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Abstract

Background: Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and
the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are
‘resistant’ to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary
between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may
vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect
the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC
genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens.

Methodology/Findings: We assessed the frequencies and magnitudes of antibody responses against P. vivax and P.
falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and
level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and
Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and
FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/
FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased
responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected
with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion.

Conclusion/Significance: Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax
infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate
that one of the primary mechanisms by which P. vivax evades host immunity is through DARC indirectly down-regulating
humoral responses against erythrocytic invasion and development.
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Introduction

Malaria remains the most important parasitic infection in the

world with almost half a billion clinical cases every year [1]. It is

caused by infection with one or more of five species of Plasmodium

parasites. However, two species, P. falciparum and P. vivax, are

responsible for most of the morbidity and mortality due to malaria

[2,3,4,5,6]. P. vivax malaria does not attract as much attention

from the scientific community, government entities or funding

agencies as does the more deadly P. falciparum malaria. This is

partly because P. vivax malaria was in the past erroneously referred

to as ‘benign’ tertian malaria. But recent studies have revealed that

vivax malaria can potentially lead to severe debilitating compli-

cations and about 2 billion people spread across 3 continents are

continuously at risk of the infection [3,4,5,6,7,8]. The discovery

and development of novel interventions, most especially vaccines,

will depend upon a better understanding of parasite biology and

the naturally induced immune response in humans [9,10,11,12].

An important biological difference between P. vivax and P.

falciparum is that only P. vivax merozoites use the Duffy (Fy)

antigen/receptor for chemokines (DARC) to invade erythrocytes

[13,14]. DARC is a glycosylated membrane protein that is
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encoded by a gene located on the long arm of chromosome 1

[15,16,17,18,19]. DARC is more abundant on the surface of

reticulocytes than on mature erythrocytes and is also expressed on

the endothelial surfaces of some organs [17,18]. DARC binds to

most inflammatory chemokines and its roles in the immune system

include leukocyte activation and recruitment [20,21]. In addition,

DARC is associated with protection and susceptibility to a number

of other infectious and non-infectious diseases [22,23,24,25],

potentially via its elimination of excess toxic chemokines produced

during infectious processes and its regulation of leukocyte

trafficking [26,27]. Finally, DARC is the essential receptor

required for the entry of P. vivax into erythrocytes [13].

Genetic polymophisms have been identified in humans that

affect the expression of the Duffy antigen and the susceptibility to

blood stage infection by P. vivax. Fy+ individuals have 5 common

genotypes (FY*A/FY*A, FY*A/FY*B, FY*A/FY*Bnull, FY*B/

FY*B and FY*B/FY*Bnull) that produce 3 major phenotypes (Fy

a+/b+, Fy a+/b2, Fy a2/b+). Red cells from all Fy+ individuals are

susceptible to P. vivax infection. People with mutations in the

DARC promoter region that abolish DARC expression (FY*B-

null/FY*Bnull or FY*O) exhibit a Duffy-negative phenotype

(Fy2) [28,29,30]. Erythrocytes of Fy2 individuals cannot be

invaded by P. vivax merozoites such that Fy2 individuals are

refractory to P. vivax blood stage infection. However, since

sporozoite invasion of hepatocytes does not involve DARC, both

Fy+ and Fy2 individuals are susceptible to infection by

sporozoites and develop liver stage parasites. But upon release of

liver merozoites into the circulation, only Fy+ individuals develop

blood stage infections because the erythrocytes of Fy(2) individ-

uals do not express DARC required for erythrocyte invasion by

merozoites.

The requirement for DARC in erythrocytic vivax infection

limits the infection to the liver stage in Fy2 individuals. However,

both humoral and cellular immune responses against P. vivax pre-

erythrocytic parasites have been reported in Fy2 humans [31].

The frequencies of antibody responses to the P. vivax circumspor-

ozoite protein have in fact been found to be similar between Fy2

and Fy+ groups. Nevetheless, responses against erythrocytic

antigens were significantly less frequent among Fy2 individuals

than in Fy+ individuals since Fy2 individuals do not develop

erythrocytic infections [31,32].

Naturally acquired antibody and T cell responses play a major

role in reducing the risk of infection and in clinical protection

against malaria infection [33,34,35]. Blood stage infections in

rodent malaria and in human P. falciparum infections have been

reported to suppress T cell responses against liver stage antigens

[36,37,38,39]. However, suppression of blood stage infections can

permit development of immune responses against liver stage

parasites, as shown by the discovery of two promising P. falciparum

liver stage antigens using sera from people exposed to P. falciparum

malaria while under chloroquine prophylaxis that eliminated

blood stage parasites [15,40,41]. All these data support the notion

that a lower parasite load in the blood may be associated with

increased acquired immunity against reinfection and clinical

protection.

The development of vaccine(s) and other novel interventions

targeted at the control of parasites, especially in this case P. vivax,

requires a better understanding of naturally-acquired immune

response. In previous studies, the cellular and humoral immune

responses against vivax antigens among Fy+ donors had been

compared to those of Fy2 donors [31,32]. However, the Fy+
phenotype is conferred by 5 different genotypes, and the diversity

of immune responses to P. vivax exposure in humans with different

genotypes has not yet been assessed. Since the degree of DARC

expression varies remarkably across different FY genotypes [17],

we hypothesized that the acquisition of humoral immunity against

the blood stage parasites will also vary with the level of DARC

expression. This would be in concurrence with the observation

that susceptibility and resistance to the infection varies between

specific genotypes [42,43]. Furthermore, functional interaction of

the different alleles of DARC with DBP for erythrocytic invasion,

and the different signaling characteristics of the different DARC

alleles after they have bound the DBP, may also be associated with

the load of P. vivax parasites in the blood. Finally, as a chemokine

receptor, DARC may also be involved in the immumodulation of

innate and acquired immune responses against vivax infection. We

therefore embarked on the evaluation of the antibody responses

associated with different DARC genotypes.

Results

DARC is required for the blood stage infection of vivax malaria

and its level of expression varies with specific genotypes associated

with susceptibility and resistance to P. vivax erythrocyte infection

[42,44,45]. This led us to hypothesize that the acquired antibody

responses may also vary with the level of DARC expression. This

project is an attempt to increase our knowledge of natural

acquired immunity against erythrocytic parasites associated with

differential DARC gene expression.

First, we demonstrated differences in the antibody responses to

erythroctyic antigens between the Fy+ and Fy2 groups. We then

demonstrated the potential association of antibody resposnes with

different levels of DARC expression [(A/A or A/B).(A/Bnull or

B/B or B/Bnull)] among Fy+ groups. Finally, we wanted to know

if the differential antibody responses were associated with not only

stratified DARC expression but also with specific DARC

genotypes, since it has been reported that susceptibility to

erythrocytic vivax infection was different between FY*A and

FY*B genotypes [44]. Therefore, we compared the antibody

responses between homozygous and heterozygous FYA or FYB

genotypes. As controls, we carried out similar evaluations with P.

falciparum sporozoite and blood stage antigens, which do not

require interaction with DARC. The circumsporozoite protein

(CSP) was selected as the representative antigen for the pre-

erythrocytic stage as it is the immunodominant surface antigen on

the sporozoite [46] and also the most advanced vaccine candidates

for both vivax and falciparum malaria [47,48]. Merozoite surface

protein 1 (MSP1) was also selected as the representative antigen

for the erythrocytic stage because of the its expression on the

surface of merozoites that invade new red blood cells [49] and its

prominence in both vivax and falciparum vaccine development

[50,51]. The P. vivax Duffy Binding Protein (PvDBP) was identified

as the parasite protein that engages DARC present on the surface

of red blood cells [52,53] and is also being developed as a vaccine

candidate [12].

Distribution of Duffy genotypes
In Colombia and throughout the South American continent,

the majority of the clinical cases of malaria are caused by P. vivax

(,70%), while P. falciparum is responsible for the remaining ,30%

[54,55]. We recruited 233 donors from the malaria-endemic

regions of Apartardo and Turbo along the Caribbean coast of

Colombia (Table 1). All donors who participated in this study had

been living in the endemic areas for at least 5 years and had not

experienced symptomatic malaria in the previous 12 months.

About a quarter of the subjects (26%, n = 60) were Duffy negative

(FY*Bnull/FY*Bnull). Among the Duffy positive individuals, the

heterozygous FY*A/FY*B genotype was the most common

Acquired Antibodies to Vivax
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genotype in these regions (22%, n = 52). The frequencies of the

other genotypes in the study population (FY*A/FY*A, FY*A/

FY*Bnull, FY*B/FY*B and FY*B/FY*Bnull) were 9, 13, 15, and

15%, respectively (Table 1). The overall prevalence of FY*A and

FY*B alleles expressed as homozygous or heterozygous among the

entire study population was 44% and 65% respectively. We also

recruited 30 donors from Medellin, a non-malaria endemic city in

Colombia. These included 5 Fy2 (17%) and 25 Fy+ (83%)

individuals. Their blood samples were used to standardize the

assay protocols and as unexposed controls.

Broad antibody responses against P. vivax and
P. falciparum malaria were induced by natural exposure

We assessed antigen-specific antibody responses by ELISA to

each of 3 P. vivax and 2 P. falciparum antigens in sera from each of

the individual donors among different DARC genotypes. There

were no detectible anti-malaria antibodies in any of the 30 non-

exposed control donors living in the non-endemic area (data not

shown). The frequency of antibody responses to parasite antigens

among donors living in the malaria endemic areas of Apartado

and Turbo is presented in Figure 1. One hundred thirty-nine

donors (60%) had antibodies against at least one of the five P. vivax

or P. falciparum antigens that were tested. Thirty-seven donors

(16%) had antibodies against at least one P. vivax and one P.

falciparum antigen (Figure 1A). The majority of these (84%,

n = 31) were Duffy positive (Fy+) individuals.

A total of 114 donors (49%) had antibodies against at least one

of the P. vivax antigens assessed (Figure 1B). Among these, 28

donors (12%) had antibodies against both P. vivax sporozoite

[circumsporozoite protein (PvCSP)] and erythrocytic antigens

[merozoite surface protein 1 (PvMSP1) or Duffy binding protein

(PvDBP)]. Fifty-six donors had antibody against PvCSP. However,

only 4 Individuals had antibodies against all 3 P. vivax antigens

tested (PvCSP, PvMSP1 and PvDBP), while 4 had antibodies

against two erythrocytic antigens (PvMSP1 and PvDBP) but not to

the sporozoite antigen PvCSP (Figure 1B).

Antibody responses to P. falciparum antigens are presented in

Figure 1C. Sixty-four (64) donors (27%) had antibodies against at

least one of the two P. falciparum antigens tested and 5 donors (2%)

had antibodies against both PfCSP and PfMSP1.

Table 1. Frequencies of genotypes for Duffy antigen receptor for chemokines (DARC) under the study.

Endemic areas,
Colombia Genotype frequencies of Duffy positive FY+ Total FY+ Total FY2

FY*A/*A FY*A/*B FY*A/*Bnull FY*B/*B FY*B/*Bnull FY*Bnull/*Bnull

Turbo (N = 155) 13 (8.4)a 26 (16.8) 23 (14.8) 17 (11.0) 24 (15.5) 103 (66.5) 52 (33.5)

Apartado (N = 78) 8 (10.3) 26 (33.3) 7 (9.0) 17 (21.8) 12 (15.4) 70 (89.7) 8 (10.3)

Total (N = 233) 21 (9.0) 52 (22.3) 30 (12.9) 34 (14.6) 36 (15.5) 173 (74.2) 60 (25.8)

aNumber (%) of individuals expressing the genotype(s).
doi:10.1371/journal.pone.0011437.t001

Figure 1. Broad antibody responses against malaria were induced by natural exposures in Colombia. We assessed malaria antigen-
specific antibody responses in 233 donors living in Caribbean coast town (Apartado and Turbo) of Colombia. One hundred thirty nine (60%) donors
had antibodies against at least one of five malaria antigens examined. Numbers represent the responders who had antibodies against both P. vivax
and/or P. falciparum antigens (A), different P. vivax antigens, PvCSP, PvMSP1, PvDBP (B), or different P. falciparum antigens PfCSP and PfMSP1 (C).
doi:10.1371/journal.pone.0011437.g001
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The magnitudes of the antibody responses against each antigen

are presented as the average Index of Reactivity (IR). The IR is

calculated as the average OD value of each sample at 450 nm

divided by the sum of average OD values of negative controls (US

donors) and 3 standard deviations. Using this standardized IR

calculation, none of the 30 donors from the non-malaria endemic

area had detectable antibodies to any of the 5 malaria antigens

(data not shown). Among the responders from the malaria

endemic responders, the average IR for PvCSP, PvMSP1 and

PvDBP were 0.83, 0.82, and 0.64, respectively. Those for PfCSP

and PfMSP1 were 0.62 and 0.93, respectively (Table 2).

Antibodies against P. vivax pre-erythrocytic antigen are
comparable among Fy2 and Fy+ donors

About a third of the donors living in malaria-endemic regions of

Apartado and Turbo had significant antibodies against PvCSP

(n = 80, 34%). The majority of those that had PvCSP antibodies

were Fy+ (n = 60, 75%) and the remaining were Fy2 (n = 20,

25%). The frequency of responses was however comparable

between Fy+ and Fy2 (35% and 33%, p = 0.85) (Table 2). The

magnitude of responses measured by IR was also similar between

Fy+ and Fy2 populations (0.88 and 0.79 respectively, p = 0.2996)

(Figure 2A).

Antibodies against P. vivax erythrocytic antigens differ
between Duffy positive and Duffy negative donors

A total of 49 donors (25%) living in the malaria-endemic areas

had significant antibodies against PvMSP1. The majority of those

with PvMSP1 antibodies (90%) were Fy+ (n = 44). The frequency

of the responses was significantly higher in Fy+ (16%) than in Fy2

(8%) donors (p = 0.005) (Table 2). The magnitude of the responses

(IR distribution) was also significantly different between Fy+ and

Fy2 donors (p = 0.014) (Figure 2B). Furthermore, of the 185

samples from malaria-endemic regions assessed, only 17 (9%) had

antibodies against PvDBP and all were Fy+ donors (17 out of 147

tested, 12%). No Fy2 donor from malaria-endemic regions had

antibodies against PvDBP. Therefore, both the frequency and

magnitude of the responses against PvDBP were significantly

different between Fy+ and Fy2 donors (p = 0.001 for frequency

and p = 0.0396 for IR, respectively) (Table 2 and Figure 2C).

In contrast, the frequencies and magnitudes of antibodies

against both P. falciparum sporozoite antigen (PfCSP) and

erythrocytic antigens (PfMSP1) were comparable among Fy+
and Fy2 donors. Only 14% (n = 33) of donors living in malaria-

endemic areas had antibodies against PfCSP. There were no

significant differences in terms of the frequencies (p = 0.308) and

magnitude (p = 0.1694) of the responses between Fy+ and Fy2

donors (Table 2 and Figure 2D). Among 36 donors (15%) who

had antibodies against PfMSP1, there was also no difference in the

frequencies (p = 0.175) and magnitude (p = 0.5265) of the responses

(Table 2 and Figure 2E).

Frequency and magnitude of antibodies against P. vivax
erythrocytic antigens in Duffy positive donors varies with
FY genotypes

Among the specific Fy+ genotypes, the frequencies of responses

against PvCSP among those with double positive alleles (FY*A/

FY*B and FY*B/FY*B) were low compared to their correspond-

ing single negative allele genotypes (FY*A/FY*Bnull, FY*B/

FY*Bnull). 37% and 26% compared to 43% and 42%, respectively

(Table 2). However, the differences were not statistically

significant (Table 2, Figure 3A).
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Unlike PvCSP, DARC is required for erythroctic vivax

invasion. We compared the antibodies to blood stage antigens

with the stratified DARC expression based on (FY*A/FY*A or

FY*A/FY*B).(FY*A/FY*Bnull, FY*B/FY*Bnull, or FY*B/

FY*B) [29]. The antibody responses to PvMSP1 were detected

in sera from 16 out of 73 in the high DARC expression group

(FY*A/FY*A and FY*A/FY*B) compared to 28 out of 100 in the

low DARC expression group (FY*A/FY*Bnull, FY*B/FY*Bnull,

or FY*B/FY*B). The difference was not significant between the

two groups (p = 0.364). However, there were significant differences

in the prevalence of antibodies to PvDBP between the high and

the low DARC expression groups (3/73 vs. 14/100, respectively)

(p = 0.031). This may be the first hint that high DARC expression

may be associated with low antibody responses to vivax blood

stage antigens.

We next wanted to determine which specific genotypes of

DARC may be responsible for antibody responses. For PvMSP1,

the frequency of the responses was much higher in FY*B/

FY*Bnull (12/36, 33%) than in FY*B/FY*B (3/34, 9%)

(p = 0.012) individuals (Table 2). In addition, the magnitude of

the responses was also significantly greater in FY*B/FY*Bnull

(IR = 1.0860.58) than in FY*B/FY*B (IR = 0.5760.43)

(p = 0.0447) (Table 2 and Figure 3B). A similar low trend in

the responses to PvMSP1 was also observed in FY*A/FY*B

compared to that in FY*A/FY*Bnull (25% and 43%, respectively).

However, the differences in terms of frequency (p = 0.086) and

magnitude (p = 0.3664) of the responses in this paired group were

not significant (Table 2 and Figure 3B).

For PvDBP, the frequencies of the responses were found

obviously higher among those with a single negative FY allele

(22% for FY*A/FY*Bnull and 27% for FY*B/FY*Bnull) than in

those with corresponding double positive FY alleles (4% for

FY*A/FY*B and 6% for FY*B/FY*B) with p = 0.025 and 0.022,

respectively (Table 2). However, the magnitudes of the responses

are different only between FY*B/FY*B (IR = 0.5560.21) and

FY*B/FY*Bnull (IR = 1.0460.84) (p = 0.0047) (Table 2), but not

between FY*A/FY*B and FY*A/FY*Bnull (p = 0.098)

(Figure 3C).

However, with P. falciparum sporozoite (PfCSP) and erythrocytic

antigens (PfMSP1), no such trend was observed among the specific

Fy+ genotypes (Table 2). The frequencies of the responses against

PfCSP in FY*A/FY*B and FY*A/FY*Bnull donors were 21% and

14%, respectively, while those in FY*B/FY*B and FY*B/

FY*Bnull were 12% and 11%, respectively (Table 2). There

were also no significant differences in the magnitudes of the

responses in these paired groups measured by IR distribution

(p = 0.8446 and 0.4961, respectively) (Figure 3D). For PfMSP1,

the frequencies of recognition by FY*A/FY*B and FY*A/

FY*Bnull were 19% and 23% respectively, while those for

FY*B/FY*B and FY*B/FY*Bnull were 15% and 11%, respec-

tively (Table 2). The IR distribution was also similar between

both groups (p = 0.5335 and 0.3092, respectively) (Figure 3E).

Figure 2. Antibody responses against P. vivax erythrocytic antigens are significantly greater in Fy+ than in Fy2 individuals. Immune
recognition of P. vivax sporozoite antigen (A: PvCSP) and blood stage antigens (B: PvMSP1, C: PvDBP), or P. falciparum sporozoite antigen (D: PfCSP)
and blood stage antigen (E: PfMSP1) by sera of Fy+) and Fy2 donors were assessed by ELISA. Values are expressed as Index of Reactivity (IR) that is
calculated as test OD divided by cut-off OD. The cut-off OD is the average OD value of US donors (with no prior exposure to malaria)+3 SD.
doi:10.1371/journal.pone.0011437.g002
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IgM and IgG subclass profiles in reactivity to P. vivax
erythrocytic antigens

To search for which subtype(s) of immunoglobulin (Ig) may be

responsible for the antibody responses to erythrocytic antigens, we

analyzed the IgM and IgG subclasses within 29 Fy+ donors who

had high magnitudes of total IgG antibodies against PvMSP1 (17

donors) and/or PvDBP (12 donors) (Figure 4). One hundred

percent of donors tested had IgM to PvMSP1, whereas, only 23%

of the donors who had IgG to PvDBP had detectable IgM to

PvDBP. The difference in frequencies of IgM responses to

PvMSP1 versus PvDBP is significant (p,0.0004) (Figure 4A).

The majority of Fy+ donors that responded to PvMSP1 had IgG1

(95%). The frequencies of other IgG subclasses to PvMSP1 were at

similar levels (IgG2 at 68%, IgG3 at 53%, and IgG4 at 63%,

respectively). The dominant subclass IgG to PvDBP was IgG1

(92%), then IgG3 (85%), IgG2 (77%), and IgG4 (46%),

respectively (Figure 4A). The magnitude of IgG1

(IR = 11.963.37) was also dominating the responses to PvMSP1,

and then IgG3 (IR = 2.9661.07), IgG2 (IR = 1.4760.15), and

IgG4 (IR = 1.4560.27), respectively (Figure 4B). The magnitude

of IgG1 to PvDBP was significantly lower than that to PvMSP1

(IR at 4.3 versus 11.9, p,0.0011). However, there were no

statistically significant differences in terms of the magnitudes of

other IgG subclasses between PvDBP and PvMSP1 (Figure 4B).

We further compared the frequencies of the IgG subclasses to

PvMSP1 and PvDBP among the different FY genotypes.

Significant differences were detected in the frequencies of IgG3

responses to PvMSP1 between FY*A/FY*B and FY*A/FY*Bnull

(p = 0.015), and of IgG1 to PvDBP between FY*B/FY*B and

FY*B/FY*Bnull (p = 0.035). There was no additional pattern

observed for other IgG subclasses to PvMSP1 and PvDBP

(Figure 4C).

Discussion

The lack of DARC among almost all individuals of West

African origin has been suggested to be due to natural selection

induced by P. vivax [56,57]. This idea, however, is controversial

and P. vivax has been observed in some populations lacking

DARC, indicating that the parasite may be able to use other host

cell receptors for invasion if DARC is not present [28,58,59].

The presence or absence of DARC has been associated with

resistance and susceptibility to a range of infectious and non-

infectious diseases [13,14,22,23,24,25]. Individuals that lack

DARC (Duffy negative, Fy2) are known to be ‘resistant’ to P.

Figure 3. The levels of antibody responses against P. vivax erythrocytic antigens differ among different Duffy genotypes. Immune
recognition of P. vivax sporozoite antigen (A: PvCSP) and blood stage antigens (B: PvMSP1, C: PvDBP), or P. falciparum sporozoite antigen (D: PfCSP)
and blood stage antigen (E: PfMSP1) by sera of donors with different Duffy genotypes FY*A/FY*B (A/B), FY*A/FY*Bnull (A/Bnull), FY*B/FY*B (B/B) and
FY*B/FY*Bnull (B/Bnull). Values are expressed as Index of Reactivity (IR) that is calculated as test OD divided by cut-off OD. The cut-off OD is the
average OD value of US donors (with no prior exposure to malaria)+3 SD. The IR of donors with FY*A/FY*B genotype is compared with those of FY*A/
FY*Bnull, and FY*B/FY*B with FY*B/FY*Bnull using Student’s t-test and p values,0.05 were considered significant.
doi:10.1371/journal.pone.0011437.g003

Acquired Antibodies to Vivax

PLoS ONE | www.plosone.org 6 July 2010 | Volume 5 | Issue 7 | e11437



vivax erythrocytic infection [13,14]. They are, however, still

susceptible to the sporozoite-induced liver stage infection for

which DARC is not required. Our earlier study and those of

others revealed that humoral and cellular immune responses to P.

vivax pre-erythrocytic antigens such as CSP are present in Fy2

individuals [31,32]. Among Fy+ individuals, however, the

influence of each allele on the acquisition of immune response

against vivax antigens has yet to be fully explored.

The expression levels of erythroid-specific DARC varied with

erythrocyte age and between different FY+ genotypes [43,60,61].

DARC expression was 2-fold higher in FY*A/FY*A homozygotes

than in FY*A/FY*Anull heterozygotes among people living in

Papua New Guinea, and higher DARC expression was associated

with the higher prevalence of P. vivax infection seen in FY*A/

FY*A compared to FY*A/FY*Anull subjects [43]. This was

caused by the significant reduction of the adherence of Duffy

binding protein to the erythrocyte in individuals who carried the

FY*A/FY*Anull allele [60]. Individuals with the FY*B/FY*B

genotype had a higher risk of P. vivax infection than those with

FY*B/FY*Bnull genotype in malaria-endemic regions of Brazil

[44]. Moreover, DARC expression has been found to be lower in

the FY*B/FY*B than in FY*A/FY*A and FY*A/FY*B genotypes

[61]. Hence, apart from the different levels of FY expression, the

specific qualities and subsequent functions of the DARC upon

binding to the vivax Duffy binding protein and post invasion of

erythrocytes, as well as its role in innate immunity as a receptor for

chemokines may all contribute to the resistance and susceptibility

to vivax infection. We were motivated to investigate the influence

of different Duffy positive alleles on the acquisition of anti-P. vivax

immunity among individuals living in malaria-endemic regions.

First, we demonstrated that broad antibody responses were

detected by ELISA to both P. vivax and P. falciparum in individuals

living in the two malaria endemic areas in Colombia that we

studied (Figure 1). The higher prevalence of recognition of at

least one P. vivax antigen (44%, n = 103) compared to recognition

of the corresponding P. falciparum antigen(s) (27%, n = 64) probably

reflects the higher level of P. vivax transmission in these areas

compared to that of P. falciparum [62,63]. However, the overall low

prevalence of recognition of the individual antigens reflects the

relatively low level of malaria transmission in these areas and the

fact that our selection criteria excluded individuals with active

infections.

The high level of recognition of PvCSP regardless of the

presence or absence of DARC had previously been recorded

among individuals living on the Pacific coast of Colombia [32] and

in Brazil [64]. There was no significant difference in the frequency

of antibodies to the sporozoite and liver-stage antigen PvCSP

among Fy+ and Fy2 individuals (p = 0.2996). Since sporozoites do

not use DARC to infect hepatocytes, Fy+ and Fy2 individuals

should be equally susceptible to sporozoite infection [65,66].

To determine whether the acquired antibody responses

associated with ‘‘natural’’ protection, we focused our studies on

Figure 4. P. vivax erythrocytic antigen specific IgM and IgG subclass profiles among different Duffy genotypes. IgM and IgG subclass
among Fy+ donors that had total IgG against PvMSP1 and PvDBP was measured by ELISA to determine the frequencies (A) and magnitude (B) of
responses against PvMSP1 and PvDBP. IgM and IgG subclass against PvMSP1 and PvDBP were also compared among donors with different Duffy
genotypes (C). Samples are considered positive when the OD reading is . average OD of naı̈ve controls + 3SD for frequency of responses or index of
reactivity (IR) is greater than 1 for the magnitude of responses, respectively.
doi:10.1371/journal.pone.0011437.g004
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donors that had developed acquired antibody responses but who

had undetectable parasitemia by blood smear at the time of

enrollment and no history of malaria symptoms in the past 12

months. Long-lasting antibodies and memory B cell responses in

other low malaria transmission endemic areas have also been

reported to be associated with naturally acquired protection [35].

As we show in Table 2, the antibody responses to PvMSP1

differed significantly between Fy+ and Fy2 individuals in both

frequency (p = 0.005) and magnitude (p = 0.014) (Figure 2B). This

observation is consistent with the requirement for DARC for P.

vivax erythrocytic infection [31,32]. We suspect that the very few

Fy2 donors in the current study that did have detectable anti-

PvMSP1 antibodies had been transiently exposed to PvMSP1 after

the release of merozoites from infected hepatocytes into the blood.

These merozoites would have been cleared rapidly from the

circulation because they would be unable to invade the Fy2

erythrocytes in these individuals.

The major finding in this study was within the Fy+ group

(Table 2 and Figure 2–3), in which the frequencies and

magnitudes of the antibody responses to P. vivax erythrocytic

antigens were significantly higher in individuals possessing a single

negative allele (FY*A/FY*Bnull and FY*B/FY*Bnull) than in

double positives (FY*A/FY*B and FY*B/FY*B). This is exactly

opposite of the expected level of DARC expression [43,61] and

susceptibility to P. vivax infection [42,67]. It is known that the

elevated DARC expression in double-positive individuals confers a

higher risk of P. vivax infection in comparison to those with one

negative gene (FY*A/FY*Bnull, FY*B/FY*Bnull) [43,44,60,61].

Furthermore, active erythrocytic malaria infections have been

reported to induce immune suppression that prevents the host

from mounting an effective immune response against the blood

stage parasites and other co-infecting agents

[38,68,69,70,71,72,73]. This immune suppression ranges from

inhibition of dendritic cell maturation [38], to inhibition of the

generation of specific CD4 T cells [69] and apoptosis of specific

CD4 T cells [73]. Thus, it is likely that the high susceptibility to P.

vivax blood stage infection and concomitant high P. vivax

erythrocytic parasite load in FY*A/FY*B and FY*B/FY*B

double-positive individuals may contribute to the suppression of

antibody responses against erythrocytic antigens when compared

with FY*A/FY*Bnull and FY*B/FY*Bnull individuals. The

higher antibody levels observed in those with a single negative

FY allele may also limit parasite load during subsequent infections

that may in turn reduce or prevent the immune suppression

induced by erythrocytic parasites. Finally, based on DARC’s role

as a sink for excess pro-inflammatory cytokines [74], high levels of

DARC expression in FY double-positives may reduce the surplus

of pro-inflammatory cytokines and curb the severity of symptoms;

alternatively, DARC may down-regulate the immune responses

that control the erythrocytic parasitemia.

This difference in immune recognition between FY*A/FY*B

and FY*B/FY*B individuals and FY*A/FY*Bnull and FY*B/

FY*Bnull individuals observed with PvMSP1 was confirmed with

a second P. vivax blood stage antigen, PvDBP, which is involved in

P. vivax erythrocytic invasion. Our observations that the antibody

responses to two P. vivax blood stage antigens are higher in single

positive than in double-positive individuals leads us to speculate

that immune responses to multiple erythrocytic antigens in hosts

with low parasite load could act synergistically against erythrocytic

parasite invasion and development, providing clinical protection

against subsequent reinfection.

In order to determine whether the differential frequencies of

recognition to blood versus sporozoite antigens by FY genotypes

were restricted to P. vivax, we investigated the recognition of PfCSP

and PfMSP1 in the same study population (Table 2, Figures 2
and 3). As expected, no such variation in antibody response

against P. falciparum antigens with FY genotype was observed.

Finally, we wanted to know whether any specific Ig subtypes are

responsible for the naturally acquired antibodies that are

associated with individual DARC genotypes. IgM responses to

malaria are more likely to be detected early after infection and are

expected to switch from the IgM isotype to the cytophilic isotypes

IgG1 and/or IgG3, a switch that has been associated with clinical

control of erythrocytic parasites [75,76]. In some endemic areas

the IgG1 response to PvMSP1 is higher, whereas in other areas the

IgG3 response dominates [77]. In this study, strong IgM and IgG

responses to PvMSP1 were detected in the same Fy+ individuals

(Figure 4), indicating that the IgM response did not compromise

the induction and development of IgG1 and IgG3 responses to this

antigen. The magnitude of IgG1 response to PvMSP1 was 3 times

greater than the IgG1 response to PvDBP. However, the

frequency of IgG3 responses to PvMSP1 was significantly lower

in FY*A/FY*B than in FY*A/FY*Bnull (p = 0.015) individuals, as

were the IgG1 responses to PvDBP in FY*B/FY*B compared to

FY*B/FY*Bnull individuals (p = 0.035). Therefore, the lower IgG3

and IgG1 components of the total IgG response may account for

the decreased responses to P. vivax erythrocytic antigens in humans

with the double positive FY*A/FY*B and FY*B/FY*B genotypes,

respectively (Figure 4C). However, the immune mechanism by

which differential DARC expression manipulates the specific IgM

and IgG subclass profiles associated with clinical protection need

to be determined.

In summary, we observed that frequency and magnitude of

antibodies specific for P. vivax erythrocytic antigens varied with the

host DARC genotype. Donors with genotypes associated with

higher levels of DARC expression and higher susceptibility to P.

vivax infection were found to have lesser frequencies and lower

magnitudes of specific antibodies against PvMSP1 and PvDBP.

IgG3 and IgG1 may account for the decreased responses to P. vivax

erythrocytic antigens in humans with FY*A/FY*B or FY*B/FY*B

genotypes. This supports the notion that one of the primary

mechanisms by which P. vivax evades host immunity is through

DARC indirectly down-regulating humoral responses against

erythrocytic invasion and development. These results represent

an important advance in our understanding of blood-stage

immunity to P. vivax that will inform the rational design and

development of effective vaccines to control P. vivax malaria.

Materials and Methods

Study populations
Subjects were recruited from two malaria-endemic cities of

Turbo (8u59420N, 76u4491230W) and Apartado (7u529400N,

76u379440W) both of which are on the Caribbean coast of

Colombia, South America. Their inhabitants are mainly a mixture

of indigenous, Hispanic and African backgrounds. Banana

cultivation is the major source of income. They both have high

migration rates, and malaria transmission is perennial and

unstable, with a mean of 10 infectious bites per 1,000 people.

During the 2004 to 2008 period, the means of annual P. vivax

infectious bites are 323 in Turbo and 84 in Apartado per 1,000

inhabitants. P. falciparum is less frequent in these two cities during

the same period (mean annual infectious bites: Turbo = 44,

Apartado = 11) (personal communication with local health au-

thorities) [62,63,78]. The causes of malaria infections in these two

areas are comparable; 72% vivax, 28% falciparum and only

0.11% with mixed infection. All the subjects were above 18 years

old and were voluntarily recruited. The purpose of the study was
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explained to each subject, after which they signed the consent form

to participate in the study. Only subjects who had long been

residing in the study area for more than 5 years and have no

symptoms of malaria within the past year were enlisted. Subjects

included in the study were only those with no detectable P. vivax or

P. falciparum parasites in blood smears on the day of sample

collection. A total of 233 subjects were enrolled from malaria-

endemic areas of Turbo (n = 155) and Apartado (n = 78) (Table 1).

For malaria infection naı̈ve controls with specific DARC

genotypes, 30 subjects were recruited from Medellin, where there

is no malaria transmission. Additional eight adult US donors who

had no previous history of malaria or trip to malaria-endemic

region were also used as ELISA assay control. Whole blood

samples were obtained for Duffy genotyping and the separated

sera were used for anti-malaria antibody screening. The study

protocol and consent forms were approved by the Ethics

committee for research in humans of Sede de Investigacion

Universitaria (CBEIH-SIU), Universidad de Antioquia (Medellı́n,

Colombia) and Western Institute Review Board (WIRB), USA.

Duffy genotyping
Genomic DNAs from the peripheral blood of all donors were

purified using the QIAamp kit (Qiagen), and the quality was

assessed in 1.5% agarose gel. PCR was performed to amplify

1000 bp using the following primers: P1, 59CCTTTT-

TCCTGAGTGTAGT39 (sense) and P2, 59GCAGAGCTGC-

CAGCGGAAGA39 (antisense) as described previously (68). The

PCR conditions were: 95uC 4 min, 35 cycles of 1 min at 94uC,

1 min at 58uC, and 1 min at 58uC, and final 10 min at 72uC.

PCR products were purified using Qiagen kit (Valencia, CA) for

sequence analysis. Primers P1, P2, or P38 (59AGGCTTGTG-

CAGGCAGTG39) (68) were used for sequencing reactions. A

single nucleotide substitution (T46C) at the promoter region

abolishes the expression of the DARC in erythroid tissues (Fy2,

genotype FY*Bnull/FY*Bnull, phenotype Fya2b2). A single

nucleotide substitution (G131A) at the exon region of DARC

determines the allele specificity among Duffy positive donors (Fy+).

Recombinant antigens
The recombinant P. vivax circumsporozoite protein (PvCSP)

that includes the amino terminus repeat region (3X repeat 1 and

3X repeat 2), and carboxyl terminus was provided by Dr. KL Sim

(Protein Potential LIc, MD). Recombinant P. vivax MSP1

corresponding to MSP1 P. falciparum merozoite surface protein 1

(PfMSP119) and P. falciparum MSP1 were obtained from MR4, VA.

Recombinant P. vivax Duffy Binding Protein (PvDBP) correspond-

ing to region II of the protein was kindly provided by J.H Adams

(University of South Florida, Tampa, FL) and P. falciparum CSP

long synthetic peptide (LSP) corresponding to the amino acid 282–

383 of the C-terminal region was obtained from Dr. G. Corradin

(University of Lausanne, Switzerland) [79].

Evaluation of antibody responses
Enzyme Linked ImmunoSorbent Assay (ELISA) was performed

in 96 well flat-bottom-plates (Nunc-Immuno Module, USA). Wells

were coated with recombinant proteins PvCSP, PvMSP1 or

PfMSP1 at 2.5 mg/mL (PvDBP at 2 mg/mL, PfCSP LSP at 1 mg/

mL) in 50 ml of PBS buffer (pH 7.4) and incubated overnight at

40C. The plates were washed with 200 ml of wash buffer

(0.05%Tween-20 in PBS) using Bio-TEK Washer (ELx405) and

then blocked with 200 ml of blocking buffer (5% nonfat dry milk in

PBS) for 1 hour at room temperature (RT). Fifty microliters (50ml)

of 1:50 serum dilutions were added to the coated wells and then

incubated for 2 hours at room temperature. After another

washing, 50 ml of HRP-labeled goat anti-human IgG (H+L) at

1:4000 in 2.5% milk PBS-Tween-20 was added and the plates

were kept at room temperature for 1 hour. For assessment of IgM

and IgG1-4 subtypes, the HRP-labeled mouse anti-human

antibodies were used at 1:1000 following the manufacturer’s

instruction (Southern Biotech, Birmingham, AL, USA). They were

later developed with tetramethylbenzidine (TMB) substrate

(Sigma-Aldrich) and the OD was measured at 450 nm with

ELISA Autoreader MR5000 (Dynatech, Chantilly, CA). All the

assays were performed in triplicates and repeated twice. The

antibody recognition by individual sera is expressed as Index of

Reactivity (IR) that is test OD reading divided by cut-off OD. The

cut-off OD is calculated as the average OD reading of negative

control donors (US donors with no prior exposure to malaria)+3

standard deviations. A sample is considered positive when the IR

value is $1.

Statistical analysis
Statistical analyses were performed using Graphpad prism 5.

Differences in the means were assessed using Student’s t-test and

Chi-squired test. P values ,0.05 were considered significant.
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