correlated with the emission of the primary color in
the environment as well as the emission of the secondary color
on food and in the environment (all Pearson’s correlation, r <
–0.93, P < 0.001). By contrast, in the two-signal populations, the
emission of the primary color on food increased more slowly
than the secondary color in the environment (Fig. 3B). As a re-
sult, the emission of the secondary color in the environment was
consistently equal to, or more frequent than, the emission of the
primary color on food. In these populations, the performance
was also positively correlated with the emission of the primary
color on food over the 1,000 generations of selection (Pearson’s
correlation, r = 0.67, P < 0.001) and negatively correlated with
the emission of the primary color in the environment (Pearson’s
correlation, r = –0.80, P < 0.001) and secondary color on food
(Pearson’s correlation, r = –0.39, P < 0.003). However, in con-
trast to the one-signal populations, the emission of the second-
ary color in the environment was positively correlated with

Initial stage Intermediate stage Final stage

Fig. 1. Distribution of robots in the foraging arena over three different stages of the 1,200 time steps. The figure illustrates a representative evolved be-
havior after 1,000 generations of selection. Initially, 20 robots (black circles) are randomly distributed in the foraging area. Over time, some robots discover
the food source (gray circle), where they stay so as to increase their performance (these robots are marked white). By using their signals, robots on the food
source attract more robots until, eventually, most robots are on or near the food source (black-marked robots do not increase their performance).
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Fig. 2. Differences in signaling strategy between the one- and two-signal
populations. The difference was most notable in the use of the secondary
color in the environment. The two groups differed slightly in the use of the
secondary color on food. Shown is the SE and average population mean of
signal frequency (proportion of time steps when a specific signal was dis-
played) for the one- and two-signal populations averaged over the last 20
generations (**P < 0.01, ***P < 0.001, otherwise P > 0.05, Wilcoxon rank-
sum test; n.s., not significant).
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performance over the 1,000 generations of selection (Pearson’s
correlation, r = 0.84; P < 0.001). Thus, in addition to a signal
indicating the presence of food that evolved in all populations,
an additional signal indicating the absence of food had been
added in the two-signal populations.
To identify the key event that was responsible for the different

evolutionary trajectories of the one- and two-signal populations,
we suppressed the emission of the primary or secondary colors
either on the food or in the environment. These experimental
manipulations were conducted independently for each of the
1,000 generations in each of the 20 populations. In the one-signal
populations, the suppression of the primary color emission on
food had a significant negative influence on performance from
generation 20 on (all Wilcoxon rank-sum test, P < 0.001; com-
pare Fig. 3C). By contrast, performance was never significantly
affected by preventing robots from emitting the primary color in
the environment or the secondary color on food or in the envi-
ronment (all Wilcoxon rank-sum test, P > 0.05). In the two-signal
populations, performance similarly decreased when the primary
color on food was prevented (Wilcoxon rank-sum test, P < 0.001;
compare Fig. 3D) but not when the emission of the primary color
in the environment or the emission of the secondary color on
food was prevented (all P > 0.05). However, in contrast to the
one-signal populations, blocking the emission of the secondary
color in the environment decreased performance in all gen-
erations after the first generation in the two-signal populations
(Wilcoxon rank-sum test, P < 0.001; Fig. 3D). Thus, these
experiments confirmed that early divergence between pop-
ulations caused by different genetic changes (via mutation and
recombination) affecting the use of the secondary color in the
environment led to differences in the selective pressure on sig-
naling, and ultimately to the evolution of two distinct signaling
strategies in the one- and two-signal populations.

In the second experiment, we investigated whether the evo-
lution of these two alternative signaling strategies had con-
sequences on the outcome of interpopulation competition. This
was done by conducting competition experiments between all
pairs of populations at generation 1,000. To keep the conditions
similar to those under which the simulated robots had been se-
lected over the 1,000 generations of experimental evolution, we
also kept the number of robots in the arena at 20, where 10
robots stemmed from a group of one population and 10 robots
from a group of another population. We then paired each of the
100 groups from a given population with 20 randomly selected
groups from each of the 19 other populations (i.e., 380 tests per
group, 38,000 tests per population, 760,000 tests in total). Be-
cause the size of the food source was limited (Fig. 1), only 14
robots could be simultaneously on the food source, although this
value was almost never reached as it could be attained only with
a perfect packaging of the robots on the food source.
The individual performance of robots was lower when in

competition than when interactions occurred only within a given
population (Wilcoxon rank-sum test, P < 0.001). The decline in
performance was much higher for the one-signal populations
(�x ¼ − 43:6%; SE = 2.05) than for the two-signal populations
(�x ¼ − 16:1%; SE = 2.76) (Wilcoxon rank-sum test, P < 0.001).
Importantly, the much higher performance decrease of the one-
signal populations resulted in these populations ultimately per-
forming significantly less well (�x ¼ 0:111; SE = 0.004) than the
two-signal populations (�x ¼ 0:14; SE = 0.004) (Wilcoxon rank-
sum test, P = 0.006). Thus, there was a reversal in performance
between the one- and two-signal populations under competition,
hence demonstrating a higher robustness of the two-signal pop-
ulations to competition.
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Discussion
The evolutionary divergence of signaling systems is commonly
attributed to differences in habitats (5, 36–38), sexual selection
(4, 7), or interspecific interactions (9, 39), leading to the common
assumption that closely related species inhabiting similar envi-
ronments will often exhibit similar communication systems (13).
However, biologists studying communication have become in-
creasingly aware that contingency in evolutionary history can
play an additional important role in shaping animal communi-
cation systems (40–42). Understanding why a specific signaling
system evolved to its current form is challenging because be-
havior leaves only very scarce fossil records (43). Thus, studies on
the effects of historical contingency on the evolution of com-
munication are rare. For example, the responses of female
túngara frogs to ancestral calls and to calls of other closely re-
lated species have been shown to be influenced by variations in
the historical sequence of past male mating calls (44, 45), dem-
onstrating the influence of the evolutionary history of male
signals on current female responses (46). Further, inter- and
intraspecies comparisons of associations between genetic, geo-
graphic, and signaling distances have led to the suggestion that
stochastic processes such as drift may be involved in the process
of signal diversification in dart-poison frogs (15), singing mice
(16), greenish warblers (17), and Anolis lizards (47). Un-
fortunately, an inherent problem with comparative studies is the
difficulty of ruling out the hypothesis that undetected differences
among habitats or ancestral differences that have since dis-
appeared actually account for the current interspecific variation
in signaling.
Our time course analysis showed that the one- and two-signal

populations started to diverge already within the first 10 gen-
erations of selection. Moreover, the experimental blocking of the
emission of the secondary color in the environment revealed
a decrease in performance in all 1,000 generations in the two-
signal populations, whereas the same manipulation never had
a significant effect on the performance in the one-signal pop-
ulations. Thus, the evolution and fixation of two distinct com-
munication strategies occurred as a result of very early genetic
differences between populations that influenced the course of
signal evolution. The differences in signaling remained stable
despite the greater efficiency of one of the signaling strategies. A
likely reason for the lack of shift from the less efficient signaling
strategy to the more efficient is that social interactions lead to
a strong frequency dependence of performance, resulting in
suboptimal adaptive peaks at which a change in either the sig-
naling or response strategy would destroy the communication
system and result in a performance decrease. Thus, each com-
munication strategy effectively constitutes an adaptive peak
separated by a valley of lower performance values (32, 48). A
similar phenomenon may account for some of the differences in
signaling observed between closely related species or isolated
populations of a given species. For example, a recent study in
Anolis lizards revealed that species originating from different
evolutionary ancestors have evolved different signaling systems
in response to similar selective pressures (47). Unfortunately, it
is unknown whether the different evolutionary starting points of
species impacted the efficiency of the evolved signaling systems.
Variation in signaling that can enable some species to better

resist competition or predators, as it exists, for instance, in moths
(49), is usually attributed to differences in selection such as the
presence or absence of predators or temporal and geographic
variations (11). Here we could demonstrate that increased ro-
bustness to competition of certain signaling systems can emerge
without direct selective forces on the ability to resist competition.
Identifying the role of competition for the evolutionary change
of species in general (50), and of signaling behavior in particular
(51–53), is a major challenge for ecological research. Our

experiments of replicated evolution under the same environ-
mental and evolutionary conditions revealed that the most effi-
cient signaling strategy was also the one most affected by
competition, demonstrating a tradeoff between communication
efficiency and robustness to competition. This suggests that
contingencies in evolutionary history can affect the outcome of
competition between distinct populations (29).
In conclusion, our study revealed that variation in signaling

can occur without sexual selection and in the absence of eco-
logical differences. Alternative signaling strategies evolved due
to stochasticity in the order of new mutations and/or crossing-
over events and/or how they spread within populations. Given
that visual, acoustic, or chemical signals can act as major iso-
lating mechanisms between young and incipient species, our
study may also have implications for the long-standing debate
over the relative importance of selection and drift in the process
of speciation (54–56). Divergence in mate-recognition signals is
considered to be one major cause of creating premating barriers
that initiate speciation processes (1). In light of our study, it is
well possible that, besides habitat-dependent and sexual selec-
tion, stochasticity in the occurrence order of genetic and phe-
notypic changes during the course of evolution (24, 31) might
also be involved in speciation processes (19, 57, 58). This would
be the case, for example, if stochastic phenotypic variation would
first cause divergences in nonmating signals that are later used as
mate-recognition signals.

Materials and Methods
Experimental Setup. Each robot was evaluated in a physics-based simulation
(32–34). The circular-shaped robot with a diameter of 7.2 cm was equipped
with two independent wheels, a camera, a floor sensor for food detection,
and a light-emitting diode ring around the robot that could emit either
green or blue light (Fig. S1). An artificial neural network consisting of nine
input neurons fully connected to four output neurons with an activity range
of [–1, 1] and a sigmoid transfer function (tanh) controlled the behavior of
each robot. The 360° field of view provided by the camera was divided into
four equally sized quadrants around a robot. For each quadrant, the amount
of perceived light was linearly mapped to the activity of one input neuron
for the blue and one for the green color (for further details, see ref. 32).
Floor sensor information was processed by one input neuron, resulting in
maximal or minimal activity depending on whether the robot was on the
food or not. Two output neurons controlled the speed of the left and right
wheel with minimal and maximal activity resulting in maximal backward and
forward rotation, respectively. The two remaining output neurons con-
trolled the light emission. Light was emitted only if at least one of the two
neurons had an activity higher than zero (if the first neuron showed equal or
higher activity than the second, green light was emitted, otherwise blue
light was emitted). Each of the 36 synaptic connections between input and
output neurons was encoded by a single gene consisting of eight bits that
were mapped linearly into a synaptic strength within the range of [–5, 5].

Artificial Evolution. Our 20 independent replicate populations consisted of
100 groups, each containing 20 simulated robots. All of the robots in a
group had the same genome, and genetic differences between groups
ultimately stemmed from mutation, recombination, selection, and drift as
outlined below.

To initiate each population, 100 genomes were randomly generated. Each
of these genomes was cloned 20 times to form the 100 groups each consisting
of robots with identical neural networks. One population thus contained
2,000 genomes. To evaluate performance, each group of 20 robotswas placed
randomly in a bounded 3 × 3-m arena containing a circular food source with
a diameter of 32 cm (Fig. 1). The performance of every robot in a group was
calculated separately as the proportion of the 1,200 sensor-motor cycles
(time steps) spent on food. This procedure was repeated 20 times, with
randomly varying initial positions for each robot. After evaluating the av-
erage performance of each robot over the 20 trials, the 2,000 genomes of
a population were linearly ranked according to their performance values.
We then applied the standard roulette-wheel selection algorithm to de-
termine 100 genomes for reproduction (i.e., selection took place on the in-
dividual level). The selected 100 genomes were randomly assorted in pairs to
perform crossover (with a probability of 0.2) and mutation (with a proba-
bility of 0.01 for each of the 288 bits of a genome to change to its alternative
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state, either zero or one). Then, each of the 100 genomes was again cloned
20 times to form the 100 groups of 20 robots for the next generation. All
experimental populations evolved for 1,000 generations.

Competition Experiments. After the first 1,000 generations of selection
without interpopulation competition, we reduced the number of robots so
that each population contained 100 groups of 10 robots each (robots within
one group were still clones). Each group of one population was then paired
with 20 randomly selected groups of each of the 19 other populations (i.e.,
interpopulation competition). We placed each pair in the same environment

and conducted 20 trials for 1,200 time steps with random starting conditions
for each individual. We then measured the average performance of each
group over these 20 trials and compared the performance of the groups in the
one-signal and two-signal populations.
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