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Abstract: The Baldwin effect can be observed if phenotypic learning influences the

evolutionary fitness of individuals which can in turn accelerate or decelerate evolutionary

change. Evidence for both, learning induced acceleration and deceleration can be found

in the literature. Although the results for both outcomes were supported by specific

mathematical or simulation models, no general predictions have been achieved so far.

Here we propose a general framework to predict whether evolution benefits from learning

or not. It is formulated in terms of the gain function, which quantifies the proportional

change of fitness due to learning depending on the genotype value. With an inductive

proof we show that a positive gain function derivative implies that learning accelerates

evolution, and a negative gradient implies deceleration under the condition that the

population is distributed on a monotonic part of the fitness landscape. We show that

the gain function framework explains the results of several specific simulation models.

We also use the gain function framework to shed some light on the results of a recent

biological experiment with fruit flies.
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1 Introduction

Evolution and learning are two important adaptation processes for natural systems that

operate on different spaces and with different time scales. Evolution is a gradual process

that occurs on the genotype level from one generation to the next. Learning is a fast

process that occurs on the phenotype level within the lifetime of an individual. Both

processes interact in many ways. The most direct interaction, the genetic fixation of

learned phenotypic characteristics is not possible in nature. However, it has been used

successfully in artificial evolutionary systems, see e.g. [7, 15, 19], while at the same time

it has been demonstrated that this so-called Lamarckian inheritance has an adaptive

disadvantage in quickly changing environments [30, 33].

The more indirect interaction can be observed in both artificial and natural systems.

The Baldwin effect, which was first suggested by Baldwin [3] and which received its

name from Simpson [34], describes the influences that learning has on the evolutionary

process because it changes the evolutionary fitness of individuals without the need for

translating acquired characteristics back into the genome.

Whether changes of fitness due to learning accelerate or decelerate evolution cannot

be predicted in general. Evidence for both, learning induced acceleration [4, 6, 8, 10,

11, 13, 14, 22, 23, 17, 24, 25] and deceleration [1, 8, 11, 12, 16, 17, 18, 20, 22, 24, 31]

of evolutionary change can be found in the literature. Explanations for both effects

have been based on the analysis of in silico experiments [4, 6, 8, 11, 13, 14, 17, 18, 20,

22, 23, 25, 31, 36], and of in vivo experiments [24]. Furthermore, mathematical models

[1, 10, 16] have been proposed and theoretical analyses [12, 23] carried out. Several

properties have been identified that affect the interaction of learning and evolution,

such as epistasis [22, 36], (implicit or explicit) cost of learning [8, 22, 36], the amount of
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learning [11, 17, 6], and the shape of the learning curves [28].

However, there have only been a few attempts to develop a general model to predict

the influence of learning on evolution. In [5] Borenstein et al. show that several forms of

learning smooth a multi-modal fitness landscape in such a way, that on average evolution

proceeds quicker to a global optimum. Their model predicts that the expected time to

reach a higher fitness value starting from a local maximum depends on the difference

between the local fitness maximum and the following local fitness minimum on the

evolutionary path to the global optimum. This quantity which is named drawdown

in [5] and negative extent in [26] is reduced through learning. In order to arrive at

this clear and general conclusion, Borenstein et al. have employed an abstract model of

evolution, in which the genotype space is discrete and one-dimensional. The population

is represented by one value of the genotype space (whether this value represents the

average genotype value of the population or something similar is not specified) and

the population’s mutation-selection movement is modeled by a one-dimensional non-

symmetric random walk [35].

In this paper, we will outline a general framework to study the indirect interaction

between evolution and learning that will allow us to predict whether evolutionary change

will benefit from the interaction or whether it will be penalized.

The framework, which is based on the definition of a gain function g(x), was first

introduced by the authors in [29, 28]. In order to derive the gain function in [29], we

represented a population as a probability distribution and had to limit the analysis to

symmetric distribution functions. Furthermore, we had to include approximations (sec-

ond order Taylor expansion) in the respective proof. While a continuous representation

of the population and the required assumptions are common in quantitative genetics, we

will show in this paper, that they are not needed if we introduce a different representa-
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tion which is less common in theoretical biology, however which is standard in simulated

evolution and artificial life. We model the population as a set of discrete entities (indi-

viduals). No assumption on how these entities are distributed is required. The new gain

function quantifies the proportional change of fitness due to learning dependent on the

genotype value x. An inductive proof that does not require any approximations shows

that the influence of learning on evolution depends on the derivative of g w.r.t. x.

The gain function framework applies to directional selection, i.e., scenarios in which

the population climbs up a fitness hill. It cannot be transferred to a multi-modal fitness

landscape, instead it makes exact short-term predictions on monotonic landscapes and

may be used for approximate predictions in nearly-monotonic landscapes. The draw-

down model in [5] deals with multi-modal fitness landscapes, however, it cannot predict

the influence of learning in uni-modal fitness landscape.

In the next section, we outline the idea of the gain function framework in detail,

and then provide a mathematical analysis and proof that generally shows under which

conditions learning accelerates or decelerates evolution. We apply the gain function

analysis in Section 3 to models from ALife and evolutionary biology and to a new

model incorporating evolution and learning, thereby demonstrating the generality of the

approach. The comparison of different models (with different results with regard to

the influence of learning on evolution) within one mathematical framework highlights

under which conditions learning accelerates respectively decelerates evolution. In the

last paragraph of Section 3, we also apply the gain function to data from a biological

experiment that investigates the evolution of resource preference in fruit flies. Based on

this, a simulation model of the fruit fly experiment is developed in which the ”digital

fruit flies” indeed evolve a similar resource preference. The results of this paper are

discussed in Section 4.
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2 Theoretical Analysis

The rate of evolution increases with the relative differences in fitness among different

individuals. Learning can affect evolution by influencing the fitness of phenotypes that

have a certain genetic pre-disposition, e.g. learning may amplify fitness differences be-

tween “strong” and “weak” genetic pre-dispositions. In other words, the genetically

strong individuals benefit (or gain) more from learning than their genetically weak ri-

vals (of course the opposite case may occur as well). This is an example of a positive

gain function derivative, which we will introduce in this section.

In biology, the transformation from genotype to phenotype is usually enormously

complex. Development and learning are parallel processes during the whole life time

of individuals. There is no transition when one ceases and the other one starts. Nev-

ertheless, in order to allow a simple mathematical analysis, in our model we want to

distinguish between the two processes in a sequential fashion: first development (ontoge-

nesis) and then learning (epigenesis). Genotypic information is used during development

to produce an innate phenotype, which is modified through learning resulting in the

learned phenotype, cf. Figure 1. Since we concentrate on the influence of learning, we

keep the first transition phase as simple as possible in our model (for a recent paper on

the developmental phase see e.g. [9]). In particular, an individual is characterized by a

real-valued genotypic variable x and a real-valued phenotype variable z. As a mapping

from genotype to the innate phenotype, we assume the identity function. An individual

changes its innate phenotype via a learning function l. Thus, as a result of learning,

an individual’s genotype value x is mapped to its phenotype z via a learning function

z = l(x). In the absence of learning the phenotype equals the genotype: z = x. The

fitness of an individual is assigned using a fitness function f(z), defined on the pheno-
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type space. Thus, fitness in case of learning is given by f(l(x)) and in the absence of

learning by f(x). For simplicity we will often substitute f(l(x)) by fl(x). We assume

that fitness function f(x), respectively fl(x) is positive and monotonic (the sign of f ′(x)

is constant) within the range of population variability.

We now consider a finite population of n individuals, where the genotype values are

labeled xi, i = 1 . . . n. The rate of evolution is measured as the distance that the pop-

ulation’s mean genotype x̄ = 1
n

∑n
i=1 xi moves toward the optimum in one generation.

We will later use simulations to demonstrate that this is indeed an appropriate indica-

tor for the evolutionary velocity over the course of many generations. An individual’s

reproduction probability is assumed to be proportional to its fitness value. If we look at

the biological concept of fitness, where fitness corresponds to the number of offsprings

produced by an individual, this is the most reasonable selection model. Note, that in the

field of evolutionary computation, this selection method is known as fitness proportional

selection. With this assumption the expected mean genotype after selection x̄∗ can be

calculated as follows

x̄∗ =

∑n
i=1 xif(xi)

∑n
i=1 f(xi)

. (1)

Assuming an unbiased, symmetric mutation this is equal to the mean genotype of the

next generation, and the expected change of the mean genotype in one generation is

given by

∆x̄ =

∑n
i=1 xif(xi)

∑n
i=1 f(xi)

−
1

n

n
∑

i=1

xi . (2)

The mean genotype change in case of learning ∆x̄l is derived analogously by replacing

f with fl in Equation 2. Thus, learning accelerates (decelerates) evolution if

sign(∆x̄l − ∆x̄) = sign

(∑n
i=1 xifl(xi)

∑n
i=1 fl(xi)

−

∑n
i=1 xif(xi)

∑n
i=1 f(xi)

)

(3)

is positive (negative). We now define the gain function as the quotient between the
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genotype-to-fitness function with learning and the genotype-to-fitness function without

learning, i.e.

g(x) =
fl(x)

f(x)
. (4)

Under the assumption that g(x) is monotonic over the range of population variation, we

show with an inductive proof, see Appendix A):

g′(x)







































> 0 ⇔ ∆x̄l − ∆x̄ > 0

< 0 ⇔ ∆x̄l − ∆x̄ < 0

= 0 ⇔ ∆x̄l − ∆x̄ = 0 .

(5)

Equation 5 shows that whether learning accelerates or decelerates evolution is deter-

mined by the sign of the derivative of the gain function. A positive derivative implies

acceleration, a negative implies deceleration and a constant gain function implies that

learning has no effect on evolution. If we find that learning has accelerated (deceler-

ated) evolution we know that the gain function derivative is positive (negative), under

the above given assumptions.

3 Application of the Gain Function Framework

In this section, we apply the gain function framework to models from ALife and evolu-

tionary biology and to our own model coupling evolution and learning. The aim is to

highlight the wide applicability of the gain function approach and to understand under

which conditions learning induced acceleration or deceleration of evolution appears.
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3.1 Hinton and Nowlan’s Model - A Positive Gain Function

Derivative

The first computational model that demonstrated that (Baldwinian) learning can accel-

erate evolution was published by Hinton and Nowlan [14] (we will refer to it as (H&N)

model) 20 years ago. They demonstrated “how learning can guide evolution” towards a

global optimum. We briefly summarize the H&N model: In the first scenario, the ab-

sence of learning, a genotype is given by 20 genes with alternative values (alleles) {0, 1}.

A phenotype of the same structure (20 bit string) is produced using identity mapping,

i.e. 0 7→ 0 and 1 7→ 1. There exists exactly one “good” phenotype which, without loss

of generality, can be set to “11111111111111111111” (“all ones”) with the high fitness

value of 20, and all others, have the same low fitness of 1. In this “needle-in-haystack”

fitness landscape, there exists no smooth path to the “all ones” genotype (equals pheno-

type), and simulated evolution fails to identify it. In the second scenario, the presence

of learning, the allele set is extended to three {0, 1, ?}, and again 0 7→ 0 and 1 7→ 1 in the

genotype-phenotype mapping. However, the phenotypic characteristic of the ’?’ gene, is

assigned after a learning period. Learning is a sequence of random guesses, where the

individual stops when it finds the “all ones” phenotype, or after 1000 trials. Of course,

the optimal phenotype cannot be learned by individuals that carry one or more 0 alleles.

Hinton and Nowlan’s simulations show that in contrast to the non-learning population,

the learning population finds the global optimum.

The gain function framework assumes that learning and non-learning individuals

have a genotype of equal structure, which is not directly given in H&N where learn-

ing individuals have the ’?’ as an additional allele. We circumvent this with a formal

reformulation of the H&N model: In both scenarios, presence and absence of learning,
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all genes have four alleles: {0, 1, ?0, ?1}. Allele 0 and 1 encode directly the phenotype

(0 7→ 0 and 1 7→ 1). In contrast, alleles ’?0’ and ’?1’ map either to ’0’ or ’1’ after a

learning period, but learning starts at 0 in case of ’?0’ and at 1 in case of ’?1’. The

difference between learning and non-learning individuals in this example is that learn-

ing individuals are allowed to perform 1000 random guesses, whereas for non-learning

individuals the genotype translates directly to the phenotype, i.e. alleles {0, ?0} encode

a phenotypic 0 while alleles {1, ?1} encode a phenotypic 1, and no further improvement

is possible.

This modification does not substantially change the H&N model and allows us to

apply the gain function approach. We distinguish three scenarios. First, if there exists

one or more 0 alleles in the genotype, the optimal phenotype will not be found in either

case, with or without learning. This means the gain function is constant equal to one.

Second, if the genotype is composed of alleles 1 and ?1, the optimal phenotype will

be generated in both cases with or without learning, which also implies a constant gain

function of one. In both scenarios, learning has no influence on evolution as the constant

gain function shows (cf. Equation 5). In the third scenario, the genotype is composed

of alleles 1, ?1 and at least one allele ?0. In this situation, there is a difference between

learning and non-learning. We estimate the gain function g(x) = f(l(x))/f(x) (see

Equation 4) for the third scenario as follows. The denominator is a constant, 1.0 in the

setting of H&N. The numerator is the mean fitness achieved after learning and can be

derived by summing up the possibilities that the first correct guess is made exactly on

the kth trial [4]:

f̄(q) =
1000
∑

k=1

fH&N(1000 − k) pH&N(k, q) , (6)

where q is the number of ?-alleles (?0’s and ?1’s) in the genotype (the remaining genes

carry allele 1). According to [4], the fitness landscape and the probability function are
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given by fH&N(n) = 1 + 19n/1000, where n is the number of remaining trials when

the reference vector has been found, and pH&N(k, q) = (1 − 2−q)(k−1) · 2−q. Figure 2

shows the gain function g(q) and estimated gain function derivative g′(q), where q is

the number of ?-alleles in the genotype. As the figure illustrates, the gain function has

a positive derivative, which predicts the qualitative outcome of the Hinton & Nowlan

model, namely that learning will accelerate evolution.

In the literature, several papers have commented on Hinton and Nowlan’s results.

A gain function interpretation is given as follows. While in the absence of learning

differences between genetic predispositions are invisible, learning amplifies or actually

unveils these differences. As described in the beginning of Section 2, this - the learning

induced amplification of genetic predispositions - is exactly the conclusion that follows

from a positive gain function derivative. We conclude that in extreme fitness landscapes

with large plateaus learning potentially accelerates evolution.

3.2 Papaj’s Model - A Negative Gain Function Derivative

With a simulation model, Papaj [31] studied the interaction of evolution and learning

in insects that need to adapt to new environmental conditions in which only one host

species (a plant) is available. In contrast to Hinton and Nowlan [14], he concluded that

learning decelerates evolution. In his model, an insect’s behavior (the phenotype) is

represented by a real-valued response number z which is under control of a genotypic

value x (x ∈ [0, 1]), a pre-specified learning parameter L (L ∈ [0, 0.1] in [31]), the number

of learning trials made so far t (t = 0. . T , T is the total number of learning trials in an

insect life),

z(x,L, t) = x + (1 − x)
(

1 − e−Lt
)

= 1 + (x − 1)e−Lt . (7)

10



This function is shown in Figure 3(a) for L = 0.06, for five different genotypic values x.

Papaj, presumably chose this type of learning curve because it guarantees that insect be-

havior at birth is solely specified by the genotype, i.e. z(x,L, 0) = x, and because in the

T consecutive learning trials z converges asymptotically toward the optimal phenotype

z = 1, which is a typical animal learning curve according to [31]. All individuals have

a strong progress in learning, those with higher genotypic values approach the learning

target quicker, but the “genetically weak” ones seem to catch up during learning. In

order to account for this, lifetime fitness of learning individuals is determined by the

average phenotype z̄, which we approximate as

z̄(x,L, T ) =



















x , if T = 0

1
T

∫ T

t=0
z(x, t, L) dt = 1 + 1−x

LT

(

e−LT − 1
)

, if T > 0 .

(8)

The resulting average phenotype (for T = 100 and L = 0.06) is shown in Figure 3(b).

Papaj assumed a concave fitness landscape on [0; 1]

f(z̄) = 1 − (1 − z̄)2 (9)

(an inverted parabola) with maximum at z̄ = 1. Using Equation 8 we obtain the gain

function

g(x) =
fl(x)

f(x)
=

f(z̄(x,L, T > 0)

f(z̄(x,L, T = 0)
=

1 −
(

(x − 1) e−LT
−1

LT

)2

1 − (1 − x)2
. (10)

The derivative with respect to x yields the gain function derivative, and after some

straightforward calculations we get

g′(x) =
2(1 − C)

(x2 − 2x)2
(x − 1) with C =

(

e−LT − 1

LT

)2

. (11)

Since L > 0 and T ≥ 0, the product LT ≥ 0 can be interpreted as one variable.

Since C ∈]0; 1[ for LT > 0, we see that g′(x) < 0 for all x ∈]0, 1[. The gain function
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(Equation 10) is visualized in Figure 3(c) and its derivative derivative (Equation 11) in

Figure 3(d).

For all combinations of LT , the gain function is negatively sloped toward the op-

timum (located at x = 1), i.e., the gain function derivative is negative (as proven in

Equation 11).

In the model chosen by Papaj, learning allows individuals with a genetic predispo-

sition towards a weak innate phenotype to catch up with innately strong individuals.

Considering the whole lifetime an advantage of the innately strong individuals remains.

However, learning strongly reduces the selective pressure towards “good genes”. This

phenomenon which has some years after Papaj’s simulation named Hiding effect [22]

appears if innately weak individuals gain proportionally more from learning than in-

nately strong individuals, thus hiding genetic differences. Exactly this is revealed by the

negative derivative of the gain function.

3.3 Accelerated and Decelerated Evolutionary Phases on the

Sigmoid Fitness - A Non-Monotonic Gain Function

In both preceding examples, the gain function turned out to be monotonic. Evolution

was either accelerated (Section 3.1) or decelerated (Section 3.2) at any time of the evo-

lutionary process. We now look at a scenario where it depends on the learning function

whether the gain function is monotonic or not. The fitness landscape (mapping pheno-

type value z to fitness) is the sigmoid function f(z) = (1+exp(−z))−1 (cf. Figure 4(a)),

which is monotonic, convex for negative genotype values, and concave for positive geno-

type values. In absence of learning the phenotype value z equals the genotype value x,

z(x) = x, in presence of learning, z(x) = l(x), where l is a learning function. Thus,

fitness is given by f(x) in absence of learning and f(l(x)) in presence of learning.
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In addition to the gain function analysis, we ran some experiments to verify the

analytical results. These experiments were set up in the following way1: We simulated

an asexual population of 100 individuals, each characterized by a one-dimensional (real-

valued) genotypic value x, and initialized uniformly in the vicinity of −3 (in the interval

[−3.1;−2.9]). In the absence of learning, the phenotype z equals x; with learning the

phenotype z = l(x). To simulate selection, we used an algorithm known as Stochastic

Universal Sampling [2]. This algorithm implements sampling (with replacement) of n

offspring from n parents, where the probability of an individual being sampled is propor-

tional to its fitness f(z) (i.e., f(x) without learning, f(l(x)) with learning). Biologically,

this algorithm is equivalent to assuming that each parent produces a very large number

of offspring, and the survival probability of the offspring is proportional to fitness. To

simulate mutation, a random number from a normal distribution with parameters µ = 0

and σ = 10−3 was added to the genotypic value x of each offspring.

In the first scenario, learning is defined as l1(x) = x + 0.25. Learning moves an

individual a constant distance towards the optimum in phenotype space, regardless of

the genotypic value (equals innate phenotype, as in Papaj’s model of Section 3.2). We

refer to this type of learning as constant learning. In combination with the sigmoid fitness

function this results in a gain function that decreases during the course of evolution (from

low to high values), see the solid line in Figure 4(b). Therefore, we expect that learning

decelerates evolution on both the convex and the concave part of the sigmoid fitness

function. To verify this, we ran some experiments for this fitness function.

The simulation results for the constant learning case are shown in figures 4(c-d).

Constant learning indeed decelerates evolution, throughout the evolution, i.e. on the

1The C++ source code for these experiments is available under

http://www.aifb.uni-karlsruhe.de/EffAlg/ipa/gainfunc sigmoid experiment.zip
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convex as well as on the concave part of the fitness landscape. Again the Hiding effect [22]

can be observed. This might be counter-intuitive, because a constant phenotype-shift

yields a larger fitness increase in every convex fitness landscape. Thus, one would expect

that evolution is accelerated on the convex landscape segment. However, what matters

is the strength of the relative fitness increase and this is what is taken into account in

the gain function framework.

The question that arises from this observation is, whether there exist fitness land-

scapes for which this basic form of learning (constant learning) accelerates evolution.

We use the gain function framework to find a general answer to this. Formally, constant

learning is defined by

lδ(x) = x + δ , (12)

where δ is a positive constant. Assuming a monotonic and continuously differentiable

fitness landscape f , the sign of the gain function derivative satisfies

sign ( g′δ ) = sign

(

(f(lδ(x)))′

f(lδ(x))
−

f ′(x)

f(x)

)

= sign ( ( ln(f(lδ(x))) )′ − ( ln(f(x)) )′ )

= sign ( ( ln(f(x + δ)) )′ − ( ln(f(x)) )′ )

= sign ( ( ln(f(x)))′′ ) .

(13)

The last equality follows from the relationship sign(F ′(x)) = sign((x2 − x1)(F (x2) −

F (x1))), which holds for any monotonic function (here F (x) = (ln(f(x)))′) and arbitrary

x1, x2 with x1 6= x2. The influence of constant learning on evolution solely depends

on the second derivative of logarithmic fitness: Positive (negative) (ln(f(x)))′′ implies

learning induced acceleration (deceleration) for this type of learning. Indeed, the second

derivative of the logarithmic sigmoid function −e−z(1 + e−z)−2 is negative for all z.

In the second scenario, learning is defined as l2(x) = x+ex. The larger the genotype
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value (equals innate phenotype), the more learning shifts the phenotype towards the

optimum. We call this form of learning progressive learning. The corresponding gain

function is shown as a dashed line in Figure 4(b). The gain function increases before

the turning point x = 0.14 and decreases after it. Thus, we expect that in the early

phase of evolution, learning accelerates evolution, and decelerates evolution in the later

phase. These predicted dynamics are qualitatively confirmed by the simulation results

for the progressive learning case (figures 4(e-f)). The mean genotype of learning popu-

lation reaches the genotype that corresponds to the gain function maximum (x = 0.14)

in generation 184 (Figure 4(e)). The maximum difference between learning and non-

learning population has been reached already 25 generations earlier (at generation 159,

cf. Figure 4(f)). However, during these 25 generations, the learning population has

largely maintained its distance to the non-learning population.

The gain function analysis only allows an approximate prediction of the population

dynamics over time. An exact prediction based on the gain function assumes that both

learning and non-learning population have the same distribution in genotype space.

However, during the early phase of evolution, the learning population moves quicker

toward higher genotype values, thus, the learning individuals populate a different region

in genotype space than the non-learning ones. Despite a positive gain function derivative

the selection pressure might be stronger in the region of the non-learning population than

in the region of the learning population.

Nevertheless, the evolutionary dynamics are quite well described by the gain function,

as the example has demonstrated. We conclude that the gain function approach can

approximately predict the evolutionary dynamics even in the case where acceleration is

followed by deceleration.
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3.4 Biological Data - An Inverse Gain Function Application

In the models that we have investigated so far, knowledge about the fitness landscape

and the learning algorithm was given and we used this knowledge in the gain function

framework to predict the evolutionary dynamics. However, the logical equivalence in

Equation 5 tells that a “inverse” approach is also possible. Given some evolutionary

data (in absence and presence of learning), we can deduce the sign of the gain function.

In other words, we learn something about the effect of learning on fitness.

In the following, we do this in a rather qualitative way with data from the first

biological experiment that demonstrated the Baldwin effect [24]. In this experiment

Mery and Kawecki studied the effect of learning on resource preference in fruit flies

(Drosophila melanogaster). For details of the experiment, we refer to [24]. Here we

only give a brief qualitative description: The flies had the choice between two substrates

(pineapple and orange) to lay their eggs on, but the experimenters took only the eggs

laid on pineapple to breed the next generation of flies which are (after grown up) given

the same choice for their eggs.

Measuring the proportion of eggs laid on pineapple, one could see that a stronger

preference for pineapple evolved, from 42 percent in the first generation to 48 percent

in generation 23. To test the Baldwin effect another experiment was done, where also

eggs laid on pineapple were selected to breed the next generation, but flies could previ-

ously learn that pineapple is the “good” substrate. To allow for learning, several hours

before the experimenter took away the eggs for breeding, the dis-favored orange was

supplemented with a bitter-tasting chemical for some time (and replaced with a “fresh”

orange after that). If flies learned to avoid orange, they would lay fewer eggs on it later,

i.e. show a preference for pineapple. After 23 generations of learning flies, the innate

preference (measured in absence of the bitter chemical) evolved to 55 percent, signifi-
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cantly more than the 48 percent that evolved in the absence of learning. Thus, in this

experiment learning accelerated evolution. According to Equation 5 the gain function

has a positive derivative.

Mery and Kawecki did the same experiment with orange as the favored substrate,

i.e. eggs for breeding were taken from orange, and pineapple was supplemented with

the bitter-tasting chemical in case of learning. In 23 generations the innate preference

for orange evolved from initially 58 percent to 66 percent in presence of learning but to

even more, 72 percent, in absence of learning. Thus, in this setting, learning decelerated

evolution. According to Equation 5 the gain function has a negative derivative. The

first row of Table 1 summarizes the experimental results. As in [24] we refer to the

cases when pineapple was the favored resource as Learning Pineapple in case of learning

and Innate Pineapple in absence of learning, and correspondingly Learning Orange and

Innate Orange when orange was the favored resource.

We want to shed some light on these - seemingly contradictory - results. If the

relationship between innate resource preference and success of the resource preference

learning is independent of what the high-quality resource currently is, the experimental

results can be interpreted as follows: When evolution starts from a relatively weak innate

preference for the favored fruit (42 percent as in the first experiment with pineapple

as the high-quality resource), this leads to learning induced acceleration. However,

if evolution starts from a relatively strong innate preference for the favored fruit (58

percent as in the second experiment with orange as the high-quality resource) this leads

to learning induced deceleration of evolution. Therefore, if evolution started further away

from the evolutionary goal, then learning accelerated evolution, implying an increasing

gain function, and if it started closer to the evolutionary goal, learning decelerated

evolution, implying a decreasing gain function. Thus, in principle we can expect a gain
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function that is increasing for a weak innate preference for the target fruit and decreasing

for a strong innate preference for the target fruit. This implies a maximum gain function

value at an intermediate innate preference for the target fruit and lower gain function

values for weak and strong innate preferences.

Recalling that the gain function g(x) = fl(x)/f(x) reflects the relative fitness gain

due to learning, we deduce that learning seems to be not very effective when the starting

point of learning is far away from or very close to the learning goal (low gain function

values), and is probably most effective for a starting point with an intermediate distance

to the learning goal.

Besides these conclusions from the experimental results, there are other arguments

for such a relationship:

For an individual that already shows strong innate preference for a high-quality

resource, its learning success might be low because perfection is usually difficult (and

requires large resources), or simply because the preference cannot be increased beyond

100 percent.

In contrast, there is scope for a large effect of learning in individuals that show a

weak preference for the high-quality resource, i.e. strong preference for the low-quality

resource. However, there are two reasons why such individuals with strong innate pref-

erence for the low-quality resource might be slow in changing their preference toward

the high-quality resource. Firstly, because of their strong initial preference for the one

resource, individuals will only rarely sample the other one, and thus rarely have a chance

to find that the other resource is in fact better. Secondly, even if they occasionally sam-

ple the other resource, their strong innate preference for the first one may be difficult

to overwrite. This argument is supported by experiments with (phytophagous) insects,

e.g. [32] and also with humans [27].
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To test our conclusions, we simulate the biological experiment using an artificial evo-

lutionary system of resource preference2. In the simulation model, the innate preference

for orange is genetically encoded as x ∈ [0; 1] and represents the probability to choose

orange in a Bernoulli trial. If the individual fails to choose the high-quality resource, it

does not produce offspring. However, if the high-quality resource is chosen, the ”digital

fly” receives a fitness score of 1, which results in a high probability to produce offspring

for the next generation (assuming a linear-proportional selection scheme).

Thus, if pineapple is the high-quality resource, the expected fitness in absence of

learning fP is given by fP (x) = 1 − x (innate pineapple). Since learning is on average

beneficial, the fitness in presence of learning fP
l (x) must be larger, i.e. fP

l (x) ≥ fP (x)

(learning pineapple). Correspondingly, if orange is the high-quality resource, we obtain

fO(x) = x (innate orange), and fO
l (x) (learning orange), where fO

l (x) ≥ fO(x).

In the model, populations are initialized with x ∈ [0.55; 0.61], and with an average

orange preference of x̄ = 0.58. This is the same mean preference as observed in the initial

generation of the biological experiment [24]. For the simulation, we choose a population

size of 150, which is similar to the biological experiment. Mutation is simulated by

adding a random number from a normal distribution with mean 0 and standard deviation

5 ·10−5, i.e., we assume a small effect of mutation on resource preference. What remains

to be defined is the expected fitness in case of learning, fP
l (x), fO

l (x). Recalling equation

4, fP
l (x), fO

l (x) can be derived, if we know the corresponding gain function g.

A gain function that is increasing for weak, maximal for intermediate, and decreasing

for strong innate preference for the high-quality resource is given by a linear transfor-

2The C++ source code for these experiments is available under

http://www.aifb.uni-karlsruhe.de/EffAlg/ipa/gainfunc digital fruitflies.zip
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mation of the Gaussian function φ(x, σ):

g(x, α, σ) = a1(α, σ) + a2(α, σ) φ(x, σ) , (14)

where a1(α, σ) = 1− αφ(0,σ)
φ(0.5,σ)−φ(0,σ) and a2(α, σ) = α

φ(0.5,σ) , such that g is 1 at the geno-

type boundaries and maximal in the center of the genotype space (x = 0.5). Parameter

a reflects the maximum relative fitness gain (at x = 0.5) that can be achieved through

learning. In the biological experiments of Mery and Kawecki [24], the fitness gain due to

learning was assessed by comparing the innate preference and the preference after learn-

ing (given by the proportion of eggs on the fruits) at generation 23. Depending on if and

what the ancestor populations have learned, and what the target resource in the assay

was, the fitness gain varied widely in the biological experiment. Among the different

settings the maximum fitness gain due to learning was an increase from 45 to 57 percent

of eggs laid on the high-quality resource, i.e. a fitness gain of (57 − 45)/45 = 0.27. For

the gain function of the simulation, equation 14, we choose a similar value α = 0.25.

The only remaining parameter σ was tuned to get a maximally steep gain function in

the preference region where evolution starts (satisfying that fl(x) is still monotonic)

resulting in σ = 0.075. Figure 5(a) shows how learning influences the fly’s probability

to choose orange and the resulting gain function. Figure 5(b) shows the evolution of the

mean innate preference for orange. The innate preference for orange evolves faster in the

absence of learning (Innate Orange) than with learning (Learning Orange). However,

the innate preference for pineapple evolves faster in case of learning (Learning Pineap-

ple) than in absence of learning (Innate Pineapple). The short errorbars (of the length

of two standard-errors) indicate the statistical significance of the difference in evolved

preferences. This qualitatively confirms the results of the biological experiment of [24].

In Table 1, the experimental results of the artificial evolution are directly compared to
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the results of the biological evolution. The numbers in brackets are normalized w.r.t. the

initial preference. First of all, we see that the effects of acceleration and deceleration are

qualitatively identical. In both cases, with and without learning, and for both, orange

and pineapple selection, evolution proceeds quicker in the natural evolution experiment.

However, with regard to the normalized values, the relative difference between evolution

with and without learning is very similar in the natural and artificial evolution.

The aim of this experiment was not to quantitatively replicate the results of the

biological experiment. Too many assumption need to be made in order to simulate

evolution of real fruitflies realistically. E.g., we simply chose a Gaussian function as

the gain function with a maximum at x = 0.5. The biological data suggested that

the maximum of the gain function lies between 0.42 and 0.58. We did not attempt

to tune the simulation model, but simply chose the middle, 0.5. If evolution starts

at x = 0.42 (selection for pineapple), this means that the genotype interval in which

evolution is accelerated is rather small. Certainly a larger optimal x-value allows to

produce stronger learning-induced acceleration. Furthermore the biological gain function

may not be symmetric. Thus acceleration (selection for pineapple) may have a different

magnitude than deceleration (selection for orange). We have no direct knowledge about

the mutation strength and the mutation symmetry in the biological experiment, but

assume the same strength of symmetric mutation over the entire genotype space in the

artificial evolution. This may not correspond to reality. For example in the absence of

learning in the biological experiment, selection for orange produced a shift from 0.58

preference to 0.72 while selection for pineapple produced a shift from 0.42 to only 0.48

(in 23 generations).

Despite this, the gain function argument may not be the only explanation. Mery

and Kawecki [24] discuss several other reasons in detail.
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We see that the gain function approach can be applied “inversely” in order to get a

better understanding of the effects of learning on fitness. Of particular interest might

be the insect learning pattern that produced a gain function of the type shown in Fig-

ure 5(a), which might also apply to many artificial learning system.

4 Discussion

In the literature evidence for both learning induced acceleration and deceleration of

evolution can be found. In this paper, we have presented a general framework – the

gain function – to explain and predict under which conditions learning accelerates or

decelerates evolutionary change. The gain function is formulated in terms of the effect

of learning on the mapping from genotype space to fitness space. Learning is predicted

to accelerate evolution if the proportional gain of fitness due to learning is greater for

genotypes that would already be fitter without learning. In contrast, if the genetically

less fit individuals gain proportionally more from learning, the relative differences in

fitness between genotypes become reduced and selection becomes less effective. Figure

6 illustrates this principle.

This general and quite intuitive result can be used to make predictions for specific

models. Since we are not constrained by a particular type of learning these predictions

cannot only be made for artificial but also for biological systems, as we have shown in

Section 3.4. It can even be applied if the specific learning algorithm is not known, as

can be the case in complex artificial systems, and obviously in natural systems. All that

is needed is an estimation of the gain function.

From the examples that we analyzed, we observed that learning is likely to accel-

erate evolution in extreme fitness landscapes (as in Section 3.1), and decelerate it if
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individuals with weak genetic predisposition learn very effectively (as in Section 3.2).

The gain function predicts the evolutionary dynamics accurately, even if it is not mono-

tonic (Section 3.3). If learning causes a phenotypic change of the same magnitude for all

individuals (constant learning), it depends on the second derivative of the logarithm of

the fitness function whether evolution is accelerated or decelerated. However, if learning

is progressive (genetically fit individuals benefit more) then acceleration is more likely,

as Section 3.3 has shown.

The analysis of the gain function model presented in this paper is more appropriate

for computational evolutionary models than the continuous one outlined in [29]. It is –

in contrast to [29] – based on a population of discrete entities, and no assumption on

the population distribution is required. This allows to directly investigate simulation

models. In principle computational simulation models can also be investigated with the

biological gain function framework [29] if a learning parameter is available. However,

we can expect that the necessary assumptions are violated in most simulation models

(e.g. the symmetrically distributed populations). The analysis to what extent this would

cause erroneous predictions or in more general terms under which circumstances discrete

models are more powerful than continuous models (or vice versa) is beyond the scope of

this paper3. The analysis presented in this paper complements our earlier approach.

In biology, the gain function only applies to directional selection, i.e., selection that

moves the population toward higher fitness (as opposed to disruptive or stabilizing se-

lection). The gain function analysis is expectation-based and does not account for the

variance of the population movement. Thus, the gain function does not allow to make

3The interesting relation between continuous and particulate models is not restricted to theoretical

biology and computational biology but can also be found in other disciplines like physics where the

Navier-Stokes equation is a continuous model of flow interactions and where it has been shown that for

complex systems particle based models can be more appropriate [21].

23



exact predictions on the influence of learning on the time needed to cross a fitness valley

toward a region with higher fitness. Such a prediction cannot be made expectation-based

since fitness valley crossing requires an “unlikely” event. A stochastic analysis is more

appropriate to predict the time needed to cross a fitness valley. A first approach to such

an analysis can be found in [5], which has, however, some drawbacks. Firstly, in [5] the

population movement is modelled by a one-dimensional non-symmetric random walk

(cf. Section 1). Secondly, the derived “drawdown” as an indicator for the time needed

to reach the fitness maximum, does not account for directional selection. In ALife an

experimental study for a particular fitness landscape (a bi-modal version of Hinton and

Nowlan’s fitness landscape [14]) has been published in [25].

In a multi-modal fitness landscape, an alternative interpretation of the gain function

is the following: If the gain function is decreasing toward a local optimum, learning

reduces selection pressure toward this local optimum. Hence, a population movement

away from the optimum (possibly toward the global optimum) becomes more likely.

Furthermore, the gain function analysis may provide a valuable interpretation if

there are monotonic global trends with only low local optima, which can be interpreted

as noise.

We have shown that the gain function makes exact short term predictions of the mean

genotype movement. If a population that initially populates a fitness landscape region

with positive gain function derivative and then moves on to a region with negative gain

function derivative (at some point, the gain function is not monotonic within the range of

the population), the gain function framework does not allow exact predictions. It does,

however, allow approximate long-term predictions of the mean genotype movement, as

we have seen in Section 3.3.

Despite a long history of the concept, the interaction between learning and evolution
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remains to be only partially understood. The analysis outlined in this paper offers a

general framework to study the effects of learning on evolution, and an explanation of

the results of previously published models. It also provides a theoretical underpinning

of biological data.
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A Inductive Proof for the Gain Function Approach

In this appendix we prove that Equation 5 is true, provided that there is genetic variation

(variation in x) in the population, f ′(z) > 0, and the learning function l(x) is such that

the sign of g′(x) is constant within the range of variation [xmin ≤ x ≤ xmax] present

in the population. For convenience, we substitute fl(x) for f(l(x)). In the following,

we outline the proof for the first case of Equation 5 (g′(x) > 0) and omit the other

cases because the respective proofs are analogous and the transfer from the first case is

straightforward. Recalling Equation 1, we define Statement S(n) as

S(n) :=

Pn

i=1 xifl(xi)
Pn

i=1 fl(xi)
−

Pn

i=1 xif(xi)
Pn

i=1 f(xi)
= x̄

∗

l − x̄
∗

> 0 . (15)

Recalling gain function definition g(x) = f(l(x))/f(x), we obtain

∀x, xi, xj ∈ [xmin; xmax] , xi < xj : g
′(x) > 0 ⇔

fl(xi)

f(xi)
<

fl(xj)

f(xj)
. (16)

Without loss of generality we further assume the xi to be arranged in ascending order,

i.e.,

∀(i, j) : i < j ⇒ xi ≤ xj , . (17)

Initialization: For n = 2, S(n) can be written and reformulated

S(2) ⇔
x1fl(x1) + x2fl(x2)

fl(x1) + fl(x2)
>

x1f(x1) + x2f(x2)

f(x1) + f(x2)

⇔
x1(fl(x1) + fl(x2)) + (x2 − x1)fl(x2)

fl(x1) + fl(x2)
>

x1(f(x1) + f(x2)) + (x2 − x1)f(x2)

f(x1) + f(x2)

⇔ x1 +
(x2 − x1)fl(x2)

fl(x1) + fl(x2)
> x1 +

(x2 − x1)f(x2)

f(x1) + f(x2)
⇔

fl(x2)

fl(x1) + fl(x2)
>

f(x2)

f(x1) + f(x2)

⇔
fl(x1)

fl(x2)
+ 1 <

f(x1)

f(x2)
+ 1 ⇔

fl(x1)

f(x1)
<

fl(x2)

f(x2)
⇔ g(x1) < g(x2) ,

(18)

which is true according to Equation 16.
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Inductive step: Assuming S(n) is true, we show that S(n + 1) is true:

S(n + 1) ⇔

Pn+1
i=1 xifl(xi)
Pn+1

i=1 fl(xi)
−

Pn+1
i=1 xif(xi)
Pn+1

i=1 f(xi)
> 0

⇔

 

n+1
X

i=1

xifl(xi)

!  

n+1
X

i=1

f(xi)

!

>

 

n+1
X

i=1

xif(xi)

!  

n+1
X

i=1

fl(xi)

!

⇔ L1 + L2 + L3 + L4 > R1 + R2 + R3 + R4

(19)

where

L1 =
Pn

i=1 xifl(xi)
Pn

i=1 f(xi) , R1 =
Pn

i=1 xif(xi)
Pn

i=1 fl(xi) ,

L2 = f(xn+1)
Pn

i=1 fl(xi)xi , R2 = fl(xn+1)
Pn

i=1 f(xi)xi ,

L3 = xn+1fl(xn+1)
Pn

i=1 f(xi) , R3 = xn+1f(xn+1)
Pn

i=1 fl(xi) ,

L4 = xn+1fl(xn+1)f(xn+1) , R4 = xn+1fl(xn+1)f(xn+1) .

With L1 > R1 (according to inductive assumption S(n)) and L4 = R4, we can obtain

S(n) ∧ ( L2 + L3 ≥ R2 + R3 ) ⇒ S(n + 1) . (20)

Thus, it is sufficient to show:

L2 + L3 ≥ R2 + R3 ⇔ f(xn+1)
n
X

i=1

fl(xi)xi + xn+1fl(xn+1)
n
X

i=1

f(xi)

≥ fl(xn+1)

n
X

i=1

f(xi)xi + xn+1f(xn+1)

n
X

i=1

fl(xi)

⇔ fl(xn+1)

 

n
X

i=1

xn+1f(xi) −

n
X

i=1

xif(xi)

!

≥ f(xn+1)

 

n
X

i=1

xn+1fl(xi) −

n
X

i=1

xifl(xi)

!

⇔ fl(xn+1)

n
X

i=1

(xn+1 − xi)f(xi) − f(xn+1)

n
X

i=1

(xn+1 − xi)fl(xi) ≥ 0

⇔

n
X

i=1

(xn+1 − xi)
f(xi)

f(xn+1)
−

n
X

i=1

(xn+1 − xi)
fl(xi)

fl(xn+1)
≥ 0

⇔

n
X

i=1

(xn+1 − xi)

„

f(xi)

f(xn+1)
−

fl(xi)

fl(xn+1)

«

≥ 0 ⇔

n
X

i=1

AiBi ≥ 0 ,

(21)

with

Ai = xn+1 − xi , Bi = f(xi)
f(xn+1)

−
fl(xi)

fl(xn+1)
.
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According to Equation 17,

∀i , Ai ≥ 0 . (22)

We reformulate

Bi ≥ 0 ⇔
f(xi)

f(xn+1)
≥

fl(xi)

fl(xn+1)
⇔

fl(xn+1)

f(xn+1)
≥

fl(xi)

f(xi)
⇔ g(xn+1) ≥ g(xi) , (23)

which is true for all i according to equations 16 and 17. Thus, with equations 22 and 23,

Equation 21 is also true, which in turn proves the first case of Equation 5.
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Table 1: Experimental results for the natural evolution [24] and the artificial evolution.

For both cases the average innate preference for orange after 23 generations is shown.

Selection for Orange

orange preference initial evolved w/o learning with learning

natural evolution .58 (100%) .72 (124%) > .66 (114%)

artificial evolution .58 (100%) .61 (105%) > .59 (102%)

Selection for Pineapple

pineapple preference initial evolved w/o learning with learning

natural evolution .42 (100%) .48 (114%) < .55 (130%)

artificial evolution .42 (100%) .46 (109%) < .48 (114%)
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Figure 1: The basic model to analyze the influence of learning on evolution. By changing

the phenotype (left), learning also changes the mapping from genotype to fitness (right).
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Figure 2: Hinton and Nowlan’s model [14]. Fitness gain achieved through learning in the

scenario where the genotype is composed of 1’s, ?1’s and at least one ?0. The x-axis is

in reverse order to illustrate the direction of evolution. (a) gain function, (b) differential

f(l(q − 1)) − f(l(q)) as an estimation of the gain derivative. The reader is also referred

to [4] who take a similar approach.
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Figure 3: Papaj’s model of evolution and learning in insects [31]. (a) shows learning

curves for a learning parameter L = 0.06 and different genotype values (equals innate

phenotype) x ∈ {0.0; 0.25; 0.5; 0.75; 1.0}, cf. Equation 7. With all genetic predispositions

(different x values) individuals have a strong progress in learning, however, those with

higher genotypic values approach the learning target z = 1 quicker, but the “genetically

weak” ones seem to catch up during learning. In (b), the average phenotype over T = 100

learning trials with learning parameter L = 0.06 is shown, as calculated using Equation 8.

(c) shows the gain function g(x) plotted against genotypic value x and the product of

lifetime and learning parameter LT (logarithmic scale), and (d) shows its derivative

with respect to x. For all possible parameter combinations LT , the gain function is

negatively sloped toward the optimum at x = 1, which corresponds to a negative gain

function derivative as proven in Equation 11. Parameter combinations for very small

values of LT and x are omitted to avoid numerical difficulties since the gain function is

not defined for x = 0 and LT = 0.
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Figure 4: Evolution and learning on the sigmoid fitness function. (a): The sigmoid

fitness function, (b): gain functions for constant learning and progressive learning, (c-f):

averaged results of 1000 independent simulation runs with the sigmoid fitness function,

in particular (c): mean genotype evolution with constant learning and no learning, (d):

absolute difference of the curves in (c), i.e. mean genotype in case of learning and in

the absence of learning, x̄l − x̄, we name this “learning lead”, (e): same as (c) but with

progressive learning, (f): same as (d) but with progressive learning.
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Figure 5: Simulation of the fruit fly experiment. Figure (a) shows how learning influences

the fly’s probability to choose orange for different values of the innate preference for

orange x (the probability to choose pineapple is 1 − porange) The nested figure of (a)

shows the gain function, which is identical for learning orange and learning pineapple.

The horizontal axis shows the genetic predisposition of the target fruit. Figure (b)

shows the evolution of mean innate preference for orange (averaged over all individuals

and 50 independent evolutionary runs, with +/- one standard error). The numbers

in brackets are normalized w.r.t. the initial preference. Note, that the preference for

pineapple is one minus the preference for orange. If orange is the high quality resource,

learning decelerates evolution, however, if pineapple is the high quality resource, learning

accelerates evolution. As in the biological experiment, a set of control runs have been

carried out in which the high-quality food changes every generation between orange and

pineapple.
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Figure 6: The prinicple of the gain function. (a) An increasing gain function indi-

cates that relative fitness differences between genetically weak and strong individuals

are enlarged through learning. (b) A decreasing gain function indicates that relative

fitness differences between genetically weak and strong individuals are reduced through

learning.
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